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Outline of Lectures 
1. Introduction: Why Study Strategic Thinking?     
2. Nine “Folk Game Theory” Quotations (Keynes’s Beauty Contest, Graham’s 

Mr. Market, Kahneman’s Entry Magic, Lake Wobegon, Huarongdao, 
October Surprise, Bank Runs, Poe’s Outguessing Game) 

3. Leading Models of Strategic Thinking (Equilibrium Plus Noise, Finitely 
Iterated (Strict) Dominance and k-Rationalizability, Quantal Response 
Equilibrium (“QRE”) and Logit QRE (“LQRE”), Level-k Models, Cognitive 
Hierarchy Models, Noisy Introspection (“NI”) Models)   

4. Experimental Evidence (Nagel’s Design and Results, Costa-Gomes and 
 Crawford’s Design and Results and Data Analysis) 
5. Lessons from the Experiments for Modeling Strategic Behavior (Level-k 

versus CH Models, Level-k versus Equilibrium Plus Noise or LQRE 
Models, Level-k versus NI Models, Observations about the Models’ 
Cognitive Requirements) 

6. Illustration of Level-k Analyses of Matrix Games with Unique Mixed- 
 Strategy Equilibria: M. M. Kaye’s The Far Pavilions 
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7. Kahneman’s Entry Magic: Asymmetric Coordination via Structure in Entry 
 Games 
8. Bank Runs: Symmetric Coordination via Structure  
9. Structural Alternatives to “Incomplete” Models 
10. Yuschenko and Lake Wobegon: Framing Effects in Zero-Sum Two- 

Person Games (Evaluating the Model’s Explanation: Overfitting and 
Portability) 

11. Chicago Skyscrapers: Framing Effects and Miscoordination in Schelling- 
 Style Coordination Games 
12. Huarangdao and D-day: Preplay Communication of Intentions in Zero- 
 Sum Two-Person Games with Possibly Sophisticated Players 
13. Preplay Communication of Intentions in Coordination Games 
14. Experimental Evidence on Communication of Private Information in 
 Sender-Receiver Games   
15. October Surprise: Communication of Private Information in Zero-Sum 
 Two-Person Games 
16. Overbidding in Independent-Private-Value and Common-Value Auctions  
17. Behaviorally Optimal Auction Design 
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1. Introduction: Why Study Strategic Thinking?  
 
Strategic thinking is an essential part of human interaction, so much so that 
children must be taught to look both ways before crossing one-way streets. 
 
(Once children develop enough “theory of mind” to distinguish other people 
as independent decision makers, they seem to become instinctively 
overoptimistic about using rationality to predict others’ decisions.) 
 
 
Yet from a behavioral point of view, the importance of strategic thinking has 
been downplayed in economics and game theory. 
 
Most applications of game theory in economics rely on Nash equilibrium. 
 
However, although equilibrium can be viewed as a model of strategic 
thinking, we will see that there are many potential applications of game 
theory for which it is not an adequate model of behavior.   
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Players’ strategies will be in equilibrium if two conditions are satisfied: 

● Players are rational (in the sense of best responding to some beliefs). 

● Players have the same beliefs about each other’s strategies. 

Accepting rationality for the sake of argument, there are two possible 
justifications for the assumption that players have the same beliefs: 

● Thinking: If players have perfect models of each other’s decisions, strategic 
thinking will lead them to have the same beliefs immediately, and so play 
an equilibrium even in their initial responses to a game. 

(Note that in this case the usual “as if” justification for equilibrium is 
unavailable: if players’ models do not accurately reflect other players’ 
cognition, equilibrium is unlikely to predict their decisions accurately.)   

● Learning: Even without perfect models, if players repeatedly play perfectly 
 analogous games (and their interaction patterns do not foster repeated- 

game effects or strategic teaching), experience may eventually allow 
them to predict each others’ decisions well enough to play an equilibrium 
(in the game that is repeated) in the limit. 
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In many applications of game theory, the theoretical conditions for learning to 
converge to equilibrium are approximately satisfied. 
 
 
In such settings experimental evidence and field data tend to support 
assuming that players’ steady-state strategies are in equilibrium. 
 
 
If only long-run outcomes matter, and if equilibrium is unique or if there are 
multiple equilibria but equilibrium selection does not depend on the details 
of learning, such applications can safely rely entirely on equilibrium. 
 
 
Because in such settings the cognitive requirements for learning to 
converge to equilibrium are mild, there is then no need to study strategic 
thinking. 
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However, many other applications involve games played without clear 
precedents, so that the learning justification for equilibrium is unavailable. 
 
 
In other applications eventual convergence to equilibrium is assured, but 
initial as well as limiting outcomes matter (e.g. the FCC Spectrum auction). 
 
 
In still other applications convergence is assured and only long-run 
outcomes matter, but the equilibrium is selected from multiple possibilities 
via history-dependent learning dynamics. 
 
 
All such applications depend on reliably predicting initial responses to 
games, which may require a non-equilibrium model of strategic thinking. 
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Aside on Equilibrium Selection via History-dependen t Learning 
 
In Van Huyck, Cook, and Battalio’s 1997 JEBO experiment, seven subjects 
chose simultaneously and anonymously among efforts from 1 to 14, with 
each subject’s payoff determined by his own effort and a summary statistic, 
the median, of all players’ efforts. 
 
 
After subjects chose their efforts, the group median was publicly announced, 
subjects chose new efforts, and the process continued. 
 
 
The relation between a subject’s effort, the median effort, and his payoff was 
publicly announced via a table as on the next slide.  
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The payoffs of a player’s best responses to each possible median are 
highlighted in bold in the table as displayed here (but not to subjects). 
 
The payoffs of the (symmetric, pure-strategy) equilibria “all–3” and “all–12” 
are highlighted in large bold. 
 

 

Continental divide game payoffs 

Median Choice

Your 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Choice

1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142 
2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98 

3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58 

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22 

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10 

6 23 33 42 52 62 72 82 62 53 47 43 41 39 38 
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62 
8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82 
9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98 
10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110

11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119

12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123

13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123
14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120
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There were ten sessions, each with its own separate group. 
 
Half the groups happened to have an initial median of eight or above, and 
half happened to have an initial median of seven or below. 
 
(The experimenters probably chose the design to make the initial median 
vary this way, but this kind of variation is not uncommon.) 
 
 
 
The results are graphed on the next slide: 
 
The median-eight-or-above groups converged almost perfectly to the all–12 
equilibrium. 
 
By contrast, the median-seven-or-below groups converged almost perfectly 
to the all–3 equilibrium.   
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Van Huyck, Cook, and Battalio’s Figure 3 
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Thus, it’s not enough to know that learning will eventually converge to some 
equilibrium, even if we are only interested in the final outcome. 
 
Here we also need to know the prior probability distribution of the median 
initial response. 
 
That distribution, together with a simple view of learning in which equilibrium 
selection is determined by which basin of attraction—defined by myopic best 
responses—subjects’ initial responses fell into, seem adequate to determine 
the probability distribution of final outcomes in Van Huyck et al.’s experiment.  
 
In other applications we may need to know more about the structure of 
subjects’ learning rules as well as about their initial responses. 

See for example Crawford, “Adaptive Dynamics in Coordination Games,” 
1995 Econometrica, and Crawford and Broseta, “What Price Coordination? 
The Efficiency-enhancing Effect of Auctioning the Right to Play,” 1998 AER, 
which discuss Van Huyck, Battalio, and Beil’s famous 1990 AER, 1991 QJE, 
1993 GEB coordination experiments. 

(End of aside)
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Applications of game theory usually assume equilibrium even when its 
learning justification is unavailable.   
 
This practice seems to be due to two factors: 
 
● Fear that equilibrium is the only possible basis for analysis 
 (rationalizability seldom yields predictions specific enough to be useful). 
 
● Hope that equilibrium will still yield accurate predictions, on average.        
 
But except in simple games, assuming equilibrium thinking in people’s initial 
responses may be behaviorally far-fetched. 
 
Even people who are capable of equilibrium thinking may doubt that others 
are capable, and therefore be unwilling to play their part of an equilibrium. 
 
 
Moreover, there is a growing body of evidence—mostly experimental—that 
initial responses to novel or complex games often deviate systematically 
from equilibrium, especially if it requires thinking that is not straightforward. 
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Fortunately, the evidence also suggests that there are simple and tractable 
structural non-equilibrium models of strategic thinking that can explain a 
large fraction of people’s deviations from equilibrium initial responses. 
 
Those models allow equilibrium behavior, but do not assume equilibrium in 
all games.  
 
Instead they assume that players follow strategic but non-equilibrium 
decision rules, which yield decisions that mimic equilibrium in simple 
games, but may deviate systematically in more complex games.    
 
The models thereby provide a way to predict, in a given game, whether 
players’ responses are likely to deviate from equilibrium, and if so, how.       
 
 
Thus the hope that equilibrium yields predictions that are accurate on 
average is not well founded. 
 
But neither is the fear that equilibrium is the only possible basis for analysis.   
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Modeling strategic thinking more accurately promises several benefits: 
 
 
● It can establish the robustness of conclusions based on equilibrium in 
 games where empirically reliable rules mimic equilibrium. 
 
 
● It can challenge the conclusions of applications to games where 
  equilibrium is implausible without learning. 
 
 
● It can resolve empirical puzzles by explaining the deviations from 
 equilibrium that some games evoke. 
 
 
● It can also elucidate the structure of learning, where assumptions about 

cognition determine which analogies between current and previous 
games players recognize and also distinguish reinforcement from 
beliefs-based and more sophisticated rules. 
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Overview 
 
The rest of these lectures are organized as follows. I focus on normal-form 
games, including extensive-form games mainly to study communication, 
with other kinds of extensive-form games left for future discussion.  
 
● I begin with nine “folk game theory” quotations to illustrate the need for 
 non-equilibrium models of strategic thinking, the issues successful 

models must address, and the range of potential applications. 
 
● I next give a brief summary of the leading models of strategic thinking. 
 
● I then summarize the experimental evidence on strategic thinking. 
 
● I then discuss some theoretical and econometric lessons for modeling 
 strategic behavior and critique the models in light of the evidence. 
 
● The discussion is interwoven with illustrative applications of the level-k 

models that are suggested by the evidence, which take up some of the 
strategic issues raised by the quotations. 
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2. Nine “Folk Game Theory” Quotations  

This section gives nine “folk game theory” quotations to illustrate the need 
for non-equilibrium models of strategic thinking, the issues successful 
models must address, and the range of potential applications. 

Why study folk game theory instead of “real” game theory? 
 
Folk game theory is only an imperfect reflection of traditional game theory, 
just as folk physics is an imperfect reflection of real physics. 

But unlike folk physics, folk game theory has a direct and important influence 
on its observable counterpart, namely the part of behavioral game theory that 
concerns strategic thinking and initial responses to games. 
 
I will argue below that the lessons regarding strategic thinking from folk game 
theory are largely confirmed by experiments designed to study strategic 
thinking in more conventional ways. 

This correspondence is powerful evidence for a particular class of structural 
non-equilibrium models of strategic thinking.  
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Keynes’s Beauty Contest:  “...professional investment may be likened to those 
newspaper competitions in which the competitors have to pick out the six prettiest 
faces from a hundred photographs, the prize being awarded to the competitor whose 
choice most nearly corresponds to the average preferences of the competitors as a 
whole; so that each competitor has to pick, not those faces which he himself finds 
prettiest, but those which he thinks likeliest to catch the fancy of the other 
competitors, all of whom are looking at the problem from the same point of view. It is 
not a case of choosing those which, to the best of one’s judgment, are really the 
prettiest, nor even those which average opinion genuinely thinks the prettiest. We 
have reached the third degree where we devote our intelligences to anticipating what 
average opinion expects the average opinion to be. And there are some, I believe, 
who practice the fourth, fifth and higher degrees.”—John Maynard Keynes, The 
General Theory of Employment, Interest, and Money 
(I suspect that the last sentence was Keynes’s coy reference to himself.) 

A simultaneous-move zero-sum n-person “outguessing” game, possibly with multiple 
equilibria. The key issue is anticipating others’ strategic responses to a “landscape” 
of personal judgments about prettiness which is otherwise payoff-irrelevant. We will 
find that equilibrium alone is not very helpful in describing how people do this. The 
quotation suggests a thought process in which players “anchor” beliefs in instinctive 
reactions to the faces and then iterate best responses a finite number of times.   
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Graham’s Mr. Market:  “…imagine you are partners in a private business with a man 
named Mr. Market. Each day, he comes to your office or home and offers to buy your 
interest in the company or sell you his [the choice is yours]. The catch is, Mr. Market 
is an emotional wreck. At times, he suffers from excessive highs and at others, 
suicidal lows. When he is on one of his manic highs, his offering price for the 
business is high as well…. His outlook for the company is wonderful, so he is only 
willing to sell you his stake in the company at a premium. At other times, his mood 
goes south and all he sees is a dismal future for the company. In fact… he is willing 
to sell you his part of the company for far less than it is worth. All the while, the 
underlying value of the company may not have changed - just Mr. Market's mood.”—
Warren Buffett’s intellectual hero Benjamin Graham (of Graham and Dodd’s Security 
Analysis), in Graham’s The Intelligent Investor (thanks to Steven Scroggin of Virginia 
Polytechnic Institute for the reference). 
 
A simultaneous-move two-person game, possibly with multiple equilibria. Again the 
key issue is outguessing others’ judgments, equilibrium alone is not very helpful, 
and the quotation suggests a thought process like Keynes’s, but anchored in the 
psychology of a representative uninformed investor’s reaction to news. 
 
(In context, however, Graham’s main goal in this passage was actually to keep 
readers from becoming too emotionally involved with their own portfolios.) 
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Kahneman’s Entry Magic:  “…to a psychologist, it looks like magic.”—Kahneman 
1988, quoted in Camerer, Ho, and Chong 2004 QJE. 
 
Here Kahneman refers to the fact that subjects in his market-entry experiments 
(see also Rapoport and Seale 2002), structured like n-person Battle of the Sexes 
games, achieve better ex post coordination (number of entrants closer to market 
capacity) than in the natural symmetric mixed-strategy equilibrium benchmark. 
 
(Thus Kahneman should have said “…to a game theorist, it looks like magic.”) 
 
The key issue here is breaking the symmetry of players’ roles as required for 
efficient coordination. Equilibrium and refinements are not very helpful. 

The same strategic issues arise in less abstractly framed, asymmetric field 
settings, exemplified by Roger Myerson’s “Ware Medical Corporation” case 
(http://www.kellogg.northwestern.edu/faculty/weber/DECS-452/index.htm or 
http://dss.ucsd.edu/~vcrawfor/Ware.htm): A company is considering introducing a 
new product, which will be profitable only if its only competitor introduces a related 
product. The competitor’s profits are determined qualitatively (not quantitatively) in 
the same way as the company’s are. Both companies must decide, simultaneously 
and irreversibly, whether to begin development. In addition, there may be 
opportunities for commitment, signaling, and/or deceptive announcements. See 
also Goldfarb and Yang 2009 Journal of Marketing Research. 
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Yushchenko:  “Any government wanting to kill an opponent…would not try it at a 
meeting with government officials.”—comment, quoted in Chivers 2004, on the 
poisoning of Ukrainian presidential candidate—now president—Viktor Yushchenko. 
 
A simultaneous-move zero-sum two-person game with a unique mixed-strategy 
equilibrium. The players are a government assassin choosing one of several 
occasions at which to try to poison Yuschenko, only one of which is linked to the 
government; and an investigator who has the resources to check only one occasion. 
 
 
Here the key issue is how players react to framing of decisions that is non-neutral but 
does not directly affect payoffs. Equilibrium in zero-sum two-person games leaves no 
room for such framing to affect outcomes, but people often react to it anyway.  
 
The thinking reflected by the quotation is plainly strategic, but non-equilibrium: Any 
game theorist worth his salt would respond, “If that’s what people think, a meeting 
with government officials is exactly where I would try to poison Yushchenko.” 
 
We will see that the quotation can be understood as a thought process in which a 
player anchors his beliefs in an instinctive reaction to the salience of the dinner with 
government officials and then iterates best responses a small number of times.
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Lake Wobegon: “…in Lake Wobegon, the correct answer is usually ‘c’.”—Garrison 
Keillor 1997 on multiple-choice tests (quoted in Attali and Bar-Hillel 2003 Journal of 
Educational Measurement).  
 
A simultaneous-move two-person zero-sum game with a unique mixed-strategy 
equilibrium. The players are a test designer deciding where to hide the correct 
answer and a clueless test-taker trying to guess the hiding place. 
 
 
Again the key issue is how players react to the non-neutral framing, and the thinking 
reflected by the quotation is plainly strategic, but non-equilibrium.  
 
Although there is nothing as uniquely salient as Yushchenko’s dinner with 
government officials, psychologists like Christenfeld 1995 Psychological Science 
and Tversky (in Rubinstein, Tversky, and Heller 1996) think that with four possible 
answers, both the a and d end locations and location c are inherently salient (with 
the jury still out on which is more salient). 
 
Again the quotation can be understood as a thought process in which a player 
anchors beliefs in an instinctive reaction to salience and iterates best responses a 
small number of times. 
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Huarongdao: 

 General Kongming: “Have you forgotten the tactic of ‘letting weak points look 
weak and strong points look strong’?” 
  
 General Cao Cao: “Don’t you know what the military texts say? ‘A show of 
force is best where you are weak. Where strong, feign weakness.’” 

 
—Luo Guanzhong’s historical novel, Three Kingdoms (thanks to Duozhe Li of 
Chinese University of Hong Kong for the reference).  

 
A two-person zero-sum game with complete information and one-sided preplay 
communication of intentions via cheap talk. 
 
In the story, set around 200 A.D., fleeing general Cao Cao chose between two 
escape routes, the easier Main Road and the awful Huarong Road, trying to avoid 
capture by pursuing General Kongming. 
 
Kongming (the sender in this example) waited in ambush along the Huarong Road 
and set campfires there, thus sending a deceptively truthful message. 
 
Cao Cao (the receiver), misjudging Kongming’s communication strategy, inverted the 
truthful message and was caught by Kongming. 
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Huarongdao continued 

The key issues here are how Kongming should choose his message and how Cao 
Cao—knowing Kongming is choosing strategically, trying to anticipate Cao Cao’s 
interpretation—should interpret Kongming’s message. 

In real settings like this, a receiver’s thinking often assigns a prominent role to the 
literal meanings of messages, without necessarily taking them at face value; and a 
sender’s thinking takes this into account. 

But a standard equilibrium analysis precludes a role for the literal meanings of 
payoff-irrelevant messages (Crawford and Sobel 1982 Econometrica; see however 
Farrell’s 1993 GEB neologism-proofness refinement, which depends on meanings). 

Moreover, there is no equilibrium (refined or not) in a zero-sum two-person game in 
which cheap talk conveys information or the receiver responds to the message. 

In such an equilibrium, if there was information in the sender’s message that the 
receiver found it optimal to respond to, the receiver’s response would help him and 
so hurt the sender, who would then prefer to make his message uninformative. 
 
We will see that the quotation can be understood as a thought process in which 
players anchor beliefs in an instinctive reaction to the literal meanings of messages 
and then iterate best responses a small number of times.
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October Surprise: “…The news that day was the so-called ‘October Surprise’ 
broadcast by bin Laden. He hadn’t shown himself in nearly a year, but now, four days 
before the [2004 presidential] election, his spectral presence echoed into every 
American home. It was a surprisingly complete statement by the al Qaeda leader 
about his motivations, his actions, and his view of the current American landscape. 
He praised Allah and, through most of the eighteen minutes, attacked Bush,…. At the 
end, he managed to be dismissive of Kerry, but it was an afterthought in his ‘anyone 
but Bush’ treatise…. 
 

Inside the CIA…the analysis moved on a different [than the presidential candidates’ 
public] track. They had spent years, as had a similar bin Laden unit at FBI, parsing 
each expressed word of the al Qaeda leader…. What they’d learned over nearly a 
decade is that bin Laden speaks only for strategic reasons…. Today’s conclusion: 
bin Laden’s message was clearly designed to help the President’s reelection.”—
Suskind, The One Percent Doctrine, 2006, pp. 335-6 (quoted in Jazayerli 2008 

http://www.fivethirtyeight.com/2008/10/guest-column-will-bin-laden-strike.html).  
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October Surprise continued 
 
A zero-sum two-person game with incomplete information and one-sided preplay 
communication of private information via cheap talk. Only bin Laden knows which 
candidate he wants; and, talk being cheap, he will say what it takes to help his 
candidate win. A representative American voter knows only that he wants 
whichever candidate bin Laden doesn’t want. 
 
The key issues are how bin Laden should relate his statement to what he really 
wants and how the American should interpret bin Laden’s statement, knowing that 
bin Laden is choosing the message strategically. 
 

Once again, the literal meanings of messages are likely to play a prominent role in 
applications, but equilibrium analysis precludes such a role. 
 
There is again no equilibrium in which cheap talk conveys information, or in which 
the receiver responds to the sender’s message. 
 
 
We will see that the quotation can be understood as a thought process in which 
players anchor beliefs in an instinctive reaction to the literal meanings of messages 
and then iterate best responses a small number of times. 
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Bank Runs:  “A crude but simple game, related to Douglas Diamond and Philip Dybvig’s 
1983 JPE celebrated analysis of bank runs, illustrates some of the issues involved here. 
Imagine that everyone who has invested $10 with me can expect to earn $1, assuming that I 
stay solvent. Suppose that if I go bankrupt, investors who remain lose their whole $10 
investment, but that an investor who withdraws today neither gains nor loses. What would 
you do? Each individual judgment would presumably depend on one's assessment of my 
prospects, but this in turn depends on the collective judgment of all of the investors. 

Suppose, first, that my foreign reserves, ability to mobilize resources, and economic strength 
are so limited that if any investor withdraws I will go bankrupt. It would be a Nash equilibrium 
(indeed, a Pareto-dominant one) for everyone to remain, but (I expect) not an attainable one. 
Someone would reason that someone else would decide to be cautious and withdraw, or at 
least that someone would reason that someone would reason that someone would withdraw, 
and so forth. This…would likely lead to large-scale withdrawals, and I would go bankrupt. It 
would not be a close-run thing. …Keynes’s beauty contest captures a similar idea. 

Now suppose that my fundamental situation were such that everyone would be paid off as long 
as no more than one-third of the investors chose to withdraw. What would you do then? Again, 
there are multiple equilibria: everyone should stay if everyone else does, and everyone should 
pull out if everyone else does, but the more favorable equilibria seems much more robust.”—
Lawrence Summers, “International Financial Crises: Causes, Prevention, and Cures,” 2000 
AER. 

An n-person coordination game with Pareto-ranked equilibria. Summers presumes that 
some equilibrium will emerge, but his model of the influence of fragility on equilibrium 
selection may implicitly invoke initial responses to shocks followed by adaptive learning 
(although he cites Morris and Shin’s 1998 AER non-adaptive “global games” analysis). 
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Poe’s Outguessing  Game: “…But he perpetually errs by being too deep or too 
shallow, for the matter in hand; and many a schoolboy is a better reasoner than he. I 
knew one about eight years of age, whose success at guessing in the game of ‘even 
and odd’ attracted universal admiration. This game is simple, and is played with 
marbles. One player holds in his hand a number of these toys, and demands of another 
whether that number is even or odd. If the guess is right, the guesser wins one; if 
wrong, he loses one. The boy to whom I allude won all the marbles of the school. Of 
course he had some principle of guessing; and this lay in mere observation and 
admeasurement of the astuteness of his opponents. For example, an arrant simpleton 
is his opponent, and, holding up his closed hand, asks, ‘are they even or odd?’ Our 
schoolboy replies, ‘odd,’ and loses; but upon the second trial he wins, for he then says 
to himself, ‘the simpleton had them even upon the first trial, and his amount of cunning 
is just sufficient to make him have them odd upon the second; I will therefore guess 
odd’; --he guesses odd, and wins. Now, with a simpleton a degree above the first, he 
would have reasoned thus: ‘This fellow finds that in the first instance I guessed odd, 
and, in the second, he will propose to himself upon the first impulse, a simple variation 
from even to odd, as did the first simpleton; but then a second thought will suggest that 
this is too simple a variation, and finally he will decide upon putting it even as before. I 
will therefore guess even’ guesses even, and wins. Now this mode of reasoning in the 
schoolboy, whom his fellows termed ‘lucky,’—what, in its last analysis, is it?"  

‘It is merely,’ I said, ‘an identification of the reasoner’s intellect with that of his 
opponent.’”—Edgar Allan Poe, The Purloined Letter 
(http://xroads.virginia.edu/%7EHYPER/POE/purloine.html) 
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Poe’s Outguessing Game continued 
 
A finite-horizon extensive-form zero-sum two-person “outguessing” game with 
complete information. 

 
The key issue here is outguessing one’s opponents’ response to the commonly 
observed history. 

 
Equilibrium is unhelpful because in a finitely repeated zero-sum game it implies no 
response to payoff-irrelevant history, via a standard backward-induction argument. 

 

However, in real settings like this, players’ strategic thinking often assigns a central 
role to the history. (After 9/11, should Americans have started worrying about their 
country’s other skyscrapers, or instead about some completely different kind of 
attack? At the time, both views were expressed in the press.)  
 
The quotation can be understood as a thought process in which players anchor 
beliefs in an instinctive reaction to the history (“history repeats itself”) and then 
iterates best responses (for the “lucky” schoolboy, the more times, the higher his 
assessment of his opponent’s intellect: once for an “arrant simpleton,” twice for a 
“simpleton a degree above the first,” and so on). 
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Common Features of the Quotations 

● They all concern games played without completely clear precedents. 
 
● They all reflect coherent, clearly identified models of strategic thinking. 
 
● But the thinking is systematically different  from equilibrium thinking (or 
 for Bank Runs and Outguessing, at least goes beyond equilibrium). 
 
● The thinking tends to start with beliefs anchored in an instinctive reaction
 to the game, and then to iterate best responses a small number of
 times. In this respect the thinking resembles that in the “level-k” or 
 “cognitive hierarchy” (“CH”) models described below. The resemblance 
 is not self-evident for Entry Magic, but as explained below, Camerer, 
 Ho, and Chong 2004 QJE explain Kahneman’s results via a CH model. 
 
● The instinctive reactions follow different principles, each plausible in its
 setting, such as uniform randomness, salient labels, or truthfulness.  
 
● Finite iteration of best responses is common across all settings, although 
 the number of iterations may vary across individuals or even settings.       
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These common features are representative of folk game theory: 
 
 
●  One can also find quotations reflecting one or two steps of iterated 
   (strict or weak) dominance in the normal form, or one or two steps of 
   iterated (weak) dominance reflecting forward or backward induction in 
   the extensive form. 
 
 
●  But it is difficult (counterexamples welcome) to find quotations involving 
   more than one or two steps of iterated dominance. 

 
 
●  And it is at least as difficult (impossible? counterexamples welcome) to 
   find quotations that illustrate the fixed-point reasoning that underlies 
   equilibrium in games without dominance. 
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In Selten’s 1998 European Economic Review words (but generalizing about 
experimental results, not folk game theory): 

“Basic concepts in game theory are often circular in the sense that they 
are based on definitions by implicit properties…. Boundedly rational 
strategic reasoning seems to avoid circular concepts. It directly results in 
a procedure by which a problem solution is found.”         

 
To paraphrase:  

“Real people don’t use fixed-point reasoning to decide what to do.” 
 
 
This is not to say that with enough experience in a sufficiently stationary 
setting, learning can’t make real people converge to steady states that an 
analyst would need fixed-point reasoning to characterize. 
 
Selten’s point is simply that when equilibrium requires fixed-point 
reasoning, it may not be a good behavioral model of people’s cognition. 
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3. Leading Models of Strategic Thinking 

The leading models of strategic thinking all allow players’ strategies to be in 
equilibrium, but do not assume equilibrium in all games. They include: 

●  Adding noise to equilibrium predictions (“equilibrium plus noise”), plus  
  refinements such as risk- or payoff-dominance or “global games”. 

●  Finitely iterated strict dominance and k-rationalizability (Bernheim 1984 
  Econometrica, Pearce 1984 Econometrica; the two notions are 
  equivalent in the two-person games I mostly focus on here).   

● Quantal response  equilibrium (“QRE”) and its leading special case, logit 
  QRE (“LQRE”) (McKelvey and Palfrey 1995 GEB). 

● “Level-k” models (Nagel 1995 AER; Stahl and Wilson 1994 JEBO, 1995 
  GEB; Ho, Camerer, and Weigelt 1998 AER (“HCW”); Costa-Gomes, 

Crawford, and Broseta 2001 Econometrica (“CGCB”); and Costa-
Gomes and Crawford 2006 AER (“CGC”). 

● Cognitive hierarchy (“CH”) models (Camerer, Ho, Chong 2004 QJE). 

● Noisy introspection (“NI”) models (Goeree and Holt 2004 GEB). 



 34 

 
A. Equilibrium Plus Noise  
 
Equilibrium plus noise adds noise with a specified payoff-sensitive error 
distribution (usually logit) and an estimated precision parameter to 
equilibrium predictions. 
 
Although a player’s error distribution is sensitive to the payoff costs of errors, 
those costs are evaluated assuming (unlike in most other models discussed 
here) that other players play their equilibrium strategies without errors. 
 
 
Equilibrium plus noise often describes observed behavior well but sometimes 
misses systematic patterns in subjects’ deviations from equilibrium. 
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B. Finitely Iterated (Strict) Dominance and k-Rationalizability 
 
 
Finitely iterated strict dominance and k-rationalizability (Bernheim 1984 
Econometrica, Pearce 1984 Econometrica) are set-valued restrictions on 
individual players’ strategies. 
 
 
(Equilibrium and QRE, by contrast, restrict the relationship among players’ 
strategies. Level-k, CH, and NI models, by contrast, normally make unique 
(though possibly probabilistic) predictions conditional on the behavioral 
parameters, as does equilibrium plus noise when suitably “completed” by 
adding a refinement as discussed below.)   
 
 
(Finitely iterated strict dominance and k-rationalizability are equivalent in two-
person games; their differences in n–person games are unimportant here.) 
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Informally, a 1-rationalizable strategy (the sets R1 on the next slide) is one 
for which there is a profile of others’ strategies that make it a best response; 
a 2-rationalizable strategy (the sets R2) is one for which there exists a profile 
of others’ 1-rationalizable strategies that make it a best response; and so on. 
 
 
The more familiar notion of rationalizability is equivalent to k-rationalizability 
for all k. 
 
Rationalizability reflects the implications of common knowledge (sometimes 
replaced in the modern literature by common belief) of rationality (with no 
further restrictions on beliefs). 
 
k-rationalizability reflects the implications of finite numbers of levels of mutual 
knowledge (or sometimes, belief) of rationality. 
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  R1,R2 R1,R2,R3,R4  
  L C R 

R1,R2,R3 T 0  
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5 
0 

3 
0 

R1,R2,R3,R4 M 0 
5 

2 
2 

0 
5 

R1 B 7 
0 

5 
0 

3  
7 

  Dominance-solvable game 
 

  Rk for all k Rk for all k Rk for all k  
  L C R 

Rk for all k  T 0  
7 

5 
0 

7 
0 

Rk for all k  M 0 
5 

2 
2 

0 
5 

Rk for all k  B 7 
0 

5 
0 

0  
7 

  Unique equilibrium without dominance  
 
Each game has a unique equilibrium (M,C). In the first game M and C are the 
only rationalizable strategies; in the second all strategies are rationalizable.  
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Equilibrium reflects the implications of common knowledge of rationality plus 
common beliefs: Any equilibrium strategy is k-rationalizable for all k, but not 
all combinations of rationalizable strategies are in equilibrium. 

In games that are dominance-solvable in k rounds, k-rationalizability implies 
that players have the same beliefs—with a qualification for mixed-strategy 
equilibrium that is not important here—so any combination of k-rationalizable 
strategies is in equilibrium, as in the first game on the above slide. 

In other games, k-rationalizability and rationalizability allow deviations from 
equilibrium, as in the second game, where there is a “tower” of beliefs, 
consistent with common knowledge of rationality, to support any outcome. 

(But except for the equilibrium beliefs (M, C) the beliefs differ across players.)   

As we will see, finitely iterated dominance and k-rationalizability are often 
consistent with systematic patterns in subjects’ deviations from equilibrium. 

Finitely iterated dominance and k-rationalizability could be combined with an 
econometric error structure as in Aradillas-Lopez and Tamer 2008 JBES, but 
usually have not been.  
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C. Quantal Response Equilibrium (“QRE”) and Logit Q RE (“LQRE”)  
 
To capture the payoff-sensitivity of deviations from equilibrium that 
equilibrium plus noise sometimes misses, McKelvey and Palfrey 1995 GEB 
proposed the notion of Quantal Response Equilibrium or “QRE”. 
 
In a QRE, as in equilibrium plus noise, players’ decisions are noisy, with the 
probability density of each decision increasing in its expected payoff. 
 
But unlike in equilibrium plus noise—or in level-k and CH models, discussed 
below—the payoff costs of deviations are evaluated taking the noisiness of 
others’ decisions into account. 
 
 
A QRE is then a fixed point in the space of decision probability distributions, 
with each player’s distribution a noisy best response to others’ distributions. 
 
As the distributions’ precision increases, QRE approaches equilibrium; and 
as their precision approaches zero, QRE approaches uniform randomization 
over players’ feasible decisions. 
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A QRE model is closed by specifying a response distribution, which is logit in 
almost all applications. 
 
 
The resulting “logit QRE” or “LQRE” implies error distributions that respond to 
out-of-equilibrium payoffs, often in plausible ways. 
 
 
In applications LQRE’s precision is estimated econometrically or calibrated 
from previous analyses. 
 
Like equilibrium plus noise, QRE is a general model of strategic behavior, 
applicable to any game, with a small number of behavioral parameters. 
 
With estimated precision, LQRE’s sensitivity to out-of-equilibrium payoffs 
often allows it to fit subjects’ initial responses better than an equilibrium plus 
noise model. 
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D. Level- k Models  
 
 
An alternative way to describe or explain the payoff-sensitivity of deviations 
from equilibrium is to treat the deviations as an integral part of the structure 
rather than as responses to errors. 
 
 
Although the number of logically possible non-equilibrium structures seems 
daunting, both folk game theory and experimental evidence support a 
particular class of models called level-k or cognitive hierarchy (CH) models. 
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Level-k models allow behavior to be heterogeneous, but assume that each 
player follows a rule drawn from a common distribution over a particular 
hierarchy of decision rules or types (as they are called in this literature; no 
relation to “types” as realizations of private information variables). 
 
 
Type Lk anchors its beliefs in a nonstrategic L0 type, which is meant to 
describe Lk’s model of others’ instinctive reactions to the game. 
 
 
The instinctive reactions may follow one of several principles depending on 
the setting, such as uniform randomness, salience, or truthfulness. 
 
 
Lk then adjusts its beliefs via thought-experiments with iterated best 
responses: L1 best responds to L0, L2 to L1, and so on. 
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Like equilibrium players, L1 and higher types are rational in that they choose 
best responses to beliefs, with perfect models of the game. 
 
Lk’s only departure from equilibrium is in replacing its perfect model of others’ 
decisions with simplified models that avoid the complexity of equilibrium. 
 
 
 

In applications it is usually assumed that L1 and higher types make errors, 
which are often taken to be logit with estimated precision as in LQRE. 
 
Thus the probability density of each type’s decision is increasing in its 
expected payoff, evaluated using the type’s model of others’ decisions: L2, 
for example, makes errors whose distribution is sensitive to the payoff costs 
of deviations, evaluated assuming that other players’ decisions are L1.  
 
 
Unlike LQRE, Lk types do not respond to the noisiness of others’ decisions. 
 
Even so, the deterministic structure of a level-k model captures the sensitivity 
of players’ deviations from equilibrium to out-of-equilibrium payoffs. 
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The population type frequencies are treated as behavioral parameters, to be 
estimated from the data or translated or extrapolated from previous analyses. 
 
The estimated type distribution is typically fairly stable across games, with 
most weight on L1, L2, and perhaps L3. 
 
 
The estimated frequency of the anchoring L0 type is usually small. 
 
Thus, L0 “exists” mainly as L1’s model of others, L2’s model of L1’s model of 
others, and so on. 
 
 
Low frequencies of L0 are an important sign of health for a level-k model, in 
that high frequencies of L0 would reduce the model to a parameterized 
distribution of responses, thus describing the data rather than explaining it.     
 
Only when the strategic iteration of best responses plays a role can the 
model yield a useful explanation of the data. 
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Even though L0 normally has a low frequency, its specification is the main 
issue in defining a level-k model and the key to its explanatory power. 
 
 
As illustrated below, L0 needs to be adapted to the setting, and there is an 
emerging consensus about how to do this in particular applications.  
 
 
By contrast, the definition of L1, L2, and L3 via iterated best responses 
allows a simple, reliable explanation of behavior across different settings.  
 
 
  
Like equilibrium plus noise and QRE, level-k models are general models of 
strategic behavior, with small numbers of behavioral parameters. 
 
 
Like CH models, discussed below, level-k models make point predictions that 
depend only on L0 and the estimated type distribution. 
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L1 and higher types make undominated decisions, and Lk complies with k 
rounds of iterated dominance and k–rationalizability (thanks to Robert Östling 
of Stockholm University for clarifying this relationship). 
 
 
Thus, a distribution of Lk types realistically concentrated on low levels of k 
mimics equilibrium in games that are dominance-solvable in a few rounds. 
 
 
But such a distribution deviates systematically from equilibrium in some more 
complex games, in predictable ways. 
 
 
These features allow level-k models to capture the sensitivity of deviations 
from equilibrium to out-of-equilibrium payoffs. 
 
 
As a result, like LQRE, level-k (and CH) models often fit initial responses 
better than equilibrium plus noise. 
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E. Cognitive Hierarchy (“CH”) Models  
 
 
In Camerer, Ho, and Chong’s 2004 QJE cognitive hierarchy (“CH”) model, a 
close relative of level-k models, Lk best responds not to Lk-1 alone but to an 
estimated mixture of lower-level types; and the type frequencies are not 
unrestricted, but instead are treated as a parameterized Poisson distribution. 
 
 
For an outside observer modeling behavior econometrically, this estimated- 
mixture specification seems more natural than the level-k specification. 
 
 
But which specification better describes people’s strategic thinking remains 
an empirical question (on which the jury is still not completely in). 
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A CH L1 is the same as a level-k L1, but CH L2 and higher types may differ.  
 
A CH L1 and higher types make undominated decisions, but unlike level-k 
types, but a CH Lk might not comply with k rounds of iterated dominance and 
k–rationalizability. 
 
 
Unlike in a level-k model, in a CH model L1 and higher types are usually 
assumed not to make errors. 
 
Instead the uniformly random L0, which has positive frequency in the Poisson 
distribution, doubles as an error structure for L1 and higher types. 
  

 
A CH model makes point predictions that depend only on L0 and the 
estimated Poisson parameter. 
 
In some applications the Poisson constraint, imposed as a simplifying 
restriction, is not very restrictive and the CH model fits as well as a level-k 
model; but in others the Poisson constraint is strongly binding. 
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F. Noisy Introspection ( “NI”) Models   
  
Although LQRE has so far been the most popular model of initial responses, 
not all researchers consider it suitable for that purpose. 
 
McKelvey and Palfrey 1995 GEB suggest using LQRE for both initial 
responses and limiting outcomes, in the latter case with precision increasing 
over time as a reduced-form model of learning. 
 
But Goeree and Holt 2004 GEB suggest using LQRE for limiting outcomes, 
instead proposing a Noisy Introspection (“NI”) model for initial responses. 
 
 
NI relaxes LQRE’s equilibrium assumption while maintaining its assumption 
that players best respond to a probability distribution of others’ responses: 
 
Players form beliefs by iterating best responses roughly as in a level-k model, 
but with higher-order beliefs reflecting increasing amounts of noise. 
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For a given noise distribution, NI makes probabilistic predictions that depend 
on how fast the noise grows: 
 
 
● In the extreme case in which the noise does not grow with the number of 
  iterations, NI mimics LQRE. 
 
 
● Other extreme cases of NI mimic level-k types: 
 
  If the noise jumps immediately to ∞, NI beliefs are L0.  
 
  If the noise is zero for one iteration and then jumps immediately to ∞, NI  
   beliefs are L1; and so on. 
 
 
● In applications GH assume that the noisiness of higher-order beliefs grows 

geometrically with the number of iterations, which yields a range of 
possible decisions depending on the noise level and its rate of growth.  
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4. Experimental Evidence from Normal-Form Games 

Level-k and CH models are now supported by a large body of experimental 
evidence on initial responses to games with various structures: 

● Stahl and Wilson 1994 JEBO, 1995 GEB; Costa-Gomes, Crawford, and 
 Broseta 2001 Econometrica (“CGCB”); Crawford and Iriberri 2007 AER; 
 Costa-Gomes and Weizsäcker 2008 RES (normal-form matrix games). 

● Nagel 1995 AER; Ho, Camerer, and Weigelt 1998 AER (“HCW”); Costa- 
 Gomes and Crawford 2006 AER (“CGC”) (normal-form guessing games). 

● Camerer, Ho, and Chong 2004 QJE (“CHC”) (normal-form matrix games, 
 entry games, and incomplete-information zero-sum betting games). 

● Crawford and Iriberri 2007 Econometrica (incomplete-information auctions). 

● Cai and Wang 2006 GEB; Wang, Spezio, and Camerer 2009 AER; 
Kawagoe and Takizawa 2009 GEB (extensive-form communication 
games). 

● Johnson, Camerer, Sen and Rymon 2002 JET (extensive-form bargaining). 

● Kawagoe and Tazikawa 2009 (extensive-form centipede games). 
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Here I focus on two representative experiments with normal-form games: 
 
● Nagel’s 1995 AER experiments, which were directly inspired by 

Keynes’s Beauty Contest, and which provide a simple introduction to 
the evidence and the class of models that it suggests. 

 
● CGC’s 2006 AER experiments, which use a more powerful design to 
  identify subjects’ strategic thinking more precisely. 
 
CGC’s conclusions are fully consistent with the conclusions of other studies 
of initial responses to abstract normal-form games, just more precise. 
 
(CGC’s Introduction and Section II.D summarize the evidence from Stahl 
and Wilson 1994 JEBO and 1995 GEB; HCW; CGCB; and CHC.) 
 
With adjustments described below, CGC’s conclusions are also consistent 
with those of the studies of the other kinds of games mentioned above. 
 
I illustrate this later by discussing Wang, Spezio, and Camerer’s 2009 AER 
experiments on communication games.  
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A. Nagel’s Design and Results 
 
In Nagel’s n-person guessing game design: 
 
●  15-18 subjects simultaneously guessed between [0,100]. 
 
 
●  The subject whose guess was closest to a target p (= 1/2 or 2/3,  say), 
  times the group average guess wins a prize, say $50. 
 
 
●  The structure was publicly announced. 
 
 
If you have not already done so, please take a moment to decide what you 
would guess, in a group of non-game-theorists: 
 
● if p = 1/2, 
 
● if p = 2/3. 
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Nagel’s games have a unique equilibrium, in which all players guess 0. 
 
 
The games are dominance-solvable, so the equilibrium can be found by 
iteratively eliminating dominated guesses. 
 
 
For example, if p = 1/2: 
 
 
●  It’s dominated to guess more than 50 (because 1/2 × 100 ≤ 50). 
 
 
●  Unless you think that other people will make dominated guesses, it’s 
  also dominated to guess more than 25 (because 1/2 × 50 ≤ 25). 
 
 
●  And so on, down to 12.5, 6.25, 3.125, and eventually to 0. 
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The rationality-based argument for this “all–0” equilibrium is stronger than 
many equilibrium arguments, because it depends only on iterated knowledge 
of rationality, not on the assumption that players have the same beliefs. 
 
   
However, even people who are rational are seldom certain that others are 
rational, or that others believe that others are rational. 
 
 
Thus, they won’t (and shouldn’t) guess 0. But what do (should) they do?     
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Nagel’s subjects played these games repeatedly, but we can view their initial 
guesses as responses to games played as if in isolation if they treated their 
influences on the future as negligible, which is plausible in groups of 15 to 18. 
 
 
 
Nagel’s subjects never played their equilibrium strategies initially, and their 
responses deviated systematically from equilibrium. 
 
 
Instead there were spikes that suggest a distribution of discrete thinking 
“types,” respecting 0 to 3 rounds of iterated dominance in each treatment 
(next slide). 
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Part of Nagel’s Figure 1: top of figure p = 1/2, bottom of figure p = 2/3. 
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The spikes’ locations and how they vary across treatments are roughly 
consistent with two plausible interpretations: 

● In one interpretation, called Dk, a player does k rounds of iterated 
  dominance for some small number, k = 1 or 2, and then best responds to 
  a uniform prior over other players’ remaining strategies (thus “completing”  
  k-rationalizability by adding a specific selection as discussed below).  

● In another interpretation, “level-k” or “Lk,” a player starts with a naïve prior 
L0 over others’ strategies reflecting people’s instinctive reactions to the 
game, and then iterates best responses k times, with k = 1, 2, or 3.  

  In abstractly framed games like Nagel’s, L0 is  usually taken to be a    
  uniform random distribution, reflecting a player’s understanding of the  
  payoff function before he tries to model others’ decisions.  
  (In games without dominance this makes Dk, k = 1,2,… coincide with L1.)  

(Although in these lectures I focus mainly on two-person games, in n-
person games it matters whether L0 is independent across players or 
correlated, and the limited evidence (HCW, Costa-Gomes, Crawford, and 
Iriberri 2009 JEEA) suggests that most people have highly correlated 
models of others. Here I take L0 to model all others’ average guess.) 
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In many games Dk and Lk+1 respond similarly to dominance, yielding k-
rationalizable strategies. (The difference in indices is only a quirk of notation.) 

With a uniform random L0, in Nagel’s games Dk’s and Lk+1’s guesses are 
perfectly confounded, both tracking the spikes in Nagel’s data across her 
treatments (which had different subject groups): 

●  Dk guesses ([0+100pk]/2)p. 

●  Lk+1 guesses [(0+100)/2]pk+1. 

Either way, one aspect of the message is already clear: Subjects do not rely 
on indefinitely iterated dominance or indefinitely iterated best responses; 
instead their decisions respect k-rationalizability for at most small values of k. 

Despite the lack of separation of Dk’s and Lk+1’s guesses, many theorists 
interpret Nagel’s results as evidence that subjects explicitly performed finitely 
iterated dominance, the way we teach students to solve such games. 

In HCW’s and CGCB’s experiments, Dk’s and Lk+1’s guesses are weakly 
separated, and the results are inconclusive on this point; but in CGC’s 
experiments Dk’s and Lk+1’s guesses are strongly separated, and we will 
see that the results very clearly favor Lk over Dk rules. 
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B. CGC’s Design and Results 
 
In CGC’s design, subjects were randomly and anonymously paired to play a 
series of 16 different two-person guessing games, with no feedback. 
 
 
The design suppresses learning and repeated-game effects in order to elicit 
subjects’ initial responses, game by game, studying strategic thinking 
“uncontaminated” by learning. 

(“Eureka!” learning was possible, but it was tested for and found to be rare.) 
 
 
The design combines the variation of games of Stahl and Wilson’s 1995 GEB 
design with the large strategy spaces of Nagel’s 1995 AER design. 
 
This greatly enhances its power, and the profile of a subject’s guesses in the 
16 games forms a “fingerprint” that helps to identify his strategic thinking 
more precisely than is possible by observing his responses to a series of 
games with small strategy spaces or a single game with large strategy space.  
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In CGC’s guessing games, each player has his own lower and upper limit, 
both strictly positive, implying finite dominance-solvability. 
 
(Players are not actually required to guess between their limits. Instead 
guesses outside the limits are automatically adjusted up to the lower limit or 
down to the upper limit as necessary: a trick to enhance separation of 
information search implications, not important for this discussion.)   
 
 
Each player also has his own target, and his payoff increases with the 
closeness of his guess to his target times the other’s guess. 
 
The targets and limits vary independently across players and games, with 
targets both less than one, both greater than one, or “mixed”. 
 
(In Nagel’s and HCW’s previous guessing experiments, the targets and limits 
were always the same for both players, and they varied at most across 
treatments with different subject groups.) 
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CGC’s guessing games have essentially unique equilibria (“essentially” due 
to the automatic adjustment), determined (not always directly) by players’ 
lower (upper) limits when the product of targets is less (greater) than one. 
 
 
 
The discontinuity of the equilibrium correspondence when the product of 
targets equals one stress-tests equilibrium, which responds much more 
strongly to the product of the targets than alternative decision rules do; and 
enhances the separation of equilibrium from alternative rules. 
 
 
 
(It also reveals other interesting patterns, only briefly mentioned below; see 
Crawford, “Look-ups as the Windows of the Strategic Soul” at 
http://dss.ucsd.edu/~vcrawfor/#Search.) 
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Consider a game in which players’ targets are 0.7 and 1.5, the first player’s 
limits are [300, 500], and the second’s are [100, 900].  
 
The product of targets is 1.05 > 1, and it can be shown that the equilibrium is 
therefore determined by players’ upper limits. (When the product of targets is 
< 1, the equilibrium is determined by their lower limits in a similar way.)  
 
In equilibrium the first player guesses his upper limit of 500, but the second 
player guesses 750 (= 500 × his target 1.5), below his upper limit of 900. 
 
 
No guess is dominated for the first player, but any guess outside [450, 750] is 
dominated for the second player. 
 
Given this, any guess outside [315, 500] is iteratively dominated for the first 
player. 
 
Given this, any guess outside [472.5, 750] is dominated for the second 
player, and so on until the equilibrium at (500, 750) is reached after 22 
rounds of iterated dominance. 
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CGC’S Data Analysis 
 
 
As suggested by previous work, CGC’s data analysis assumed that each 
subject’s guesses were determined, up to logit errors, by a single decision 
rule, or “type” as they are called in this literature (no relation to the use of 
“type” for the realization of a private information variable), in all 16 games. 
 
 
This assumption was tested and found reasonable for almost all subjects. 
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Most of CGC’s data analysis restricted attention to a list of behaviorally 
plausible types whose relevance was suggested by previous work:  

● L0, L1, L2, and L3, with L0 uniform random between a player’s limits, L1 
  best responding to L0, L2 to L1, and so on.  

● D1 and D2, which does one round (respectively, two) of iterated dominance 
 and then best responds to a uniform prior over its partner’s remaining 
 decisions (making a specific selection from k-rationalizable strategies). 

● Equilibrium, which makes its equilibrium decisions. 

(Note that because CGC’s games are all (finitely) dominance-solvable, 
traditional equilibrium refinements are not relevant in them.) 

● Sophisticated, which best responds to the probability distributions of others’ 
  decisions, estimated from the observed frequencies. 

(Sophisticated is an ideal, included to learn if any subjects have an 
understanding of others’ decisions that transcends mechanical rules.)  

 
The restriction to this list was also tested as explained below, and found to be 
a reasonable approximation to the support of subjects’ decision rules. 
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CGC’s large strategy spaces and the independent variation of targets and 
limits across games greatly enhance the separation of types’ implications, to 
the point where many subjects’ types can be precisely identified from their 
guessing “fingerprints”: 
 

Types’ guesses in the 16 games, in (randomized) ord er played  
 L1 L2 L3 D1 D2 Eq. Soph. 
1 600 525 630 600 611.25 750 630 
2 520 650 650 617.5 650 650 650 
3 780 900 900 838.5 900 900 900 
4 350 546 318.5 451.5 423.15 300 420 
5 450 315 472.5 337.5 341.25 500 375 
6 350 105 122.5 122.5 122.5 100 122 
7 210 315 220.5 227.5 227.5 350 262 
8 350 420 367.5 420 420 500 420 
9 500 500 500 500 500 500 500 
10 350 300 300 300 300 300 300 
11 500 225 375 262.5 262.5 150 300 
12 780 900 900 838.5 900 900 900 
13 780 455 709.8 604.5 604.5 390 695 
14 200 175 150 200 150 150 162 
15 150 175 100 150 100 100 132 
16 150 250 112.5 162.5 131.25 100 187 
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Of the 88 subjects in CGC’s main treatments, 43 made guesses that 
complied exactly (within 0.5) with one type’s guesses in from 7 to 16 of the 
games (20 L1, 12 L2, 3 L3, and 8 Equilibrium). 

 

 

For example, CGC’s Figure 2 (next slide) shows the “fingerprints” of the 12 
subjects whose guesses conformed most closely to L2’s; 72% of their 
guesses were exact L2 guesses; only their deviations are shown. 
 
 



 68 

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Game Numbers

G
ue

ss
es

L2 (# exact) Eq. 108 (13) 206 (15)
209 (13) 214 (11) 218 (11) 306 (7)  

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Game Numbers

G
ue

ss
es

L2 (# exact) Eq. 307 (11) 309 (16)
316 (8) 405 (16) 407 (8) 422 (9)  

 
CGC’s Figure 2. “Fingerprints” of 12 Apparent L2 Subjects 

(Only deviations from L2’s guesses are shown. 
Of these subjects’ 192 guesses, 138 (72%) were exact L2 guesses.) 
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The size of CGC’s strategy spaces, with 200 to 800 possible exact guesses 
in each of 16 different games, makes exact compliance powerful evidence for 
the type whose guesses are tracked: If a subject chooses 525, 650, 900 in 
games 1-3, intuitively and econometrically we already “know” he’s an L2. 

(By contrast, there are usually many possible reasons for choosing one of the 
strategies in a small matrix game; and even in Nagel’s large strategy spaces, 
rules as cognitively disparate as Dk and Lk+1 yield identical decisions.)       
 
Further, because CGC’s definition of L2 builds in risk-neutral, self-interested 
rationality, we also know that a subject’s deviations from equilibrium are 
“caused” not by irrationality, risk aversion, altruism, spite, or confusion, but by 
his simplified model of others. 

(Even so, doubts remain about the subjects with high exact compliance with 
Equilibrium, who appear to be following hybrid types that only mimic 
equilibrium in the games with targets both less than one or both greater than 
one; see Crawford, “Look-ups as the Windows of the Strategic Soul”.)    
 
That the level-k model is directly suggested by these subjects’ data (rather 
than via data-fitting exercises) is an important advantage over alternatives. 
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CGC’s other 45 subjects made guesses that conformed less closely to one of 
CGC’s types, but econometric estimates of their types are concentrated on 
L1, L2, L3, and Equilibrium, in roughly the same proportions. 

 

For those 45 subjects, there is some room for doubt about whether CGC’s 
specification omits relevant types and/or overfits by including irrelevant types. 
 
To test for this, CGC conducted a specification test, which suggests that the 
types estimated to be in the population are relevant and that any omitted 
types are at most 1-2% of the population, hence not worth modeling. 
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Aside on CGC’s Specification Test 
 
 
To test for overfitting and omission of relevant types, CGC conducted a 
specification test, which compares the likelihood of each subject’s 
econometric type estimate with the likelihoods of estimates based on 88 
pseudotypes, each constructed from one subject’s guesses in the 16 games. 
 
 
With regard to overfitting, for a subject's type estimate to be credible it should 
have higher likelihood than at least as many pseudotypes as it would at 
random: with 8 types, assuming approximately i.i.d. likelihoods, this makes 
87/8 ≈ 11. 
 
 
Some subjects’ type estimates do not pass this test, and so are left 
unclassified in columns 5 and 6 of CGC’s Table 1. 
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With regard to omitted types, imagine that CGC had omitted a relevant type, 
say for concreteness L2. 

The pseudotypes of CGC’s estimated L2 subjects would then outperform the 
non-L2 types estimated for them and make approximately the same guesses. 

Finding such a cluster, CGC diagnosed an omitted type, and studied what its 
subjects’ guesses had in common to reveal its decision rule. 

 

CGC found five small clusters involving 11 of the 88 subjects, and the 
subjects in these clusters were also left unclassified in Table 1. 

The paper and its web appendix discuss what these 11 subjects seemed to 
be doing; most of it appears quite idiosyncratic. 

Because a cluster must contain at least two subjects, it is reasonable to 
anticipate finding more than the five CGC found in a larger sample. 

But because any such clusters did not reach the two-subject threshold in 
CGC’s sample of 88, they are probably at most 2% of any larger sample.  

(End of aside) 
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5. Lessons from the Experiments for Modeling Strate gic Behavior  
 
First, Nagel’s 1995 AER subjects’ initial guesses resembled neither 
equilibrium plus noise nor QRE for any reasonable distribution. 
 
(Distributional assumptions are crucial here: Haile, Hortacsu, and Kovenock 
2008 AER show that with an unrestricted distribution, QRE can “explain” any 
given dataset. Thus the power of QRE comes mainly from its distributional 
assumptions. But the use of the logit distribution in almost all applications has 
been guided by fit and custom rather than evidence.) 
 
Nagel’s results also suggest that even rationalizability is too strong: most 
subjects’ guesses respected k–rationalizability only for small values of k. 
 
Finally, Nagel’s results call into question the common assumption that 
strategic thinking is homogeneous in the population. No model that imposes 
homogeneity, as equilibrium plus noise, QRE, and NI do, will do full justice 
to subjects’ behavior. And allowing heterogeneity of strategic thinking is 
essential for the explanations of Kahneman’s Entry Magic, Yushchenko, 
Lake Wobegon, and Huarongdao proposed below. 
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CGC’s 2006 AER analysis significantly sharpens Nagel’s conclusions, 
confirming by direct and econometric evidence and a specification test that 
a level-k model with a uniform random L0 and only L1, L2, L3, and, 
possibly, Equilibrium subjects explains a large fraction of subjects’ 
deviations from equilibrium in their games. In particular: 

● There are no Dk subjects. CGC’s subjects respect iterated dominance to 
  the extent that Lk types do, not because they explicitly perform it. 

(This is reinforced by CGC’s data on subjects’ searches for hidden payoff 
information (Crawford, “Look-ups as the Windows of the Strategic Soul”) 
and by their data on “robot/trained subjects,” where 7 of 19 subjects, who 
were trained and rewarded to follow type D1 and passed an 
understanding test in which L2 answers were incorrect, then “morphed” 
into L2 (D1’s closest Lk relative) in the guesses for which they were paid. 
Aside from the one of 19 robot/trained D2 subjects who morphed into L3, 
this was the only kind of morphing that occurred. Although by standard 
measures Dk’s cognitive requirements are close to Lk+1’s, and these 
treatments also show that most subjects were capable of learning to 
follow Dk, the morphing suggests that subjects find iterated dominance 
far less natural than the iterated best responses that underlie Lk rules.)  
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● Although level-k subjects make decisions that, via the iterated best 
  responses that govern their strategic thinking) respect k-rationalizability, 

their presence is limited to small values of k, so even the Lk types respect 
k-rationalizability for at most small values of k. 

 
● There are no Sophisticated subjects. Even the most sophisticated subjects 
  seem to favor rules of thumb over less structured strategic thinking. 

  (The jury is still out on the extent to which this conclusion generalizes.) 
 
● Although about half of CGC’s subjects’ deviations from equilibrium remain 

unexplained by their proposed level-k model, CGC’s specification test 
suggests that those deviations have little or no discernable structure; thus 
it may still be optimal to treat the remaining unexplained deviations as 
errors. 

 
● CGC’s evidence and analysis are more precise than previous studies of 

initial responses to normal-form games, but their conclusions are fully 
consistent with the results of earlier studies as well as folk game theory.   

 
I now give more detailed comparisons of level-k versus alternative models. 
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Level- k versus CH Models 
 
By a quirk of CGC’s design (CGC’s footnotes 34 and 36, p. 1763), level-k 
types’ decisions are not separated from their CH counterparts’ decisions: 

● CHC’s L1 is identical to CGC’s L1, and  

● by fn. 34’s “median voter” result (which stems from the piecewise linearity 
  and symmetry of the payoff function), for empirically plausible type 

distributions, CHC’s L2 and L3 are both identical to CGC’s L2 (fn. 36). 
 

However, to fit the data CHC’s Poisson parameter τ (roughly, the average k) 
must be approximately 1.5, which constrains the frequency of L0 to 0.22. 
 
By contrast, CGC’s and other unconstrained estimates almost always assign 
L0 a far lower frequency, usually 0 (and this, I argued above, is a good sign). 
 
Thus the Poisson constraint is strongly binding in CGC’s dataset, and with 
comparable error structures (though possibly not with the structure often 
assumed for CH, in which a uniform random L0 doubles as the error structure 
for higher types), level-k will have an advantage in fit over CH. 
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Further, CGC’s data on subjects’ searches for hidden payoff information 
(Crawford, “Look-ups as the Windows of the Strategic Soul”) are much more 
consistent with the search implications of the level-k model than with those of 
a CH model, which blurs the implications of some important types.     

 

Finally, as illustrated below, estimating an unconstrained type distribution 
as in a level-k model provides a useful diagnostic: 

If the data can only be fitted by a weird type distribution—non-hump-shaped 
(in a homogeneous population) or with implausibly high frequencies of 
higher types—then the explanation is not credible. 

 

I conclude that the evidence is at least as favorable to level-k as to CH.   
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Level- k versus Equilibrium Plus Noise or LQRE Models 
 
CGC’s (footnote 34, p. 1763) “median voter” result shows that in CGC’s 
games, except for small asymmetries in the payoff function due to automatic 
adjustment to the limits, equilibrium plus logit noise coincides with LQRE.  
 
CGC’s results, like Nagel’s, call into question equilibrium plus noise and 
LQRE’s assumption that strategic thinking is homogeneous in the population. 

 

 
CGC’s econometric analysis allows heterogeneity, with equilibrium plus noise 
represented by the Equilibrium type, with logit errors. 

Only 11 of the 88 subjects in CGC’s main treatments are estimated to be 
Equilibrium subjects, and there is clear evidence that even those subjects are 
following a rule or rules that only mimics Equilibrium, and that only in some of 
the games (Crawford, “Look-ups as the Windows of the Strategic Soul”). 
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For CGC’s remaining 77 subjects, equilibrium plus logit noise and LQRE both 
miss clear patterns in the data. 

 

 

But these subjects’ “errors” neither center on 0 nor usually exhibit the 
sensitivity to deviation costs assumed in a logit specification. 

(We believe this is because the errors are cognitive or structural, reflecting 
misspecification rather than a trade-off between effort cost and accuracy.) 

 

 

Instead the errors have a clear deterministic structure, which is well 
described by the level-k model that emerges from CGC’s estimates. 
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Aside on CGC’s “Near-Equilibrium” Subjects  

I focus on the eight subjects whose fingerprints are closest to equilibrium.  

Order the games by strategic structure, with the eight games with mixed 
targets (one > 1, one < 1) on the right. 

CGC’s Figure 4 (next slide) then shows that these subjects’ deviations from 
equilibrium almost always occur with mixed targets. 

Thus it is (nonparametrically) clear that these subjects, whose equilibrium 
compliance is off the scale by normal standards, are actually following a rule 
that only mimics Equilibrium, and that only in games without mixed targets.  

Yet all the ways we teach people to identify equilibria (best-response 
dynamics, equilibrium checking, and iterated dominance) work equally well 
with and without mixed targets. 

Thus, whatever these subjects are doing, it’s something we haven’t thought 
of yet. 

(And their debriefing questionnaires don’t tell us what it is.) 
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69 (54%) of these subjects' 128 guesses were exact Equilibrium guesses.) 

  

(End of aside) 
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Level- k versus NI Models 

Recall that in an NI model, players form beliefs by iterating best responses, 
with higher-order beliefs reflecting increasing amounts of noise.  
 
In Goeree and Holt’s favored specification, in which the noisiness of higher-
order beliefs grows geometrically, the highest-order relevant beliefs are 
uniform random, which I take to mean within the limits in CGC’s games. 
 
Because the NI decision is a continuous function of the noise level and its 
rate of growth, varying those parameters yields a range of possible decisions. 
 
Preliminary calculations assuming geometric growth suggest that in CGC’s 
games that range is wide, spanning level-k types as well as Equilibrium.  
 
If so, NI is overparameterized for applications to a single game, unlike 
equilibrium plus noise, LQRE, level-k, and CH models.  
 
NI may therefore risk overfitting even in datasets that span multiple games. 
 
(Costa-Gomes, Iriberri, and I are comparing the models in CGC’s dataset.)      



 83 

 
Observations about the Models’ Cognitive Requiremen ts 

Recalling that to work well, models of strategic thinking must accurately 
reflect people’s cognition, comparing players’ cognitive requirements in 
alternative theories may help to explain the prevalence of level-k thinking. 
 
 
An equilibrium player must find his equilibrium decision via one of several 
methods, of which the easiest in CGC’s games is iterating best responses; 
but in some of CGC’s games this requires as many as 52 iterations. 

In other games, equilibrium reasoning may be even more complex.        
 
 
An LQRE player must not only respond to a complex probability distribution 
of other players’ responses, but also find a generalized equilibrium that is a 
fixed point in a large space of response distributions: If equilibrium 
reasoning is cognitively taxing, then LQRE reasoning is doubly taxing. 

(From the point of view of the analyst, the complexity of LQRE means it must 
usually be solved for computationally and is not easily adapted to analysis.) 
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A level-k player begins with an instinctive reaction to the game, and then 
iterates best responses a few times, which is easy in most games. 

Except for L1’s response to a random L0, which is straightforward, a level-k 
player need not respond to the noisiness of others’ decisions. 
 
These observations apply equally well to a CH player, except that he needs 
to respond not to a single lower type’s response but a distribution of them, 
in proportions determined by an estimated but somehow known parameter. 
 
Unlike equilibrium and LQRE players, level-k and CH players need not find 
fixed points. 
 
Instead level-k and CH models have a simple recursive structure, which 
avoids the common criticism of LQRE that finding a fixed point in the space 
of distributions is too taxing for a realistic model of strategic thinking. 
 
Finally, an NI model is cognitively less taxing than LQRE because it does not 
require fixed-point reasoning, but more taxing than a level-k or CH model 
because decisions are indefinitely iterated best responses to noisy higher-
order beliefs (in applications, however, GH truncate iterations to ten rounds). 
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6. Illustration of Level- k Analyses of Matrix Games with Unique 
 Mixed-Strategy Equilibria: M. M. Kaye’s The Far Pavilions 
 
 
I now give a simple example that illustrates applications of level-k models.  
 
 
In M. M. Kaye’s novel The Far Pavilions, the main male character, Ash, is 
trying to escape from his Pursuers along a North-South road. 
 
 
Ash and his Pursuers have strategically simultaneous choices between 
North and South—although their choices are time-sequenced, the Pursuers 
must make their choice irrevocably before they learn Ash’s choice. 
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If the Pursuers catch Ash, they gain 2 and he loses 2. But South is warm, 
and North is the Himalayas with winter coming. Thus both Ash and the 
Pursuers gain an extra 1 for choosing South, whether or not Ash is caught: 
 

  Pursuers 
  South ( q) North 

South ( p) 3 
-1 

0 
1 Ash 

North 1 
0 

2 
-2 

  Far Pavilions Escape! 

Escape! has a unique equilibrium in mixed strategies, in which: 

3p + 1(1 – p) = 0p + 2(1 – p) or p = 1/4, and 

–1q +1(1 – q) = 0q –2(1 – q) or q = 3/4. 

This equilibrium responds to the payoff asymmetry between South and 
North in a decision-theoretically intuitive way for Pursuers (because q = 3/4 
> the 1/2 of equilibrium without the payoff asymmetry) but counterintuitively 
for Ash (because p = 1/4 < 1/2).
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Although the equilibrium does not fully reflect intuition, experimental data 
from such games suggest that real people’s decisions often do reflect it. 
 
E.g., Camerer reports informally gathered data for a perturbed Matching 
Pennies game (see also Rosenthal, Shachat, and Walker 2003 IJGT): 
 

 L (33%) R (67%) 

T (72%) 0 
2 

1 
0 

B (28%) 1 
0 

0 
1 

 Perturbed Matching Pennies 
 
The equilibrium mixed-strategy probabilities are Pr{T} = Pr{B} = 0.5 for Row 
and Pr{L} = 0.33 and Pr{R} = 0.67 for Column.  
 
Although Column players are “right on” the equilibrium mixture, Row 
players overplay their superficially more attractive strategy T, not realizing 
that this allows a sophisticated Column to neutralize Row’s advantage.  

(Perhaps unsurprisingly: that realization may require fixed-point reasoning.) 
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Meanwhile, back in the novel, Ash overcomes his fear of freezing and goes 
North. The Pursuers—unimaginatively—go South, Ash escapes, and the 
novel continues…  
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Meanwhile, back in the novel, Ash overcomes his fear of freezing and goes 
North. The Pursuers—unimaginatively—go South, Ash escapes, and the 
novel continues…romantically…  
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Meanwhile, back in the novel, Ash overcomes his fear of freezing and goes 
North. The Pursuers—unimaginatively—go South, Ash escapes, and the 
novel continues…romantically…for 900 more pages. 

In equilibrium the observed outcome {Ash North, Pursuers South} has 
probability (1 – p)q = 9/16: a fit much better than random. 

But try a level-k model with a uniformly random L0: 

 
 Types  Ash Pursuers 

L0 uniformly random uniformly random 
L1 South South 
L2 North South 
L3 North North 
L4 South North 
L5 South South 

Lk types’ decisions in Far Pavilions Escape!  
 
The level-k model precisely and correctly predicts the outcome provided 
that Ash is either L2 or L3 and the Pursuers are either L1 or L2. 
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How do we know Ash’s type? One advantage of using fiction as data is that 
the narrative sometimes reveals cognition as well as decisions:  
 
Ash’s mentor (Koda Dad, played by Omar Sharif in the HBO miniseries) 
gives Ash the following advice (p. 97 of the novel): 
 
“…ride hard for the north, since they will be sure you will go southward 
where the climate is kinder…”). 
 
Koda Dad’s advice reflects the belief that the Pursuers think Ash is L1, so 
that Ash will go south because it’s “kinder” and that (assuming the Pursuers 
are uniform random L0) the Pursuers are no more likely to catch him there. 
 
Thus Koda Dad must think the Pursuers are L2. 
 
Hence Koda Dad advises Ash to think like an L3, and go North. 
 
L3 ties my personal best k for a clearly explained level-k type in fiction. I 
suspect even postmodern fiction may have no Lks higher than L3: they 
wouldn’t be credible. I also doubt that one can find fixed-point reasoning.  
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Of course, most applications don’t come with an omniscient author 
identifying characters’ strategic thinking types for us.  
 
 
But if the game is clearly defined and we have enough data, we can specify 
a level-k model, derive its implications, and use them to estimate the 
population frequency distribution of types and their precisions. 
 
CGCB, CGC, Crawford and Iriberri 2007 AER, and Crawford and Iriberri 
2007 Econometrica, discussed below, show how this is done in datasets 
from normal-form game experiments, in settings like Yuschenko and Lake 
Wobegon, and in sealed-bid auction experiments.  
 
Alternatively, we can calibrate the model using previous estimates for 
similar applications. 
 
Crawford and Iriberri 2007 AER illustrate how this is done in settings like 
Yuschenko and Lake Wobegon.  
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Returning to Camerer’s experiment, for example, an L1 Row plays T and an 
L1 Column plays L and R with equal probabilities (for logit or alternative 
payoff-driven error structures). An L2 Row plays T and an L2 Column plays 
R. An L3 Row plays B and an L3 Column plays R. 
 

 L (33%) R (67%) 

T (72%) 0 
2 

1 
0 

B (28%) 1 
0 

0 
1 

 Perturbed Matching Pennies 
 
With a plausible mixture of 50% L1s, 30% L2s, and 20% L3s in both player 
roles—it’s natural to impose symmetry when roles are filled randomly from 
the same population—the level-k model’s predicted choice frequencies are 
80% T for Row and 25% L for Column: Not a perfect fit, but reasonable. 

The outcome resembles a “purified” mixed-strategy equilibrium.     

But the level-k model predicts choice frequencies that deviate from the 
equilibrium probabilities for Row Pr{T} = Pr{B} = 0.5 in the intuitive direction.  
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Similarly, in Far Pavilions Escape!, even though Lk types don’t normally 
randomize, the heterogeneity of thinking reflected by the estimated 
distribution implies a mixture of decisions that reflects strategic uncertainty.      

  Pursuers 
  South ( q) North 

South ( p) 3 
-1 

0 
1 Ash 

North 1 
0 

2 
-2 

  Far Pavilions Escape! 

Suppose, for example, that each player role is filled from a 50-50 mixture of 
L1s and L2s and there are no errors. 

Then Ash goes South with probability 0.5 > 1/4 (the equilibrium probability) 
and the Pursuers go South with probability 1 > 3/4 (the equilibrium 
probability). 

Although the implied mixture of decisions again somewhat resembles a 
“purified” equilibrium, the model again deviates from equilibrium in the 
direction that intuition suggests: this time for both player roles. 
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7. Kahneman’s Entry Magic: Asymmetric Coordination via 
 Structure in Entry Games  
 
I now use a simple level-k model to suggest an explanation of Kahneman’s 
Entry Magic. 
 
The analysis illustrates the importance of the structured heterogeneity of 
strategic thinking a level-k model allows. 
 
I begin by recapitulating Kahneman’s results and his reaction to them. 
 
I then simplify Camerer, Ho, and Chong’s 2004 QJE, Section III.C, CH 
analysis of n–person entry games to a level-k analysis of two-person Battle 
of the Sexes games, which are like two-person market-entry games with 
capacity one, and which makes the central points as simply as possible.    
 
(Goldfarb and Yang 2008 Journal of Marketing Research give a CH 
analysis of field data on analogous technology adoption games.) 
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In market-entry experiments, n subjects choose simultaneously between 
entering (“In”) and staying out (“Out”) of a market with given capacity. 
 
 
 
In yields a given positive profit if no more subjects enter than a given 
market capacity; but a given negative profit if too many enter. 
 
 
 
For simplicity, Out yields 0 profit, no matter how many subjects enter. 



 97 

Because players have no way to distinguish their symmetric roles, it is not 
sensible to predict systematic differences in behavior across roles.  
 
Thus, the natural equilibrium benchmark prediction is the symmetric 
mixed-strategy equilibrium, in which each player enters with a given 
probability that makes all players indifferent between In and Out. 
 
This mixed-strategy equilibrium yields an expected number of entrants 
approximately equal to market capacity, but there is a positive probability 
that either too many or too few will enter.         
 
 
Even so, subjects in market-entry experiments regularly have better ex 
post coordination (number of entrants stochastically closer to market 
capacity) than in the symmetric equilibrium. 
 
This led Kahneman to remark, “…to a psychologist, it looks like magic.” 
 
(But no one would be at all surprised by this unless he believed in 
equilibrium, so Kahneman should have said, “…to a game theorist….”)  
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 In Out 

In 0 
0 

1 
a 

Out a 
1 

0 
0 

 Battle of the Sexes  
 
 
In the simplified two-person Battle of the Sexes model studied here, with a 
> 1, the unique symmetric equilibrium is in mixed strategies, with p ≡ Pr{In} 
= a/(1+a) for both players. 
 
The equilibrium expected coordination rate is 2p(1 – p) = 2a/(1+a)2. 
 
Players’ equilibrium expected payoffs are a/(1+a). 
 
With a > 1 these expected payoffs a/(1+a) < 1: worse for each player than 
his worst pure-strategy equilibrium. 
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Consider a level-k model in which each player follows one of four types, 
L1, L2, L3, or L4, with each role filled by a draw from the same distribution. 

Assume for simplicity that the frequency of L0 is 0, and that L0 chooses its 
action uniformly randomly, with Pr{In} = Pr{Out} = 1/2. 

L1s mentally simulate L0s’ random decisions and best respond, thus, with 
a > 1, choosing In; L2s choose Out; L3s choose In; and L4s choose Out. 
  

 In Out 

In 0 
0 

1 
a 

Out a 
1 

0 
0 

 Battle of the Sexes  
 

Type pairings  L1 L2 L3 L4 
L1 In, In In, Out In, In In, Out 
L2 Out, In  Out, Out  Out, In Out, Out  
L3 In, In In, Out In, In In, Out 
L4 Out, In  Out, Out  Out,In Out, Out  
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The predicted outcome distribution is determined by the outcomes of the 
possible type pairings and the type frequencies. 
 
If both roles are filled from the same distribution, players have equal ex 
ante payoffs, proportional to the expected coordination rate.  
 
L3 behaves like L1, and L4 like L2. Lumping L1 and L3 together and letting 
v denote their total probability, and lumping L2 and L4 together, the 
expected coordination rate is 2v(1 – v). 
 
This is maximized at v = ½, where it takes the value ½. 
 
Thus for v near ½, which is behaviorally plausible, the coordination rate is 
close to ½. (For more extreme values the rate is worse, → 0 as v→ 0 or 1.) 
 
By contrast, the mixed-strategy equilibrium expected coordination rate, 
2a/(1 + a)2, is maximized when a = 1, where it takes the value ½. 
 
As a → ∞, 2a/(1 + a)2 → 0 like 1/a. Even for moderate values of a, the 
level-k coordination rate is higher than the equilibrium rate. 
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The level-k model, and the closely related CH model CHC used to explain 
Kahneman’s results, yield a completely different view of asymmetric 
coordination via structure than a traditional refined-equilibrium model: 
 
 
● Neither equilibrium nor refinements play any role in players’ thinking. 
 
● Coordination, when it occurs, is an accidental (though statistically   
 predictable) by-product of players’ non-equilibrium decision rules.  
 
● Even though decisions are simultaneous and there is no communication 

or observation of the other’s decision, the predictable heterogeneity of 
strategic thinking allows more sophisticated players such as L2s to 
mentally simulate the decisions of less sophisticated players such as 
L1s and accommodate them, just as Stackelberg followers would. 

 
● This mental simulation doesn’t work perfectly, because an L2 is as likely 

to be paired with another L2 as an L1. Neither would it work if strategic 
thinking were homogeneous. But it’s very surprising that it works at all. 
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8. Bank Runs: Symmetric Coordination via Structure  

Reconsider Summers’s Bank Runs example. The game he describes can be 
represented by a payoff table (not a payoff matrix!) as follows: 

  Summary statistic  
  In Out 

In 1 -10 Representative 
player Out  0 0 

  Bank Runs 

The summary statistic is a measure of whether or not the required number of 
investors stays In. In Summers’s first example, all investors must stay In to 
prevent the bank from collapsing, so the summary statistic takes the value In 
if and only if all (but the representative player) stay In. In his second example 
two-thirds of the investors need to stay In, so the summary statistic takes the 
value In if and only if (adding in the representative player) this is the case. 

In each example there are two pure-strategy equilibria: “all-In” and “all-Out”. 
(There is also a mixed-strategy equilibrium in which the probability that the 
summary statistic equals In just balances the benefits of In and Out; but this 
equilibrium is behaviorally implausible.)    
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What will happen? In this example the coordination refinement of payoff-
dominance uniquely favors the all-In equilibrium, for any value of the 
population size n. This again seems behaviorally unlikely even for small n.  
 
The basic idea of risk-dominance (the precise formalization is controversial, 
and is fully agreed on only in two-action games) is to choose the equilibrium 
with the largest “basin of attraction” in beliefs space.  
 
In 2x2 symmetric two-person games, this amounts to selecting the 
equilibrium that results if each player best responds to a uniform random 
prior over the other’s strategies (just as L1 does when L0 is uniform random). 
 
Thus for population size 2, risk-dominance favors the all-Out equilibrium. 
 
In 2x2 symmetric games for population n > 2, risk-dominance again favors 
the equilibrium with the larger basin of attraction in beliefs space. Assuming 
independence, with Summers’s payoff assumptions risk-dominance favors 
the all-Out equilibrium for any n > 2, even if only two-thirds need to stay In.  

A global games analysis (Carlsson and Van Damme 1993 Ecma, Morris and 
Shin 1998 AER) yields the same conclusion as risk-dominance here. 
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Now consider a level-k model. 
 
In this context an L0 in the style of “Graham’s Mr. Market” is behaviorally 
plausible, but that would require a complex discussion of market psychology. 
 
To illustrate how the model works, I assume instead a uniform random L0.  
 
Recall that in n-person games it is also possible to define a level-k model in 
which L0 is correlated across players instead of independent.  

(Risk-dominance is usually defined assuming independence, but correlation 
is possible there too. Correlation is irrelevant in defining payoff-dominance.) 
 
In Summers’s first example, where the summary statistic takes the value In 
only when all stay In, L1s decision is Out with independent or correlated L0. 
 
In Summers’s second example, where the summary statistic takes the value 
In when two-thirds or more stay In, L1s decision is still Out in either case. 
 
In all cases L2 and higher types also stay Out, so if the frequency of L0 is 0, 
the outcome is observationally equivalent to the all-Out equilibrium. 
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Now consider an example like Bank Runs in which the summary statistic 
takes the value In when one-third or more of the investors stay In. 
 
If, say, n = 6, then given a choice of In by the representative player himself, 
the summary statistic will be In unless all five other players stay Out. 
 
 
If L0 is independent, L1 assigns all others staying Out probability 1/25 ≈ 0.03. 
 
If L0 is correlated, L1 assigns all others staying Out probability ½. 
 
 
In the former case, L1 and therefore all higher Lk types stay In, and the 
outcome is observationally equivalent to the all-In equilibrium. 
 
In the latter case, L1 and therefore all higher Lk types stay Out, and the 
outcome is observationally equivalent to the all-Out equilibrium. 
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In each of these symmetric coordination games, the level-k model derives the 
outcome from strategic responses to instinctive reactions to the game. 
 
 
Unlike traditional coordination refinements, the level-k approach is easy to 
combine with richer models of market psychology, via an L0 in the style of 
“Graham’s Mr. Market.”   
 
And because such an L0 is a psychological rather than a strategic concept, it 
is easier to extrapolate its specification across games, as illustrated below. 
 
 
Again neither equilibrium nor refinements play any role in players’ thinking. 
 
 
 
And coordination, when it occurs, is again an accidental by-product of 
players’ non-equilibrium, level-k decision rules.  
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Because in these symmetric coordination games L1 responses to a uniform 
random L0 are in equilibrium, there is no “magic”: 
 
The level-k model reduces to an equilibrium selection device, which 
coincides here with risk-dominance, but need not do so in general. 
 
 
In 2×2 symmetric coordination games L1 responses to a uniform random L0 
also coincide with the equilibrium selected by a global games analysis. 
 
Selecting an equilibrium via L1 responses seems empirically more promising, 
because L1 responses are less cognitively taxing and are directly suggested 
by experimental evidence. 
 
By contrast, a global games analysis relies on indefinitely iterated dominance 
in a game with payoff uncertainty artificially grafted onto its structure in a 
particular way; and the empirical support even for finitely iterated dominance 
is weak. 
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9. Structural Alternatives to “Incomplete” Models 

How might the availability of structural non-equilibrium models that reliably 
describe initial responses to games change the way we think about data? 

 

Although some empirical applications concern games that are dominance-
solvable in small numbers of rounds, many involve games that are not, and 
many others involve games with multiple equilibria.  

 

In games that are not sufficiently dominance-solvable, finitely iterated 
dominance and k-rationalizability are “incomplete” (my term, not standard) in 
that they do not specify a unique (though possibly probabilistic) prediction 
conditional on the value of the behavioral parameters. 

 

In games with multiple equilibria, equilibrium plus noise but without 
refinements is incomplete in the same general sense. 
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In the empirical literature, such incompleteness has been dealt with in one of 
two ways: 

 

●  By accepting a theory’s set-valued restrictions as the only implications of 
  the model and testing them (e.g. for k-rationalizability—which they call 
  “level-k rationality”—in Aradillas-Lopez and Tamer 2008 JBES; or for 
  unrefined equilibria in Echenique and Komunjer 2009 Econometrica). 

 

● By estimating an unrestricted probability distribution over the set of 
  equilibria (Bresnahan and Reiss 1991 Journal of Econometrics). 
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However, just as experimental results suggest that equilibrium is too strong to 
be descriptive of people’s responses to novel or complex games, it also 
suggests that k-rationalizability and even rationalizability are too weak. 
 
 
Rationalizability sometimes agnostically allows beliefs that are behaviorally 
outlandish, even though consistent with common knowledge of rationality 
(recall Section 3’s unique equilibrium without dominance example). 
 
 
Because CGC’s experimental results suggest that to the extent that people 
respect k-rationalizability, they do so not because they perform finitely 
iterated dominance leading to a set of k-rationalizable decisions, but because 
they follow a level-k decision rule that selects a specific such decision, it 
seems behaviorally natural to replace k-rationalizability (and equilibrium) by a 
structural level-k model that has the advantage of being complete.  
 
In settings where this can be done without risking serious misspecification, it 
seems likely to yield significantly more useful econometric models.    
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Aradillas-Lopez and Tamer 2008 JBES provide some indirect evidence on 
the potential benefits of structural non-equilibrium models by comparing the 
identification powers of equilibrium and k-rationalizability in two-person entry 
games without or with privately observed payoff perturbations; and in first-
price auctions with incomplete information and independent private values. 
 
 
In entry games attention centers on identification and estimation of payoff 
parameters, which are normally unobservable in the field. 
 
In auctions attention centers on identification and estimation of bidders’ value 
distributions, which are again normally unobservable in the field. 
 
 
The standard approach assumes equilibrium and shows that the parameters 
of interest are identified (parametrically or nonparametrically).  
 
Aradillas-Lopez and Tamer show that weakening equilibrium to k-
rationalizability implies weaker identifying restrictions—sometimes much 
weaker, for low values of k—and that individuals’ k’s are not fully identified.   
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In entry games, 1-rationalizability only slightly restricts the payoff parameters: 
 

 
 

Aradillas-Lopez and Tamer’s Figure 3 
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In first-price auctions Aradillas-Lopez and Tamer note (following Battigalli and 
Siniscalchi 2003 GEB) that k-rationalizability implies only a weak upper 
bound on bids, which shrinks with k but for any k allows bids both above and 
below equilibrium; with correspondingly weak bounds on value distributions.  
 
 
Benjamin Gillen, “Identification of Level-k Auctions,” UCSD 2009 provides 
additional evidence on the benefits of structural non-equilibrium models. 
 
He shows that in a level-k model (based on Crawford and Iriberri’s 2007 
Econometrica model, discussed below), under a reasonable (but not 
completely unrestrictive) assumption on the separation of different types’ (ks’) 
bidding functions, both the value distributions and individual bidders’ ks are 
identified, parametrically or nonparametrically. 
 
The difference arises because Gillen’s level-k model “completes” Aradillas-
Lopez and Tamer’s k-rationalizability model, which with enough data makes it 
theoretically possible to estimate the level-k model’s additional structural 
parameters along with bidders’ value distributions. 
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CGC’s footnote 42, p. 1766, makes a similar point in a different way. 
 
CGC note that in their maximum likelihood estimation of a model of subjects’ 
guesses and searches for hidden payoff information, the guess part of the 
log-likelihood is nearly six times larger than the search part. 
 
This occurs because their theory of subjects’ decisions makes very precise 
predictions of a subject’s decisions, conditional on his type.  
 
By contrast, CGC’s theory of cognition and search imposes (via filters 
described in the paper) only weak, set-valued restrictions on a subject’s 
searches, conditional on his type:  
 
Although CGC’s theory of decisions is complete, their theory of search is 
incomplete.   
 
As a result, the search restrictions are much more likely than the decision 
restrictions to be satisfied by chance, which causes the disparity in likelihood 
weights. 
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Turning to games with multiple equilibria, the freedom that assuming 
rationalizability or estimating an unrestricted probability distribution over the 
set of equilibria can yield severe overfitting and/or very weak tests. 
 
 
Costa-Gomes, Crawford, and Iriberri (“CGCI”) 2009 JEEA address this issue 
for Van Huyck, Battalio, and Beil’s (“VHBB”) 1990 AER, 1991 QJE 
coordination games, in which any of the seven pure strategies is both 
rationalizable and consistent with one of the seven pure-strategy equilibria. 
 
 
Using VHBB’s data to estimate an unrestricted probability distribution over 
equilibria yields good fits, but it also yields estimates that vary incoherently 
across games and don’t inspire confidence for beyond-sample prediction. 
 
 
CGCI “complete” equilibrium plus noise by adding coordination refinements  
risk- or payoff-dominance (in turn), to put it on a more equal footing with 
LQRE, level-k, CH, and NI models, which are already complete.  



 116 

10. Yuschenko and Lake Wobegon: Framing Effects in Zero- 
 Sum Two-Person Games 
 
Consider Rubinstein, Tversky, and Heller’s 1993, 1996, 1998-99 (“RTH”) 
experiments with zero-sum, two-person “hide-and-seek” games with non-
neutral framing of locations, analyzed by Crawford and Iriberri 2007 AER. 

(See also Östling, Wang, Chou, and Camerer’s 2008 CH analysis of field  
and lab data on lowest unique positive integer (“LUPI”) games.) 

A typical seeker’s instructions (a hider’s instructions are analogous): 

Your opponent has hidden a prize in one of four boxes arranged in a row. 
The boxes are marked as shown below: A, B, A, A. Your goal is, of course, 
to find the prize. His goal is that you will not find it. You are allowed to open 
only one box. Which box are you going to open? 
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RTH’s framing of the hide-and-seek game is non-neutral in two ways: 
 
 
● The “B” location is distinguished by its label.  
 
● The two “end A” locations may be inherently focal. 
 
 
This gives the “central A” location its own brand of uniqueness as the 
“least salient” location. 
 
 
Mathematically this “negative” uniqueness is analogous to the “positive” 
uniqueness of “B”. 
 
 
However, Crawford and Iriberri’s 2007 AER analysis shows that its 
psychological effects are completely different. 
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RTH’s design is important as a tractable abstract model of a non-neutral 
cultural or geographic frame, or “landscape.” 

Hide-and-seek games are often played on such landscapes, even though 
traditional game theory rules out any influence of the landscape by fiat. 
 

This is well illustrated by the Yuschenko and Lake Wobegon quotations: 

“Any government wanting to kill an opponent…would not try it at a meeting 
with government officials.” 
 
“…in Lake Wobegon, the correct answer is usually ‘c’.” 
 
Yuschenko’s meeting with government officials is analogous to RTH’s B, 
although in that example there’s nothing like RTH’s end locations. 
 
With four possible choices arrayed left to right in the zero-sum game 
between a test designer deciding where to hide the correct answer and a 
clueless test-taker trying to guess where it is, the Lake Wobegon example 
is very close to RTH’s design. 
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RTH’s hide-and-seek game has a clear equilibrium prediction, which 
leaves no room for framing to systematically influence the outcome. 
 
The traditional theory of zero-sum two-person games is the strongpoint of 
noncooperative game theory, where the arguments for playing equilibrium 
strategies are immune to most of the usual counterarguments. 
 
Yet framing has a strong and systematic effect in RTH’s experiments, 
qualitatively the same around the world, with Central A (or its analogs in 
other treatments, as explained in the paper) most prevalent for hiders 
(37% in the aggregate) and even more prevalent for seekers (46%). 
 
 
In this game any strategy, pure or mixed, is a best response to equilibrium 
beliefs. Thus one might argue that deviations do not violate the theory. 
 
However, systematic deviations of aggregate choice frequencies from 
equilibrium probabilities must (with very high probability) have a cause that 
is partly common across players. They are therefore symptomatic of 
systematic deviations from equilibrium. 
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Crawford and Iriberri’s Table 1 
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RTH’s results raise several puzzles: 
 
● Hiders’ and seekers’ responses are unlikely to be completely non- 
  strategic in such simple games. So if they aren’t following equilibrium    
  logic, what are they doing? 
 
● On average hiders are as smart as seekers, so hiders tempted to hide 

in central A should realize that seekers will be just as tempted to look 
there. Why do hiders allow seekers to find them 32% of the time when 
they  could hold it down to 25% via the equilibrium mixed strategy? 

 
● Further, why do seekers choose central A (or its analogs) even more 
  often (46% in Table 3 below) than hiders (37%)?   
 
 
 

Note that although the payoff structure of RTH’s game is asymmetric, QRE 
ignores labeling and (logit or not) coincides with equilibrium in the game, and 
so does not help to explain the asymmetry of choice distributions. 
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The role asymmetry in subjects’ behavior and how it is linked to the game’s 
payoff asymmetry points strongly in the direction of a level-k or CH model, 
and is a mystery from the viewpoint of other theories I am aware of. 
 
In constructing such a model, defining L0 as uniform random would be 
unnatural, given the non-neutral framing of decisions and that L0 describes 
others’ instinctive responses. 
 
(It would also make Lk the same as Equilibrium for k > 0.) 
 
 

But a level-k model with a role-independent L0 that probabilistically favors 
salient locations yields a simple explanation of RTH’s results. 
 
Assume that L0 hiders and seekers both choose A, B, A, A with 
probabilities p/2, q, 1– p – q, p/2 respectively, with p > ½ and q > ¼. 
 
L0 favors both the end locations and the B location, equally for hiders and 
seekers, but the model lets the data decide which is more salient.  
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For behaviorally plausible type distributions (estimated 0% L0, 19% L1, 
32% L2, 24% L3, 25% L4—almost hump-shaped), a level-k model 
gracefully explains the major patterns in RTH’s data, the prevalence of 
central A for hiders and its even greater prevalence for seekers:  
 

 
● Given L0’s attraction to salient locations, L1 hiders choose central A 

to avoid L0 seekers and L1 seekers avoid central A searching for L0 
hiders (the data suggest that end locations are more salient than B).  

 
● For similar reasons, L2 hiders choose central A with probability 
  between 0 and 1 (breaking payoff ties randomly) and L2 seekers 
  choose it with probability 1. 

 
● L3 hiders avoid central A and L3 seekers choose it with probability 
  between zero and one (breaking payoff ties randomly).  

 
● L4 hiders and seekers both avoid central A. 
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Crawford and Iriberri’s Table 3 
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Note that only a heterogeneous population with substantial frequencies of 
L2 and L3 as well as L1 (estimated 0% L0, 19% L1, 32% L2, 24% L3, 25% 
L4) can reproduce the aggregate patterns in the data. 
 
(Even though there is a nonnegligible estimated frequency of L4s, they 
don’t really matter here because they never choose central A (Table 2 
above), hence they are not implicated in the major aggregate patterns. 
 
For the same reason, their frequency is not well identified in the estimation.)  

 

For example, Crawford and Iriberri estimate (Table 3 above, row 5) that the 
salience of an end location is greater than the salience of the B (p > 2q). 
 
Given this, a 50-50 mix of L1s and L2s in both player roles would imply 
(Table 2 above, right-most columns in each panel) 75% of hiders but only 
50% of seekers choosing central A, in contrast to the 37% of hiders and 
46% of seekers who did choose central A. 
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In Crawford and Iriberri’s analysis of RTH’s data, the role asymmetry in 
aggregate behavior follows naturally from the asymmetry of the game’s 
payoff structure, via hiders’ and seekers’ asymmetric responses to L0’s 
role-symmetric choices. 

 

Allowing L0 to vary across roles as in Bacharach and Stahl 2000 GEB, 
although it yields a small improvement in fit (Table 3), would beg the 
question of why subjects’ responses were so role-asymmetric. 

 

Crawford and Iriberri’s analysis, discussed below, also suggests that 
allowing L0 to vary across roles leads to overfitting.   
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RTH took the main patterns in their data as evidence that their subjects did 
not think strategically: 
 
 
● “The finding that both choosers and guessers selected the least salient 
alternative suggests little or no strategic thinking.” 
 
 
● “In the competitive games, however, the players employed a naïve 
strategy (avoiding the endpoints), that is not guided by valid strategic 
reasoning. In particular, the hiders in this experiment either did not expect 
that the seekers too, will tend to avoid the endpoints, or else did not 
appreciate the strategic consequences of this expectation.” 
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RTH could have said the same thing about the Yuschenko quotation:  

● “Any government wanting to kill an opponent…would not try it at a 
  meeting with government officials”, 

to which a game theorist would (almost involuntarily) respond: 

● “If that’s what people think, a meeting with government officials is exactly 
  where I would try to poison Yushchenko.” 
 
 
But strategic thinking need not be equilibrium thinking. 
 
Crawford and Iriberri’s analysis suggests that RTH’s subjects were actually 
quite strategic and in fact more than usually sophisticated (with many L3s 
and even some L4s, even though in most settings L1s and L2s are more 
common)—they just didn’t follow equilibrium logic. 
 
Crawford and Iriberri’s analysis suggests that the Yushchenko quotation 
simply reflects the reasoning of an L1 poisoner, or equivalently of an L2 
investigator reasoning about an L1 poisoner. 
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Evaluating the Model’s Explanation: Overfitting and Portability 
 
Although prior intuitions about the likely hump shape and location of the 
type distribution impose some discipline in specifying a level-k model, the 
freedom to specify L0 leaves room for doubts about overfitting and 
portability, the extent to which a model estimated from responses to one 
game can be extended to predict or explain responses to different games. 
 

To see if the proposed level-k explanation of RTH’s results is more than an 
after the fact “just-so” story, Crawford and Iriberri compared it on the 
overfitting and portability dimensions with the leading alternatives: 

 
● Equilibrium with intuitive payoff perturbations (salience lowers hiders’ 
 payoffs, other things equal; while salience raises seekers’ payoffs). 
 
● LQRE with similarly intuitive payoff perturbations. 
 
● Alternative level-k specifications (for example, with role-asymmetric 
 L0 or an L0 that avoids salience, as in Table 3). 
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Crawford and Iriberri tested for overfitting by re-estimating each model 
separately for each of RTH’s six treatments and using the re-estimated 
models to “predict” the choice frequencies of the other treatments. 
 
 
Their favored level-k model, with a role-symmetric L0 that favors salience, 
has a modest prediction advantage over equilibrium and LQRE with 
perturbations models, with mean squared prediction error 18% lower and 
better predictions in 20 of 30 comparisons. 
 
 
LQRE with payoff perturbations (in different cases) either gets the patterns 
in the data qualitatively wrong or estimates an infinite precision and thereby 
turns itself back into an equilibrium model (Crawford and Iriberri’s online 
Appendix).   
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A more challenging test regards portability. 

Crawford and Iriberri tested for portability by using the leading alternative 
models, estimated from RTH’s data, to “predict” subjects’ initial responses 
in the two closest relatives of RTH’s games in the literature: 

 

● O’Neill’s 1987 PNAS famous card-matching game, and 

● Rapoport and Boebel’s 1992 GEB closely related game. 

 

These games both raise the same kinds of strategic issues as RTH’s 
games, but with more complex patterns of wins and losses, different 
framing, and in the latter case five locations. 

 

I focus here on Crawford and Iriberri’s analysis of O’Neill’s game.  
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In O’Neill’s card-matching game, players simultaneously and independently 
choose one of four cards: A, 2, 3, J. 

One player, say the row player—but the game was presented to subjects as 
a story, not a matrix—wins if there is a match on J or a mismatch on A, 2, or 
3; the other player wins in the other cases. 

 

 A 2 3 J 

A 1 
0 

0 
1 

0 
1 

1 
0 

2 0 
1 

1 
0 

0 
1 

1 
0 

3 0 
1 

0 
1 

1 
0 

1 
0 

J 1 
0 

1 
0 

1 
0 

0 
1 

O’Neill’s card-matching game  
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O’Neill’s game is like a hide-and-seek game, except that each player is a 
hider (h) for some locations and a seeker (s) for others.  
 
A, 2, and 3 are strategically symmetric, and equilibrium (without payoff 
perturbations) has Pr{A} = Pr{2} = Pr{3} = 0.2, Pr{J} = 0.4. 
 

 A (s) 2 (s) 3 (s) J (h) 
A 

(h) 
1 

0 
0 

1 
0 

1 
1 

0 
2 

(h) 
0 

1 
1 

0 
0 

1 
1 

0 
3 

(h) 
0 

1 
0 

1 
1 

0 
1 

0 
J 

(s) 
1 

0 
1 

0 
1 

0 
0 

1 
O’Neill’s card-matching game  
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The portability test directly addresses the issue of whether level-k models 
allow the modeler too much flexibility.  
 
With regard to the flexibility of L0, first consider how to adapt our 
“psychological” specification of L0 from RTH’s to O’Neill’s game. 
 
Even Obama and McCain could agree on the right kind of L0: 

● A and J, “face” cards and end locations, are more salient than 2 and 
  3, but the specification should allow either A or J to be more salient. 
 
That the RTH estimates suggested that their end locations are more 
salient than the B label does not dictate whether A or J is more salient, 
though it does reinforce that they are both more salient than 2 and 3. 
 
This is a psychological issue, but because it is “only” a psychological issue, 
it is easy to gather evidence on it from different settings, and such evidence 
is more likely to yield convergence than if it were partly a strategic issue.     
 
Further, because all that matters about L0 is what it makes L1s do in each 
role, the remaining freedom to choose L0 allows only two models. 
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With regard to the flexibility of the type frequencies, empirically plausible 
frequencies often imply severe limits on what decision patterns a level-k 
model can generate.   
 
Readers of the first version of Crawford and Iriberri 2007 AER often asked if 
the model could explain behavior in games other than RTH’s. 
 
O’Neill’s game was the most natural choice in the experimental literature. 
 
We did not have his data, but discussions of it (e.g. McKelvey and Palfrey 
1995 GEB) had been dominated by an “Ace effect”: aggregated over all 105 
rounds, row and column players played A with frequencies 22.0% and 
22.6%, significantly above the equilibrium 20%. 
 
(O’Neill speculated that this was because “…players were attracted by the 
powerful connotations of an Ace”. 

But—we thought—what about the equally powerful connotations of the 
Joker and its unique payoff role? They seem to make it even more salient 
than Ace, but in the aggregate data row subjects chose Joker with 
frequencies of only 36%, and columns with frequencies of only 43%.) 
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We also knew that with an Obama-McCain specification of L0 and the 
resulting types’ decisions in O’Neill’s game (Tables A3 and A4 from the 
paper’s web appendix, on the next two slides), no behaviorally plausible 
level-k model could make a row player (“Player 1”) play A more than the 
equilibrium 20%: 
 
Tables A3 and A4 show that, excluding L0s (which normally have 0 
estimated frequencies) and restricting attention to Player 1, when A is more 
salient (3j – a < 1) only L4 chooses A, and that with probability at most 1/3 
(Table A3); and that when A is less salient (3j – a > 1) only L3 chooses A, 
and that with probability at most 1/3 (Table A4).  
 
This is logically possible, but in the first case it would require a population of 
60% or more L4s, and in the second case it would require 60% or more 
L3s: in each case behaviorally extremely unlikely on the available evidence. 
 
 
Thus, despite the flexibility of the estimated type distribution, the level-k 
model’s structure and the principles that guide the specification of L0 imply 
a strong restriction: that row players play A less than the equilibrium 20%.
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We decided to get O’Neill’s data and test the model on it anyway, 
speculating, based on the level-k model’s success in RTH’s and other 
games, that his subjects’ initial responses must not have had an Ace effect. 
 
There was in fact no Ace effect for initial responses. 
 
Instead there was a Joker effect, a full order of magnitude stronger (but to 
our knowledge never before mentioned in the literature): 

● 8% A, 24% 2, 12% 3, 56% J for rows, and 

● 16% A, 12% 2, 8% 3, 64% J for columns. 

(An order of magnitude stronger because (56 - 40)% and (64 - 40)% are 
respectively roughly ten times larger than (22 - 20)% and (22.6 - 20)%.) 
 
Moreover, unlike the putative Ace effect, the Joker effect and the other 
observed frequencies can be gracefully explained by a level-k model with 
an Obama-McCain L0 that probabilistically favors the salient A and J cards.  
 
The analysis also suggests that the Ace effect in the time-aggregated data 
was an accidental by-product of how subjects learned, not of salience at all. 
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Crawford and Iriberri’s Table 5 
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Equilibrium or LQRE with perturbations are well-defined for O’Neill’s game, 
but they both fit significantly worse than our favored level-k model. 
 
As explained in the paper, equilibrium or LQRE with perturbations are not 
even well-defined for Rapoport and Boebel’s game. 
 
A level-k model is well-defined, and explains some but by no means all of 
the patterns in Rapoport and Boebel’s data. 
  
Importantly, Crawford and Iriberri’s analysis traces the superior portability of 
the level-k model to the fact that L0 is psychological rather than strategic, 
and that it is based on simple and universal intuition and evidence.  
 
If L0 were strategic, it would interact with the strategic structure in new ways 
in each new game, and it would be a rare event when one could extrapolate 
a specification from one game to another as Crawford and Iriberri did from 
RTH’s games to O’Neill’s. 
 
Thus, the definition of L0 as an instinctive, nonstrategic response is more 
that a convenient cognitive categorization: it is important for portability. 
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11. Chicago Skyscrapers: Framing Effects and Miscoo rdination 
  in Schelling-Style Coordination Games 
 
Perhaps the most famous examples of framing effects in economics are 
Schelling’s (1960) classic “meeting in New York City” experiments. 
 
 
Crawford, Gneezy, and Rottenstreich (“CGR”) 2008 AER randomly paired 
subjects to play games with commonly observed, non-neutral decision 
labels like Schelling’s, but except for a game with the payoff symmetry of 
Schelling’s, CGR used payoff-asymmetric games like Battle of the Sexes. 

 

In unpaid pilots run in Chicago, CGR used naturally occurring labels, pitting 
the world-famous Sears Tower versus the little-known AT&T Building 
across the street. 
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Sears Tower with the AT&T Building in the backgroun d on its left 
(the AT&T Building is actually almost as tall as Se ars Tower) 
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  P2 
  Sears  AT&T  

Sears  100,100 0,0 P1 
AT&T  0,0 100,100 

Symmetric 
    
  P2 
  Sears  AT&T  

Sears  100,101 0,0 P1 
AT&T  0,0 101,100 

Slight Asymmetry 
    
  P2 
  Sears  AT&T  

Sears  100,110 0,0 P1 
AT&T  0,0 110,100 

Moderate Asymmetry 
Chicago Skyscrapers 
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The salience of Sears Tower makes it easy and, in principle, obvious for 
subjects to coordinate on the “both-Sears” equilibrium; and they almost all 
do this in the symmetric version of the game. 
 
Since Schelling’s experiments with symmetric games, people have 
assumed that slight payoff asymmetry would not interfere with this. 
 
However, even with slight payoff asymmetry, the game poses a new 
strategic problem because both-Sears is one player’s favorite way to 
coordinate but not the other player’s.  
 
Just as in a society of men and women playing Battle of the Sexes, in 
which Ballet is more salient than Fights, there is a tension between the 
“label salience” of Sears and the “payoff-salience” of a player’s favorite way 
to coordinate:  

Payoff salience reinforces label salience in one player role (P2s) but 
opposes it for players in the other (P1s). 
 
This tension may lead players to respond asymmetrically, which in this 
game is bad for coordination.  
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As CGR suspected, although the Chicago Skyscrapers results replicated 
Schelling’s results in the symmetric version of the game, there was a 
substantial decline in coordination with even slight payoff asymmetry. 
 

  P2 (90% Sears) 
  Sears  AT&T  

Sears  100,100 0,0 P1 (90% Sears)  
AT&T  0,0 100,100 

Symmetric 
 

  P2 (58% Sears) 
  Sears  AT&T  

Sears  100,101 0,0 P1 (61% Sears)  
AT&T  0,0 101,100 

Slight Asymmetry 
 

  P2 (47% Sears) 
  Sears  AT&T  

Sears  100,110 0,0 P1 (50% Sears)  
AT&T  0,0 110,100 

Moderate Asymmetry 
Chicago Skyscrapers 
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To investigate the reasons for the decline in coordination, CGR conducted 
more formal, paid treatments using abstract decision labels, pitting X 
against Y, with X presumed (and shown) to be more salient than Y. 
 

 

 

 

  P2 
  X Y 

X 5,5 0,0 P1 
Y 0,0 5,5 
Symmetric 

 
  P2 
  X Y 

X 5,5.1 0,0 P1 
Y 0,0 5.1,5 

Slight Asymmetry 
 

  P2 
  X Y 

X 5,6 0,0 P1 
Y 0,0 6,5 

Moderate Asymmetry  
 

  P2 
  X Y 

X 5,10 0,0 P1 
Y 0,0 10,5 

Large Asymmetry 
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Like the salience of Sears Tower, the salience of the X label makes it 
obvious for subjects to coordinate on the “both-X” equilibrium; and they 
again do this in the symmetric version of the game. 
 
 
 
But with payoff asymmetry there is again a tension between the “label 
salience” of X and the “payoff-salience” of a player’s favorite way to 
coordinate: Payoff salience again reinforces label salience for P2s but 
opposes it for P1s. 

 

 

This tension again had a large and surprising effect: 
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  P2 (76% X) 
  X Y 

X 5,5 0,0 P1 (76% X) 
Y 0,0 5,5 

Symmetric 
 

  P2 (28% X) 
  X Y 

X 5,5.1 0,0 P1 (78% X) 
Y 0,0 5.1,5 

Slight Asymmetry 
 

  P2 (61% X) 
  X Y 

X 5,6 0,0 P1 (33% X) 
Y 0,0 6,5 

Moderate Asymmetry 
 

  P2 (60% X) 
  X Y 

X 5,10 0,0 P1 (36% X) 
Y 0,0 10,5 

Large Asymmetry 
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Even tiny payoff asymmetries caused a large drop in the expected 
coordination rate, from 64% (0.64 = 0.76×0.76 + 0.24×0.24) in the 
symmetric game to 38%, 46%, and 47% in the asymmetric games.     
 
 
Perhaps more surprisingly (and unlike in the unpaid Chicago Skyscrapers 
treatment), the pattern of miscoordination reversed as asymmetric games 
progressed from small to large payoff differences: 
 
 
● With slightly asymmetric payoffs, most subjects in both roles favored 
 their partners’ payoff-salient decisions. 
 
 
● But with moderate or large asymmetries, most subjects in both roles 
 switched to favoring their own payoff-salient decisions. 
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There are two things to explain here: 

 

● Why didn’t subjects in the asymmetric games ignore the payoff 
asymmetry, which cannot be used to break the symmetry as required 
for coordination, and use the salience of Sears Tower to coordinate?  

 

● Why did the pattern of miscoordination reverse as the asymmetric 
 games progressed from small to large payoff differences? 

 

Standard notions such as equilibrium plus noise with refinements and QRE 
ignore labeling, and so cannot help.  
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A level-k model can gracefully explain the patterns in the data, but again it’s 
important to have an L0 that realistically describes people’s beliefs about 
others’ instinctive reactions to the tension between label- and payoff- 
salience that seems to drive the results.   

CGR assume that L0 is the same in both player roles, and that it responds 
instinctively to both label and payoff salience; but with a “payoffs bias” that 
favors payoff over label salience, other things equal: 

● In symmetric games L0 chooses X with some probability greater 
 than ½. 

● In any asymmetric game, (for simplicity only) whether or not label- 
salience opposes payoff-salience, L0 chooses its payoff-salient 
decision with probability p > ½. 
 

(These assumptions are consistent with Crawford and Iriberri’s 2007 AER 
L0 assumptions, because their games had no payoff-salience. 

However, there remain some unresolved issues about how to generalize it.) 
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Under these assumptions about L0, L1’s and L2’s choices in roles P1 and 
P2 are completely determined by p, the extent of L0’s payoff bias. 
 
Except in symmetric games, even though L0’s choice probabilities are the 
same for P1s and P2s, they imply L1 and L2 choice probabilities that differ 
across player roles due to the asymmetric relationships between label and 
payoff salience for P1s and P2s. 
 
Simple calculations (CGR’s Table 3, reproduced next slide) show that a 
level-k model can track the reversal of the pattern of miscoordination 
between the slightly asymmetric game and the games with moderate or 
large payoff asymmetries if (and only if) 0.505 (= 5.1/[5.1+5]) < p < 0.545 (= 
6/[6+5]), so that L0 has only a modest payoff bias. 
 
If p falls into this range and the population frequency of L1 is 0.7 and that of 
L2 is 0.3, close to most previous estimates, the model’s predicted choice 
frequencies differ from the observed frequencies by more than 10% only in 
the symmetric game, where the model somewhat overstates the 
homogeneity of CGR’s subject pool (Table 3). 
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Symmetric 

Labeled 
(SL) 

Asymmetric 
Slight 

Labeled 
(ASL) 

Asymmetric 
Moderate 
Labeled 
(AML) 

Asymmetric 
Large 

Labeled 
(ALL) 

Payoffs for coordinating on “ X”  $5, $5 $5, $5.10 $5, $6 $5, $10 
Payoffs for coordinating on “ Y”  $5, $5 $5.10, $5 $6, $5 $10, $5 

Pr{X} for P1 L0 > ½ 1-p 1-p 1-p 
Pr{X} for P2 L0 > ½ p p p 
Pr{X} for P1 L1 1 1 0 0 
Pr{X} for P1 L2 1 0 1 1 
Pr{X} for P2 L1 1 0 1 1 
Pr{X} for P2 L2 1 1 0 0 

Total P1 predicted Fr{X} 100% 100 q% 100(1-q)% 100(1-q)% 
Total P1 predicted Fr{X}| q=0.7 100% 70% 30% 30% 

Total P1 observed Fr{X} 76% 78% 33% 36% 
Total P2 predicted Fr{X} 100% 100(1- q)% 100q% 100q% 

Total P2 predicted Fr{X}| q=0.7 100% 30% 70% 70% 
Total P2 observed Fr{X} 76% 28% 61% 60% 
Table 3. L1’s and L2’s choice probabilities in X-Y treatments when 0.505 < p < 0.545 

CGR’s Table 3
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The details are as follows: 

 
 

 

 

 
● In the symmetric game, with no payoff salience, L0 favors the salience of 
 X. 
 
● L1 P1s and P2s therefore both choose X. 
 
● L2 P1s and P2s do the same. 
 

In this case the model predicts that 100% of P1s and P2s will choose X. 
Thus, here it makes the same prediction as equilibrium selection based on 
salience as in a Schelling focal point. This prediction is fairly accurate, but it 
overstates the homogeneity of the subject pool. 

  P2 (76%) 
  X Y 

X 5,5 0,0 P1 (76%) 
Y 0,0 5,5 

Symmetric 
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● In the slightly asymmetric game, with p > 0.505 (= 5.1/[5.1+5]), the 
payoff differences are small enough that L1 P1s choose P2s’ payoff-
salient decision, X, because L1 P1s think it is sufficiently likely that L0 
P2s will choose X that X yields them higher expected payoffs. 

● L2 P2s, who best respond to L1 P1s, thus choose X as well. 

● With p > 0.505, L1 P2s choose P1s’ payoff-salient decision, Y, 
 because L1 P2s think it sufficiently likely that L0 P1s will choose Y. 

● L2 P1s thus choose Y. 
 
In this case the model predicts that L1 P1s choose X and L2 P1s choose Y, 
while L1 P2s choose Y and L2 P2s choose X. Thus, when q = 0.7, the 
model predicts that 70% of P1s will choose X but only 30% of P2s will 
choose X, reasonably close to the observed 78% and 28%. 

  P2 (28%) 
  X Y 

X 5,5.1 0,0 P1 (78%) 
Y 0,0 5.1,5 

Slight Asymmetry  
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● In the games with moderate or large payoff asymmetries, L0’s payoffs 
bias is strong enough, but not too strong (p < 0.545 (= 6/[6+5])), that L1 
P1s and P2s both choose their own instead of their partners’ payoff- 
salient decisions, Y for P1s and X for P2s. 

● L2 P1s choose X and L2 P2s choose Y. 

In this case the model predicts that L1 P1s choose Y and L2 P1s choose X, 
while L1 P2s choose X and L2 P2s choose Y. Thus, when q = 0.7, the 
model predicts that 30% of P1s will choose X but 70% of P2s will choose X, 
again close to the observed 33-36% and 61-60%. 

  P2 (61%) 
  X Y 

X 5,6 0,0 P1 (33%) 
Y 0,0 6,5 

Moderate Asymmetry 
 

  P2 (60%) 
  X Y 

X 5,10 0,0 P1 (36%) 
Y 0,0 10,5 

Large Asymmetry 
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12. Huarangdao and D-day: Preplay Communication of 
Intentions in Zero-Sum Two-Person Games with Possib ly 
Sophisticated Players 

Consider a simple perturbed Matching Pennies game as in Crawford 2003 
AER, viewed as a model of the Allies’ choice of where to invade Europe on 
D-Day (6 June 1944): 
 

   Germans 

  Defend 
Calais 

Defend 
Normandy 

Attack 
Calais 

1 
-1 

-2 
2 Allies  

Attack 
Normandy 

-1 
1 

1 
-1 

● Attacking an undefended Calais is better for the Allies than attacking an 
 undefended Normandy, so better for them on average. 

● Defending an unattacked Normandy is worse for the Germans than 
 defending an unattacked Calais and so worse for them on average. 
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Now imagine that D-Day is preceded by a message from the Allies to the 
Germans regarding their intentions about where to attack, as in Operation 
Fortitude South (http://en.wikipedia.org/wiki/Operation_Fortitude). 
 
Imagine further that the message is (approximately!) cheap talk. 
 
 

 
 
 

A “Tank” from Operation Fortitude 
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In any equilibrium (refined or not) of a zero-sum game preceded by a 
cheap-talk message regarding intentions, the sender must make his 
message uninformative, and the receiver must ignore it. 

 

 

If in equilibrium the receiver found it optimal to respond to the message, his 
response would benefit him and so hurt the sender, who would therefore do 
better by making the message uninformative. 

 

 

Thus communication can have no effect in any equilibrium, and as a result 
the underlying game must be played according to its unique mixed-strategy 
equilibrium, as if there were no communication phase. 
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Yet intuition suggests that in many such situations: 

 
● The sender’s message and action are part of a single, integrated 
 strategy. 
 
● The sender tries to anticipate which message will fool the receiver 
 and chooses it nonrandomly.  
 
●The sender’s action differs from what he would have chosen with 
 no opportunity to send a message. 
 
 
Moreover, in my stylized version of D-Day:  

 
● The deception succeeded (the Allies faked preparations for invasion at 

Calais, the Germans defended Calais and left Normandy lightly 
defended, and the Allies then invaded Normandy). 

 
● But the sender won in the less beneficial of the two possible ways. 
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D-Day is only one datapoint, if that (the model is greatly oversimplified). 

But there’s an ancient Chinese antecedent of D-Day, Huarongdao 
(http://en.wikipedia.org/wiki/Battle_of_Red_Cliffs), in which General Cao 
Cao chooses between two roads, the comfortable Main Road and the awful 
Huarong Road, trying to avoid capture by General Kongming. 
 

  Kongming  
  Main Huarong 

Main 3 
-1 

0 
1 Cao Cao 

Huarong 1 
0 

2 
-2 

Huarongdao 
 
● Cao Cao loses 2 and Kongming gains 2 if Cao Cao is captured. 
 
● But both Cao Cao and Kongming gain 1 by taking the Main Road, 

whether or not Cao Cao is captured: It’s important to be comfortable, 
even if (especially if?) if you think you’re about to die.  
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In Huarongdao, essentially the same thing happened as in D-Day: 

Kongming lit campfires on the Huarong road; Cao Cao was fooled by this 
into thinking Kongming would ambush him on the Main Road; and 
Kongming captured Cao Cao but only by taking Huarong Road. 

(The ending however was happy: Kongming later let Cao Cao go.) 

 
In what sense did the “essentially the same thing” happen? 
 
In D-Day the message was literally deceptive but the Germans were fooled 
because they “believed” it (either because they were credulous or because 
they inverted the message one too many times). 
 
Kongming's message was literally truthful—he lit fires on the Huarong Road 
and ambushed Cao Cao there—but Cao Cao was fooled because he 
misread Kongming’s message strategy and inverted the message. 
 
The sender’s and receiver’s message strategies and beliefs were different, 
but the outcome—what happened in the underlying game—was the same: 
The sender won, but in the less beneficial of the two possible ways. 
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Why was Cao Cao fooled by Kongming’s message?  

 

One advantage of using fiction as data is that it can reveal cognition: 

● Three Kingdoms gives Kongming’s rationale for sending a deceptively 
truthful message: “Have you forgotten the tactic of ‘letting weak points 
look weak and strong points look strong’?” 

● It also gives Cao Cao's rationale for inverting Kongming’s 
message: “Don’t you know what the military texts say? ‘A show of force 
is best where you are weak. Where strong, feign weakness.’ ” 
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Why was Cao Cao fooled by Kongming’s message?  

 

One advantage of using fiction as data is that it can reveal cognition: 

● Three Kingdoms gives Kongming’s rationale for sending a deceptively 
truthful message: “Have you forgotten the tactic of ‘letting weak points 
look weak and strong points look strong’?” 

● It also gives Cao Cao's rationale for inverting Kongming’s 
message: “Don’t you know what the military texts say? ‘A show of force 
is best where you are weak. Where strong, feign weakness.’ ” 

 

Cao Cao must have bought a used, out-of-date edition…. 

 

As we will see, with L0 suitably adapted to this setting, Cao Cao’s rationale 
resembles L1 thinking; but Kongming’s rationale resembles L2 thinking. 
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We can now restate the puzzle more concretely, for both D-Day and 
Huarongdao: 
 
 
● Why did the receiver allow himself to be fooled by a costless (hence 
 easily faked) message from an enemy? 
 
 
● If the sender expected his message to fool the receiver, why didn't he 

reverse it and fool the receiver in the way that would have allowed him 
to win in the more beneficial way? (Why didn't the Allies feint at 
Normandy and attack at Calais? Why didn't Kongming light fires and 
ambush Cao Cao on the Main Road?) 
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A level-k analysis suggests that it was more than a coincidence that the 
same thing happened in both cases. 
 
 
Although Sophisticated subjects are rare in laboratory experiments, one 
hopes they are more common in field settings; and it is interesting to see 
whether a plausible model allows deception between Sophisticated players.   
 
Accordingly, let Allies’ and Germans’ types be drawn from separate 
distributions, each including both level-k or Mortal types (as Crawford 2003 
AER called them), and a fully strategically rational or Sophisticated, type. 
 
 
Mortal types use step-by-step procedures that generically determine unique 
pure strategies, and avoid simultaneous determination of the kind used to 
define equilibrium; recall the Selten 1998 EER quote above. 
 
Sophisticated types know everything about the game, including the 
distribution of Mortal types; and so play an equilibrium in a “reduced game” 
between possible Sophisticated players, taking Mortals’ choices as given. 
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How should L0 be adapted to an extensive-form game with 
communication? 
 
 
Here a uniform random L0 seems quite unnatural. For sender or receiver, 
the instinctive reaction to a message in a language one understands is 
surely to focus on its literal meaning, even if one ends up either lying or not 
taking the message at face value.     
 
 
The level-k model therefore anchors Mortal types’ messages and 
responses on L0s based on truthfulness for senders and credulity for 
receivers, just as in the informal literature on deception.  
 
 
(The literature has not yet converged on whether L0 receivers should be 
defined as credulous or uniform random—compare Ellingsen and Östling 
2009—but the distinction is partly semantic because truthful L0 senders 
imply that L1 receivers are also credulous.)   
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Mortal Allied types’ simplified models of other players make L1 or higher 
Mortal Allied types always expect to fool the Germans, either by lying (like 
the Allies) or by telling the truth (like Kongming). 
 
 
Given this, all L1 or higher Mortal Allied types send a message they expect 
to make the Germans think they will attack Normandy, and then attack 
Calais. 
 
 
If we knew the Allies and Germans were Mortal, we could now derive the 
model’s implications from an estimate of the type frequencies of Mortal 
Allies who tell the truth or lie, and of Mortal Germans who believe or invert 
the Allies’ message. 
 
 
But the analysis must also take into account the possibility of Sophisticated 
Allies and Germans, who know everything about the game, including the 
distribution of Mortal types, and play an equilibrium in the resulting game. 
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To take into account the possibility of Sophisticated Allies and Germans, 
note that Mortals players’ strategies are determined independently of each 
other’s and Sophisticated players’ strategies, and so can be treated as 
exogenous (even though they affect other players’ payoffs). 
 
Plug in the distributions of Mortal Allies’ and Germans’ independently 
determined behaviors to obtain a “reduced game” between Sophisticated 
Allies and Sophisticated Germans. 
 
Because Sophisticated players’ payoffs are influenced by Mortal players’ 
decisions, the reduced game is no longer zero-sum, its messages are not 
cheap talk, and it has incomplete information. 
 
The sender’s message, ostensibly about his intentions, is in fact read by a 
Sophisticated receiver as a signal of the sender’s type. 
   
Thus, the possibility of Mortal players completely changes the character of 
the game between Sophisticated players, which is what gives the model the 
ability to explain the effectiveness of communication in a zero-sum game 
and the possibility of deception between Sophisticated players.  
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The equilibria of the reduced game are determined by the population 
frequencies of Mortal and Sophisticated senders and receivers. 

There are two leading cases, with different implications: 

● When Sophisticated Allies and Germans are common—not behaviorally 
plausible—the reduced game has a mixed-strategy equilibrium whose 
outcome is virtually equivalent to D-Day’s without communication. 

● When Sophisticated Allies and Germans are rare, the game has an 
essentially unique pure-strategy equilibrium, in which Sophisticated 
Allies can predict Sophisticated Germans’ decisions, and vice versa. 

 
In the latter, pure-strategy equilibrium, Sophisticated Germans always 
defend Calais (because they know that Mortal Allies, who predominate 
when Sophisticated Allies are rare, will always attack Calais). 
 
Sophisticated Allies send the message that fools the most likely kind of 
Mortal German (feinting at Calais or Normandy depending on whether 
more Mortal Germans believe than invert messages), and then attack 
Normandy. 
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Surprisingly, there never exists a pure-strategy equilibrium in which 
Sophisticated Allies feint at Normandy and then attack Calais. 
 
In such an equilibrium any deviation from Sophisticated Allies’ equilibrium 
message would “prove” to Sophisticated Germans that the Allies were 
Mortal, making it optimal for Sophisticated Germans to defend Calais and 
suboptimal for Sophisticated Allies to attack there. 
 
If in the equilibrium, Sophisticated Allies feinted at Normandy and attacked 
Calais, then their message would fool only the most likely kind of Mortal 
German—Sophisticated Germans can never be fooled in a pure-strategy 
equilibrium, and a given message cannot fool both Mortal Germans who 
believe and Mortal Germans who invert messages—with expected payoff 
gain equal to the frequency of the most likely kind of Mortal German times 
the payoff of attacking an undefended Normandy. 
 
But such Sophisticated Allies could reverse both their message and attack 
location, again fooling the most likely kind of Mortal German, but now with 
expected payoff gain equal to the frequency of that kind of German times 
the higher payoff of attacking an undefended Calais, a contradiction. 
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In the pure-strategy equilibrium that exists when Sophisticated Allies and 
Germans are rare, the Allies’ message and action are part of a single, 
integrated strategy; and the probability of attacking Normandy is much 
higher than if no communication was possible.  

The Allies choose their message nonrandomly, the deception succeeds 
most of the time, but it allows the Allies to win in the less beneficial way.  

Nonetheless, Sophisticated players in either role do strictly better than their 
Mortal counterparts; their advantage comes from the ability to avoid being 
fooled and/or to choose which Mortal type(s) to fool. 
 
Thus for plausible parameter values, with no unexplained difference in the 
sophistication of Allies and Germans, the model explains why Sophisticated 
Germans might allow themselves to be “fooled” by a costless message 
from a Sophisticated enemy: It is an unavoidable cost of exploiting 
mistakes by Mortal enemies, who are much more common.  

In a weaker sense (resting on a preference for pure-strategy equilibria and 
deterministic predictions), the model also explains why Sophisticated Allies 
don’t feint at Normandy and attack Calais, even though this would be more 
profitable if it succeeded. 
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In the mixed-strategy equilibrium that prevails when Sophisticated Allies 
and Germans are common, Sophisticated players’ equilibrium mixed 
strategies offset each other’s gains from fooling Mortal Receivers, and in 
each role Sophisticated and Mortal players have equal expected payoffs. 
 
 
 
This suggests that in an adaptive analysis of the dynamics of the type 
distribution, as in Conlisk 2001 AER, the frequencies of Sophisticated types  
will grow until the population is in or near (depending on costs) the region 
of mixed-strategy equilibria in which types’ expected payoffs are equal. 
 
 
 
Thus Sophisticated and Mortal players can coexist in long-run equilibrium. 
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13. Preplay Communication of Intentions in Coordina tion 
  Games 

If level-k models allow preplay communication of intentions to affect the 
outcomes of zero-sum games, it should come as no surprise that they also 
allow effective communication in coordination games. 

Ellingsen and Östling 2009 and Crawford 2007, not discussed in detail 
here, adapt Crawford’s 2003 AER approach to study different aspects of 
preplay communication of intentions in coordination and other games.  

Ellingsen and Östling 2009 use a level-k model to study the effectiveness 
of a single round of one- or two-sided preplay communication in games 
where communication of intentions plays various roles.    

Crawford 2007 uses a level-k model to study the effectiveness of one- or 
multi-round two-sided communication in games like Battle of the Sexes, 
building on Farrell’s 1987 RAND J and Rabin’s 1994 JET analyses.  

In each case the power of the analysis stems from the use of a model that 
does not assume equilibrium, which is question-begging in this context; but 
which imposes a realistic structure less agnostic than rationalizability.    
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14. Experimental Evidence on Communication of Priva te 
  Information in Sender-Receiver Games 
 
I now discuss some experimental evidence on communication of private 
information in discretized versions of Crawford and Sobel’s 1982 
Econometrica Sender-Receiver Games, from Wang, Spezio, and Camerer 
2009 AER, who built on the experiments of Cai and Wang’s 2006 GEB. 
 
Sender observes state S = 1, 2, 3, 4, or 5, sends message M = 1, 2, 3, 4, 
or 5. Receiver observes message, chooses action A = 1, 2, 3, 4, or 5. 
 
The Receiver’s choice of A determines the welfare of both: 

● The Receiver’s ideal outcome is A = S. 

● The Sender’s ideal outcome is A = S + b. 

The Receiver’s von Neumann-Morgenstern utility function is 
110 – 20|S – A|1.4, and the Sender’s is 110 – 20|S + b – A|1.4.  

The difference in preferences varied across treatments: b = 0, 1, or 2. 
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Crawford and Sobel’s theoretical analysis characterized the possible 
equilibrium relationships between Sender’s observed S and Receiver’s 
choice of A, which determines the informativeness of communication.  

They showed, for a class of models with continuous state and action 
spaces that generalizes Wang et al.’s examples (except for discreteness), 
that all equilibria are “partition equilibria”, in which as illustrated below, the 
Sender partitions the set of states into contiguous groups and tells the 
Receiver, in effect, only which group his observation lies in. 

For any given difference in Sender’s and Receiver’s preferences (b), there 
is a range of equilibria, from a “babbling” equilibrium with one partition 
element to more informative equilibria that exist when b is small enough. 
 
Under reasonable assumptions there is a “most informative” equilibrium, 
which has the most partition elements and gives the Receiver the highest 
ex ante (before the Sender observes the state) expected payoff. 
 
As the preference difference decreases, the amount of information 
transmitted in the most informative equilibrium increases (measured either 
by the correlation between S and A or the Receiver’s expected payoff). 
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The unambiguous part of Crawford and Sobel’s characterization of 
equilibrium concerns the possible relationships between S and A. 

 

Because messages have no direct effect on payoffs (“cheap talk”), there is 
nothing to tie down their meanings in equilibrium. 

 

As a result, any equilibrium relationship between S and A can be 
supported by any sufficiently rich language, with the meanings of 
messages determined by players’ equilibrium beliefs. 

 

 
(By contrast, in Tom Stoppard’s play “Dogg’s Hamlet”, the actors speak a 
language called “Dogg”, which consists of ordinary English words but with 
meanings completely different from their normal meanings. This creates a 
lot of amusing confusion when they interact with true English speakers—
confusion that would not arise if Dogg did not sound so much like English.) 
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Behaviorally, however, in experiments like Wang et al.’s with a clear 
correspondence between state and message—S = 1, 2, 3, 4, or 5 and M = 
1, 2, 3, 4, or 5—or where communication is in a common natural language, 
the interpretations of messages are dictated by their literal meanings. 
  
Thus messages are always understood—even if not always believed. 
 
 
Wang et al.’s data analysis therefore fixes the meanings of Sender 
subjects’ messages at their literal values. 
 
 
 
Even with this restriction, when b = 0 or 1 in their design (Sender’s and 
Receiver’s preferences are close enough) there are multiple equilibria. 
 
Wang et al.’s analysis then focuses on the “most informative” equilibrium. 
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When b = 0, the most informative equilibrium has M = S and A = S: perfect 
truth-telling, credulity, and information transmission, as is intuitively 
plausible when Sender and Receiver have identical preferences. 
 
 
 
 
When b = 2, the most informative equilibrium has Senders sending a 
completely uninformative message M = {1, 2, 3, 4, 5} for any value of S; 
and Receivers ignoring it, hence choosing A = 3, which is optimal given 
their prior beliefs, for any value of M. 

 

(A babbling equilibrium also exists when b = 0 or 1, but then it is not the 
most informative equilibrium.)  
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When b = 1, the most informative equilibrium has Senders sending M = 1 
when S = 1 but M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; and Receivers 
choosing A = 1 when M = 1 and A = 3 or 4 when M = {2, 3, 4, 5}. 

(The Sender’s message M = {2, 3, 4, 5} is the simplest way to implement 
the intentional vagueness of this partition equilibrium. Another way would 
be for the Sender to randomize M uniformly on {2, 3, 4, 5} when S = 1.) 
 
Thus, when b = 1 the difference in preferences causes noisy information 
transmission even in the most informative equilibrium. 
 
Importantly, however, the Receiver’s beliefs on hearing the Sender’s 
message M are necessarily an unbiased—though noisy—estimate of S: 
 
In equilibrium there is no lying or deception, only intentional vagueness.  

(When b = 1, there’s another, more informative equilibrium, found by David 
Eil, in which Senders send M = {1, 2} when S = 1 or 2 but M = {3, 4, 5} 
when S = 3, 4, or 5; and Receivers choose A = 2 when M = {1, 2} and A = 
4 when M = {3, 4, 5}. But this equilibrium is not “robust”, in that Senders 
who observe S = 2 are indifferent between M = {1, 2} and M = {3, 4, 5}.)   
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Turning to Wang et al.’s results, when b = 0 Senders almost always set M 
= S and Receivers almost always set A = M: The result is near the perfect 
information transmission predicted by the most informative equilibrium. 

Figure 1 shows the Sender’s message frequencies and the Receiver’s 
action frequencies as functions of the observed state S: A circle’s size 
shows the Sender’s message frequencies. A circle’s darkness and the 
poorly visible numbers inside show the Receiver’s action frequencies. 
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As b increases to b = 1 or b = 2, the amount of information transmitted 
decreases as predicted by Crawford and Sobel’s equilibrium comparative 
statics, but there are also systematic deviations from the most informative 
(or any) equilibrium, and lying and successful deception occur. 
 
In Figure 3 (next slide; b = 2 omitted from Wang et al.’s label by accident), 
in the essentially unique, most informative equilibrium M = {1, 2, 3, 4, 5}, so 
equilibrium message distributions would look the same for all five rows; 
and equilibrium actions would be concentrated on A = 3. 
 
However, although the observed actions are fairly close to A = 3, message 
distributions shift rightward as S increases (going down in the table); thus:     

● Most Senders exaggerate the truth (most messages above the diagonal), 
apparently trying to move Receivers from Receivers’ ideal action A = S 
toward Senders’ ideal action A = S + 2 (or 5, whichever is smaller). 

● Even so, there is some information in Senders’ messages (message 
distributions shift rightward going down in the table, so messages are 
positively correlated with the state). 

● Receivers are usually deceived to some extent (average A usually > S). 
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When b = 1, in the most informative robust equilibrium, the Sender’s 
message is M = 1 when S = 1 and M = {2, 3, 4, 5} when S = 2, 3, 4, or 5; 
and the Receiver chooses A = 1 when M = 1 and A = 3 or 4 when M = {2, 
3, 4, 5}. Thus, in equilibrium the distributions of messages and actions 
would be the same for S = 2, 3, 4, or 5. 
 
By contrast, turning to Figure 2 (b = 1; next slide): 
 
● Senders almost always exaggerate the truth (messages above the 

diagonal), apparently trying to move Receivers from Receivers’ ideal 
action A = S toward Senders’ ideal action A = S + 1.   

 

● Even so, there is some information in Senders’ messages (message 
distributions shift rightward going down in the table, so messages 
are positively correlated with the state). 

 
● Receivers are usually deceived to some extent (average A usually > S). 
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What kind of model can explain results like this? Wang et al., following 
Cai and Wang 2006 GEB, propose a level-k explanation based on 
Crawford’s 2003 AER analysis of preplay communication of intentions 
(see also Kartik et al. 2007 JET): 
 
Anchor beliefs in a truthful Sender L0, which sets M = S; and a credulous 
Receiver L0 (which also best responds to an L0 Sender), setting A = M. 
 
L1 Senders best respond to L0 Receivers by inflating their messages by 
b: M = S + b (up to M = 5), so that L0 Receivers will choose S + b, 
yielding the Sender’s ideal action given S. 
 
L1 Receivers (as defined by Wang et al.; the numbering is a convention) 
best respond to L1 Senders by discounting the message, normally setting 
A = M – b, yielding Receivers’ ideal action given M = S + b of S.  
 
The qualification “normally” reflects Wang et al.’s assumption that L1 
Receivers take into account that when b = 2, L1 senders with S = 3, 4, or 
5 all send M = 5, with the result that L1 Receivers, knowing that S is 
equally likely to be 3, 4, or 5, choose A = 4 instead of A = M – 2b = 3.
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L2 Senders best respond to L1 Receivers by inflating their messages by 
2b: M = S + 2b (up to M = 5), so that L1 Receivers will set A = M – b = S 
+ b, yielding Senders’ ideal action given S. 
 
 
L2 Receivers best respond to L2 Senders by discounting the message, 
normally setting A = M – 2b, yielding Receivers’ ideal action given M = S 
+ 2b of S. 
 
The qualification “normally” reflects Wang et al.’s assumption that L2 
Receivers take into account that when b = 1, L2 senders with S = 3, 4, or 
5 all send M = 5, with the result that L2 Receivers, knowing that S is 
equally likely to be 3, 4, or 5, choose A = 4 instead of A = M – 2b = 3. 
 
L2 Receivers also take into account that when b = 2, L2 senders with S = 
2, 3, 4, or 5 send M = 5, with the result that L2 Receivers, knowing that S 
is equally likely to be 2, 3, 4, or 5, choose A = 4 instead of A = M – 2b = 3.
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Note that when b = 1, L1, L2, and Eq all predict M = 5 when S = 4 or 5; 
and when b = 2, L1, L2, and Eq all predict M = 5 when S = 3, 4, or 5. 
 
Econometric estimation classifies 18% of 16 Sender subjects as L0, 25% 
as L1, 25% as L2, 14% as Sophisticated, and 18% as Equilibrium (not 
implausible, but note different type definitions).  
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15. October Surprise: Communication of Private Info rmation in 
  Zero-Sum Two-Person Games 
 
Crawford’s 2003 AER approach to preplay communication of intentions via 
cheap talk is easily adapted, as in Wang, Spezio, and Camerer’s 2009 AER 
analysis of communication of private information, to model the CIA’s 
conclusion in October Surprise that bin Laden’s October 2004 verbal attack 
on George W. Bush was intended to aid Bush’s reelection. 
 
Assume that only bin Laden knows which candidate he wants to win; and, 
talk being cheap, that he will say whatever it takes to get it. 
 
A representative American voter knows only that he wants the opposite of 
what bin Laden wants.  
 
This yields a zero-sum two-person game with incomplete information, 
which like Wang et al.’s b = 2 treatment has only a babbling equilibrium.  
 
Thus, there is no equilibrium in which bin Laden’s cheap talk attack conveys 
information, or in which an American responds to it. 
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Consider, however, a level-k model in which L0 is anchored on truthfulness 
for the sender (bin Laden) and credulity for the receiver (American).  
 
(Or one could derive credulity for an L1 receiver and start from there.)   
 
An L0 or L1 American believes bin Laden’s message, and therefore votes 
for whichever candidate bin Laden attacks. 
 
An L0 bin Laden who wants Bush to win attacks Kerry, but an L1 (L2) bin 
Laden who wants Bush to win attacks Bush to induce L0 (L1) Americans to 
vote for Bush. 
 
Given bin Laden’s attack on Bush, an L0 or L1 American ends up voting for 
Bush, and an L2 American ends up voting for Kerry.  
 
Note that bin Laden’s message is always influential, but he needs to 
choose it to fool the most prevalent kind of American—believer or 
inverter—as in Crawford’s 2003 AER analysis. 

An L2 bin Laden believes that Americans are L1, hence that “reverse 
psychology” will be effective.  
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16. Overbidding in Independent-Private-Value and Co mmon-
Value Auctions (time permitting, this section will be replaced in the 
lectures by a PowerPoint that covers the analysis i n more detail) 
 

Equilibrium predictions 
 First-Price Second-Price 

Independent-
Private-Value 

Auctions 
Shaded Bidding Truthful Bidding 

Common-Value 
Auctions 

Value Adjustment + 
Shaded Bidding 

Value Adjustment  

Systematic overbidding (relative to equilibrium) has been observed in 
subjects’ initial responses to all kinds of auctions (Goeree, Holt, and Palfrey 
2002 JET; Kagel and Levin 1986 AER, 2000; Avery and Kagel 1997 JEMS; 
Garvin and Kagel 1994 JEBO). 

(With independent private values, most of the examples that have been 
studied experimentally do not separate level-k from equilibrium bidding 
strategies, hence our choice to study GHP’s results.) 
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But the literature has proposed completely different explanations of 
overbidding for private- and common-value auctions: 

● “Joy of winning” and/or risk-aversion for private-value auctions. 

● Winner’s curse for common-value auctions. 

 
Crawford and Iriberri 2007 Econometrica propose a level-k analysis that 
provides a unified explanation of these results, without invoking joy of 
winning, which seems like an intellectual dead end, or risk-aversion. 
 
Crawford and Iriberri’s analysis extends Kagel and Levin’s 1986 AER and 
Holt and Sherman’s 1994 AER analyses of “naïve bidding”. 
 
It also builds on Eyster and Rabin’s (“ER”) 2005 Econometrica analysis of 
“cursed equilibrium” and CHC’s 2004, Section VI CH analysis of zero-sum 
betting. 
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The analysis makes it possible to explore how to extend level-k models to 
an important class of incomplete-information games. 
 
 
 
It also makes it possible to explore the robustness of equilibrium auction 
theory to failures of the equilibrium assumption. 
 
 
 
Finally, it establishes a connection between a large body of auction 
experiments and a large body of experiments on strategic thinking. 
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The key issue is how to specify L0; there are two natural possibilities: 

 

● Random L0 bids uniformly on the interval between the lowest 
 and highest possible values (even if above own realized value). 
 
● Truthful L0 bids its expected value conditional on its own signal 
 (meaningful here, though not in all incomplete-information games).   

 

In judging these specifications, bear in mind that L0 describes only the 
instinctive starting point of a subject’s strategic thinking about others; higher 
Lks model the actual strategic thinking.   

 

The model constructs separate type hierarchies on these L0s, and allows 
each subject to be one of the types, from either hierarchy.  

Random (Truthful) Lk is Lk defined by iterating best responses from 
Random (Truthful) L0; and is not itself random or truthful. 
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Given a specification of L0, the optimal bid must take into account: 

● Value adjustment for the information revealed by winning (only in 
 common-value auctions). 
 
● The bidding trade-off between the higher price paid if the bidder 
 wins and the probability of winning (only in first-price auctions). 

With regard to value adjustment, Random L1 does not condition on winning 
because Random L0 bidders bid randomly, hence independently of their 
values; Random L1 is “fully cursed” (ER). 

All other types do condition on winning, in various ways, but this 
conditioning tends to make bidders’ bids strategic substitutes, in that the 
higher others’ bids are, the greater the (negative) adjustment. 

Thus, to the extent that Random L1 overbids, Random L2 tends to 
underbid (relative to equilibrium): if it’s bad news that you beat equilibrium 
bidders, it’s even worse news that you beat overbidders. 

The bidding tradeoff, by contrast, can go either way. 
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The question, empirically, is whether the distribution of types’ bids (for 
example, a mixture of Random L1 overbidding and Random L2 
underbidding) fits the data better than alternative models. 

 

In three of the four leading cases Crawford and Iriberri study, a level-k 
model does better than equilibrium plus noise, cursed equilibrium, and/or 
LQRE. 

For the remaining case (Kagel and Levin’s first-price auction), the most 
flexible cursed equilibrium specification has a small advantage.  

 

Except in Kagel and Levin’s second-price auctions, the estimated type 
frequencies are similar to those found in other experiments: 

Random and Truthful L0 have low or zero estimated frequencies, and the 
most common types are (in order of importance) Random L1, Truthful L1, 
Random L2, and sometimes Equilibrium or Truthful L2. 
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17. Behaviorally Optimal Auction Design 

 
A number of recent papers reconsider core microeconomic questions taking 
a “behavioral” view of individual decisions or probabilistic judgment. 
 
 
Most such papers focus on consumer behavior, but a few analyze 
questions in mechanism design (Glazer and Rubinstein 1998 JET; Neeman 
2003 GEB; Eliaz and Spiegler 2006 REStud, 2007 Econometrica). 
 
 
In those papers, however, the behavioral aspect is limited to decisions or 
judgment rather than beliefs: Despite the central role of equilibrium 
assumptions in the theory of mechanism design, there are very few 
analyses of design outside the equilibrium paradigm. 
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Taking a broader view of strategic behavior should increase the practical 
usefulness of mechanism design theory. 
 
Design inherently involves the creation of new games, for which the 
learning justification for equilibrium may be weak or nonexistent. 
 
Yet it is often important for an application to work the first time. 
 
In the U.S. FCC spectrum auction, billions of dollars were at stake. 
 
Partly because they believed sealed-bid designs would not yield outcomes 
close enough to equilibrium to ensure good results, the designers adopted 
a progressive, partly “open” design for which the theory was weaker but 
experimental results were more promising. 
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Further, assuming equilibrium may yield theoretically optimal designs that 
are too complex for confidence in equilibrium behavior, even if learning is 
possible. 
 
 
Replacing equilibrium with a model that better describes people’s 
responses to new and/or complex games—equilibrium responses in games 
that tend to elicit them and systematic deviations in games that don’t—
should allow us to design more effective mechanisms. 
 
 
It also suggests a concrete, evidence-based way to assess the robustness 
of mechanisms, something previously left to intuition. 
 
In a level-k analysis, a “robust” mechanism that implements desired 
outcomes in dominant strategies or is dominance-solvable in one or two 
rounds may have an actual advantage over a more complex mechanism 
that theoretically implements better outcomes, but only in equilibrium. 
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Crawford, Kugler, Neeman, and Pauzner 2009 JEEA conducted a level-k 
analysis of optimal auction design began to explore relaxing the equilibrium 
assumption in mechanism design. 
 
 
They considered the leading case of an optimal (expected-revenue 
maximizing) single-object sealed-bid auction with two symmetric bidders 
who have independent private values, for which Myerson 1981 
Mathematics of Operations Research) provides a complete equilibrium-
based analysis. 
 
 
To focus sharply on strategic behavior, they maintained the standard 
rationality assumptions regarding decisions and judgment. 
 
 
They modeled strategic behavior via a level-k model that follows Crawford 
and Iriberri 2007 Econometrica. 
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They assumed that bidders are drawn from a given population of level-k 
types, known to the designer. 
 
 
Because the question of optimal auctions with level-k bidders is a difficult 
one, most of their analysis was conducted in representative examples. 
 
 
They considered what reserve prices are optimal and how much revenue 
they yield in first-price auctions. 
 
 
They also consider the optimality of auction forms, and the use of exotic 
auctions that exploit bidders’ non-equilibrium beliefs to exceed Myerson’s 
revenue bound. 
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Equilibrium Analysis of Optimal Auctions 
 
 
 
Consider single-object auctions with two risk-neutral bidders whose values 
are independently and identically distributed (“i.i.d.”). 
 
 
 
Consider two examples, one with increasing and one with decreasing value 
density, which lead to different patterns of level-k deviations from 
equilibrium beliefs that together are representative of the possibilities. 
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In the increasing-density (“I”) example values have the distribution function 
FIγ(v) = vγ  on [0,1], with the density fIγ(v) = γvγ-1. 
 
γ > 0 is required for FIγ(v) to be a valid distribution function, and we 
strengthen this to γ > 1 to make the density increasing. 
 
Suppress γ below, writing FI and fI instead of FIγ and fIγ. 
 
Because 
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is increasing in v when γ > 1, FI is “regular” in Myerson’s sense.  
 
Thus, Myerson’s famous result establishes that among the optimal 
mechanisms in this environment is a first-price auction with suitably chosen 
reserve price. 
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In a first-price auction with reserve price r, the equilibrium bid for value v ≥ r 
can be shown to be 
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The optimal reserve can be shown to be 
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In the decreasing-density (“D”) example values have the distribution 
function 
 

FDαβ(v) = )1(
v

α
αβ

β −
−  on [α, β], with α > 0,  

 
with well-defined density αβ/[(β-α)v2] that is positive and continuous on [α, 
β]. 
 
Suppress α and β below, writing FD and fD instead of FDαβ and fDαβ. 
 
Because  
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is increasing in v on [α, β], FD is regular. 
 
Thus, Myerson’s 1981 result again establishes that an optimal mechanism 
in this environment is a first-price auction, with reserve price α. 
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In a first-price auction with reserve r ε [α, β], the equilibrium bid for value v ≥ 
max {α, r} is  
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Note that for this distribution, )(| vb E
rD is independent of β. 

 

Further, although )(| vbE
rD →∞ as v→∞, it increases extremely slowly, like ln 

v. 
 

As a result, if r = α = 1, for example, 82.13)000,000,1(| =E
rDb , so that in 

equilibrium, a bidder who values the object at $1,000,000 bids only $13.82. 
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In a first-price auction with reserve price r ≤ β, the seller’s expected revenue 
in equilibrium is: 

∫ −+−=Π
β

αβ
r

rD dxxHrGr ,))(1())(1(|  

 
where G(v) = FD (v)2 and H(v) = FD (v)2 +2(1- FD (v))FD (v) denote the 
cumulative distributions of the first and second order statistics, respectively, 
of bidders’ valuations (Neeman 2003 GEB). 
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Algebra shows that for reserve price r ≥ α, 
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and for reserve price r ε [0, α], )(| vb E
rD  for r = α remains an equilibrium, so 

the seller’s expected revenue is the same as when r = α. 
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Thus, because bidders’ virtual valuations are nonnegative, Myerson’s 
analysis implies that any r ε [0, α] maximizes the seller’s expected revenue. 
It follows that the expected revenue to the seller under the optimal auction 
is: 
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Note that ααβ =Π rD | is bounded from above by α
αβ
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2

2 ≈
− for β >> α.  

 
This fact is used below to compare the seller’s equilibrium expected 
revenue to his level-k expected revenue. 
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Level- k Analysis of Optimal Reserves in First-Price Auctio ns  
 
Recall that in a level-k model, bidders are drawn from a distribution of 
types. Type Lk anchors its beliefs in an L0 type and adjusts them via 
iterated best responses: L1 best responds to L0, L2 to L1, and so on. 
 
To complete the specification, define the L0 type following Crawford and 
Iriberri 2007 Econometrica: either a “random” L0 that bids uniformly over 
the natural range of bids (as in most previous level-k analyses) or a 
“truthful” L0 that bids its private value (following Crawford 2003 AER). 
 
Call the associated L1s or L2s “random” or “truthful” L1s or L2s. 
 
Crawford and Iriberri estimated large frequencies (59-65%) of random L1 
bidders and much smaller but significant frequencies of random L2 (4-9%), 
truthful L1 (9-18%), and truthful L2 (1-16%). 
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In this analysis, unlike Crawford and Iriberri’s 2007 Econometrica analysis, 
reserve prices r above the lowest possible value are potentially important. 
 
This creates an ambiguity regarding the “natural range of bids,” which for 
the I example could be either [0,1] or (truncating the value distribution) [r,1] 
and for the D example could be either [α, β] or [r, β]. 
 
Focus on the latter specifications, which experiments suggest are more 
descriptive of most subjects’ bidding behavior. 
 
Given this specification, for the I example all types decline to bid (or, 
equivalently, bid less than r) when v < r. 
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A random L1’s bid is given by 
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A truthful L1’s bid is given by 
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A random L2’s bid is given by 
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A truthful L2’s bid is the same as a truthful L1’s 
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Given the above type specification, for the D example all types decline to 
bid (or, equivalently, bid less than r) when v < r. 
 
A random L1’s bid is given by 
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if v ≥ max{r, α} and declines to bid otherwise. 
  
 
A truthful L1’s bid is given by 
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if v ≥ r and declines to bid otherwise. 
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A random L2’s bid is given by 
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Random L2 believes it wins if it bids b > max{r, [v+max{r,α}]/2} if and only if 
the other bidder’s value is less than max{r, 2b – max{r,α}. 
 
If r<b<max{r,α}]/2, the probability of winning is independent of b and b = r is 
optimal. Thus we need to compare b = r with the b > max{r,α}/2. 
 
Writing the first-order condition in the latter case and simplifying yields 
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Thus, this expression is optimal whenever it is both larger than r and yields 
higher expected payoff than bidding r. 
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Finally, a truthful L2’s bid is given by 
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Truthful L2 believes it wins if it bids b > max{r,(αv)½ if and only if the other 
bidder’s value is less than b2/α. Plugging this in, we get 
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Writing the first-order condition and simplifying yields 
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which is optimal whenever it is larger than r; otherwise truthful L2’s bid 
equals r. Like truthful L1’s, truthful L2’s bid is independent of r when it is 
above r. 
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Note that for large values of v, )(1
| vb R
rD  is approximately linear in v, )(1

| vb T
rD  

and )(2
| vb R
rD are proportional to v½, and )(2

| vb T
rD is proportional to v1/3. 

 
 
 

By contrast, )(| vbE
rD is proportional to ln v, which is much smaller for large 

values of v. For example, if r = α = 1, then )000,000,1(1
|
R
rDb = 500,000.5 and )000,000,1(1
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= 1000, much larger than )000,000,1(|

E
rDb = 13.82. 
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Given that in the D example, level-k bidders bid more aggressively than 
equilibrium bidders, a designer facing a known distribution of level-k bidders 
should be able to realize more expected revenue than is possible with 
equilibrium bidders. 
 
 
 
One can derive a lower bound on this revenue by calculating it for two 
random L1 bidders and reserve price r = 0 and then multiplying by the 
probability that two such bidders are drawn. 
 
 
(It is feasible for the designer to design optimally for this contingency 
ignoring all others, and the optimal design can do no worse.) 
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When G(v) = FD (v)2 as above, the expected revenue from two random L1 
bidders and reserve price r = 0 is 
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Notably, this expression → ∞ (albeit slowly, like ln β) as α is held fixed and 
β→∞. 
 
If α = 1 and β = 2000, the value of this expression is approximately 7.5, 
almost four times as large as the 2α that approximates the seller’s expected 
revenue with equilibrium bidders. 
 
Since the probability of drawing two random L1s is about ¼, it is clear that 
in at least some cases, the seller can realize more expected revenue than 
with equilibrium bidders. 
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As noted above, for the D example with equilibrium bidders, a second-price 
auction (or equivalently an English auction) with reserve r ≤ α is optimal. 
 
 
But because (with independent private values) a second-price auction 
makes the equilibrium bid a dominant strategy, level-k bids coincide with 
equilibrium bids, hence a second-price auction yields only the equilibrium 
expected revenue. 
 
 
Thus the analysis shows that in the D example with level-k bidders, a first-
price auction with suitable reserve yields higher expected revenue than the 
best second-price auction. 
 
 
Trivially and unsurprisingly, it also shows that revenue-equivalence breaks 
down. 



 222 

 
 
Finally, there are examples where the optimal reserve is large with 
equilibrium bidders but small with level-k bidders, and vice versa. 
 
 
 
Interesting open questions are when a reserve induces more aggressive 
bidding for equilibrium than level-k bidders, and the extent to which this 
makes optimal level-k reserves higher than optimal equilibrium reserves. 
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Exotic Auctions That Exploit Level- k Bidders’ Non-Equilibrium Beliefs 
 
I now give an example in a slightly different environment that illustrates the 
fact that a designer can exploit level-k bidders’ non-equilibrium beliefs to 
obtain very large expected revenues. 
 
 
As before, consider a single-object auction with two risk-neutral bidders 
whose values are independently and identically distributed. 
 
 
But now suppose that the values are uniformly distributed on the unit 
interval. 
 
 
The maximum expected surplus (ignoring incentive constraints) for this 
environment is E[max{v1,v2} = 2/3. Myerson showed that a second-price 
auction with reserve 0.5 is optimal, and such an auction can be shown to 
yield expected revenue 0.41667. 
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Consider the following exotic auction: 
 
 
● Bidders submit simultaneous sealed bids b1, b2 ε [0,1]. 
 
 
● A bidder who bids 1 wins the object if the other bids less than 1. 
 
 
● If both bid 1, the winning bidder is chosen randomly. 
 
 
● A bidder who bids 1 pays 0.5 if the other bidder bids less than 1, and 
  pays M > 1 if the other bidder bids 1. 
 
 
● A bidder who bids less than 1 pays nothing, but cannot win the object.   



 225 

For this auction, truthful and random L0 bid uniformly randomly on the unit 
interval. 
 
As a result, truthful and random L1, defined as above for an auction with no 
reserve, both believe that if they bid 1 they will win the object and pay 0.5. 
Because truthful and random L0 bid uniformly randomly, truthful and 
random L1 assign zero prior probability to the possibility that they will have 
to pay M. 
 
Consequently, truthful and random L1 are willing to participate, and both bid 
1 if their value is 0.5 or higher, and 0 otherwise. 
 
Given this behavior, both truthful and random L2 believe that the other 
bidder will bid 1 with prior probability 0.5 and 0 otherwise. 
 
Truthful and random L2 therefore expect that bidding 1 will result in their 
winning the object with probability 0.75, paying 0.5 with probability 0.5, and 
paying M > 1 with probability 0.5. Hence they decline to bid (or equivalently, 
bid less than 1). 
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Truthful and random L3, L5, …, behave the same as truthful and random 
L1. 
 
 
 
Truthful and random L4, L6, …, behave the same as truthful and random 
L2. 
 
 
 
Thus when bidders both have k odd the seller’s expected revenue is M, and 
when bidders both have k even it is 0. 
 
 
 
Even a designer who does not know the type distribution can obtain very 
large expected revenue by setting M very large to exploit level-k bidders’ 
non-equilibrium beliefs. 
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General Observations on Level- k Auction Design 

This formulation of the design problem takes the level-k model’s 
specification as given, independent of the auction design, just as the 
standard formulation assumes bidders will play an equilibrium for any 
design. 

The specification is based on substantial experimental evidence and is 
general enough to apply to any game; but there is reason to doubt the 
exogeneity assumption, particularly for exotic auctions, which go beyond 
the evidence on which our specification is based. 
 
For example, bidders might view the above exotic auction as having as 
reserve of 1, in which case the most natural L0 specification (random or 
truthful) has a spike at 1, with the result that a value of M high enough to be 
profitable would make even truthful and random L1 bidders decline to bid. 

More generally, a level-k model can be expected to describe bidders’ 
behavior for a reasonably wide class of standard auction designs (Crawford 
and Iriberri 2007 Econometrica), but the model’s descriptive accuracy has 
not been evaluated for non-standard auctions. 
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An auction design that is optimal for a level-k specification when it is 
assumed to be independent of the design might not be an auction for which 
the level-k model describes behavior well. 
 
 
 
A general formulation of the design problem must take a position on how 
the design influences the rules that describe bidders’ behavior and develop 
new methods to deal mathematically with that influence. 
 
 
 
It is therefore important to learn more about the link between auction design 
and behavior. 
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Even without influences like those just discussed, the heterogeneity of 
level-k beliefs and behavior greatly complicates the characterization of 
optimal auctions. 
 
 
In the standard analysis there is no loss of generality in using the revelation 
principle to restrict attention to direct mechanisms because, if equilibrium is 
assumed (with a selection rule in case of multiple equilibria), a bidder’s 
private value is all that is needed to predict his behavior. 
 
 
Given the restriction to direct mechanisms, the design problem is well-
behaved enough that it is guaranteed to have a solution. 
 
 
The above exotic example shows that this is no longer the case with level-k 
bidders, even if their level-k types are all the same, and even if this is 
known to the designer. 
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With a heterogeneous population of types, even if it is known to the 
designer, the problem becomes more complex. 
 
Bidders with the same private values but different level-k types have 
different beliefs and will generally behave differently. 
 
Our preliminary analyses suggest that Myerson’s methods can be used to 
characterize an optimal auction if the designer knows that the population is 
homogeneous, and knows its type; and if the class of possible designs is 
restricted to rule out those that are too exotic for an optimal auction to exist. 
 
But if the population is heterogeneous the problem becomes 
multidimensional, and much more difficult; and the high-dimensional 
reporting mechanisms one would consider for this case complicate the 
specification of L0 and the influence of design on behavior. 
 
 
Behaviorally optimal auction design poses interesting challenges, and 
meeting them should increase the practical usefulness of design. 


