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Introduction 

In “The Case for Mindless Economics,” Gul and Pesendorfer (henceforth “GP”) argue that 
because economic theory was meant to explain only decisions, it should only be tested by 
observing decisions; and that the data should be analyzed via revealed preference. 

GP’s argument tacitly assumes that the task of empirical economics is limited to 
estimating preferences as revealed by rational individual decisions. 

 

Most critiques of GP’s argument also focus on individual decisions. 

In “Revealed Preferences and Revealed Mistakes,” for instance, Kıszegi and Rabin argue 
that GP’s proposal is too narrow because some important economic questions rest on 
inferences about probabilistic judgment that cannot be drawn via revealed preference. 

 

Here, instead, I explore the implications of GP’s proposal for testing theories of strategic 
behavior, focusing on strategic thinking as revealed by initial responses to games.
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Adapting GP’s proposal to games requires limiting the empirical task to estimating 
preferences. 

This, in turn, requires assuming (and not testing) a theory of strategic behavior that makes 
unique predictions, presumably equilibrium (suitably refined if there are multiple equilibria). 

 

But in recent experiments that elicit initial responses to games, such as Stahl and Wilson 
(JEBO 1994, GEB 1995); Nagel (AER 1995); Ho, Camerer, and Weigelt (AER 1998); 
CGCB, and CGC, most subjects deviated systematically from equilibrium. 

 

CGC’s experiments, for instance, elicited subjects’ initial responses to a series of different 
but related guessing games with large strategy spaces. 

Their subjects’ decision patterns show clearly that their deviations from equilibrium can be 
attributed to non-equilibrium strategic decision rules that best respond to simplified models 
of other players, rather than to irrationality, risk aversion, altruism, spite, or confusion. 

 

Just as Kıszegi and Rabin’s analysis partly shifts the empirical focus in analyzing 
individual decisions from estimating preferences to inferences about probabilistic 
judgment that cannot be drawn via revealed preference alone, CGC’s and previous 
analyses of initial responses to games partly shifts the focus from estimating preferences 
to inferences about strategic thinking that cannot be drawn via revealed preference alone. 
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CGC’s analysis also allows a concrete assessment of the cost of limiting the analysis to 
decision data and revealed preference methods. 
 
 
The evidence from CGC’s, CGCB’s, and previous experiments suggests that a large 
fraction of subjects’ systematic deviations from equilibrium is well explained by a structural 
non-equilibrium model based on “level-k thinking”—or a “cognitive hierarchy” model, as 
Camerer, Ho, and Chong (QJE 2004) call their closely related model. 
 
(The evidence also suggests that level-k models can out-predict “equilibrium with noise” 
models with payoff-sensitive error distributions, such as quantal response equilibrium.)   
 
 
In principle, the structure of subjects’ non-equilibrium decision rules (more precisely, their 
population distribution) could be estimated from decisions alone—though not via revealed 
preference—by generating enough data from a sufficiently powerful experimental design. 

But CGC’s design is already quite powerful from the standpoint of studying decisions 
alone; even so, it leaves open some questions regarding subjects’ decision rules, as will 
be explained.  
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How should we respond to the demonstrated limitations of studying decisions alone? 

If decision data were free, it might be a good research strategy to try to address open 
research questions just by gathering more decision data, perhaps in new environments. 

But decision data are far from free, and existing methods for gathering them are fairly 
easily adapted to gather process data at the same time. 

Given this, exclusive reliance on gathering more decision data seems unlikely to be 
optimal: Good research strategies seem more likely to leave the door open to process 
data, along with decision data, even if this requires non-revealed-preference methods.   
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Accordingly, following CGCB and earlier work by Camerer, Johnson, et al. (1993, JET 
2002), CGC studied process data by using a MouseLab interface to monitor subjects’ 
searches for hidden but freely accessible payoff information. 

CGCB and CGC then used an explicit but rudimentary model of cognition to analyze 
subjects’ information searches along with their decisions. 

 
Their analyses illustrate how using process data along with decision data can help to 
identify the rules that govern subjects’ decisions more precisely. 
 
With a sufficiently powerful design, search data sometimes even directly reveals the 
algorithms subjects use to choose their decisions, making it possible to predict decisions 
without ever observing them. 
 
 

 

Incorporating neural data into analyses of games and decisions is probably harder than 
incorporating search data. 

But this demonstration of the usefulness of studying decision processes as well as 
decisions may bring us closer to agreement on how (or whether) to do neuroeconomics. 
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Aside: Why study strategic thinking or initial resp onses to games when 
even unthinking people will eventually converge to equilibrium anyway? 

Equilibrium is often a reliable model of limiting behavior when people have had enough 
experience with analogous games to learn to predict each others’ responses. 

But many settings involve games without clear precedents, and in such games people’s 
initial responses often deviate systematically from equilibrium. 

Even when learning assures eventual convergence to equilibrium, when there are multiple 
equilibria initial responses often determine equilibrium selection.  

 

Initial responses reveal strategic thinking in its purest form, “uncontaminated” by learning. 

(By contrast, with enough feedback in a sufficiently stationary setting, even pigeons will 
eventually learn to mimic the decisions that follow from sophisticated strategic thinking.) 

 

Studying initial responses allows us to identify structural non-equilibrium models of initial 
responses that can out-predict equilibrium or quantal response equilibrium. 

It also yields information that is helpful in determining the structure of learning rules. 
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Outline 

 
In the rest of the talk, I first describe CGC’s design and their results for decisions. 
 
 
I next discuss how CGC monitored subjects’ searches for hidden but freely accessible 
information about payoffs. 
 
 
I then discuss CGC’s analysis of cognition and search, which rests on assumptions that 
stylize empirical regularities in how subjects search. 
 
 
Finally, I highlight two puzzles left open by CGC’s analysis of decisions (and likely to 
continue to resist analysis via decisions alone), and sketch routes to resolutions via 
analyzing search and other process data. 
 
 
More detail is given in my paper for the conference volume, and in the slides for my 2006 
conference talk, posted at http://dss.ucsd.edu/~vcrawfor/NYUGuessSearchTalk.pdf.   
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CGC’s Two-Person Guessing Game Experiments 
 
CGC’s experiments randomly and anonymously paired subjects to play series of different 
but related twp-person guessing games, with no feedback between games. 
 
The design suppresses learning from experience and repeated-game effects in order to 
elicit subjects’ initial responses, game by game. 
 
 
The goal is to focus on how people model others’ decisions by studying strategic thinking 
“uncontaminated” by learning from experience. 
 
 
 
“Eureka!” learning remains possible, but it can be tested for and is rare. 
 
 
(The results yield insights into cognition that also help us think about how to model 
learning from experience, but that’s another story.) 
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In CGC’s guessing games, each player has his own lower and upper limit, both strictly 
positive; but players are not required to guess between their limits. 
 
Guesses outside the limits are automatically adjusted up to the lower or down to the upper 
limit as necessary (a trick to enhance separation of rules via search). 
 
 
 
Each player also has his own target, and his payoff increases with the closeness of his 
adjusted guess to his target times the other player’s adjusted guess. 
 
 
 
The targets and limits vary independently across players and 16 games, with the targets 
either both less than one, both greater than one, or mixed. 
 
(In previous guessing experiments such as Nagel’s (AER 1995) and Ho, Camerer, and 
Weigelt’s (AER 1998), the targets and limits were always the same for both players, and 
they varied only across treatments, or not at all.) 
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The 16 games subjects played are finitely dominance-solvable in 3-52 rounds, with 
essentially (because the only thing about a guess that matters is its adjusted guess) 
unique equilibria determined by the targets and limits in a simple way.  
 
 
Consider a game where a player’s own limits and target are [300, 900] and 1.5 and his 
partner’s limits and target are [100, 900] and 0.5. 
 
The product of targets 1.5 × 0.5 < 1, which is easily shown to imply that players’ 
equilibrium adjusted guesses are determined (at least indirectly) by their lower limits. 
 
The player’s equilibrium adjusted guess equals his lower limit of 300, but his partner’s 
equilibrium adjusted guess is above his lower limit at 150.  
 
 
The way in which equilibrium is determined here, by players’ lower limits when the product 
of their targets is less than 1, or by players’ upper limits when the product of their targets 
is greater than 1, is general in CGC’s guessing games. 
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CGC’s design exploits the discontinuity of the equilibrium correspondence when the 
product of targets is 1 by including some games that differ mainly in whether the product is 
slightly greater, or slightly less, than 1.   
 
Equilibrium responds very strongly to such differences, but empirically plausible non-
equilibrium decision rules are almost completely unmoved by them. 
 
The way in which equilibrium is jointly determined by both players’ payoff parameters also 
helps to separate the search implications of equilibrium and other rules.
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Leading Strategic Decision Rules or Types 
 
CGC’s analysis of decisions, like Stahl and Wilson’s (JEBO 1994, GEB 1995); Nagel’s 
(AER 1995); Ho, Camerer, and Weigelt’s (AER 1998); and CGCB’s, uses a structural non-
equilibrium model of initial responses in which each subject’s decisions are determined by 
one of several decision rules or types (as they are called in this literature). 
 
The leading types play a central role in CGC’s and CGCB’s model of cognition, search, 
and decisions, which takes a procedural view of decision-making, in which a subject’s type 
determines his search and his type and search determine his decision. 
 
CGC’s types, which all build in risk-neutrality and rule out social preferences, include: 
 
L1, which best responds to a uniform random L0 “anchoring type”. 
 
(L0 is meant to represents a subject’s instinctive, nonstrategic reaction to the game—more 
precisely, other subjects’ models of a subject’s instinctive—and usually has zero 
estimated population frequency.) 
 
L2 (L3), which best responds to L1 (L2). 
 
(Lk for k > 0 is rational, but deviates from equilibrium because it uses a simplified model of 
others’ decisions. It is k-level rationalizable so coincides with equilibrium in games that are 
k-dominance solvable. With plausible type frequencies this yields an inverse relationship 
between strategic complexity and equilibrium compliance, as is often observed.) 
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CGC’s types also include: 
 
D1 (D2), which does one round (two rounds) of deletion of dominated decisions and then 
best responds to a uniform prior over the other's remaining decisions. 
 
(By a quirk of our notation, L2 is D1’s cousin, and L3 is D2’s. Those pairs’ guesses are 
perfectly confounded in Nagel’s (AER 1995) games; and in two-person games Lk guesses 
are k-rationalizable, just as Dk-1’s are.)   
 
 
 
Equilibrium, which makes its equilibrium decision. 
 
Sophisticated, which best responds to the probabilities of other’s decisions, proxied in 
CGC’s analysis by their subjects’ observed frequencies. 
 
 
 
CGC also conducted a comprehensive specification test for excluded types, finding few or 
none.
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CGC’s Results for Decisions 
 
The large strategy spaces and independent variation of targets and limits in CGC’s design 
greatly enhance separation of types’ implications for decisions, to the point where many 
subjects’ types can be precisely identified from decisions alone. From CGC’s Table 5: 
 

Types’ guesses in the 16 games, in (randomized) ord er played  
 L1 L2 L3 D1 D2 Eq. Soph. 

1 600 525 630 600 611.25 750 630 
2 520 650 650 617.5 650 650 650 
3 780 900 900 838.5 900 900 900 
4 350 546 318.5 451.5 423.15 300 420 
5 450 315 472.5 337.5 341.25 500 375 
6 350 105 122.5 122.5 122.5 100 122 
7 210 315 220.5 227.5 227.5 350 262 
8 350 420 367.5 420 420 500 420 
9 500 500 500 500 500 500 500 

10 350 300 300 300 300 300 300 
11 500 225 375 262.5 262.5 150 300 
12 780 900 900 838.5 900 900 900 
13 780 455 709.8 604.5 604.5 390 695 
14 200 175 150 200 150 150 162 
15 150 175 100 150 100 100 132 
16 150 250 112.5 162.5 131.25 100 187 
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Of CGC’s 88 main subjects, 43 made guesses that complied exactly (within 0.5) with one 
type’s guesses in 7-16 of the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium). 
 
Given how strongly types’ guesses are separated, and that they could take 200-800 
different rounded values, subjects’ compliance is far higher than could occur by chance. 
 
 
Further, because the types specify precise, well-separated guess sequences in a very 
large space of possibilities, their high exact compliance rules out (intuitively or 
econometrically) alternative interpretations of their behavior. 
 
In particular, because the types build in risk-neutral, self-interested rationality and perfect 
models of the game, the deviations from equilibrium of the 35 subjects whose apparent 
types are L1, L2, or L3 can be attributed to non-equilibrium beliefs rather than irrationality, 
risk aversion, altruism, spite, or confusion. 
 
 
(In previous designs with small strategy spaces, even a perfect fit does not distinguish a 
subject’s best-fitting type from nearby omitted types; and in previous guessing designs, 
with large strategy spaces but each subject playing one game, the ambiguity is worse.) 
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CGC’s other 45 subjects’ types are less apparent from their guesses; but L1, L2, L3, and 
Equilibrium are still the only ones that show up in econometric estimates.  
 
 
Unlike the often-suggested interpretation of previous guessing results—that subjects are 
performing finitely iterated dominance—separating Lk from Dk-1 reveals that Dk types 
don’t exist in any significant numbers, at least in this setting. 
 
Subjects’ decisions respect finitely iterated dominance not because they are explicitly 
performing it, but because they are following Lk rules that implicitly respect it. 
 
 
Sophisticated, which in this design is clearly separated from Equilbrium, also doesn’t exist 
in significant numbers.  
 
 
CGC’s data also strongly resist an “equilibrium plus noise” or QRE interpretation. 
 
Instead subjects’ “errors” usually appear to be structural or cognitive, without the payoff-
sensitivity a QRE interpretation requires. 
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Aside: Other applications of level- k models 
 
Level-k models have been used to analyze data from experiments by Cai and Wang (GEB 
2006); Wang, Spezio, and Camerer (2006); Sánchez-Pagés and Vorsatz (GEB 2007); 
Costa-Gomes and Weizsäcker (RES 2008); and Kawagoe and Tazikawa (GEB in press).  
 

Level-k models have also been used in a number of applications, e.g.:  

Crawford, “Lying for Strategic Advantage: Rational and Boundedly Rational 
Misrepresentation of Intentions,” American Economic Review 2003 (misleading 
communication via cheap talk in zero-sum two-person games) 

Camerer, Ho, and Chong, “A Cognitive Hierarchy Model of Games,” Quarterly Journal of 
Economics 2004 (tacit coordination via structure and “magical” ex post coordination in 
market-entry games; speculation and zero-sum betting; money illusion in coordination)   

Crawford and Iriberri, “Level-k Auctions: Can Boundedly Rational Strategic Thinking 
Explain the Winner’s Curse and Overbidding in Private-Value Auctions?,” Econometrica 
2007 (overbidding in common- and independent-private value auctions)  

Crawford and Iriberri, “Fatal Attraction: Salience, Naivete, and Sophistication in 
Experimental Hide-and-Seek Games,” American Economic Review 2007 (framing-induced 
deviations from unique mixed-strategy equilibrium) 

Crawford, Gneezy, and Rottenstreich, “The Power of Focal Points is Limited: Even Minute 
Payoff Asymmetry May Yield Large Coordination Failures,” American Economic Review in 
press (framing-induced miscoordination in Schelling-style coordination games) 
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Monitoring Search via MouseLab in Two-Person Guessi ng Games 

Within a publicly announced structure, CGC presented each game to subjects via 
MouseLab (http://www.cebiz.org/mouselab/mouselab.htm). 
 
The interface normally concealed the targets and limits but allowed subjects to look them 
up as often as desired, one at a time, by clicking on the boxes. (Subjects were not allowed 
to write, and the data strongly suggest that they did not memorize the parameters.) 
 

 
 

CGC's Figure 6. Screen Shot of the MouseLab Display  
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With search costs as low as subjects’ search patterns make them seem, free access 
makes the entire structure of the game effectively public knowledge, so the results can be 
used to test theories of behavior in complete-information versions of the games.  
 
The design also maintains tight control over subjects’ motives for search by making 
information from previous plays irrelevant to current payoffs. 
 
 
Allowing subjects to search for a small number of hidden payoff parameters within a 
simple, publicly announced structure allows subjects to focus on the task of predicting 
others’ responses without getting lost in details of the structure. 
 
Independently separating the implications of leading decision rules for search and 
decisions makes it possible to study the relationship between them, which multiplies the 
power of the design to identify subjects’ decision rules. 
 
Allowing search patterns to vary in a high-dimensional space makes search more 
informative and allows greater separation of rules via search.  
 
The simple parametric structure also makes leading rules’ search implications (almost) 
independent of the game. 
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Aside: Where is the Information in Subjects’ Search es? 
 
Studying cognition via search requires a model of how cognition shows up in subjects’ 
look-up sequences. Different papers take different positions on this: 
 
Camerer, Johnson, et al. gave roughly equal weight to look-up durations and to the 
numbers of look-ups of each pie (“acquisitions”) and the transitions between pies. 
 
Rubinstein (Economic Journal 2007) considered only durations. 
 
Camerer, Johnson, et al.’s and Rubinstein’s analyses were also conducted at a high level 
of aggregation, both across subjects and over time.    
 
Gabaix, Laibson, Moloche, and Weinberg (American Economic Review 2006) focused on 
numbers of look-ups (as opposed to durations) and considered aspects of their order too. 
 
Gabaix et al. also conducted their analysis mostly at a high level of aggregation. 
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Studying Cognition via Numbers and Orders of Subjec ts’ Look-ups  
 
CGCB and CGC argued instead that cognition is sufficiently heterogeneous and search 
sufficiently noisy that they are best studied at the individual level. 
 
 
CGCB and CGC also assumed that which look-ups subjects make, in which order, reveals 
at least as much information about cognition as durations or transition frequencies. 
 
 
This should not be surprising, because simple theories of cognition more readily suggest 
roles for which look-ups subjects make, in which orders, than durations. 
 
 
(CGC made no claim that durations are irrelevant, just that they don’t deserve the priority 
they have been given. CGCB did present some results on durations, as “gaze times.”)  



 23

Types as Models of Cognition, Search, and Decisions  
 
CGC’s (and CGCB’s) models of cognition, search, and decisions are based on a 
procedural view of decision-making, in which a subject’s type determines his search, and 
his type and search then determine his decision. 
 
This procedural view is the key to linking cognition, search, and decisions in the analysis.  
 
(Because a type’s search implications depend not only on what decisions it specifies, but 
why, something like a types-based model seems necessary here.) 
 
 
Each type is naturally associated with algorithms that process payoff information into 
decisions.  
 
The analysis uses those algorithms as models of cognition, deriving a type’s search 
implications under simple assumptions about how it determines search. 
 
With their derived search implications, the types provide a kind of basis for the enormous 
space of possible decision and search sequences. 
 
This imposes enough structure to describe subjects’ behavior in a comprehensible way, 
and to make it meaningful to ask how decisions and searches are related. 
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How Does Cognition Determine Search? 
 
Without further assumptions, nothing precludes a subject’s scanning and memorizing the 
information and “going into his brain” to figure out what to do—in which case his searches 
will reveal nothing about his cognition. 
 
(Neuroeconomics has an advantage over monitoring search here, because involuntary 
correlates of such a subject’s thinking will still be observable.) 
 
But inspecting actual searches suggests that there are strong regularities in search 
behavior, and as a result subjects’ searches contain a lot of information about cognition. 
 
 
The goal in search analysis is to add enough assumptions to make it possible to extract 
the signal from the noise in subjects’ look-up sequences; but not so many assumptions 
that they distort the meaning of the signal. 
 
CGCB’s and CGC’s assumptions are conservative, in that they rest on types’ minimal 
search implications and they add as little structure beyond these as possible. 
 
The types’ minimal search implications in CGC’s games can be derived from their ideal 
guesses, those they would make if they had no limits. 
 
(With automatic rounding of guesses to fall within their limits, and quasiconcave payoffs, 
ideal guesses are all they need to know, and all that matters for minimal restrictions.) 
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Types’ Search Implications 
 
Types’ search implications are derived as follows. 
 
Evaluating a formula for a type’s ideal guess requires a series of operations, some of 
which are basic in that they logically precede any other operation. 
 
E.g. [aj+bj] (averaging the partner’s limits) is the only basic operation for L1's ideal guess, 
pi[aj+bj]/2. 
 
CGCB and CGC derived types’ search implications under the assumptions that subjects 
perform basic operations one at a time via adjacent look-ups, remember their results, and 
otherwise rely on repeated look-ups rather than memory. 
 
Basic operations are then represented by adjacent look-up pairs that can appear in either 
order, but cannot be separated by other look-ups.   
 
Such pairs are grouped within square brackets, as in {[aj, bj], pi} for L1. 
  
Other operations can appear in any order and their look-ups can be separated. 
 
They are represented by look-ups grouped within curly brackets or parentheses. 
 
It is easier to use this and other types’ derivations to interpret the search data by 
translating them from CGC’s notation into the box numbers MouseLab records: 
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SPEAK RODENT LIKE A NATIVE IN ONE EASY LESSON! 
 

    
 
 
 

 a p b 
You 
(i) 1 2 3 

S/he 
(j) 4 5 6 

 
MouseLab Box Numbers 
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L1’s search implications 
(Note: Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L1’s ideal guess: pi[aj+bj]/2 = 750. L1’s search implications: {[aj, bj], pi} ≡ {[4, 6], 2}. 
 

(L1 does not need to look up its own limits because it can enter its ideal guess 
and rely on automatic adjustment to ensure that its adjusted guess is optimal. Thus this 
design even separates L1 from a Solipsistic type that only looks up its own parameters.)    
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L2’s search implications: first step 
(Note: Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L2’s model of its partner’s L1 guess: pi[aj+bj]/2 = 300. 
Search implications: {[ai,bi],pj} ≡ {[1,3],5}. 

 
(L2 needs to look up its own limits only to predict its partner’s L1 guess; like L1 it can enter 
its ideal guess and rely on automatic adjustment to ensure its adjusted guess is optimal.)  
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L2’s search implications: second step 
(Note: Unlike in this picture, subjects could never open more than one box at a time.) 

 
 

L2’s ideal guess: piR(aj,bj; pj[ai+bi]/2) = 450. 
L2’s search implications: {([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2}. 

 
(L2 needs to look up its partner’s limits aj = 4 and bj = 6 

to predict its partner’s L1 adjusted guess.) 
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The left side of Table 4 lists formulas for types’ ideal guesses in CGC’s games. The right 
side lists types’ search implications, first in terms of our notation, then in terms of the box 
numbers in which MouseLab records the data. A type’s operations are listed in the order 
that seems most natural, if there is one; but this is not a requirement of the theory. 
 

Type Ideal guess Relevant look-ups 

L1 pi [aj+bj]/2 {[aj,bj],pi} ≡ {[4, 6], 2} 

L2 piR(aj,bj; pj[ai+bi]/2) {([ai,bi],pj),aj,bj,pi} ≡ {([1, 3], 5), 4, 6, 2} 

L3 piR(aj,bj; pjR(ai,bi; pi[aj+bj]/2)) {([aj,bj],pi),ai,bi,pj} ≡ {([4, 6], 2), 1, 3, 5} 

D1 pi(max{aj,pjai} + min{pjbi,bj})/2 
{(aj,[pj,ai]),(bj,[pj,bi]),pi} ≡ 

{(4,[5,1]),(6,[5,3]),2} 

D2 pi[max{max{aj,pjai},pjmax{ai,piaj}} 
+min{pjmin{pibj,bi},min{pjbi,bj}}]/2 

{(ai,[pi,aj]),(bi,[pi, 
bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 

≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 

Eq. piaj if pipj < 1 or pibj if pipj > 1 
{[pi,pj],aj} ≡ {[2, 5], 4} if pipj < 1 

or {[pi,pj],bj} ≡ {[2, 5], 6} if pipj > 1 

Soph. 
[no closed-form expression, but 

we take its search implications to 
be the same as D2’s] 

{(ai,[pi,aj]),(bi,[pi, 
bj]),(aj,[pj,ai]),(bj,[pj,bi]),pj,pi} 

≡ {(1,[2,4]),(3,[2,6]),(4,[5,1]),(6,[5,3]),5,2} 
 

CGC's Table 4. Types’ Ideal Guesses and Relevant Lo ok-ups 
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Aside: Background evidence on cognition and search  
 
CGC’s (and CGCB’s assumptions how cognition determine search are based on several 
sources of evidence: 
 
(i) Camerer, Johnson, et al.’s Robot/Trained Subjects’ (“R/TS”) searches, which led them 
to characterize subgame-perfect equilibrium via backward induction search in terms of 
transitions between the second- and third-round pies 
 
(ii) CGCB’s Trained Subjects’ searches, which suggest a similar view of Equilibrium 
search in matrix games 
 
(iii) CGC’s R/TS subjects with high compliance with their assigned type’s guesses, and 
CGC’s Baseline subjects with high compliance with their apparent type’s guesses, whose 
searches suggest a similar view of L1 and L2 search 
 
(CGC’s six R/TS treatments were identical to their Baseline treatment except that each 
subject was trained and rewarded as a type: L1, L2, L3, D1, D2, or Equilibrium.) 
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Search Data for Representative R/TS and Baseline Su bjects 
 
Now consider search data for representative R/TS and Baseline subjects, chosen for high 
compliance with their type’s guesses, not for their compliance with any theory of search. 
 
The data will suggest the following conclusions:  
 
(i) There is little difference between the look-up sequences of R/TS and Baseline subjects 
of a given type (assigned for R/TS, apparent for Baseline) 
 
(ii) The sequences the theory identifies as relevant for a type (Table 4) are unusually 
dense in the sequences of subjects of that type, at least for the simpler types (CGC’s 
econometric analysis measures search compliance for a type as the density of its relevant 
sequences in the subject’s look-up sequence) 
 
(iii) Those who can speak rodent can quickly learn to read the algorithms many subjects 
are using directly from the data (if we can do it, the right econometrics can do it too: many 
of CGC’s subjects’ types can be reliably identified from search alone (CGC, Table 7)) 
 
(iv) For some subjects, search is an important check on decisions; e.g. Baseline subject 
309, with 16 exact L2 guesses, misses some of L2’s relevant look-ups, avoiding 
deviations from L2 only by luck (even without feedback, s/he later has a Eureka! moment 
between games 5 and 6, and from then on complies perfectly; reminiscent of Camerer, 
Johnson, et al.’s subjects who never looked at the last period pie and so could not have 
been performing the backward induction needed to identify subgame-perfect equilibrium) 
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L1 {[4,6],2} 
L2 {([1,3],5),4,6,2} 
L3 {([4,6],2),1,3,5} 
D1 {(4,[5,1], (6,[5,3]),2} 
D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2} 
Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1 
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L1 {[4,6],2} 
L2 {([1,3],5),4,6,2} 
L3 {([4,6],2),1,3,5} 
D1 {(4,[5,1], (6,[5,3]),2} 
D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2} 
Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1 
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CGC’s Econometric Analysis of Guesses and Search 
 
In CGC’s econometric analysis of guesses and search, most subjects’ type estimates 
reaffirm the guesses-only estimates. 
 
For some subjects the guesses-and-search type estimate resolves a tension between 
guesses-only and search-only estimates in favor of a type other than the guesses-only 
estimate. 
 
In more extreme cases, a subject’s guesses-only type estimate is excluded because it has 
0 search compliance in 8 or more games. 
 
(For example, Baseline subject 415, whose apparent type was L1 with 9 exact guesses, 
had 0 L1 search compliance in 9 of the 16 games because s/he had no adjacent [aj,bj] 
pairs as we required for L1. Her/his look-up sequences were unusually rich in (aj,pi,bj) and 
(bj,pi,aj) triples, in those orders. Because the sequences were not rich in such triples with 
other superscripts, this is clear evidence that 415 was an L1 who happened to be more 
comfortable with several numbers in working memory than our characterization of search 
assumes, or than our other subjects were comfortable with. But because this violated our 
assumptions on search, this subject was “officially” estimated to be D1.) 
 
Overall, the incorporating search into the econometric analysis refines and sharpens our 
conclusions, and confirms the absence of significant numbers of subjects of types other 
than L1, L2, Equilibrium, or hybrids of L3 or Equilibrium. 
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What Else is Search Good for?   
 
To better illustrate the possibilities for search analysis, I now discuss two puzzles raised 
by CGC’s analysis, which will be addressed in CGC’s sequel, “Studying Cognition via 
Information Search in Two-Person Guessing Game Experiments.” 
 
Puzzle a. What are those Baseline Equilibrium subjects really doing? 
 
Consider CGC’s 8 Baseline subjects with near-Equilibrium fingerprints. 
 
Ordering the games by strategic structure, with CGC’s eight games with mixed targets 
(one > 1, one < 1) on the right, shows that their deviations from equilibrium almost always 
occur with mixed targets (CGC’s Figure 4). 
 
Thus it is (nonparametrically) clear that these subjects, whose compliance with Equilibrium 
guesses is off the scale by normal standards, are actually following a rule that only mimics 
Equilibrium, and that only in games without mixed targets.  
 
Yet all the ways we teach people to identify equilibria (best-response dynamics, 
equilibrium checking, iterated dominance) work just as well with mixed targets. 
 
Thus whatever these Baseline Equilibrium subjects are doing, it’s something we haven’t 
thought of yet. (And their debriefing questionnaires don’t tell us what it is either.) 
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CGC’s Figure 4. “Fingerprints” of 8 Apparent Baseli ne Equilibrium Subjects 

(Only deviations from Equilibrium's guesses are shown. 
69 (54%) of these subjects' 128 guesses were exact Equilibrium guesses.) 

 
But whatever these Baseline Equilibrium subjects are doing, it has a structure: 
 
All 44 of these subjects’ deviations from Equilibrium (solid line) when it is separated from 
L3 (dotted line) are in the direction of (and sometimes beyond) L3 guesses 
 
However, this could reflect no more than the fact that in CGC’s games, Equilibrium 
guesses are always more extreme than other types’ guesses. 
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By contrast, CGC’s Equilibrium R/TS subjects’ (those subjects were taught to identify 
equilibria, and rewarded as if their partners always chose equilibrium decisions) 
compliance is equally high with and without mixed targets. 
 
Thus, training eliminates whatever the Baseline Equilibrium subjects are actually doing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fingerprints of 10 UCSD Equilibrium R/TS Subjects  
(Only deviations from Equilibrium's guesses are shown.) 
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Possible sources of answers to puzzle a 
 
(i) Can we tell how Baseline Equilibrium subjects find equilibrium in games without mixed 
targets: best-response dynamics, equilibrium checking, iterated dominance, or something 
else that doesn’t “work” with mixed targets? 
 
(The absence of Baseline Dk subjects suggests that they are not using iterated 
dominance. Best-response dynamics, perhaps truncated after 1-2 rounds, seems more 
likely to us. We can check by refining CGC’s characterization of Equilibrium search and 
redoing the econometrics, separately with and without mixed targets.) 
 
 
(ii) Is there any identifiable difference in Baseline Equilibrium subjects’ search patterns in 
games with and without mixed targets? If so, how do the differences compare to those for 
L1, L2, or L3 subjects? 
 
(Our 20 apparent Baseline L1 subjects’ compliance with L1 guesses (CGC, Figure 1) is 
almost the same with and without mixed targets: unsurprisingly because the distinction is 
irrelevant to L1. 
 
But our 12 apparent L2 (Figure 2) and 3 apparent L3 subjects’ compliance with apparent 
types’ guesses is noticeably lower with mixed targets. This is curious, because for L2 and 
L3, unlike for Equilibrium, games with mixed targets require no deeper understanding.) 
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(iii) Can we tell how R/TS Equilibrium subjects with high compliance manage to find their 
Equilibrium guesses even with mixed targets? How does their search in those games 
differ from Baseline Equilibrium subjects’ search? 
 
(CGC strove to make the R/TS Equilibrium training as neutral as possible, but something 
must come first. CGC taught them equilibrium checking first, then best-response 
dynamics, then iterated dominance. To the extent that subjects used one of those 
methods, it explains why they have equal compliance with mixed targets. If subjects used 
something else, and it deviates from equilibrium in games with mixed targets, it might 
provide a clue to what CGC’s Baseline Equilibrium subjects did.)  
 
(Note that CGC’s Baseline subjects with high compliance for some type are, to the extent 
that we are confident in inferring their beliefs, like robot untrained subjects. These don’t 
usually exist because you can’t tell robot subjects how they will be paid without teaching 
them how the robot works, and so training them. 
 
Thus CGC’s design provides an unusual opportunity to separate the effects of training and 
strategic uncertainty, by comparing Baseline and R/TS subjects: 
 
Either Equilibrium is natural with mixed targets, but subjects don’t see it without training; or 
Equilibrium is unnatural, and/or subjects don’t believe that others, even with training, will 
make Equilibrium guesses with mixed targets.) 
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Puzzle b. Why are Lk the only types other than Equilibrium with nonnegligible 
population frequencies? 
 
CGC’s analysis of decisions and search revealed significant numbers of subjects of types 
L1, L2, Equilibrium (with the qualifications expressed above), or hybrids of L3 and/or 
Equilibrium, and nothing else. 
 
(More precisely, a careful analysis of the data reveals no other types that do better than a 
random model of guesses for more than one subject.)   
 
Why do these decision rules predominate, out of the enormous number of possible non-
equilibrium rules? 
 
(Why, for instance, don’t we get Dk rules, which are closer to what we teach?)  
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Possible sources of answers to puzzle b 
 
Most R/TS subjects could reliably identify their type’s guesses, even Equilibrium or D2.  
(These average rates are for exact compliance, so quite high. Individual subjects’ 
compliance was usually bimodal within type, on very high and very low.)  
  

R/TS Subjects’ Exact Compliance with Assigned Type’ s Guesses  
 L1 L2 L3 D1 D2 Eq. 

Number of subjects 25 27 18 30 19 29 
% Compliance|Passed UT2  80.0 91.0 84.7 62.1 56.6 70.3 

% Failed UT2  0.0 0.0 0.0 3.2 5.0 19.4 
 



 43

But there are noticeable signs of differences in difficulty across types: 
 
(i) No one ever failed an Lk Understanding Test, while some failed the Dk and many failed 
the Equilibrium Understanding Tests. 
 
(ii) For those who passed, compliance was highest for Lk types, then Equilibrium, then Dk 
types. This suggests that Dk is even harder than Equilibrium, but could just be an artifact 
of the more stringent screening of the Equilibrium Test.   
 
(iii) Among Lk and Dk types, compliance was higher for lower k as one would expect, 
except that L1 compliance was lower than L2 or L3 compliance. 
 
(We suspect that this is just because L1 best responds to a random L0 robot, which some 
subjects think they can outguess; while L2 and L3 best respond to a deterministic 
simulated L1 or L2 robot, which doesn't invite “gambling” behavior.) 
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(iv) Remarkably, 7 of our 19 R/TS D1 subjects passed the D1 Understanding Test, in 
which L2 answers are wrong; and then “morphed” into L2s when making their guesses, 
significantly reducing their earnings. (Recall that it is L2 that is D1’s cousin; these subjects 
seem to have intuited this.)   
 
E.g. R/TS D1 subject 804 made 16 exact L2 (and so only 3 exact D1) guesses; her/his 
search also suggests L2 not D1 thinking. 
 

 
 

L2 {([1,3],5),4,6,2} 
D1 {(4,[5,1], (6,[5,3]),2} 

 
This kind of morphing, in this direction, is the only kind that occurred. 
 
We view this as pretty compelling evidence that Dk types are simply unnatural. 
 
However, a comparison of Lk’s and Dk-1’s search and storage requirements may have 
something to add. (E.g. Dk-1 requires more memory than Lk.) 
 
 
 


