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Introduction: Why use process data to study strategic thinking?

In principle, experimental design can separate the decisions implied by different
models well enough to infer strategic thinking entirely from decisions.

But in economically interesting games, our ability to distinguish among models is
often near the limit of experimental feasibility, and existing methods are fairly
easily adapted to gather process data along with decision data.
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Monitoring subjects’ searches for hidden but freely accessible payoff information
provides an independent view of cognition and behavior, at low additional cost.

Independently separating decision rules’ implications for search and decisions
multiplies the power of the design to identify subjects’ decision rules.



Introduction: Why use process data to study strategic thinking?
In principle, experimental design can separate the decisions implied by different
models well enough to infer strategic thinking entirely from decisions.

But in economically interesting games, our ability to distinguish among models is
often near the limit of experimental feasibility, and existing methods are fairly
easily adapted to gather process data along with decision data.

Monitoring subjects’ searches for hidden but freely accessible payoff information
provides an independent view of cognition and behavior, at low additional cost.

Independently separating decision rules’ implications for search and decisions
multiplies the power of the design to identify subjects’ decision rules.

Analyzing search data suggests an algorithmic view of how subjects process
iInformation into decisions, which yields more direct insight into cognition.

With careful design, search data can sometimes directly reveal the algorithms
subjects use to make their decisions.

In these slides | describe three examples of this approach, highlighting modes of
analysis and how search data changes our view of cognition.
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JC’s Extensive-Form Alternating-Offers Bargaining Games

JC’s subjects played series of finite-horizon alternating-offers bargaining games,
framed in extensive form.

When JC’s experiments were originally designed (early 1990s), it was known that
subjects systematically deviated from the purely pecuniarily self-interested
subgame-perfect equilibrium strategies in these games:

e Proposers often made offers more generous than such an equilibrium predicts.

e Responders often rejected small-to-moderate offers that would have given
them positive pecuniary gains.



JC’s Extensive-Form Alternating-Offers Bargaining Games

JC’s subjects played series of finite-horizon alternating-offers bargaining games,
framed in extensive form.

When JC’s experiments were originally designed (early 1990s), it was known that
subjects systematically deviated from the purely pecuniarily self-interested
subgame-perfect equilibrium strategies in these games:

e Proposers often made offers more generous than such an equilibrium predicts.

e Responders often rejected small-to-moderate offers that would have given
them positive pecuniary gains.

But there was controversy about whether those deviations were due to:

e Nonpecuniary motives, with responders’ taking revenge for unfair offers by
rejecting them (and proposers’ beliefs that they would do so), or

e Cognitive limitations preventing subjects from identifying their subgame-
perfect equilibrium offer or acceptance strategies.
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JC addressed this issue by presenting a series of different alternating-offers
bargaining games to subjects, within a publicly announced structure.

Each game was presented as a sequence of “pies” via MouselLab (DOS-based,;
web version at http://www.mouselabweb.org/), which normally concealed the pies
but allowed subjects to look them up as often as desired, one at a time.

Subjects were not allowed to write down the pie sizes, variations across games
made it impossible to remember them from previous plays, and their look-up
frequencies made clear that they did not just scan and memorize them.


http://www.mouselabweb.org/

pie’s size your role

Seller: What is your offer to the buyer?
Enter this box and click a mouse button when you are ready.

CJ's Figure 1. MouselLab Screen Display



JC argued that (even with privately observed revenge motives) backward
Induction is the easiest way to find a subgame-perfect (or sequential) equilibrium.

They also argued that backward induction is naturally associated with search
patterns in which subjects first look at the last-period pie, then between the last
and second-last pie, then between the second-last and first-period pie.

10



JC argued that (even with privately observed revenge motives) backward
Induction is the easiest way to find a subgame-perfect (or sequential) equilibrium.

They also argued that backward induction is naturally associated with search
patterns in which subjects first look at the last-period pie, then between the last
and second-last pie, then between the second-last and first-period pie.

Noting that, in theory, subjects could scan and memorize the pie sizes before
making decisions, in which case search might be unrelated to cognition, JC ran a
“robot/trained subjects” control with subjects playing against a computer, told it
would play the subgame-perfect equilibrium, and trained to identify its strategies.

JC’s robot/trained subjects made decisions close to the subgame-perfect
equilibrium, while coming close to its characteristic search pattern.
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JC argued that (even with privately observed revenge motives) backward
Induction is the easiest way to find a subgame-perfect (or sequential) equilibrium.

They also argued that backward induction is naturally associated with search
patterns in which subjects first look at the last-period pie, then between the last
and second-last pie, then between the second-last and first-period pie.

Noting that, in theory, subjects could scan and memorize the pie sizes before
making decisions, in which case search might be unrelated to cognition, JC ran a
“robot/trained subjects” control with subjects playing against a computer, told it
would play the subgame-perfect equilibrium, and trained to identify its strategies.

JC’s robot/trained subjects made decisions close to the subgame-perfect
equilibrium, while coming close to its characteristic search pattern.

This and JC's other results suggest that there are strong regularities in search
behavior, and that subjects’ searches contain a lot of information about cognition.
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By contrast, JC's Baseline subjects, playing against other baseline subjects,
without training, deviated substantially from both subgame-perfect equilibrium
decisions and backward-induction search, in positively correlated ways:

e About 10% never even looked at the last-period pie.

e Many deviated from the characteristic backward-induction search pattern.

14



3 L

Excerpt from JC’s Figure 3: Baseine subjects.
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By contrast, JC's Baseline subjects, playing against other baseline subjects,
without training, deviated substantially from both subgame-perfect equilibrium
decisions and backward-induction search, in positively correlated ways:

e About 10% never even looked at the last-period pie.

e Many deviated from the characteristic backward-induction search pattern.

e Subjects whose searches were further from backward induction made
decisions further from their subgame-perfect equilibrium decisions.
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Reject <$2.00 $2.01-$2.39 Equal

FIG. 5. Icon graphs for player 2 by rejection or size of offer accepted.



JC also found evidence of a mixture of “levels” in the subject population:
e Level-0 subjects treat the first round as an ultimatum game
e Level-1 subjects look one round ahead but truncate beyond that, and

e Level-2 subjects look two rounds ahead as subgame-perfect equilibrium
requires, hence are functionally equivalent here to Equilibrium subjects.

18



JC also found evidence of a mixture of “levels” in the subject population:
e Level-0 subjects treat the first round as an ultimatum game
e Level-1 subjects look one round ahead but truncate beyond that, and

e Level-2 subjects look two rounds ahead as subgame-perfect equilibrium
requires, hence are functionally equivalent here to Equilibrium subjects.

Level-2, Level-1, and Level-0 subjects deviate progressively more and more from
subgame-perfect equilibrium in search as well as decisions, so that a mixture of
levels yields a positive correlation between search and decision deviations.
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FIG. 7. Icon graphs of information processing (time, number of acquisitions and
transitions) by type.



JC also found evidence of a mixture of “levels” in the subject population:
e Level-0 subjects treat the first round as an ultimatum game
e Level-1 subjects look one round ahead but truncate beyond that, and

e Level-2 subjects look two rounds ahead as subgame-perfect equilibrium
requires, hence are functionally equivalent here to Equilibrium subjects.

Level-2, Level-1, and Level-0 subjects deviate progressively more and more from
subgame-perfect equilibrium in search as well as decisions, so that a mixture of
levels yields a positive correlation between search and decision deviations.

JC’s analysis suggests that the deviations from subgame-perfect equilibrium are
due roughly half to revenge motives and half to cognitive limitations.
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CGCB’s normal-form matrix games

CGCB’s subjects played a series of 18 matrix games, with various patterns of
iterated dominance or unique pure-strategy equilibrium without dominance.

Within a publicly announced structure, each game was presented via MouseLab,
as a matrix with payoffs separated horizontally and all subjects as Row players.

Subjects were not allowed to write down the payoffs, and their look-up
frequencies made clear that they did not memorize them.

YOUR POINTS ! HER/HIS POINTS

hoose oL
CGCB's Figure 1. MouselLab Screen Display (for a 2x2 game)
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CGC’s normal-form two-person guessing games

CGC'’s subjects played a series of 16 two-person guessing games.

Each player in a given game had his own limits and target, and the targets and
limits varied independently across players and games.

Players were not required to guess between their limits:

Guesses outside their limits were automatically adjusted up to the lower or down
to the upper limit as needed (enhances separation of rules’ search implications).

A player’s payoff increased with the closeness of his adjusted guess to his target
times the other’s adjusted guess.
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Within a publicly announced structure, each game was presented via MouseLab.

LOWER LIMIT TARGET UPPER LIMIT

Your Limits&Target 108
AL

. . . .

Enter your guess (a number from @ to 1@08),
Keyhoard Input:

Enter this box and click a mouse button when wou are readu.

CGC's Figure 6. Screen Shot of the MouseLab Display
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Within a publicly announced structure, each game was presented via MouselLab.

LOWER LIMIT TARGET UPPER LIMIT

Your Limits&Target 108
AL

. . . .

Enter your guess (a number from @ to 1@08),

Keyhoard Input:

Enter this box and click a mouse button when wou are readu.

CGC's Figure 6. Screen Shot of the MouseLab Display

Again subjects were not allowed to write down the payoffs, and the frequencies
of repeated look-ups made clear that they did not memorize them.

Like JC’s and CGCB'’s designs, CGC’s maintains control over subjects’ motives
for search by making information from previous plays irrelevant to current plays.
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CGC'’s design combines the strengths of JC’s and CGCB'’s designs for studying
cognition via search.

In each case low search costs and free access to the payoff parameters made
the games’ structures effectively public knowledge (except for responders’
possible revenge motives in JC's design), so the results can be used to test
theories of behavior in complete-information versions of the games.

In each case the design independently separates rules’ implications for search
and decisions.

CGC'’s design maintains the simplicity of JC’s and CGCB'’s, and its simple
parametric structure makes rules’ search implications independent of the game.
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By contrast with JC’s one-dimensional search, CGCB’s and CGC's designs make
search multidimensional, which makes it potentially more informative.

The analysis of search, however, involves some choices.

CGCB’s and CGC's search analyses were organized around theories of
cognition that more readily suggest roles for which look-ups subjects make, in
which orders, than for numbers of look-ups, transition frequencies, or durations.

(No claim that durations are irrelevant was intended, just that they don’t deserve
the priority they have been given. CGCB (Table 1V) do present some results on
durations, under the heading of "gaze times.")

JC also studied look-up orders (transitions between pies) but also gave weight to
look-up durations and the numbers of look-ups of each pie (“acquisitions™).

Others, like Rubinstein (2007 Economic Journal), considered only durations.

Gabaix, Laibson, Moloche, and Weinstein (2006 American Economic Review)
focused on numbers of look-ups and some measures of look-up order.
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By contrast with JC’s one-dimensional search, CGCB’s and CGC's designs make
search multidimensional, which makes it potentially more informative.

The analysis of search, however, involves some choices.

CGCB’s and CGC's search analyses were organized around theories of
cognition that more readily suggest roles for which look-ups subjects make, in
which orders, than for numbers of look-ups, transition frequencies, or durations.

(No claim that durations are irrelevant was intended, just that they don’t deserve
the priority they have been given. CGCB (Table 1V) do present some results on
durations, under the heading of "gaze times.")

JC also studied look-up orders (transitions between pies) but also gave weight to
look-up durations and the numbers of look-ups of each pie (“acquisitions™).

Others, like Rubinstein (2007 Economic Journal), considered only durations.

Gabaix, Laibson, Moloche, and Weinstein (2006 American Economic Review)
focused on numbers of look-ups and some measures of look-up order.

CGCB and CGC also argued that cognition is sufficiently idiosyncratic and
searches are sufficiently noisy that they are best studied at the individual level.

Rubinstein, Gabaix et al. and WSC studied search at high levels of aggregation.
BCWC took an intermediate view, looking for clusters of subjects.
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JC’s, CGCB’s, and CGC'’s analyses take a procedural view of decision-making,
In which a subject follows one of a set of decision rules in all games.

His rule determines his search, and his rule and search determine his decision.

(Because a rule’s search implications depend not only on what decisions it
specifies, but why, something like a rule-based model seems necessary here.)

29



JC’s, CGCB’s, and CGC's analyses take a procedural view of decision-making,
In which a subject follows one of a set of decision rules in all games.

His rule determines his search, and his rule and search determine his decision.

(Because a rule’s search implications depend not only on what decisions it
specifies, but why, something like a rule-based model seems necessary here.)

The possible rules and their search implications provide bases for the enormous
spaces of possible decision and search sequences.

This structure makes it possible to identify links between a subject’s cognition,
search, and decisions; and makes it meaningful to ask whether a subject’s
searches deviated from equilibrium in the “same direction” as his decisions.
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CGC'’s rules all build in risk-neutrality and rule out social preferences:
e [ 1 best responds to a uniform random LO, L2 best responds to L1, and so on.

e D1 (D2) does one round (two rounds) of deletion of dominated decisions and
then best responds to a uniform prior over the other's remaining decisions.

e Equilibrium makes its equilibrium decision.

e Sophisticated best responds to the probabilities of other’s decisions (proxied in
the data analysis by subjects’ observed frequencies).
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CGC'’s rules all build in risk-neutrality and rule out social preferences:
e [ 1 best responds to a uniform random LO, L2 best responds to L1, and so on.

e D1 (D2) does one round (two rounds) of deletion of dominated decisions and
then best responds to a uniform prior over the other's remaining decisions.

e Equilibrium makes its equilibrium decision.

e Sophisticated best responds to the probabilities of other’s decisions (proxied in
the data analysis by subjects’ observed frequencies).

Each of these decision rules is naturally associated with algorithms that process
payoff information into decisions.

The analyses use those algorithms as models of cognition, deriving a rule’s
search implications under simple assumptions about how it determines search.
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In theory a subject can search in any order, memorize the information, and then
make his decisions—in which case search will reveal nothing about cognition.

But there are strong empirical regularities in search behavior.

The goal is to stylize these reqgularities via enough assumptions to extract the
signal from the noise in searches; but not so many that they distort its meaning.
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In theory a subject can search in any order, memorize the information, and then
make his decisions—in which case search will reveal nothing about cognition.

But there are strong empirical regularities in search behavior.

The goal is to stylize these regularities via enough assumptions to extract the
signal from the noise in searches; but not so many that they distort its meaning.

JC (implicitly) and CGCB impose two such assumptions:

e Occurrence: If your rule’s decision depends on a particular piece of hidden
information, then you must have looked at it at least once; and

e Adjacency: The two pieces of hidden information associated with the most
basic operations your rule’s decision depends on must be adjacent in your
look-up sequence.
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In theory a subject can search in any order, memorize the information, and then
make his decisions—in which case search will reveal nothing about cognition.

But there are strong empirical regularities in search behavior.

The goal is to stylize these regularities via enough assumptions to extract the
signal from the noise in searches; but not so many that they distort its meaning.

JC (implicitly) and CGCB impose two such assumptions:

e Occurrence: If your rule’s decision depends on a particular piece of hidden
information, then you must have looked at it at least once; and

e Adjacency: The two pieces of hidden information associated with the most
basic operations your rule’s decision depends on must be adjacent in your
look-up sequence.

CGC derive each rule’s characteristic look-up sequence in a way that subsumes
Occurrence and Adjacency, and use its density in a subject’s actual sequence.
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For CGCB’s subjects (framed as Rows), assuming Occurrence and Adjacency:

e Up-down transitions in own payoffs are associated with decision-theoretic
rationality

e Left-right transitions in other’s payoffs are associated with thinking about the
other subject’s incentives

e Transitions from own to other’s payoffs and back for the same decision
combination are associated with interpersonal (fairness) comparisons

YOUR POINTS i HER/HIS POINTS

hoose oL R

CGCB's Figure 1. MouselLab Screen Display (for a 2x2 game)
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In CGCB’s data, the most frequent rules estimated from decisions alone are L1
(CGCB'’s Naive, which is not separated from Optimistic (maximax) by decisions
In their design) and L2, each nearly half of the population.

Incorporating search compliance into the econometric estimates (using an error-
rate model not explained here) shifts the estimated rule distribution toward L1, at
the expense of Optimistic (maximax) and D1.
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In CGCB’s data, the most frequent rules estimated from decisions alone are L1
(CGCB'’s Naive, which is not separated from Optimistic (maximax) by decisions
In their design) and L2, each nearly half of the population.

Incorporating search compliance into the econometric estimates (using an error-
rate model not explained here) shifts the estimated rule distribution toward L1, at
the expense of Optimistic (maximax) and D1.

The shift occurs because L1's search implications explain more of the variation in
subjects’ searches and decisions than Optimistic's, which are too unrestrictive to
be useful in the sample; and because L1's search implications explain more of
the variation in subjects’ searches and decisions than D1’s, which are more
restrictive than Optimistic's, but only weakly correlated with subjects’ decisions.

D1 also loses some frequency to L2, even though their decisions are weakly
separated in CGCB’s design, because L2's search implications explain much
more of the variation in subjects' searches and decisions.
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In CGCB’s data, the most frequent rules estimated from decisions alone are L1
(CGCB'’s Naive, which is not separated from Optimistic (maximax) by decisions
In their design) and L2, each nearly half of the population.

Incorporating search compliance into the econometric estimates (using an error-
rate model not explained here) shifts the estimated rule distribution toward L1, at
the expense of Optimistic (maximax) and D1.

The shift occurs because L1's search implications explain more of the variation in
subjects’ searches and decisions than Optimistic's, which are too unrestrictive to
be useful in the sample; and because L1's search implications explain more of
the variation in subjects’ searches and decisions than D1’s, which are more
restrictive than Optimistic's, but only weakly correlated with subjects’ decisions.

D1 also loses some frequency to L2, even though their decisions are weakly
separated in CGCB’s design, because L2's search implications explain much
more of the variation in subjects' searches and decisions.

Overall, CGCB’s analysis of decisions and search yields a significantly different
Interpretation of behavior than their analysis of decisions alone.

Including search suggests a very simple view of behavior, with L1 and L2 making
up 65-90% of the population, and D1 0% (or 20% if one doubts CGCB's model of
search). (CGC’s subsequent work suggests that 0% is closer to correct.)
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CGC measure a subjects’ search compliance with a decision rule as the density
of the rule’s characteristic look-up sequence in the subject’s observed sequence.

CGC then incorporate search compliance into the econometric estimates using
an error-rate model similar to CGCB'’s, not explained here.

A rule’s characteristic look-up sequence in one of CGC’s games is based on its
minimal search implications, as derived from the rule’s ideal guesses, those the
rule would imply if the game did not limit the player’s guesses.

(Recall that guesses outside limits were automatically adjusted up to the lower or
down to the upper limit as needed, to enhance separation of rules’ search
implications. With automatic adjustment and CGC’s quasiconcave payoffs, a
rule’s ideal guesses are all a subject needs to know to implement the rule.)
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Evaluating a formula for a rule’s ideal guess requires a series of operations,
some of which are basic in that they logically precede any other operation.

Like JC and CGCB, CGC derived rules’ search implications assuming that
subjects perform basic operations one at a time via adjacent look-ups, remember
their results, and otherwise rely on repeated look-ups rather than memory.

Basic operations are then represented in a look-up sequence by adjacent pairs
that can appear in either order, but cannot be separated by other look-ups.
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Evaluating a formula for a rule’s ideal guess requires a series of operations,
some of which are basic in that they logically precede any other operation.

Like JC and CGCB, CGC derived rules’ search implications assuming that
subjects perform basic operations one at a time via adjacent look-ups, remember
their results, and otherwise rely on repeated look-ups rather than memory.

Basic operations are then represented in a look-up sequence by adjacent pairs
that can appear in either order, but cannot be separated by other look-ups.

E.g. L1’s ideal guess is p'[a+b])/2, where p'is its own target and & and b'are
other’s lower and upper limits. L1’s characteristic look-up sequence is {[&, b], p'}.

In this formula, L1's only basic operation is [aj+bj], part of averaging other’s limits,
is grouped within square brackets to show that a and b' cannot be separated.

Other operations, whose look-ups grouped within curly brackets or parentheses,
can appear in any order and their look-ups can be separated.

(L1 does not need to look up its own limits because it can enter its ideal guess
and rely on automatic adjustment to ensure that its adjusted guess is optimal.)
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LOWER LIWIT TARGET UPPER LIWIT

. . - .

T . . .

Enter guur gquess (a number from @ to 1808),
Type Response:

Enter this box and click a mouse button when you are ready.

L1’s search implications (subjects couldn’t open more than one box at a time)
~ Ll's ideal guess: p'[a+b'])/2 = 750.
L1’s search {[&, b'], p} = {[4, 6], 2} in the box numbers MouseLab records.

a p b
You(B)l]1 2 3
Shhe()| 4 5 6
MouselLab Box Numbers
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L2’s ideal guess is p'R(a,b’; pl[a'+b']/2), where p'is its own target, a'and b'are its
own lower and upper limits, a and b' are other’s lower and upper limits, and R(:; -)
IS the automatic adjustment function.

L2’s model of other’s L1 guess is p'[a+b']/2.

L2’s characteristic look-up sequence is {([a',b"],p),a,b’,p'}.

(L2 needs to look up its own limits only to predict other’s L1 guess; like L1 it can
enter its own ideal guess and rely on automatic adjustment to its optimal guess.)

(L2 needs to look up other’s limits & and b'to predict other’s L1 adjusted guess.)
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LOWER LIMIT TARGET UPPER LIMIT

B . . '

. . . .

Enter Huur guess (a number from @ to 100@),
Type Response:

Enter this box and click a mouse button when you are ready.

L2’s search implications: first step
L2's model of its partner’'s L1 guess p[a'+b')/2 = 300.
L2’s ideal guess: p'R(a,b’; p[a'+b']/2) = 450.
L2’s search {([a',b],p)),d,b",p} = {([1, 3], 5), 4 6, 2} in MouseLab box numbers.
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LOWER LIMIT TARGET UPPER LIMIT

. . - .

. . . .

Enter guur guess (a number from @ to 1008@),

Type Response:

Enter this box and click a mouse button when you are ready.

L2’s search implications: second step
L2’s ideal guess: p'R(a,b’; pl[a'+b')/2) = 450.
L2’s search {([@',b'],p"),a,b",p} = {([1, 3], 5), 4 6, 2} in MouseLab box numbers.
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Equilibrium can use any workable method to find its ideal guess; CGC allowed
any method, and sought the one with minimal search requirements.

Equilibrium-checking (conjecturing guesses and checking them for consistency
with equilibrium) is less demanding than other methods, but requires more luck

than all but a few subjects appeared to have.
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Equilibrium can use any workable method to find its ideal guess; CGC allowed
any method, and sought the one with minimal search requirements.

Equilibrium-checking (conjecturing guesses and checking them for consistency
with equilibrium) is less demanding than other methods, but requires more luck
than all but a few subjects appeared to have.

CGC therefore allowed an Equilibrium player to use both targets to determine
whether equilibrium is determined by upper or lower limits, and then to enter its
own target times other’s lower (upper) limit when the product of targets is < (>) 1,
which CGC showed ensures that the player’s adjusted guess is in equilibrium.

This has the same search requirements as equilibrium-checking except that it
requires the targets to be adjacent; and thereby avoids the need for luck.
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Equilibrium can use any workable method to find its ideal guess; CGC allowed
any method, and sought the one with minimal search requirements.

Equilibrium-checking (conjecturing guesses and checking them for consistency
with equilibrium) is less demanding than other methods, but requires more luck
than all but a few subjects appeared to have.

CGC therefore allowed an Equilibrium player to use both targets to determine
whether equilibrium is determined by upper or lower limits, and then to enter its
own target times other’s lower (upper) limit when the product of targets is < (>) 1,
which CGC showed ensures that the player’s adjusted guess is in equilibrium.

This has the same search requirements as equilibrium-checking except that it
requires the targets to be adjacent; and thereby avoids the need for luck.

Equilibrium’s ideal guess is then p'a if p'p' < 1 or p'b' if p'p' > 1, and its search
implications are {[p',p'],a} = {[2, 5], 4} if p'p' < 1 or {[p',p'],b} = {[2, 5], 6} if p'p' > 1.

Unlike in CGCB’s and CJ’s designs, in CGC’s design Equilibrium’s search
iImplications are just as simple as L1's, and simpler than other rules’.
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TABLE 4—TYPES" IDEAL GUESSES AND RELEVANT LOOK-UPS

Type [deal guess Relevant look-ups

LI pla’ + E}‘]f’” {[a’, E}f] P } = {[4.6]. 2

L2 ’R[n*‘ b p*[r + EJ];'"J ([a’, EJ] p-": -_-IJ‘ b, p'l = [[] 3]. 5). 4. 6, 2}

L3 'R[ﬁ'" b, prf-::' b, plla’ + H]f’"]h {[[r*' .E:f] pJ a', b, p—f} [-1 6]. 2). 1, 3, 3}

i pfm'u-: [a, p-'a} + mm{pfb' b2 {I'ﬂ" [lrslj ﬂ']] (B, [p‘ b]‘.: Py =14, [5 1), (6, [5, 3]), 2}

D2 p'[max | max{a’, pfr} p‘mat{a‘ pr*’}} . [p‘ & (W 1P B @, [P -:;']J (¥, [p. B Pl P
+ mm{,|:l-'rmn{;:-‘.bkr b'l], mm{p-'b‘ B 1112 = {(1. [2, 4]). (3, [2, 6]}, (4, [5, ]]J (6. [3. 3]). 5. 2}

Eg. a prrf = g’ or min{p'a’, b’} if p'a’ = a'} if e p—f]. ﬁj} = {[2, 5]. -1} if p'p’ < 1 or {[p, p']. ¥}
pp‘ “ 1 or |B lfp'f}" B or max{d’, p'b} if = {[2. 5]. 6} if p'p’ =
P < B if plp = 1

Soph. [nn:: closed-form expression; Sophisticated's t, [pf, @D, (0. [P B, el [ a' (b, [pt B L )

search implications are the same as D2's)

{1, [2, 4]), (3, [2, 6], (4, [5. 1] (6. [5, 3]). 5, 2

Notes: The most basic operations are represented by the innermost look-ups, grouped within square brackets: these can appear
in any order, but mayv not be separated by other look-ups. Other operations are represented by look-ups grouped within
parentheses or curly brackets: these can appear in any order, and may be separated by other look-ups. Ethbrmm s minimal

search implications are derived not directly from Eguilibrium’s ideal guesses, but from pla’ when p'p’ << 1 and p'B when
p'pf = | via Observation 1 (see on-line Appendix H).
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Note that although most theorists instinctively identify Lk with Dk-1, which both
respect k rounds of iterated dominance, they are cognitively very different:

e Lk starts with a naive prior over the other’s decisions and iterates the best-
response mapping.

e Dk-1 starts with reasoning based on iterated knowledge of rationality and
closes the process with a naive prior.

This difference is obscured in a design as simple as Nagel’s, and does not show
up clearly from decisions even in more powerful designs.
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Note that although most theorists instinctively identify Lk with Dk-1, which both
respect k rounds of iterated dominance, they are cognitively very different:

e Lk starts with a naive prior over the other’s decisions and iterates the best-
response mapping.

e Dk-1 starts with reasoning based on iterated knowledge of rationality and
closes the process with a naive prior.

This difference is obscured in a design as simple as Nagel’s, and does not show
up clearly from decisions even in more powerful designs.

But in CGC's design these rules are separated clearly via search implications:

In Table 4:

e L2’s characteristic sequence is {([a',b"],p)),a,b',p"} = {([1, 3], 5), 4, 6, 2}.

e D1’s characteristic sequence is {(@,[p',a]),(t',[p’,b]),p"} = {(4,[5,1]),(6,[5,3]),2}.
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Search data
CGC's Baseline subjects played the game against other subjects.

CGC'’s Robot/Trained Subjects played the same games, but with each subject
trained in and rewarded for following a rule: L1, L2, L3, D1, D2, or Equilibrium.
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Search data

CGC's Baseline subjects played the game against other subjects.

CGC'’s Robot/Trained Subjects played the same games, but with each subject
trained in and rewarded for following a rule: L1, L2, L3, D1, D2, or Equilibrium.
Search data for R/TS and Baseline subjects, chosen for high compliance with
their rule’s guesses (not compliance with any theory of search) suggest that:

e There is little difference between the look-up sequences of R/TS and Baseline

subjects of a given rule (assigned rule for R/TS, apparent rule for Baseline).

e Table 4’s relevant look-ups for a rule are dense in the search sequences for
subjects with that rule (apparent or assigned), and the algorithms many are
can be read directly from their searches, at least for the simpler rules.

e Equilibrium and D2 subjects are stressed out but usually get decisions right.
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Table 10.2. Selected Robot/Trained Subjects’ Information Searches.

Subject Type/Alt® Game 17 Game 27

G4 Ll (16) 1234564023 1234564321

1716 L1 (16) l46462 13404023 40246213

1807 L1 (16) 452513 40213225

1607 L2 (16) 1354621313 1354013540213

1811 L2 (16} 1344465213746 13465312564231356252

2008 L2 (16} IT13131313135423 131313566622333

1001 L3 (16) 46213521364724023152 4621356425622231462562762

1412 L3 (16) 1462315646231 H2462546231546231

BO5 Dlilg) 15435642321326042 S14535615360423

1601 Dlilg) 25451430231 5146336213

B4 DI i3yL2(1e) 1543465213 5151353654623

1110 D2i14) 13540426407313 135134042 1034514063211136

f142621353627146540

202 D2(15) 24n4n613540404]1321342402 123645132402426262241356
LI040124025571 224054040 4627135242424661356402

704 DEqg (16) 1234563632565653065620365 123456525123052625035256
B26514522626526 262365456

205 Eq (16) 12345642465256252563527465 123456244565565263212554

KHo6626342514452673

1408 Eq (15) 123123456044563213211 123456450123643524

2002 Eq (16) 14253612536525361 6301454 1436253014251425230256503
Bl 345121345263

{[4.6].2}
{([1,3],5),4,6,2}
{([4,6],2),1,3,5}

{(4.[5.1], (6,[5,3]).2}
{(1,[2,4]).(3,[2,6]),(4.[5,1],(6,[5,3]),5,2}
{[2,5],4} if pr. tar.<1,{[2,5],6} if > 1
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Table 10.3. Selected Baseline Subjects’ Information Searches.

Subject  TypefAlt™ Game 1 Game 2° Game 3°
1 LI{15)} 146246213 46213 4n2%46
e LI{15)} 240134626241327135 M62622131 2402424004137426
413 LI[14) 123456545001 234037 123564622137 264231
& L2(13) 135642 1356423 1356453
il L2[15) 533146213 53146231 535164223
s L2(16) 1352 135263152672"3 135263
415 L2(1&) 144652313312546232  1324562531564565 31245652317123654
2512 H4a6312315056262 5523377513
A0 L3} 23450123450213456  [234564655622316 1234550450123
Eq (5] 254213654 5445672
D2(&)
12 L3(7) 221135465645213213  2135465662135454 265413232145503214
Eqi(7) 454567541 632 54123 363214523"054123
g L1{7)} 13245640525213242% 1324651327462 3452132374
D1 (5) 1462
417 Eq (B} 25253 146465644653 ] B52366273652435 52136364152652637
L3(7) 6412524621213 63 632
L2 (5}
44 Eq (5] 452135404055645515 4624013525242613 462135215634752
L2 (6} 213547135462426256 5403562
356234131354645
202 Eq (B} 123456254613621342 1234564456132554 234561235623
D2 (7) “525 6251356523
13 (7}
k) [1 Eq(ll} 12312654412156542 1235462163262314 123655463213
254362721545 4 36762
35 Eq (11} 213465624163564121 1346521246536561 132405544 16373625
J25466 213

L1
L2
L3
D1
D2
Eq

{[4.6],2}
{([1,3],5).4,6,2}
{([4,6],2),1,3,5}

{(4,[5,1], (6,[5,3]),2}

{(1.[2:4]).(3,[2,6]).(4.[5,1].(6.[5.3]).5.2}
{[2,5],4} if pr. tar.<1,{[2,5],6} if> 1




Recall that the large strategy spaces and varying targets and limits across CGC's
games Yyield very strong separation via decisions: strategic “fingerprinting”:

e Of CGC’s 88 main subjects, the guesses of 43 complied exactly (within 0.5)
with one rule’s guesses in 7-16 games (20 L1, 12 L2, 3 L3, 8 Equilibrium).

e CGC'’s other 45 main subjects’ rules are less apparent from guesses; but L1,
L2, L3, and Equilibrium are still the only ones in econometric estimates.
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Recall that the large strategy spaces and varying targets and limits across CGC'’s
games yield very strong separation via decisions: strategic “fingerprinting”:

e Of CGC’s 88 main subjects, the guesses of 43 complied exactly (within 0.5)
with one rule’s guesses in 7-16 games (20 L1, 12 L2, 3 L3, 8 Equilibrium).

e CGC'’s other 45 main subjects’ rules are less apparent from guesses; but L1,
L2, L3, and Equilibrium are still the only ones in econometric estimates.

Most subjects’ rules can be econometrically better identified by decisions and
search than by decisions alone, and many can be identified from search alone
(CGC, Tables 7A-B).

Adding search changes only a few subjects’ estimated rules, with the guesses-
and-search estimate resolving a tension in favor of the search-only estimate.
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TABLE 1 —SUMMARY OF BASELINE AND OB SUBIECTS" ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type guesses guesses excluding random specification test specification test
Li 20 43 37 27 29
L2 12 20 20 17 14
L3 3 3 3 | |
DI 0 5 3 ] 0
D2 0 0 0 0 0
Eg. 8 14 13 11 10
Soph. 0 3 2 1 1
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.
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TABLE 1 —SUMMARY OF BASELINE AND OB SUBIECTS" ESTIMATED TYPE DISTRIBUTIONS

Econometric from

Apparent Econometric Econometric from Econometric from guesses and
from from guesses, guesses, with search, with
Type guesses guesses excluding random specification test specification test
Li 20 43 37 27 29
L2 12 20 20 17 14
L3 3 3 3 ] 1
DI 0 3 3 ] 0
D2 0 0 0 0 0
Eq. 8 14 13 11 10
Soph. 0 3 2 ] ]
Unclassified 45 0 10 30 33

Note: The far-right-hand column includes 17 OB subjects classified by their econometric-from-guesses type estimates.

Even so, for some subjects, search is an important check on decisions:

e Baseline subject 309, with 16 exact L2 guesses, misses some of L2’s relevant
look-ups, avoiding deviations from L2 only by luck (s/he later has a Eureka!
moment between games 5 and 6, and from then on complies perfectly).

e Baseline subject 415 (not shown, CGC fn. 43) is an L1 who fails Adjacency
because s/he can remember three numbers at once, and in CGC’s search
analysis is therefore misclassified as D1 (only clear failure in 71 subjects).
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Other noteworthy analyses of search data

WSC (Wang, Spezio, and Camerer, 2010 AER; see also CCGl, 2013 JEL,
Section 9.3.2) used eyetracking to study the use of cheap talk to signal private
Information in Crawford-Sobel (1982 Econometrica) sender-receiver games.

WSC find that both search and decision data are close to the predictions of a
level-k model with LO anchored in truthfulness, in the style of Crawford’s 2003
AER level-k analysis of signaling of intended decisions (CGCI, Section 9.1).

Such a level-k model explains two puzzling results from previous experiments:
e Senders and receivers deviate systematically from equilibrium in the direction

of “overcommunication”; i.e. senders are more truthful and receivers more
credulous than in equilibrium with no costs of lying; and

e Despite the deviations, Crawford and Sobel’s equilibrium-based comparative

statics result, that more communication is possible, the closer are the sender’s
and receiver’s preferences, is strongly confirmed.
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Other noteworthy analyses of search data

WSC (Wang, Spezio, and Camerer, 2010 AER (see also CCGl, 2013 JEL,
Section 9.3.2) used eyetracking to study the use of cheap talk to signal private
iInformation in Crawford-Sobel (1982 Econometrica) sender-receiver games.

WSC find that both search and decision data are close to the predictions of a
level-k model with LO anchored in truthfulness, in the style of Crawford’s 2003
AER level-k analysis of signaling of intended decisions (CGCI, Section 9.1).

Such a level-k model explains two puzzling results from previous experiments:

e Senders and receivers deviate systematically from equilibrium in the direction
of “overcommunication”; i.e. senders are more truthful and receivers more
credulous than in equilibrium with no costs of lying; and

e Despite the deviations, Crawford and Sobel’'s equilibrium-based comparative
statics result, that more communication is possible, the closer are the sender’s
and receiver’s preferences, is strongly confirmed.

BCWC (Brocas, Carrillo, Wang, and Camerer, 2014 REStud) clustering analysis
of search in zero-sum betting experiments, which confirms the level-k
interpretation of most subjects’ betting suggested by their decision data.
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