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Introduction: Why use process data to study strategic thinking? 

In principle, experimental design can separate the decisions implied by different 
models well enough to infer strategic thinking entirely from decisions. 

But in economically interesting games, our ability to distinguish among models is 
often near the limit of experimental feasibility, and existing methods are fairly 
easily adapted to gather process data along with decision data. 
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models well enough to infer strategic thinking entirely from decisions. 

But in economically interesting games, our ability to distinguish among models is 
often near the limit of experimental feasibility, and existing methods are fairly 
easily adapted to gather process data along with decision data. 
 
Monitoring subjects’ searches for hidden but freely accessible payoff information 
provides an independent view of cognition and behavior, at low additional cost. 

Independently separating decision rules’ implications for search and decisions 
multiplies the power of the design to identify subjects’ decision rules. 
  



 4 

Introduction: Why use process data to study strategic thinking? 

In principle, experimental design can separate the decisions implied by different 
models well enough to infer strategic thinking entirely from decisions. 

But in economically interesting games, our ability to distinguish among models is 
often near the limit of experimental feasibility, and existing methods are fairly 
easily adapted to gather process data along with decision data. 
 
Monitoring subjects’ searches for hidden but freely accessible payoff information 
provides an independent view of cognition and behavior, at low additional cost. 

Independently separating decision rules’ implications for search and decisions 
multiplies the power of the design to identify subjects’ decision rules. 
 
Analyzing search data suggests an algorithmic view of how subjects process 
information into decisions, which yields more direct insight into cognition. 

With careful design, search data can sometimes directly reveal the algorithms 
subjects use to make their decisions. 
 
 
In these slides I describe three examples of this approach, highlighting modes of 
analysis and how search data changes our view of cognition. 
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JC’s Extensive-Form Alternating-Offers Bargaining Games 

JC’s subjects played series of finite-horizon alternating-offers bargaining games, 
framed in extensive form. 

When JC’s experiments were originally designed (early 1990s), it was known that 
subjects systematically deviated from the purely pecuniarily self-interested 
subgame-perfect equilibrium strategies in these games: 

● Proposers often made offers more generous than such an equilibrium predicts. 

● Responders often rejected small-to-moderate offers that would have given 
 them positive pecuniary gains.  
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JC’s Extensive-Form Alternating-Offers Bargaining Games 

JC’s subjects played series of finite-horizon alternating-offers bargaining games, 
framed in extensive form. 

When JC’s experiments were originally designed (early 1990s), it was known that 
subjects systematically deviated from the purely pecuniarily self-interested 
subgame-perfect equilibrium strategies in these games: 

● Proposers often made offers more generous than such an equilibrium predicts. 

● Responders often rejected small-to-moderate offers that would have given 
 them positive pecuniary gains.  

 

But there was controversy about whether those deviations were due to: 

● Nonpecuniary motives, with responders’ taking revenge for unfair offers by 
 rejecting them (and proposers’ beliefs that they would do so), or 
 
● Cognitive limitations preventing subjects from identifying their subgame- 
 perfect equilibrium offer or acceptance strategies. 
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JC addressed this issue by presenting a series of different alternating-offers 
bargaining games to subjects, within a publicly announced structure. 

 

 

Each game was presented as a sequence of “pies” via MouseLab (DOS-based; 
web version at http://www.mouselabweb.org/), which normally concealed the pies 
but allowed subjects to look them up as often as desired, one at a time.  

 

 

Subjects were not allowed to write down the pie sizes, variations across games 
made it impossible to remember them from previous plays, and their look-up 
frequencies made clear that they did not just scan and memorize them. 

  

http://www.mouselabweb.org/
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CJ's Figure 1. MouseLab Screen Display 
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JC argued that (even with privately observed revenge motives) backward 
induction is the easiest way to find a subgame-perfect (or sequential) equilibrium. 

They also argued that backward induction is naturally associated with search 
patterns in which subjects first look at the last-period pie, then between the last 
and second-last pie, then between the second-last and first-period pie. 
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induction is the easiest way to find a subgame-perfect (or sequential) equilibrium. 

They also argued that backward induction is naturally associated with search 
patterns in which subjects first look at the last-period pie, then between the last 
and second-last pie, then between the second-last and first-period pie. 

 

Noting that, in theory, subjects could scan and memorize the pie sizes before 
making decisions, in which case search might be unrelated to cognition, JC ran a 
“robot/trained subjects” control with subjects playing against a computer, told it 
would play the subgame-perfect equilibrium, and trained to identify its strategies. 

JC’s robot/trained subjects made decisions close to the subgame-perfect 
equilibrium, while coming close to its characteristic search pattern. 

 

 



 12  



 13 

 

JC argued that (even with privately observed revenge motives) backward 
induction is the easiest way to find a subgame-perfect (or sequential) equilibrium. 

They also argued that backward induction is naturally associated with search 
patterns in which subjects first look at the last-period pie, then between the last 
and second-last pie, then between the second-last and first-period pie. 

 

Noting that, in theory, subjects could scan and memorize the pie sizes before 
making decisions, in which case search might be unrelated to cognition, JC ran a 
“robot/trained subjects” control with subjects playing against a computer, told it 
would play the subgame-perfect equilibrium, and trained to identify its strategies. 

JC’s robot/trained subjects made decisions close to the subgame-perfect 
equilibrium, while coming close to its characteristic search pattern. 

 
 
This and JC’s other results suggest that there are strong regularities in search 
behavior, and that subjects’ searches contain a lot of information about cognition. 
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By contrast, JC’s Baseline subjects, playing against other baseline subjects, 
without training, deviated substantially from both subgame-perfect equilibrium 
decisions and backward-induction search, in positively correlated ways: 

 

● About 10% never even looked at the last-period pie. 
 
 
● Many deviated from the characteristic backward-induction search pattern.  
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Excerpt from JC’s Figure 3: Baseine subjects. 
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By contrast, JC’s Baseline subjects, playing against other baseline subjects, 
without training, deviated substantially from both subgame-perfect equilibrium 
decisions and backward-induction search, in positively correlated ways: 

 

● About 10% never even looked at the last-period pie. 
 
 
● Many deviated from the characteristic backward-induction search pattern.  
 
 
● Subjects whose searches were further from backward induction made 

decisions further from their subgame-perfect equilibrium decisions. 
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JC also found evidence of a mixture of “levels” in the subject population: 

● Level-0 subjects treat the first round as an ultimatum game 

● Level-1 subjects look one round ahead but truncate beyond that, and 

● Level-2 subjects look two rounds ahead as subgame-perfect equilibrium 
 requires, hence are functionally equivalent here to Equilibrium subjects. 
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Level-2, Level-1, and Level-0 subjects deviate progressively more and more from 
subgame-perfect equilibrium in search as well as decisions, so that a mixture of 
levels yields a positive correlation between search and decision deviations. 
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JC also found evidence of a mixture of “levels” in the subject population: 

● Level-0 subjects treat the first round as an ultimatum game 

● Level-1 subjects look one round ahead but truncate beyond that, and 

● Level-2 subjects look two rounds ahead as subgame-perfect equilibrium 
 requires, hence are functionally equivalent here to Equilibrium subjects. 

 

 

Level-2, Level-1, and Level-0 subjects deviate progressively more and more from 
subgame-perfect equilibrium in search as well as decisions, so that a mixture of 
levels yields a positive correlation between search and decision deviations. 

 

 

JC’s analysis suggests that the deviations from subgame-perfect equilibrium are 
due roughly half to revenge motives and half to cognitive limitations. 
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CGCB’s normal-form matrix games 

CGCB’s subjects played a series of 18 matrix games, with various patterns of 
iterated dominance or unique pure-strategy equilibrium without dominance. 

Within a publicly announced structure, each game was presented via MouseLab, 
as a matrix with payoffs separated horizontally and all subjects as Row players. 

Subjects were not allowed to write down the payoffs, and their look-up 
frequencies made clear that they did not memorize them. 

 
CGCB's Figure 1. MouseLab Screen Display (for a 2×2 game) 
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CGC’s normal-form two-person guessing games 
 
 
CGC’s subjects played a series of 16 two-person guessing games. 
 
 
Each player in a given game had his own limits and target, and the targets and 
limits varied independently across players and games. 
 
 
Players were not required to guess between their limits: 

Guesses outside their limits were automatically adjusted up to the lower or down 
to the upper limit as needed (enhances separation of rules’ search implications). 
 
 
A player’s payoff increased with the closeness of his adjusted guess to his target 
times the other’s adjusted guess. 
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Within a publicly announced structure, each game was presented via MouseLab. 
 

 
CGC's Figure 6. Screen Shot of the MouseLab Display 
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Within a publicly announced structure, each game was presented via MouseLab. 
 

 
CGC's Figure 6. Screen Shot of the MouseLab Display 

 
Again subjects were not allowed to write down the payoffs, and the frequencies 
of repeated look-ups made clear that they did not memorize them. 
 
Like JC’s and CGCB’s designs, CGC’s maintains control over subjects’ motives 
for search by making information from previous plays irrelevant to current plays. 
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CGC’s design combines the strengths of JC’s and CGCB’s designs for studying 
cognition via search.  
 

 

In each case low search costs and free access to the payoff parameters made 
the games’ structures effectively public knowledge (except for responders’ 
possible revenge motives in JC’s design), so the results can be used to test 
theories of behavior in complete-information versions of the games. 

 
 
In each case the design independently separates rules’ implications for search 
and decisions. 
 
 
CGC’s design maintains the simplicity of JC’s and CGCB’s, and its simple 
parametric structure makes rules’ search implications independent of the game. 
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By contrast with JC’s one-dimensional search, CGCB’s and CGC’s designs make 
search multidimensional, which makes it potentially more informative. 

The analysis of search, however, involves some choices. 

CGCB’s and CGC’s search analyses were organized around theories of 
cognition that more readily suggest roles for which look-ups subjects make, in 
which orders, than for numbers of look-ups, transition frequencies, or durations. 

(No claim that durations are irrelevant was intended, just that they don’t deserve 
the priority they have been given. CGCB (Table IV) do present some results on 
durations, under the heading of "gaze times.") 

JC also studied look-up orders (transitions between pies) but also gave weight to 
look-up durations and the numbers of look-ups of each pie (“acquisitions”). 

Others, like Rubinstein (2007 Economic Journal), considered only durations. 

Gabaix, Laibson, Moloche, and Weinstein (2006 American Economic Review) 
focused on numbers of look-ups and some measures of look-up order. 
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By contrast with JC’s one-dimensional search, CGCB’s and CGC’s designs make 
search multidimensional, which makes it potentially more informative. 

The analysis of search, however, involves some choices. 

CGCB’s and CGC’s search analyses were organized around theories of 
cognition that more readily suggest roles for which look-ups subjects make, in 
which orders, than for numbers of look-ups, transition frequencies, or durations. 

(No claim that durations are irrelevant was intended, just that they don’t deserve 
the priority they have been given. CGCB (Table IV) do present some results on 
durations, under the heading of "gaze times.") 

JC also studied look-up orders (transitions between pies) but also gave weight to 
look-up durations and the numbers of look-ups of each pie (“acquisitions”). 

Others, like Rubinstein (2007 Economic Journal), considered only durations. 

Gabaix, Laibson, Moloche, and Weinstein (2006 American Economic Review) 
focused on numbers of look-ups and some measures of look-up order. 
 
CGCB and CGC also argued that cognition is sufficiently idiosyncratic and 
searches are sufficiently noisy that they are best studied at the individual level. 

Rubinstein, Gabaix et al. and WSC studied search at high levels of aggregation. 
BCWC took an intermediate view, looking for clusters of subjects. 
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JC’s, CGCB’s, and CGC’s analyses take a procedural view of decision-making, 

in which a subject follows one of a set of decision rules in all games. 

 
His rule determines his search, and his rule and search determine his decision. 

(Because a rule’s search implications depend not only on what decisions it 
specifies, but why, something like a rule-based model seems necessary here.) 
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JC’s, CGCB’s, and CGC’s analyses take a procedural view of decision-making, 

in which a subject follows one of a set of decision rules in all games. 

 
His rule determines his search, and his rule and search determine his decision. 

(Because a rule’s search implications depend not only on what decisions it 
specifies, but why, something like a rule-based model seems necessary here.) 

 

 

 

The possible rules and their search implications provide bases for the enormous 
spaces of possible decision and search sequences. 

 

This structure makes it possible to identify links between a subject’s cognition, 
search, and decisions; and makes it meaningful to ask whether a subject’s 
searches deviated from equilibrium in the “same direction” as his decisions. 
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CGC’s rules all build in risk-neutrality and rule out social preferences: 

 

● L1 best responds to a uniform random L0, L2 best responds to L1, and so on. 

 

● D1 (D2) does one round (two rounds) of deletion of dominated decisions and 
then best responds to a uniform prior over the other's remaining decisions. 

 

● Equilibrium makes its equilibrium decision. 

 
● Sophisticated best responds to the probabilities of other’s decisions (proxied in 

the data analysis by subjects’ observed frequencies). 
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CGC’s rules all build in risk-neutrality and rule out social preferences: 

 

● L1 best responds to a uniform random L0, L2 best responds to L1, and so on. 

 

● D1 (D2) does one round (two rounds) of deletion of dominated decisions and 
then best responds to a uniform prior over the other's remaining decisions. 

 

● Equilibrium makes its equilibrium decision. 

 
● Sophisticated best responds to the probabilities of other’s decisions (proxied in 

the data analysis by subjects’ observed frequencies). 
 
 
Each of these decision rules is naturally associated with algorithms that process 
payoff information into decisions.  

 
The analyses use those algorithms as models of cognition, deriving a rule’s 
search implications under simple assumptions about how it determines search. 
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In theory a subject can search in any order, memorize the information, and then 
make his decisions—in which case search will reveal nothing about cognition. 

 
But there are strong empirical regularities in search behavior. 
 
The goal is to stylize these regularities via enough assumptions to extract the 
signal from the noise in searches; but not so many that they distort its meaning. 
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In theory a subject can search in any order, memorize the information, and then 
make his decisions—in which case search will reveal nothing about cognition. 

 
But there are strong empirical regularities in search behavior. 
 
The goal is to stylize these regularities via enough assumptions to extract the 
signal from the noise in searches; but not so many that they distort its meaning. 

 

JC (implicitly) and CGCB impose two such assumptions: 
 
● Occurrence: If your rule’s decision depends on a particular piece of hidden 
 information, then you must have looked at it at least once; and 

 

● Adjacency: The two pieces of hidden information associated with the most 
basic operations your rule’s decision depends on must be adjacent in your 
look-up sequence.    
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In theory a subject can search in any order, memorize the information, and then 
make his decisions—in which case search will reveal nothing about cognition. 

 
But there are strong empirical regularities in search behavior. 
 
The goal is to stylize these regularities via enough assumptions to extract the 
signal from the noise in searches; but not so many that they distort its meaning. 

 

JC (implicitly) and CGCB impose two such assumptions: 
 
● Occurrence: If your rule’s decision depends on a particular piece of hidden 
 information, then you must have looked at it at least once; and 

 

● Adjacency: The two pieces of hidden information associated with the most 
basic operations your rule’s decision depends on must be adjacent in your 
look-up sequence.    

 

CGC derive each rule’s characteristic look-up sequence in a way that subsumes 
Occurrence and Adjacency, and use its density in a subject’s actual sequence.     
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For CGCB’s  subjects (framed as Rows), assuming Occurrence and Adjacency: 

● Up-down transitions in own payoffs are associated with decision-theoretic 
 rationality 

● Left-right transitions in other’s payoffs are associated with thinking about the 
 other subject’s incentives 

● Transitions from own to other’s payoffs and back for the same decision 
 combination are associated with interpersonal (fairness) comparisons 

 

CGCB's Figure 1. MouseLab Screen Display (for a 2×2 game) 
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In CGCB’s data, the most frequent rules estimated from decisions alone are L1 
(CGCB’s Naïve, which is not separated from Optimistic (maximax) by decisions 
in their design) and L2, each nearly half of the population.  

Incorporating search compliance into the econometric estimates (using an error-
rate model not explained here) shifts the estimated rule distribution toward L1, at 
the expense of Optimistic (maximax) and D1. 
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In CGCB’s data, the most frequent rules estimated from decisions alone are L1 
(CGCB’s Naïve, which is not separated from Optimistic (maximax) by decisions 
in their design) and L2, each nearly half of the population.  

Incorporating search compliance into the econometric estimates (using an error-
rate model not explained here) shifts the estimated rule distribution toward L1, at 
the expense of Optimistic (maximax) and D1. 

The shift occurs because L1’s search implications explain more of the variation in 
subjects’ searches and decisions than Optimistic's, which are too unrestrictive to 
be useful in the sample; and because L1’s search implications explain more of 
the variation in subjects’ searches and decisions than D1’s, which are more 
restrictive than Optimistic's, but only weakly correlated with subjects’ decisions. 

D1 also loses some frequency to L2, even though their decisions are weakly 
separated in CGCB’s design, because L2's search implications explain much 
more of the variation in subjects' searches and decisions. 
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In CGCB’s data, the most frequent rules estimated from decisions alone are L1 
(CGCB’s Naïve, which is not separated from Optimistic (maximax) by decisions 
in their design) and L2, each nearly half of the population.  

Incorporating search compliance into the econometric estimates (using an error-
rate model not explained here) shifts the estimated rule distribution toward L1, at 
the expense of Optimistic (maximax) and D1. 

The shift occurs because L1’s search implications explain more of the variation in 
subjects’ searches and decisions than Optimistic's, which are too unrestrictive to 
be useful in the sample; and because L1’s search implications explain more of 
the variation in subjects’ searches and decisions than D1’s, which are more 
restrictive than Optimistic's, but only weakly correlated with subjects’ decisions. 

D1 also loses some frequency to L2, even though their decisions are weakly 
separated in CGCB’s design, because L2's search implications explain much 
more of the variation in subjects' searches and decisions. 

Overall, CGCB’s analysis of decisions and search yields a significantly different 
interpretation of behavior than their analysis of decisions alone. 

Including search suggests a very simple view of behavior, with L1 and L2 making 
up 65-90% of the population, and D1 0% (or 20% if one doubts CGCB's model of 
search). (CGC’s subsequent work suggests that 0% is closer to correct.) 
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CGC measure a subjects’ search compliance with a decision rule as the density 
of the rule’s characteristic look-up sequence in the subject’s observed sequence. 
 
 
 
CGC then incorporate search compliance into the econometric estimates using 
an error-rate model similar to CGCB’s, not explained here. 
 
 
 
A rule’s characteristic look-up sequence in one of CGC’s games is based on its 
minimal search implications, as derived from the rule’s ideal guesses, those the 
rule would imply if the game did not limit the player’s guesses. 
 
(Recall that guesses outside limits were automatically adjusted up to the lower or 
down to the upper limit as needed, to enhance separation of rules’ search 
implications. With automatic adjustment and CGC’s quasiconcave payoffs, a 
rule’s ideal guesses are all a subject needs to know to implement the rule.) 
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Evaluating a formula for a rule’s ideal guess requires a series of operations, 
some of which are basic in that they logically precede any other operation. 
 
Like JC and CGCB, CGC derived rules’ search implications assuming that 
subjects perform basic operations one at a time via adjacent look-ups, remember 
their results, and otherwise rely on repeated look-ups rather than memory. 
 
Basic operations are then represented in a look-up sequence by adjacent pairs 
that can appear in either order, but cannot be separated by other look-ups. 
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Evaluating a formula for a rule’s ideal guess requires a series of operations, 
some of which are basic in that they logically precede any other operation. 
 
Like JC and CGCB, CGC derived rules’ search implications assuming that 
subjects perform basic operations one at a time via adjacent look-ups, remember 
their results, and otherwise rely on repeated look-ups rather than memory. 
 
Basic operations are then represented in a look-up sequence by adjacent pairs 
that can appear in either order, but cannot be separated by other look-ups. 
 
 
E.g. L1’s ideal guess is p

i
[a

j
+b

j
]/2, where p

i 
is its own target and a

j 
and b

j 
are 

other’s lower and upper limits. L1’s characteristic look-up sequence is {[a
j
, b

j
], p

i
}. 

 
In this formula, L1’s only basic operation is [a

j
+b

j
], part of averaging other’s limits, 

is grouped within square brackets to show that a
j 
and b

j
 cannot be separated.  

 
Other operations, whose look-ups grouped within curly brackets or parentheses, 
can appear in any order and their look-ups can be separated. 
 
(L1 does not need to look up its own limits because it can enter its ideal guess 
and rely on automatic adjustment to ensure that its adjusted guess is optimal.) 
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L1’s search implications (subjects couldn’t open more than one box at a time) 
L1’s ideal guess: p

i
[a

j
+b

j
]/2 = 750. 

L1’s search {[a
j
, b

j
], p

i
} ≡ {[4, 6], 2} in the box numbers MouseLab records. 

 
 a p b 

You (i) 1 2 3 

S/he (j) 4 5 6 

MouseLab Box Numbers 
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L2’s ideal guess is p

i
R(a

j
,b

j
; p

j
[a

i
+b

i
]/2), where p

i 
is its own target, a

i 
and b

i 
are its 

own lower and upper limits, a
j 
and b

j 
are other’s lower and upper limits, and R(·; ·) 

is the automatic adjustment function. 
 
 
 
L2’s model of other’s L1 guess is p

i
[a

j
+b

j
]/2. 

 
 
 
L2’s characteristic look-up sequence is {([a

i
,b

i
],p

j
),a

j
,b

j
,p

i
}. 

 
(L2 needs to look up its own limits only to predict other’s L1 guess; like L1 it can 
enter its own ideal guess and rely on automatic adjustment to its optimal guess.)  
 
(L2 needs to look up other’s limits a

j 
and b

j 
to predict other’s L1 adjusted guess.) 
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L2’s search implications: first step 

L2’s model of its partner’s L1 guess: p
j
[a

i
+b

i
]/2 = 300. 

L2’s ideal guess: p
i
R(a

j
,b

j
; p

j
[a

i
+b

i
]/2) = 450. 

L2’s search {([a
i
,b

i
],p

j
),a

j
,b

j
,p

i
} ≡ {([1, 3], 5), 4, 6, 2} in MouseLab box numbers. 
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L2’s search implications: second step  
L2’s ideal guess: p

i
R(a

j
,b

j
; p

j
[a

i
+b

i
]/2) = 450. 

L2’s search {([a
i
,b

i
],p

j
),a

j
,b

j
,p

i
} ≡ {([1, 3], 5), 4, 6, 2} in MouseLab box numbers. 
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Equilibrium can use any workable method to find its ideal guess; CGC allowed 
any method, and sought the one with minimal search requirements. 
 
Equilibrium-checking (conjecturing guesses and checking them for consistency 
with equilibrium) is less demanding than other methods, but requires more luck 
than all but a few subjects appeared to have. 
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Equilibrium can use any workable method to find its ideal guess; CGC allowed 
any method, and sought the one with minimal search requirements. 
 
Equilibrium-checking (conjecturing guesses and checking them for consistency 
with equilibrium) is less demanding than other methods, but requires more luck 
than all but a few subjects appeared to have. 
 
 
CGC therefore allowed an Equilibrium player to use both targets to determine 
whether equilibrium is determined by upper or lower limits, and then to enter its 
own target times other’s lower (upper) limit when the product of targets is < (>) 1, 
which CGC showed ensures that the player’s adjusted guess is in equilibrium. 
 
This has the same search requirements as equilibrium-checking except that it 
requires the targets to be adjacent; and thereby avoids the need for luck. 
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Equilibrium can use any workable method to find its ideal guess; CGC allowed 
any method, and sought the one with minimal search requirements. 
 
Equilibrium-checking (conjecturing guesses and checking them for consistency 
with equilibrium) is less demanding than other methods, but requires more luck 
than all but a few subjects appeared to have. 
 
 
CGC therefore allowed an Equilibrium player to use both targets to determine 
whether equilibrium is determined by upper or lower limits, and then to enter its 
own target times other’s lower (upper) limit when the product of targets is < (>) 1, 
which CGC showed ensures that the player’s adjusted guess is in equilibrium. 
 
This has the same search requirements as equilibrium-checking except that it 
requires the targets to be adjacent; and thereby avoids the need for luck. 
 
 
Equilibrium’s ideal guess is then p

i
a

j
 if p

i
p

j
 < 1 or p

i
b

j
 if p

i
p

j
 > 1, and its search 

implications are {[p
i
,p

j
],a

j
} ≡ {[2, 5], 4} if p

i
p

j
 < 1 or {[p

i
,p

j
],b

j
} ≡ {[2, 5], 6} if p

i
p

j
 > 1. 

 
Unlike in CGCB’s and CJ’s designs, in CGC’s design Equilibrium’s search 
implications are just as simple as L1’s, and simpler than other rules’. 
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Note that although most theorists instinctively identify Lk with Dk-1, which both 
respect k rounds of iterated dominance, they are cognitively very different: 
 
● Lk starts with a naïve prior over the other’s decisions and iterates the best- 
 response mapping. 
 
● Dk-1 starts with reasoning based on iterated knowledge of rationality and 
 closes the process with a naïve prior. 
 
This difference is obscured in a design as simple as Nagel’s, and does not show 
up clearly from decisions even in more powerful designs. 
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respect k rounds of iterated dominance, they are cognitively very different: 
 
● Lk starts with a naïve prior over the other’s decisions and iterates the best- 
 response mapping. 
 
● Dk-1 starts with reasoning based on iterated knowledge of rationality and 
 closes the process with a naïve prior. 
 
This difference is obscured in a design as simple as Nagel’s, and does not show 
up clearly from decisions even in more powerful designs. 
 
 
But in CGC’s design these rules are separated clearly via search implications: 
 
In Table 4: 
 
● L2’s characteristic sequence  is {([a

i
,b

i
],p

j
),a

j
,b

j
,p

i
} ≡ {([1, 3], 5), 4, 6, 2}. 

 
● D1’s characteristic sequence  is {(a

j
,[p

j
,a

i
]),(b

j
,[p

j
,b

i
]),p

i
} ≡ {(4,[5,1]),(6,[5,3]),2}.    
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Search data 
 
CGC’s Baseline subjects played the game against other subjects. 
 
CGC’s Robot/Trained Subjects played the same games, but with each subject 
trained in and rewarded for following a rule: L1, L2, L3, D1, D2, or Equilibrium. 
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Search data 
 
CGC’s Baseline subjects played the game against other subjects. 
 
CGC’s Robot/Trained Subjects played the same games, but with each subject 
trained in and rewarded for following a rule: L1, L2, L3, D1, D2, or Equilibrium. 
 
 
Search data for R/TS and Baseline subjects, chosen for high compliance with 
their rule’s guesses (not compliance with any theory of search) suggest that:  
 
● There is little difference between the look-up sequences of R/TS and Baseline 

subjects of a given rule (assigned rule for R/TS, apparent rule for Baseline). 
 

 
● Table 4’s relevant look-ups for a rule are dense in the search sequences for 

subjects with that rule (apparent or assigned), and the algorithms many are 
can be read directly from their searches, at least for the simpler rules. 

 
● Equilibrium and D2 subjects are stressed out but usually get decisions right. 
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L1 {[4,6],2} 

L2 {([1,3],5),4,6,2} 

L3 {([4,6],2),1,3,5} 

D1 {(4,[5,1], (6,[5,3]),2} 

D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2} 

Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1 
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Recall that the large strategy spaces and varying targets and limits across CGC’s 
games yield very strong separation via decisions: strategic “fingerprinting”: 
 
● Of CGC’s 88 main subjects, the guesses of 43 complied exactly (within 0.5) 

with one rule’s guesses in 7-16 games (20 L1, 12 L2, 3 L3, 8 Equilibrium). 
 
● CGC’s other 45 main subjects’ rules are less apparent from guesses; but L1, 

L2, L3, and Equilibrium are still the only ones in econometric estimates. 
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Recall that the large strategy spaces and varying targets and limits across CGC’s 
games yield very strong separation via decisions: strategic “fingerprinting”: 
 
● Of CGC’s 88 main subjects, the guesses of 43 complied exactly (within 0.5) 

with one rule’s guesses in 7-16 games (20 L1, 12 L2, 3 L3, 8 Equilibrium). 
 
● CGC’s other 45 main subjects’ rules are less apparent from guesses; but L1, 

L2, L3, and Equilibrium are still the only ones in econometric estimates. 
 
 
 
Most subjects’ rules can be econometrically better identified by decisions and 
search than by decisions alone, and many can be identified from search alone 
(CGC, Tables 7A-B). 
 
Adding search changes only a few subjects’ estimated rules, with the guesses-
and-search estimate resolving a tension in favor of the search-only estimate. 
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Even so, for some subjects, search is an important check on decisions:  
 
● Baseline subject 309, with 16 exact L2 guesses, misses some of L2’s relevant 

look-ups, avoiding deviations from L2 only by luck (s/he later has a Eureka! 
moment between games 5 and 6, and from then on complies perfectly). 

 
● Baseline subject 415 (not shown, CGC fn. 43) is an L1 who fails Adjacency 

because s/he can remember three numbers at once, and in CGC’s search 
analysis is therefore misclassified as D1 (only clear failure in 71 subjects). 
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Other noteworthy analyses of search data 

WSC (Wang, Spezio, and Camerer, 2010 AER; see also CCGI, 2013 JEL, 
Section 9.3.2) used eyetracking to study the use of cheap talk to signal private 
information in Crawford-Sobel (1982 Econometrica) sender-receiver games. 

WSC find that both search and decision data are close to the predictions of a 
level-k model with L0 anchored in truthfulness, in the style of Crawford’s 2003 
AER level-k analysis of signaling of intended decisions (CGCI, Section 9.1). 

Such a level-k model explains two puzzling results from previous experiments: 
 
● Senders and receivers deviate systematically from equilibrium in the direction 
 of “overcommunication”; i.e. senders are more truthful and receivers more 
 credulous than in equilibrium with no costs of lying; and 
 
● Despite the deviations, Crawford and Sobel’s equilibrium-based comparative 

statics result, that more communication is possible, the closer are the sender’s 
and receiver’s preferences, is strongly confirmed.     
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WSC (Wang, Spezio, and Camerer, 2010 AER (see also CCGI, 2013 JEL, 
Section 9.3.2) used eyetracking to study the use of cheap talk to signal private 
information in Crawford-Sobel (1982 Econometrica) sender-receiver games. 

WSC find that both search and decision data are close to the predictions of a 
level-k model with L0 anchored in truthfulness, in the style of Crawford’s 2003 
AER level-k analysis of signaling of intended decisions (CGCI, Section 9.1). 

Such a level-k model explains two puzzling results from previous experiments: 
 
● Senders and receivers deviate systematically from equilibrium in the direction 
 of “overcommunication”; i.e. senders are more truthful and receivers more 
 credulous than in equilibrium with no costs of lying; and 
 
● Despite the deviations, Crawford and Sobel’s equilibrium-based comparative 

statics result, that more communication is possible, the closer are the sender’s 
and receiver’s preferences, is strongly confirmed.     

 

BCWC (Brocas, Carrillo, Wang, and Camerer, 2014 REStud) clustering analysis 
of search in zero-sum betting experiments, which confirms the level-k 
interpretation of most subjects’ betting suggested by their decision data. 


