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Probabilistic judgment

Most economic decisions are made in dynamic settvith some uncertainty, and so require
probabilistic judgment to draw correct inferencesf observations and form correct beliefs.

The standard economic assumption has been thalepmajie such decisions optimally, using the
laws of probability theory: Homo Economicus (possiinlike Homo Sapiens)

e |s also perfectly rational in the sense of costieand correctly making logical nonprobabilistic
inferences and applying the laws of probabilitptocess information and make probabilistic
judgments (Bayes’ Rule, contingent reasoning, opti@ue)



But just as considering evidence on choice behd®@tus to question some standard assumptions
about preferences, evidence can lead us to questiodard assumptions about judgment.

Led by Kahneman and Tversky (19%elence) and others, psychologists and economists have
used deviations between intuitive probability judgnts and normative principles (“biases”) to
suggest general principles of how probabilistiaqgnént deviates from rationality.

Kahneman and Tversky’s approach was inspired lyride of perception, which use optical
illusions to suggest principles of vision...withoatplying that everyday visual perception is badly
maladaptive.

The use of heuristics and the resulting biasedezahto choices that are suboptimal when judged
by idealized standards of rationality.

But the point of this line of research is not tgue that humans are stupid, but rather than adaptiv
behavior can sometimes deviate systematically fd@ally rational behaviour, and that
understanding the patterns of deviation can heimuaterstanding observed behaviour.



Rabin on Tversky and Kahneman'’s “Heuristics and Biges” Science 1974)

Twversky and Kahneman (1974) conceptualize observed departures from perfect rationality in
Judgment under uncertainty by noting that

.. people rely on “heuristic principles which reduce the complex tasks of assessing
probabilities and predicting values to simpler judgmental operations. In general,
theze heuriztics are guite useful, but sometimes they lead to severe and systematic
errors.”

Tversky and Kahneman also provide an apt metaphor for this approach:

The subjective assessment of probabilitv resembles the subjective assessment of
phyvsical quantities such as diztance or size. These judgments are all bazsed on data
of limited vahditv, which are processed according to heuristic rules. For example,
the apparent distance of an obhject 1s determined 1n part by i1ts clarity. The more
sharply the object 15 seen, the closer it appears to be. This rule has some vahdity,
becausze 1n any given scene the more distant objects are seen less sharply than
nearer objects. However, the reliance on thiz rule leads to systematic errors in
the estimation of distance. Specifically. distances are often overestimated when
vizibility 1s poor because the contours of objects are blurred. On the other hand,
distances are often underestimated when vizsihility 12 good because the objects are
seen sharply. Thus, the rehiance on clarity as an indication of distance leads to
common bilases. Such biases are alzo found in the intuitive judgment of probability.



More generally, Tversky and Kahneman postulatettieate are two interacting systems in
cognition:

e The intuitive system uses heuristics that sometiget things wrong from the point of view of
conscious reasoning; but it is fast, automatiqrééfss, and difficult to control or modify. It is
adaptive because it gets things approximately mdign it is important to act quickly.

e Conscious reasoning is a slow but sophisticatedgss that is very flexible and can be changed
and improved by learning; but it can only conceetian one thing at a time, and it requires
effort and control.

Choice is the product of a continual interactiotwaen these two systems, in which conscious
reasoning struggles to override intuition, but ewdren the evidence against intuition is strong, it
fights back and sometimes wins.

Errors or biases in judgment are the unintendesl esfiibcts of generally adaptive processes.

Most probability theory is plainly more in the neabf conscious reasoning than intuition, so
intuitive probability judgments are unlikely to hely rational.



Now consider the answers to question 3 (which Wwasame for all).

3. Suppose that one out of a hundred people ipdpalation have HIV. There is a test for HIV
that is 99% accurate. This means that if a peragrtHiV, the test returns a positive result with
99% probability; and if a person does not have Hiiveturns a negative result with 99%
probability. If a person’s HIV test comes back p@si (and you know nothing else about her/him),
what is the probability that s/he has HIV?



Most people answer 99%.
This is wrong!

Perhaps the reasoning went as follows:
e An HIV-negative person will probably receive a atge result (99% chance)
e An HIV-positive person will probably receive a pog result (99% chance)

e Conversely, if a person tested positive, she&kedylito be HIV-positive (99% chance)

The problem with this is that it ignores the baste (“one out of a hundred people in the
population have HIV”); ignoring the base rate makes systematically overestimate the
probability of rare events and underestimate tiodgbility of common events.

Taking the base rate into account requires at &asttuitive understanding of Bayes’ Rule:

An HIV-negative person is 99 times less likelydsttpositive than an HIV-positive person, but
there are 99 times more HIV-negative people. Tlsaseel out, so the probability that a person
testing positive has HIV is exactly 50%.



Aside on Bayes’ Rule

Here is a more detailed exposition of Bayes’ Radeirtesy of Botond Bszegi:

Suppose you have a coin, but you do not know wietlefair. You start off thinking that it is
fair—so that it gives heads 50% of the time—witbl@bility two-thirds, and it is biased toward
heads—so that it gives heads 75% of the time—wdibgbility one-third.

Now imagine that you flip the coin and it comeshgads. How would you have to change your
beliefs about the probability that the coin is?aou would clearly have to decrease it, since a
head outcome is more likely to come from a biased. 8ut by how much?



A fair coin is like an urn in which exactly halfdlpalls say heads, and half say tails: the prababil
of getting heads on a flip of the coin is the sa®¢he probability of getting a “heads” ball when
drawing randomly from the urn.

The biased coin is like an urn in which 75% orltlaéls say heads, and 25% say tails.

You are drawing a ball from one of these urns yiout do not know which one. So imagine you are
drawing a ball from one big urn, with the two smaiths combined inside it.

What does it mean that you think the coin is fathwprobability two-thirds? It means that the urn
in which exactly 50% of the balls say heads and S@9ctails has twice as many balls, in total, as
the one in which 75% of the balls say heads and &@4ails. In other words, when drawing a ball
from the big urn, you think it is twice as likely tome from the fair urn as from the unfair urn.

These probabilities can be represented by lethiaginhfair urn have four balls in total, three heads
and one tails, and letting the fair urn have elils in total, four heads and four tails.

We can now see how much you should change yowsfbelbout the probability that the coin is
fair if you flip the coin once and it comes up heaBuppose we draw a ball from the big urn and it
says heads. What is the probability that it camamfthe fair urn? There are four heads balls in the
fair urn and three in the unfair one, for a tofas@ven. So the probability is 4/7.
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We have just derived Bayes' rule for this examplere generally, the probability of hypothesis h
being true, conditional on observing informatiorsiProb[hypothesis h|information i] = Prob[i and
h are both true]/Probli is true].

In the coin example, the hypothesis h is that the s fair. The information is that when flipped
once, it came up heads. The number of ways hypstheand information i can both be true is the
number of ways to draw a heads ball from the fendthat is, 4. The number of ways i can be true
Is the number of ways to draw a heads ball frombtgaurn—that is, 7.

End of aside



Answering question 3 mechanically, using Bayes'&Rul

Bayes’ Rule says that the probability that a pemsbase HIV test comes back positive has HIV is
the ratio of the probability that {a person’s testnes back positive and the person has HIV} to the
probability that {a person’s test comes back pos}ti

The probability that {a person’s test comes bacitpe and the person has HIV} is 0.01x0.99,
because 1% of the population have HIV and thegiest the right answer for 99% of them.

The probability that {a person’s test comes bacsitpe} is the sum of two terms: the same
0.01x0.99 from the people who do have HIV, plusth@o00.99%x0.01 from the 99% of the
population who don’t have HIV but the test gives trong (positive) answer for 1% of them.

Thus Bayes’ Rule gives the probability that a penstiose HIV test comes back positive actually
has HIV as (0.01x0.99)/[(0.01x0.99) + (0.99x0.34)].5, like the intuitive argument.
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To repeat, both the intuitive argument and BayageRhow that the problem with the common
answer is that it ignores the base rate (“one batlmndred people in the population have HIV”).

Even intuition suggests that unless the test ieply accurate, the base rate is relevant—though
not how to combine it with the test result—but dedpnd to ignore it anyway.

Ignoring the base rate makes people systematicadyestimate the probability of rare events—
such as a person having HIV—because it ignores ltlasie rate rarity; and it makes them
underestimate the probability of common events—ssch person not having HIV.

Unsurprisingly, this systematic bias can have ficgmt economic consequences.

11



To see base rate neglect in a different way, censite answers to questions 4 (a and b).

4da. Jack’s been drawn from a population which B 3hgineers and 70% lawyers. Jack wears a
pocket protector. Use your own estimate of theaeye probabilities that engineers and lawyers
wear pocket protectors to estimate the probalitify Jack is an engineer.

4b. Jack’s been drawn from a population which & 3@wyers and 70% engineers. Jack wears a
pocket protector. Use your own estimate of theaeype probabilities that lawyers and engineers
wear pocket protectors to estimate the probalitif¢ Jack is an engineer.
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People’s average estimates forthe probability that Jack is an engineer in 4®43®ngineers,
70% lawyers) ang,, the probability that Jack is an engineer in 4843awyers, 70% engineers),
are virtually the same.

The right estimates depend on the estimated pritibebthat lawyers and engineers wear pocket
protectors, which we don’t know; but even so we tegdirthat it's wrong to have the same estimates
for p, andp,:

Using Bayes’ Rule we can show that (independetitefprobabilities that engineers and lawyers
wear pocket protectors, which cancel out)(fip p)J/ [p2/(1- )] = (3/7F = 18%.

If gis your estimated probability that a lawyer weamocket protector arrds your estimated
probability that an engineer wears a pocket protethen, using Bayes’ Rule,

p. = 0.3/[0.3r+0.7q] andp,= 0.7%/[0.7r+0.3]].
Thuspy/(1- p1) = 0.3/0.7q andp,/(1- p,) = 0.7/0.3q, so p/(1- p))/ [p/(1- po)] = (0.3/0.7F~ 18%.

(g andr cancel out.)

Again, people ignore the base rate and so systesigtoverestimate the probability of the rare
event (engineer dresses well) and underestimatertiability of the common event.
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Representativeness
Consider the following example (Kahneman and Twerg§k973Psychological Review)):

“Linda is 31 years old, single, outspoken, and \mtght. She majored in philosophy. As a student,
she was deeply concerned with issues of discrimvina@nd social justice, and also participated in
anti-nuclear demonstrations.”

Please rank the following statements by their podityg, using 1 for the most probably and 8 for
the least probable:

1. Linda is a teacher in elementary school.

Linda works in a bookstore and takes Yoga ckasse
Linda is active in the feminist movement.

Linda is a psychiatric social worker.

Linda is a member of the League of Women Voters.
Linda is a bank teller.

Linda is an insurance salesperson.

© N o 0 h~ W D

Linda I1s a bank teller and is active in the feistimovement.
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| now repeat them with typical average probabilagkings in parentheses:

Linda is a teacher in elementary school. (5.2)

Linda works in a bookstore and takes Yoga claq8e3)
Linda is active in the feminist movement. (2.1)
Linda is a psychiatric social worker. (3.1)

Linda is a member of the League of Women Voiérg.)
Linda is a bank teller. (6.2)

Linda is an insurance salesperson. (6.4)

© N o 0 bk W D =

Linda is a bank teller and is active in the feistimovement. (4.1)

Note that item 8 is ranked more likely than itendépending on the subject population (but even
extending to professional statisticians), 70%-9@%krthem in this order.



This is wrong! (Why?)

Kahneman and Tversky call this the conjunctionatf{since the conjunctive event receives a
higher probability.)

This same phenomenon shows up in many other forms.

Why does it happen? Kahneman and Tversky and otlaes argued that it's because decision
makers use similarity as a proxy for probabilitasBd on the available information, they form a
mental image of what Linda is like. When asked &iloel likelihood that Linda is a school teacher,
bank teller, feminist, and so on, they ask thenesehow similar is my picture of Linda to a typical
school teacher, bank teller, or feminist? They tuen this similarity judgment into a probability,
with more similarity implying a higher probability.

The similarity between a Linda and a feminist baaller is greater than the similarity between
Linda and a bank teller, so they judge item 8 arerfikely than item 6.

But by the laws of probability, the probability tHanda is a feminist bank teller must be less than
the probability that she is a bank teller—the canfion rule.

The problem is that similarity relations do notd@ the conjunction rule, a basic law of
probability.

Base rate neglect is closely related to represeatstss.
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Sample size neglect

Consider the following example (Kahneman and TweréR74<ience):

A certain town is served by two hospitals. In thigér hospital, 45 babies are born per day. In the
smaller hospital, 15 babies are born per day. 5Db&bies are boys, but the exact percentage

varies from day to day. For a period of 1 yearhdauspital recorded the days on which more than
60% of the babies born were boys.

Which hospital do you think recorded more such @ays
e The large hospital?
e The small hospital?

e About the same (within 5% of each other)

17



Most people think they are about the same.

This is wrong! (Why?)

Why does it happen?

It's also closely related to representativeness:

Subjects assess the likelihood of a sample reguwdsking how similar that sample result is to the
properties of the population from which the sanwedes drawn.
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“Law of small numbers”

All families of six children in a city were surveyeln 72 families the exact order of births of boys
and girls was GBGBBG. What is your estimate ofribenber of families surveyed in which the
exact order of births was BGBBBB?
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In standard subject pools the median estimate.i338 is wrong! (Why?)

Why does it happen? Also closely related to repredieeness:

e People expect that a sequence of events gendragedandom process will reflect the essential
characteristics of that process even if the sequenshort. (The law of large numbers says that
very large samples drawn from a probability disttibn very accurately reflect the probabilities in
the distribution. People mistakenly apply the saea to small samples.)

e So if a coin is fair, subjects expect HHH to biolwed by a T (the gambler’s fallacy: the false
belief that in a sequence of independent draws &ahstribution, an outcome that has not
occurred for a while is more likely to come up ba nhext draw).

e If girls are as likely as boys, subjects expectG3G be followed by B.
e S0 BGGBBG is viewed as a much more likely sequé¢inae BBBBBB.

e People expect that the essential characteridtitseerocess will be represented, not only
globally in the entire sequence, but also locailgach of its parts.
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More on sample-size neglect and the law of small mbers (courtesy of Rabin)

Griffin and Tversky (1992) experiment: Students read the following.

“Imagine that yvou are spinning a coin, and recording how often the coin lands
heads and how often the coin lands tails. Unlike tossing, which (on average) yveilds
an equal number of heads and tails, spinning a coind leads to a bias favoring one
zide or the other because of slight imperfectinos on the rim of the coin (and an
uneven distribution of mass). Now imagine that you know that this bias 13 3/5.
[t tends to land on one side 3 out of 3 times. But vou do not know 1f this bias 1s
in favor of heads or in favor of tails”

21



From Griffin-Tversky (1992): Two possible i.i.d. coins, a m(h|-) = £ coin and a 7(h|)
coin, each with prob = 3. Observe a set of flips h,t. What 15 inferred?

Sample of (h,t] Median P(§ = 2|h,t] Proper Bayes B(f = £|h.t)

5.0 92 38
19,14 60 38
39 60 60
41 80 77
08 54 60
5.4 55 60
6.3 67 77
116 64 88
3.0 85 77
21 63 60
72 77 38

10.7 60 77
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The Fundamental Theorem of Bavesian Inference about Which of Two Symmetrically Biazed
Coins have Generated A Sample of Heads and Tailzs: Proper inference in this setting 15 solely
a tunction of A — £, and has nothing to do with A +{. Proof: Problem Set Maggie.

Proof:

The Bayesian posterior probability that the bia$h(fy is 3/5 given that you obserdeheads andl
tails is the probability that you obseridneads andtails if the bias is 3/5 divided by the total
probability that you observeheads antltails summed over both possible biases.

Thus (canceling out the “number of ways we carhdetads” terms in the numerator and
denominator),

posterior probability that Pr{h} = 3/5 = [(3/5§2/5Y]/{(3/5)" (2/5) + (2/5)' (3/5)}.

Dividing the numerator and denominator through @®y9)" (2/5)] gives

posterior probability that Pr{h} = 3/5 = 1/{1 + &"" (3/5)™} = 1/{1 + (2/3)"1.

This formula yields the posteriors in the table®e
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Sample of (ht) h—t DMedian P(# =3/5|h,t)] Proper B(f = %|h__t:]

5.0 5 92 88
7.2 5 77 88
116 5 64 88

1014 5 60 88
3.0 3 85 7
41 3 80 7
6.3 3 67 77
10.7 3 60 7
91 1 63 60
3.2 1 60 60
5.4 1 55 60
0.8 1 54 60
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People instead seem to be basing their inference very largely on ﬁ_

Sample of (ht) % heads Median P(# =3/5h.t)

5.0 100% 92
3.0 100% 85
4.1 80% 80
7.2 78% 77
6,3 67% 67
2.1 67% 63
11.6 65%% 60
32 60% 60
10.7 59% 60
19.14 58% 60
54 55% b
9.8 53% 54

Matthew's Claim: Only an egghead statistics geek would think that 2 —¢ tells yvou more about

the coin’s hias than hL-H Just because h — ¢ 15 the correct statistic to use doesn’'t make 1t

sensible or intuitive. Merely correct.
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Sample of (h,t) Median P(# =3/5) Bayes(3/5)

921 63 60
3.0 85 77
3.9 60 60
41 80 77
5.0 99 88
5.4 55 60
6.3 67 77
7.2 77 88
08 54 60
10,7 60 77
11.6 64 88

1014 60 88

Relving so heavily on % in judging relative likelihoods, it might be (and in fact it 1z} that

people think thev are learning more from i — ¢ In symmetric-coin inference problems than
thev are in small samples, and think they are learning lezs than they are in large zamples.

More generally, in inference problems, people exhibit:

1. “Sample-5i1ze Negleet”: Their inferences are too zensitive to hi+.+, and too
insensitive to h + £

2. Non-Belief in the Law of Large Numbers—people don't get just how much they
learn from large data sets.

3. Beliet in the Law of Small Numbers—people believe thev are learning more
from small samples than they really are.



General modeling strategy
Rabin:

It is useful to study systematic departures fromexi Bayesian information processing, always
focusing on the Bayesian model as a base-line cosqgma

This is not the only reasonable approach to studgounded rationality, but it makes sense
because:

1. Bayesian rationality is what our models now assu

Note: A mini-literature in psychology respondste Kahneman and Tversky hypothesis that “In
general, these heuristics are quite useful, buetioms they lead to severe and systematic biases”
with the rebuttal “No—while these heuristics maystimes lead to severe and systematic biases, i
general they are quite useful.” Irrespective ofriexits of having such a debate in psychology it i
clear given the current status of economics than@mists are more in need of understanding the
second half of the first sentence than the secofdfthe second sentence. Economists haven't
omitted emphasis on the ways people are smartawe assumed that people are inhumanly smart
The relevant insights for us are clearly identifythe severe and systematic biases.

2. This approach promotes emphasis on how probtabiteasoning is not random or totally

irrational. Central point to understand the heilassand-biases literature: Bounded Rationatity
Randomness, and it is a form of human rationativg,inhuman idiocy.

27



3. Bayesian updating is the unique normativelytngay to process information.

4. Sticking as closely as possible to the Bayeapproach helps us take advantage of the
existing apparatus in economics for thinking alstatistical reasoning.

5. And it would be nice to model departures fronassical” models as contentions about
parameter values in general models that embeddhsical model as a special case. Embedding
fully rational Bayesian updating as special caseganeralized models allows us to do good
comparative statics and see where our resultsomneng from, and facilitates empirical testing.

Camerer:

The Bayesian approach is so simple and usefulttisahard to find equally simple formal
alternatives consistent with Kahneman and Tverskgigistics.

An appealing way to do so is to use the Bayesamdmwork but assume that people misspecify or
misapply it in some way.

For example, Rabin and SchrdJE 1999) define “confirmatory bias” as the tendencyp¢oceive
data as more consistent with a prior hypothesis thay truly are; their model is otherwise fully
Bayesian.

For example, RabinJE 2002) models representativeness as the (mistakpat®&tion that
samples are drawn without replacement, and shoms $e@sh implications of that model (e. g,
perceiving more skill among managers than trulgtsxi
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Example application: modeling representativeness (§zegi, following Rabin (2002JE))

A person, “Freddy” in the paper, observes a sequehbinary signals of some quality, “good” or
“bad.”

The signals are random, with a constant probalgiligte”) of being good, which Freddy has a
correct Bayesian prior about.

Although the signals are really i.i.d., Freddy bedés that they are generated by random draws
without replacement from an “urn” of N signals, wééhe urn contains signals in proportions
corresponding to the rate.

Other than misunderstanding the statistical progesgrating the outcomes, Freddy is completely
rational: he always makes the correct inferenced (eses Bayes’ rule) given his wrong theory of
the world.

N — oo implies the person’s inferences approach Bayeasitwnality; N — O implies they are more
distorted.
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Rabin’s urn is completely replenished every 2 mgita mathematical trick).

(Convenient but less natural than continuous regthement as in Rapoport and Budescu,
“Randomization in Individual Choice BehavioPgychological Review (1997)):

People maintain window d&f previous trials and predict that the next ttiall will “balance” the
subsequence &f+ 1, i. e., make relative proportions = probalahti

Rabin’s urn model immediately (and trivially) yislthe “gambler’s fallacy,” in that Freddy
necessarily expects the second draw of a sigra teegatively correlated with the first.
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Rabin’s model also yields some insight into thelraotd fallacy and other puzzles.

Virtually every sports fan believes that there s/atematic variation in the performance of each
player from day to day, that the performance ofaggr during a particular period may be
predictably better than expected on the basiseoptayer’s overall record.

This was carefully tested, and rejected, for pmitesal basketball by Gilovich, Vallone, and
Tversky (198%Cognitive Psychology). But people still believe it.

The hot hand fallacy at first seems the opposith®@igambler’s fallacy: The gambler’s fallacy is
the belief that the next outcome is likely to b#edtent from previous ones, whereas the hot hand
fallacy is the belief that the outcome is likelyld® similar to previous ones.

But both the gambler’s fallacy and the hot hanthésl can be explained by this way of modeling
representativeness.

Intuitively, the gambler’s fallacy means peoplerd expect to see many streaks in a person’s
performance. When they do see many streaks owgrgaperiod, the sequence will not feel
representative of a completely independent rand@oass.

Hence, they will conclude that the person must heada hot hand. This is the only way they can
“rationally” explain the unexpected streaks theyenabserved.
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First imagine that Freddy is playing roulette. H@Ws that the proportion of reds and blacks over
time are equal.

Suppose N = 10, and that red came up twice in a row

That N = 10 means that Freddy started off thinkivag there were 5 red and 5 black balls in the
run.

With two red balls gone, Freddy expects the neatvdio be black with probability 5/8 > 1/2. That
IS, Freddy commits the gambler’s fallacy.

Intuitively, since he expects empirical proportiemsmall samples to resemble the true
proportions, he expects initial imbalances to “eotthemselves.”
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Now imagine that Freddy is trying to infer the Elalvel of a mutual-fund manager called Helga,
where he does not know the probabilities of reléwamcomes.

Freddy knows whether Helga has beaten the markeage when running her managed fund zero
times, once, or twice each of the last two quartdesdoes not know Helga'’s skill level.

There is a probability q that Helga always beagstiarket, a probability g that she never beats the
market, and a probability 1 — 2q that she beatsitaket with probability 1/2. Freddy has correct
priors about the likelihood that Helga is skilledumskilled.

In reality, a mediocre Helga’'s performance is iretggent from quarter to quarter.
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Suppose that N = 2. What does Freddy think may érpp

He correctly thinks that an unskilled Helga willl fshort of the market both times and a skilled
Helga will beat the market both times, but he teiakmediocre Helga will beat the market exactly
once and fall short of the market exactly once.

As before, Freddy commits the gambler’s fallacyhdfobserves a mediocre Helga performing
well, he thinks she is due for a bad performance.

What will Freddy infer after observing Helga havimgp good quarters in a row?

He thinks only a skilled Helga can perform this iweb he will infer that Helga is skilled for sure.

By the same logic, if Freddy he observes two batbpmances in a row, he will conclude that
Helga is unskilled for sure.

Freddy overinfers Helga’s skill from a small samplteextreme performances—he draws a more
extreme conclusion than is justified by his obstove.

This overinference is rooted in the same represieataess that is behind the gambler’s fallacy.

Since Freddy believes in the gambler’s fallacyekgects the mediocrity of Helga’s decisions to be
quickly reflected in a quarter of bad performartdence, he thinks that a couple of good
performances indicate high skill.
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Freddy’s overinference regarding Helga'’s skill t@ad him to several mistakes.

First, he may be too eager to invest his moneyalgéls fund if it has performed well recently. He
will then be surprised when Helga’'s two good parfances are followed (as is all too likely) by a
bunch of average performances. That is, he und®asts “reversion to the mean”.

If Helga follows her quarters of good performanathwnediocre ones, Freddy may move his
money pointlessly between investments.

Now consider what conclusion Freddy draws fromiagfamixed performances.

He believes that only a mediocre Helga can havie padormances, and he is in fact correct in this
belief.

Hence, Freddy overinfers only from extreme perfaroes.

Intuitively, the mistake Freddy makes is to undineste the probability that a streak of good or
bad performances arises purely by chance, so ¢hatthbutes extreme performances to skill.
There is no similar mistake he makes with mixedgrarances.

35



Freddy’s overinference about Helga'’s skill fromhai sequence of good performances is
exactly like a false belief in the hot hand:

He too easily concludes that Helga’s skill is “hot.

But this can only happen because Freddy thinlssatpriori possible that Helga is a skilled
manager.

However, the model implies that Freddy will comd&dieve this even if it is not the case:

Upon observing the world, he will come to belielattthere is variation in manager skill when in
fact there is none.
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Suppose Freddy does not have a good idea abodistheution of skills among mutual-
fund managers, and is trying to learn this fromeoisg the performance of mutual funds.

Consider an extreme case: in reality all mutualdlforanagers are mediocre, beating the
market each quarter with probability one-half.

Freddy observes two quarters of performance byge laumber of mutual funds.
Since in reality all managers are mediocre and halependent performances, Freddy will observe
that one-quarter of the mutual funds beat the nidvkiee, half beat the market once, and one-

guarter do worse than the market twice.

But Freddy falsely believes that only skilled mitfuand managers can beat the market twice in a
row, so he concludes that one-quarter of the miitual managers are skilled.

Similarly, he concludes that one-quarter of theualifund managers are unskilled.
That is, he overestimates the variation in skiliha population.

Intuitively, since Freddy believes in the gambldgbacy, he thinks streaks of good or bad
performance are unlikely.

So if he watches several analysts for two quarbersause he underestimates how often average
analysts will have consecutive successful or uressfal years, he interprets what he sees as
evidence of the existence of good and bad analysts.
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This sort of analysis can be done with tediouslaigéor less extreme cases (Rabin):

Let good performances be a, and bad b. Then:

True Frobability Freddyv's Predicted Probability
aa ab (or ba) bb aa ab (or ba) bb
-3 & £ & % : :
If6 =3 = 5 4 1 4 1
If6 =g T T T 0 : g

Claim: Freddy will over-inter ikelihood of 8 = 2 upon ohserving aa. Exercise: Calculate his
and a Bavesian's posterior beliefs about Helga ml]mﬁ INg ada.

Given his priors g, with what chance does Freddy expect to see aa, ab, and bb performances

bv Helga?

Freddy believes the likelihood of aa 13 q; + (1 — qu% + gl = g + =4
Freddy believes the likelihood of ab is g5 + (1 — 29)% + ¢ = 3= — 1&g
Freddy believes the likelihood of bb 1= ql] (1— ?q]El +gz =

Actual hkehhood of aa 13 [}'T + 11— Eqr] — + qu f,: - ==q
Actual likelihood of ab 1z g== + (1 — 2g) = JC + g = '_'TT — _?q.

L_I 5 —5-‘:5‘

Actual ikelihood of bb 13 q-ﬁ% (1— ?ql-r- +a47 =1 124

38



From Rabin QJE 2002):

IV. OVERINFERENCE

The most interesting implications of the law of small num-
bers come when Freddy is uncertain about the true rate, and
makes inferences about the rate from the signals he observes.
Suppose, for instance, that an observer believes that there is an
equal chance a fund manager can be any of three types, bad,
average, or good, who outperforms other mutual funds 1/4, 1/2, or
3/4 of the time, respectively. What does he infer from two suc-
cessful years in a row by a particular fund? A Bayesian thinks
such a sequence occurs with probability 1/4 - 1/4 = 1/16 for bad
funds, 2/4 - 2/4 = 4/16 for average funds, and 3/4 - 3/4 = 9/16 for
good funds. But an N = 4-Freddy believes that the probabilities
are 1/4 - 0/3 = 0/12 if the fund 1s bad, 2/4 - 1/3 = 2/12 if the fund
i1s average, and 3/4 - 2/3 = 6/12 if the fund is good. For each rate,
Freddy assigns a lower probability to a streak of two a’s than a
Bayesian assigns—because he believes that no matter the rate,
drawing the first @ means there are fewer a’s left for the second
draw. But more importantly, Freddy’s beliefs are too skewed
toward believing that the fund is good, since making one less a
available for the second draw has a proportionately greater im-
pact when there are fewer a’s to begin with. From his priors,
Freddy forms probabilistic beliefs about the rate given an ob-
served sequence of signals using a sort of warped Bayes’ Law—
applying Bayes’ Law with his mistaken beliefs about how likely
each sequence is given an underlying rate. While a Bayesian
believes the probability that the analyst is good 1s 18/28, Freddy
believes that the probability is 21/28 > 18/28.
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By contrast, if Freddy observed a large numbergsfeds from each of several different sources,
then he is too likely to believe that the rateessl extreme than it is.

This is because he struggles to explain why héseiwing so many streaks of rare signals, which
he thinks are very unlikely.

To explain such streaks, he may come to believghlearue rate is close to 50/50, even if thissdoe
not accord with the overall frequency of the signassuming that there is underlying variation
even when there is none.

Such a false belief corresponds to the hot haralkcial

See Rabin and Vayanos (20R8view of Economic Studies).
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Further issues (not covered in lectures)

Overconfidence

98% confidence interval only captures 60% of ttstrdhution.
100% is actually 80% and 0% is actually 20%

Optimism/wishful Thinking

Unrealistic view of personal abilities/prospects

90% of drivers claim above average skill

99% of freshman claim superior intelligence

Confirmatory bias

People selectively either ignore or misread fur{laenbiguous) information as supporting initial
hypotheses. That is, once a person has formedragdtiypothesis about what is true, she tends to
selectively ignore contrary evidence and carefadigsider supporting evidence.

Anchoring

People often try to answer a question by startingpane first-pass guess based on memory or th

environment, and then adjusting that guess urgy tre satisfied with the answer. Even after the
adjustment, people’s judgment seems to be coloydddr original guess or anchor.
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Availability biases

People often assess the frequency of a class qrtability of an event by the ease withich
instances or occurrences can be brought to minédnswer questions such as “What percentage o
commercial flights crash per year?”; “What is tiskof heart attack among middle-aged men?”; or
“Are there more suicides or more homicides in tmetédl States each year?”, most people (who dc
not know the answer) try to recall instances ohplarashes, heart attacks, suicides, or murder
they have heard about from acquaintances or inghes. The easier they can recall instances of th
event, the more likely they perceive it to be.

Curse of knowledge

The hindsight bias is closely related to the cafdenowledge. People cannot abandon their own
perspective, even when they know others are iff@reint situation, and they are highly motivated
to communicate well.

Incomplete debiasing

Suppose a person is told that A is true, whereafisdo some conclusion X. Then, she is told that

A is actually not true—it was a mistake—and sheetvek this. Despite this, she will believe in X
more than if she never heard A.
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