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Introduction 

The paper revisits Myerson and Satterthwaite’s 1983 JET (“MS”) 
classic analysis of the design of incentive-efficient mechanisms for 
bilateral trading with independent private values, inspired by 
Chatterjee and Samuelson’s 1983 OR (“CS”) positive analysis. 
 
MS assumed that traders will play any desired Bayesian Nash 
equilibrium in the game created by the chosen mechanism.  
 
 
 
I replace MS’s equilibrium assumption with a structural 
nonequilibrium “level-k” model of strategic thinking, meant to 
describe initial responses to games; and study direct mechanisms. 
 
To focus on nonequilibrium thinking, I maintain standard rationality 
assumptions regarding decisions and probabilistic judgment.  
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Motivation 

 
● Mechanism design often creates novel games, weakening the 

learning justification for equilibrium; yet the design may need to 
work well the first time 

 
● Even if learning is possible, design may create games complex 
 enough that convergence to equilibrium is behaviorally unlikely 
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Motivation 

 
● Mechanism design often creates novel games, weakening the 

learning justification for equilibrium; yet the design may need to 
work well the first time 

 
● Even if learning is possible, design may create games complex 
 enough that convergence to equilibrium is behaviorally unlikely 
 
 
We usually assume equilibrium anyway, perhaps because: 
 
● We doubt we can identify a credible basis for analysis among 
 the enormous number of possible nonequilibrium models  
 
● We doubt that any nonequilibrium model could systematically 
 out-predict a rational-expectations notion such as equilibrium 
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But… 

● There is now a large body of experimental research that studies 
 strategic thinking by eliciting subjects’ initial responses to games 
 (surveyed in Crawford, Costa-Gomes, and Iriberri 2013 JEL) 
 
● The evidence suggests that people’s thinking in novel or 

 complex games does not follow the fixed-point or indefinitely 
iterated dominance reasoning that equilibrium often requires 

(Learning can still make people converge to something that we 
need fixed-point reasoning to characterize; the claim is that 
fixed-point reasoning doesn’t directly describe people’s thinking) 
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But… 

● There is now a large body of experimental research that studies 
 strategic thinking by eliciting subjects’ initial responses to games 
 (surveyed in Crawford, Costa-Gomes, and Iriberri 2013 JEL) 
 
● The evidence suggests that people’s thinking in novel or 

 complex games does not follow the fixed-point or indefinitely 
iterated dominance reasoning that equilibrium often requires 

(Learning can still make people converge to something that we 
need fixed-point reasoning to characterize; the claim is that 
fixed-point reasoning doesn’t directly describe people’s thinking)  

 

● To the extent that people do not follow equilibrium logic, they 
 must  find another way to think about the game 
 
● Much evidence points to a class of nonequilibrium “level-k” or 
 “cognitive hierarchy” models of strategic thinking 
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Level-k models 
 
In a level-k model people follow rules of thumb that: 
 
● Anchor their beliefs in a naïve model of others’ response to the 
 game, called L0, often uniform random over feasible decisions  

and 

● Adjust their beliefs via a small number (k) of iterated best 
 responses; so L1 best responds to L0, L2 to L1, and so on 
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level frequencies are treated as behavioral parameters and either 
estimated from the data or calibrated from previous estimates. 
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Level-k models 
 
In a level-k model people follow rules of thumb that: 
 
● Anchor their beliefs in a naïve model of others’ response to the 
 game, called L0, often uniform random over feasible decisions  

and 

● Adjust their beliefs via a small number (k) of iterated best 
 responses, so L1 best responds to L0, L2 to L1, and so on 
 
 
People’s levels are usually heterogeneous, and the population 
level frequencies are treated as behavioral parameters and either 
estimated from the data or calibrated from previous estimates. 
 
Estimates vary with the setting and population, but normally the 
estimated frequency of L0 is small or zero and the distribution of 
levels is concentrated on L1, L2, and L3.  
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● Lk (for k > 0) is decision-theoretically rational, with an accurate 
model of the game; it departs from equilibrium only in deriving its 
beliefs from an oversimplified model of others’ responses 
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● Lk (for k > 0) is decision-theoretically rational, with an accurate 
model of the game; it departs from equilibrium only in deriving its 
beliefs from an oversimplified model of others’ responses 

 
● Lk (for k > 0) respects k-rationalizability (Bernheim 1984 Ecma), 
 hence in two-person games its decisions survive k rounds of 
 iterated elimination of strictly dominated strategies 
 
 Thus Lk mimics equilibrium decisions in k-dominance-solvable 
 games, but may deviate systematically in more complex games 
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● Lk (for k > 0) is decision-theoretically rational, with an accurate 
model of the game; it departs from equilibrium only in deriving its 
beliefs from an oversimplified model of others’ responses 

 
● Lk (for k > 0) respects k-rationalizability (Bernheim 1984 Ecma), 
 hence in two-person games its decisions survive k rounds of 
 iterated elimination of strictly dominated strategies 
 
 Thus Lk mimics equilibrium decisions in k-dominance-solvable 
 games, but may deviate systematically in more complex games. 
 

● A level-k model (with zero weight on L0) can be viewed as a 
 heterogeneity-tolerant refinement of k-rationalizability 
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● Lk (for k > 0) is decision-theoretically rational, with an accurate 
model of the game; it departs from equilibrium only in deriving its 
beliefs from an oversimplified model of others’ responses 

 
● Lk (for k > 0) respects k-rationalizability (Bernheim 1984 Ecma), 
 hence in two-person games its decisions survive k rounds of 
 iterated elimination of strictly dominated strategies 
 
 Thus Lk mimics equilibrium decisions in k-dominance-solvable 
 games, but may deviate systematically in more complex games. 
 

● A level-k model (with zero weight on L0) can be viewed as a 
 heterogeneity-tolerant refinement of k-rationalizability 
 
 But unlike k-rationalizability, a level-k model makes precise 

predictions, given the population level frequencies: not only that 
deviations from equilibrium will sometimes occur, but also which 
settings evoke them and which forms they are likely to take. 
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● Level-k models share the generality and much of the tractability 
of equilibrium models (contrast k-rationalizability’s set-valued 
predictions or quantal response equilibrium’s computationally 
challenging noisy fixed-point predictions) 

 
This allows them to clarify the role of the equilibrium assumption: 
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● Level-k models share the generality and much of the tractability 
of equilibrium models (contrast k-rationalizability’s set-valued 
predictions or quantal response equilibrium’s computationally 
challenging noisy fixed-point predictions) 

 
This allows them to clarify the role of the equilibrium assumption: 
 
● A level-k analysis can identify settings where conclusions based 
 on equilibrium are robust to likely deviations from equilibrium 
 
● A level-k analysis can identify settings in which mechanisms that 

yield superior outcomes in equilibrium are worse in practice than 
others whose performance is less sensitive to deviations: an 
evidence-disciplined approach to robustness 
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● Level-k models share the generality and much of the tractability 
of equilibrium models (contrast k-rationalizability’s set-valued 
predictions or quantal response equilibrium’s computationally 
challenging noisy fixed-point predictions) 

 
This allows them to clarify the role of the equilibrium assumption: 
 
● A level-k analysis can identify settings where conclusions based 
 on equilibrium are robust to likely deviations from equilibrium 
 
● A level-k analysis can identify settings in which mechanisms that 

yield superior outcomes in equilibrium are worse in practice than 
others whose performance is less sensitive to deviations: an 
evidence-disciplined approach to robustness 

 
● A level-k analysis might reduce optimal mechanisms’ sensitivity 

to distributional and other details that real mechanisms seldom 
depend on, as advocated by Robert Wilson (1987) and others 
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Antecedents 

● Crawford and Iriberri’s (2007 Ecma) level-k analysis of bidding 
behavior in sealed-bid independent-private-value and common-
value auctions, which builds on Milgrom and Weber’s (1982 
Ecma) equilibrium analysis 

● Crawford, Kugler, Neeman, and Pauzner’s (2009 JEEA;“CKNP”) 
level-k analysis of optimal independent-private-value auctions, 
which builds on Myerson’s (1981 MathOR) equilibrium analysis 

● Saran’s (2011 GEB) analysis of MS’s design problem with a 
 known population frequency of truthful traders 

● de Clippel, Saran, and Serrano’s (2015, 2018 REStud) analyses 
 of implementation with bounded depth of reasoning, small errors 

● Kneeland’s (2017) analysis of level-k implementation, with 
 illustrations including bilateral trading 

● Gorelkina’s (2018 IJGT) level-k analysis of the expected 
 externality mechanism 
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Outline 

● CS’s equilibrium analysis of bilateral trading via double auction 

● MS’s analysis of equilibrium-incentive-efficient mechanisms 

● A level-k model for direct games with asymmetric information 

● Level-k analyses of the double auction 

• L1s’ optimism, aggressiveness, and incentive-ineffiency 

  • L2s’ pessimism, unagressiveness, incentive-supereffiency 

● Design requiring level-k-incentive-compatibility (not w.l.o.g.) 

  • Observable or predictable levels 

  • Level-k menu effects and the revelation principle  

  • Unobservable and unpredictable, heterogeneous levels 

● Design relaxing level-k-incentive-compatibility 

  • Observable or predictable levels 

  • Unobservable and unpredictable, heterogeneous levels 
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CS’s equilibrium analysis of bilateral trading via double 
auction 
 
CS’s model has a potential seller and buyer of an indivisible 
object, in exchange for money. 
 
Their von Neumann-Morgenstern utility functions are quasilinear 
in money: thus risk-neutral, with money values for the object. 
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CS’s equilibrium analysis of bilateral trading via double 
auction 
 
CS’s model has a potential seller and buyer of an indivisible 
object, in exchange for money. 
 
Their von Neumann-Morgenstern utility functions are quasilinear 
in money: thus risk-neutral, with money values for the object. 
 
 
Denote the buyer’s value V and the seller’s value C (for “cost”). 
 
V and C are independent, with positive densities f(V) and g(C) on 
their supports and distribution functions F(V) and G(C).  
 
CS and MS allowed the densities to have any bounded 
overlapping supports, but without important loss of generality I 
take the supports to be identical and normalize them to [0, 1]. 
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In the double auction: 
 
 
● If the buyer’s money bid b ≥ the seller’s money ask a, the seller 
 exchanges the object for a given weighted average of b and a 
 
 
● CS allowed any weights between 0 and 1, but I take the weights 

to be equal, so the buyer acquires the object at price (a + b)/2, 
the seller’s utility is (a + b)/2, and the buyer’s is V - (a + b)/2 

 
 
● If b < a, the seller retains the object, no money changes hands, 
 the seller’s utility is C, and the buyer’s utility is 0 
  
 
● I ignore the possibility that a = b, which will have 0 probability 
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The double auction has many Bayesian equilibria. 
 
 
 
 
When f(V) and g(C) are uniformly distributed, CS identify a linear 
equilibrium, which also plays a central role in MS’s analysis. 
 
 
 
 
Denote the buyer’s bidding strategy b(V) and the seller’s asking 
strategy a(C), with * subscripts for the equilibrium strategies. 
 
  



25 
 

In the linear equilibrium, with value densities supported on [0, 1],  

𝑏∗(𝑉) =  2𝑉/3 +  1/12  
 
unless V < ¼, when 𝑏∗(𝑉) can be anything that precludes trade;  
 
and 

𝑎∗(𝐶) = 2𝐶/3 +  ¼  
 
unless C > ¾, when 𝑎∗(𝐶) can be anything that precludes trade. 
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In the linear equilibrium, with value densities supported on [0, 1],  

𝑏∗(𝑉) =  2𝑉/3 +  1/12  
 
unless V < ¼, when 𝑏∗(𝑉) can be anything that precludes trade;  
 
and 

𝑎∗(𝐶) = 2𝐶/3 +  ¼  
 
unless C > ¾, when 𝑎∗(𝐶) can be anything that precludes trade. 
 
 
Trade occurs if and only if 2V/3 + 1/12 ≥ 2C/3 + ¼, or V ≥ C + ¼: 
with positive probability the outcome is ex post inefficient. 
 
The ex ante probability of trade is 9/32 ≈ 28% and the expected 
total surplus is 9/64 ≈ 0.14, less than the maximum individually 
rational probability of trade 50% and expected surplus 1/6 ≈ 0.17. 
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MS’s analysis of equilibrium-incentive-efficient mechanisms 
 
 
MS characterized incentive-efficient mechanisms in CS’s trading 
environment, requiring interim individual rationality.  
 
 
Like CS, MS allowed general, independent value distributions with 
strictly positive densities on ranges that overlap for the buyer and 
seller; but I will continue to take both value supports to be [0, 1]. 
 
 
MS assumed that traders will play any desired Bayesian 
equilibrium in the game created by the chosen mechanism. 
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A direct (or direct-revelation) mechanism is one in which players’ 
decisions are conformable to estimates of their values, with the 
outcome a function of the reported values. 
 
When traders are risk-neutral in money, denoting their value 
reports v and c (distinct from true values V and C), the payoff-
relevant aspects of an outcome are determined by two functions: 

● p(v, c), the probability that the object is transferred, and  

● x(v, c), the expected monetary payment from buyer to seller 
   
Although these outcome functions depend only on reported 
values, traders’ utilities are determined by their true values. 
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A direct (or direct-revelation) mechanism is one in which players’ 
decisions are conformable to estimates of their values, with the 
outcome a function of the reported values. 
 
When traders are risk-neutral in money, denoting their value 
reports v and c (distinct from true values V and C), the payoff-
relevant aspects of an outcome are determined by two functions: 

● p(v, c), the probability that the object is transferred, and  

● x(v, c), the expected monetary payment from buyer to seller 
   
Although these outcome functions depend only on reported 
values, traders’ utilities are determined by their true values. 
 

A direct mechanism with outcome functions p(∙, ∙), x(∙, ∙) is 
incentive-compatible iff it makes truthful reporting an equilibrium; 
and is (interim) individually rational iff it yields buyer and seller 
expected utility ≥ 0 for every possible realization of their values. 
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The revelation principle shows that if traders can be counted on to 
play any desired equilibrium in the game created by the designer’s 
chosen mechanism, there is no loss of generality in restricting 
attention to incentive-compatible direct mechanisms: 

“We can, without any loss of generality, restrict our attention to 
incentive-compatible direct mechanisms. This is because, for any 
Bayesian equilibrium of any bargaining game, there is an equivalent 
incentive-compatible direct mechanism that always yields the same 
outcomes (when the individuals play the honest equilibrium)….[w]e 
can construct [such a] mechanism by first asking the buyer and seller 
each to confidentially report his valuation, then computing what each 
would have done in the given equilibrium strategies with these 
valuations, and then implementing the outcome (transfer of money 
and object) as in the given game for this computed behavior. If either 
individual had any incentive to lie to us in this direct mechanism, then 
he would have had an incentive to lie to himself in the original game, 
which is a contradiction of the premise that he was in equilibrium in 
the original game.” (MS, pp. 267-268) 
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MS’s Theorem 1 uses the conditions for incentive-compatibility 
and individual rationality to derive an “incentive budget constraint” 
(my term, not theirs), subject to which, for traders with quasilinear 
utility functions, incentive-efficient outcome functions p(∙, ∙) and 
x(∙, ∙) must maximize the sum of traders’ ex ante expected utilities. 
 
 
MS’s Corollary 1 shows that no incentive-compatible, individually 
rational mechanism can assure ex post Pareto-efficiency. 
 
 
MS’s Theorem 2 uses Theorem 1’s conditions to characterize the 
outcome functions associated with incentive-efficient mechanisms. 
 
 
(The level-k counterparts of MS’s results will be used below to 
give a more detailed exposition of MS’s analysis.) 
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In CS’s example with uniform value densities, MS’s Theorem 2 
yields a closed-form solution for an incentive-compatible, 
incentive-efficient mechanism, which transfers the object if and 
only if the reported values satisfy v ≥ c + ¼, at price (v + c + ½)/3. 
 
 
The linear equilibrium of the double auction with uniform densities 
transfers the object whenever the true values satisfy V ≥ C + ¼. 
 
 
Thus, even though the double auction is not incentive-compatible, 
linear equilibrium bidding strategies shade to mimic the outcome 
of truthful reporting in MS’s incentive-efficient mechanism. 
 
 
(Satterthwaite and Williams 1989 JET showed, however, that for 
generic densities CS’s double auction does not yield incentive-
efficient outcomes; so MS’s result for this example is coincidental.) 
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A level-k model for direct games with asymmetric information 

Recall that in a level-k model people anchor their beliefs in a naïve 
model of others’ responses, L0, and adjust their beliefs via iterated 
best responses: L1 best responds to L0, and so on. 

In complete-information games L0 is usually assumed to make 
decisions uniformly distributed over the feasible decisions. 
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A level-k model for direct games with asymmetric information 

Recall that in a level-k model people anchor their beliefs in a naïve 
model of others’ responses, L0, and adjust their beliefs via iterated 
best responses: L1 best responds to L0, and so on. 

In complete-information games L0 is usually assumed to make 
decisions uniformly distributed over the feasible decisions. 

I take L0’s decisions to be uniform over the feasible decisions, 
independent of own value. 

Specifically, in a direct mechanism for the bilateral trading setting, 
I take L0’s decisions to be uniform over [0, 1]. 

(Allowing bounded overlapping supports as CS and MS did, my 
assumption corresponds to assuming that L0 is uniform on the 
overlap, which traders have enough information to identify.)  
 
This L0 yields a hierarchy of rules via iterated best responses. 
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One can imagine more refined specifications, e.g. with an L0 
buyer’s bid (seller’s ask) uniform below (above) its value instead 
of over the entire range (thus eliminating dominated strategies). 
 
 
But L0 is not an actual player: It is a player’s naïve model of other 
players—others whose values he does not observe. 
 
It is logically possible that players reason contingent on others’ 
possible values, but behaviorally far-fetched: people tend to be 
informationally naïve (“cursed”, Eyster and Rabin 2005 Ecma), 
ignoring links between others’ decisions and private information.  

  
 
The extended level-k model captures both this informational 
naivete and people’s aversion to the fixed-point or indefinitely 
iterated dominance reasoning that equilibrium often requires. 
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This extended level-k model has a long history: 

Milgrom and Stokey’s (1982 JET) “No-Trade Theorem” shows that 
if traders in an asset market start out in market equilibrium—
Pareto-efficient, given their information—then giving them new 
information, fundamentals unchanged, cannot lead to new trades. 

For, any such trades would make it common knowledge that both 
had benefited, contradicting the efficiency of the initial equilibrium. 
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Pareto-efficient, given their information—then giving them new 
information, fundamentals unchanged, cannot lead to new trades. 

For, any such trades would make it common knowledge that both 
had benefited, contradicting the efficiency of the initial equilibrium. 

This result has been called the Groucho Marx Theorem: 
“I sent the club a wire stating, ‘Please accept my resignation. I 
don’t want to belong to any club that will accept people like me 
as a member’.” 
—Groucho Marx, Telegram to the Beverly Hills Friars’ Club 
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This extended level-k model has a long history: 

Milgrom and Stokey’s (1982 JET) “No-Trade Theorem” shows that 
if traders in an asset market start out in market equilibrium—
Pareto-efficient, given their information—then giving them new 
information, fundamentals unchanged, cannot lead to new trades. 

For, any such trades would make it common knowledge that both 
had benefited, contradicting the efficiency of the initial equilibrium. 

This result has been called the Groucho Marx Theorem: 
“I sent the club a wire stating, ‘Please accept my resignation. I 
don’t want to belong to any club that will accept people like me 
as a member’.” 
—Groucho Marx, Telegram to the Beverly Hills Friars’ Club 

In speculating on why zero-sum trades occur despite the theorem, 
Milgrom and Stokey contrast Groucho’s equilibrium-like inference 
with their rules Naïve Behavior, which keeps its prior but behaves 
rationally otherwise, as L1 does; and First-Order Sophistication, 
which best responds to Naïve Behavior, as L2 does. 
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Although Groucho was far from naïve, the informal literature also 
contains evidence of informational naiveté:  

 
“Son…One of these days in your travels, a guy is going to show 
you a brand-new deck of cards on which the seal is not yet 
broken. Then this guy is going to offer to bet you that he can 
make the jack of spades jump out of this brand-new deck of 
cards and squirt cider in your ear. But, son, do not accept this 
bet, because as sure as you stand there, you're going to wind up 
with an ear full of cider.”  

  
 —Obadiah (“The Sky”) Masterson, quoting his father in Damon 
 Runyon’s Guys and Dolls: The Stories of Damon Runyon, 1932, 
 “The Idyll of Miss Sarah Brown” 
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Although Groucho was far from naïve, the informal literature also 
contains evidence of informational naiveté:  

 
“Son…One of these days in your travels, a guy is going to show 
you a brand-new deck of cards on which the seal is not yet 
broken. Then this guy is going to offer to bet you that he can 
make the jack of spades jump out of this brand-new deck of 
cards and squirt cider in your ear. But, son, do not accept this 
bet, because as sure as you stand there, you're going to wind up 
with an ear full of cider.”  

  
 —Obadiah (“The Sky”) Masterson, quoting his father in Damon 
 Runyon’s Guys and Dolls: The Stories of Damon Runyon, 1932, 
 “The Idyll of Miss Sarah Brown” 

 

Here, Sky’s Dad is worried that Sky is L1: rational but for sticking 
with his prior in the face of an offer that is too good to be true. 
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More recent work shows that the extended level-k model often 
gives a realistic account of people’s nonequilibrium strategic 
thinking and informational naiveté: 
 
● Camerer et al. (2004 QJE) used a cognitive hierarchy analogue 
 of this level-k model to explain zero-sum betting 
 
● Crawford and Iriberri (2007 Ecma) used this level-k model to 

describes subjects’ overbidding and vulnerability to the winner’s 
curse in initial responses in classic auction experiments 

 
● Brown, Camerer, and Lovallo (2012 AEJ Micro) used this level-k 

model to explain film-goers’ failure to draw negative inferences 
from studios’ withholding weak movies from critics, pre-release 

 
● Brocas, Carillo, Camerer, and Wang (2014 REStud) reported 

very powerful experimental evidence for this level-k model from 
approximately zero-sum betting games 
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Level-k analysis of the double auction 
 
 
I first apply the level-k model to CS’s trading environment, 
focusing on their leading example with uniform value densities. 
 
 
I assume that a trader’s level is independent of its value. 
 
 
I set L0’s frequency to zero, and focus on homogeneous 
populations of L1s or L2s, which allows simple illustrations of the 
main points. 
 
 
Denote the buyer’s bidding strategy bi(V) and the seller’s asking 
strategy ai(C), where the subscripts denote levels i = 1,2. 
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L1s’ optimism, aggressiveness, and incentive-inefficiency 
   
An L1 buyer believes that the seller’s ask is uniformly distributed 
on [0, 1], independent of its value. 
 
Optimization then yields b1(V) = 2V/3 (in the interior). 
 
Similarly, an L1 seller’s ask a1(C) = 2C/3 + 1/3 (in the interior). 

(Compare Crawford and Iriberri’s 2007 ECMA analysis of L1 
bidding in first-price auctions.) 
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L1s’ optimism, aggressiveness, and incentive-inefficiency 
   
An L1 buyer believes that the seller’s ask is uniformly distributed 
on [0, 1], independent of its value. 
 
Optimization then yields b1(V) = 2V/3 (in the interior). 
 
Similarly, an L1 seller’s ask a1(C) = 2C/3 + 1/3 (in the interior). 

(Compare Crawford and Iriberri’s 2007 ECMA analysis of L1 
bidding in first-price auctions.) 
 

Despite the multiplicity of equilibria in the double auction, a level-k 
model makes generically unique predictions, conditional on the 
population level frequencies. 

L1’s optimal strategy is independent of the value densities; unlike 
L2’s, which depends on the other trader’s density, or an 
equilibrium strategy, which depends on both traders’ densities. 
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With b1(V) = 2V/3, an L1 buyer bids 1/12 more aggressively (that 
is, bids less) than an equilibrium buyer with 𝑏∗(𝑉) =  2𝑉/3 + 1/12. 
 
With a1(C) = 2C/3 + 1/3, an L1 seller asks 1/12 more aggressively 
(more) than an equilibrium seller with 𝑎∗(𝐶) = 2𝐶/3 +  ¼ . 
 
Both have the same 2/3 shading as equilibrium bids or asks. 
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With b1(V) = 2V/3, an L1 buyer bids 1/12 more aggressively (that 
is, bids less) than an equilibrium buyer with 𝑏∗(𝑉) =  2𝑉/3 + 1/12. 
 
With a1(C) = 2C/3 + 1/3, an L1 seller asks 1/12 more aggressively 
(more) than an equilibrium seller with 𝑎∗(𝐶) = 2𝐶/3 +  ¼ . 
 
Both have the same 2/3 shading as equilibrium bids or asks. 
 
For an L1 buyer and seller, trade takes place iff V ≥ C + ½; ex post 
efficiency is lost for more values than in equilibrium with V ≥ C + 
¼; and the ex ante probability of trade is 1/8 = 12.5%, versus the 
equilibrium 9/32 ≈ 28%. 
 
● Is there a mechanism that enhances efficiency for L1s by 
 counteracting their aggressiveness in the double auction? 
 
 I will show that, whether or not L1-incentive-compatibility is 
 required, the answer is Yes. 
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L2s’ pessimism, unaggressiveness, and incentive-
superefficiency 
 
An L2 buyer’s bid b2(V) maximizes over b ϵ [0, 1] 
 
 

∫ [𝑉 – 
𝑎 + 𝑏

2
] 𝑔(𝑎1

−1(𝑎))
𝑏

0

𝑑𝑎 + ∫ 0
1

𝑏

𝑑𝑎, 

 
 

where 𝑔(𝑎1
−1(𝑎)) is the density of an L1 seller’s ask a1(C) induced 

by the value density g(C). 
 
 
For instance, if g(C) is uniform, an L2 buyer believes that the 
seller’s ask a1(C) = 2C/3 + 1/3 is uniformly distributed on [1/3, 1], 
with density 3/2 there and 0 elsewhere.  
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An L2 buyer who believes the seller’s ask is distributed on [1/3, 1] 
believes that trade requires b > 1/3.  
 
For V ≤ 1/3 it is then optimal for an L2 buyer to bid anything it 
thinks yields 0 probability of trade: In the absence of dominance 
among such strategies, I set b2(V) = V for V in [0, 1/3]. 
 
For V > 1/3, an L2 buyer’s bid b2(V) maximizes over b ϵ [1/3, 1] 
 

∫ [𝑉 – 
𝑎 + 𝑏

2
]

b

1/3

(3/2)d𝑎. 

The second-order condition is always satisfied. 
 
Solving the first-order condition (3/2)(V - b) - (3/4)(V - 1/3) = 0 
yields b2(V) = 2V/3 + 1/9 for V ϵ [1/3, 1].  
 
Similarly, an L2 seller’s ask a2(C) = 2C/3 + 2/9 (in the interior). 
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With b2(V) = 2V/3 + 1/9, an L2 buyer bids 1/36 less aggressively 
(more) than an equilibrium buyer with 𝑏∗(𝑉) =  2𝑉/3 + 1/12 and 
1/9 less aggressively (more) than an L1 buyer with b1(V) = 2V/3. 
 
With a2(C) = 2C/3 + 2/9, an L2 seller asks 1/36 less aggressively 
(less) than an equilibrium seller, and 1/9 less than an L1 seller. 

Both again have the same 2/3 shading as equilibrium or L1. 
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With b2(V) = 2V/3 + 1/9, an L2 buyer bids 1/36 less aggressively 
(more) than an equilibrium buyer with 𝑏∗(𝑉) =  2𝑉/3 + 1/12 and 
1/9 less aggressively (more) than an L1 buyer with b1(V) = 2V/3. 
 
With a2(C) = 2C/3 + 2/9, an L2 seller asks 1/36 less aggressively 
(less) than an equilibrium seller, and 1/9 less than an L1 seller. 

Both again have the same 2/3 shading as equilibrium or L1. 
 
For an L2 buyer and L2 seller, trade takes place iff V ≥ C + 1/6; ex 
post efficiency is lost for fewer values than in equilibrium with V ≥ 
C + ¼ or with L1s with V ≥ C + ½; and the ex ante probability of 
trade is 25/72 ≈ 35%, versus the equilibrium 28% or L1 12.5%. 
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With b2(V) = 2V/3 + 1/9, an L2 buyer bids 1/36 less aggressively 
(more) than an equilibrium buyer with 𝑏∗(𝑉) =  2𝑉/3 + 1/12 and 
1/9 less aggressively (more) than an L1 buyer with b1(V) = 2V/3. 
 
With a2(C) = 2C/3 + 2/9, an L2 seller asks 1/36 less aggressively 
(less) than an equilibrium seller, and 1/9 less than an L1 seller. 

Both again have the same 2/3 shading as equilibrium or L1. 
 
For an L2 buyer and L2 seller, trade takes place iff V ≥ C + 1/6; ex 
post efficiency is lost for fewer values than in equilibrium with V ≥ 
C + ¼ or with L1s with V ≥ C + ½; and the ex ante probability of 
trade is 25/72 ≈ 35%, versus the equilibrium 28% or L1 12.5%. 
 
● Is there a mechanism that does as well or better for L2s than the 
 double auction by further exploiting their unagressiveness? 
 

I will show that, whether or not L2-incentive-compatibility is 
required, the answer is No, at least for uniform value densities.  
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Design for level-k traders 
 
Throughout the analysis of level-k design, I restrict attention to 
direct mechanisms, whose decisions can be viewed as estimates 
of own values; and I ignore the noisiness of people’s decisions. 
 
I define incentive-efficiency notions for a designer’s correct beliefs; 
but I derive incentive constraints from traders’ level-k beliefs. 
 
I use “incentive-compatible” here in the narrow sense, for direct 
mechanisms in which it is optimal for traders to report truthfully. 
 
But when I relax it traders are still assumed to best respond, even 
if such responses need not be truthful, as in a first-price auction. 
 
“Level-k-incentive-compatibility” and “level-k-interim-individual-
rationality” parallel the standard notions, “equilibrium-incentive-
compatibility” and “equilibrium-interim-individual-rationality”. 
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Recall that MS’s Theorem 1 uses conditions for equilibrium-
incentive-compatibility to derive an incentive budget constraint. 
 
MS’s Corollary 1 then uses that constraint to show that no 
equilibrium-incentive-compatible, individually rational mechanism 
can assure ex post Pareto-efficiency with probability one. 
 
 
MS’s Theorem 2 characterizes (for traders with quasilinear utility 
functions) equilibrium-incentive-efficient mechanisms by deriving 
conditions for maximizing the sum of traders’ ex ante expected 
utilities subject to Theorem 1’s incentive budget constraint. 
 
In CS’s example with uniform value densities, Theorem 2 yields a 
closed-form solution for the incentive-compatible form of an 
equilibrium-incentive-efficient mechanism; it transfers the object iff 
the reported values satisfy v ≥ c + ¼, at price (v + c + ½)/3. 
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Design requiring level-k-incentive-compatibility (not w.l.o.g.) 

When Lk-incentive-compatibility is required, MS’s characterization 
of the incentive-efficient mechanism with uniform value densities 
is completely robust to level-k thinking:  

Theorem 1. With uniform value densities, the set of level-k-
incentive-compatible mechanisms coincides with the set of 
equilibrium-incentive-compatible mechanisms for any population 
of level-k traders with k > 0. Thus MS’s equilibrium-incentive-
efficient mechanism is also efficient in the set of Lk-incentive-
compatible mechanisms, whether or not individual traders’ levels 
are observable or predictable. 

Proof. L1 traders believe they face a uniform distribution of other’s 
reports, so their incentive-compatibility and individual rationality 
constraints coincide with those of equilibrium traders. Induction 
extends this to higher levels, and MS’s equilibrium-incentive-
efficient mechanism is also efficient in the set of Lk-incentive-
compatible mechanisms for any population of level-k traders. 
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Level-k menu effects and the revelation principle  
 
Comparing Theorem 1 with level-k analyses of the double auction 
reveals a limitation of the revelation principle for level-k design. 
 
With uniform value densities, MS’s equilibrium-incentive-efficient 
mechanism is outcome-equivalent to CS’s linear double-auction 
equilibrium, in which traders shade their bids and asks to mimic 
truthful reporting in MS’s mechanism as in the revelation principle. 
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Level-k menu effects and the revelation principle  
 
Comparing Theorem 1 with level-k analyses of the double auction 
reveals a limitation of the revelation principle for level-k design. 
 
With uniform value densities, MS’s equilibrium-incentive-efficient 
mechanism is outcome-equivalent to CS’s linear double-auction 
equilibrium, in which traders shade their bids and asks to mimic 
truthful reporting in MS’s mechanism as in the revelation principle. 
 
But in my examples with uniform value densities, L1s do worse in 
the double auction than in MS’s mechanism, while L2s do better: 
 
● MS’s mechanism neutralizes L1s’ aggressiveness in the double 
 auction by rectifying their beliefs 

● MS’s mechanism could also neutralize L2s’ unagressiveness, 
but the non-incentive-compatible double auction uses their non-
equilibrium beliefs to do even better  
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MS’s equilibrium-incentive-efficient mechanism in this case is 
efficient for level-k traders in the set of Lk-incentive-compatible 
mechanisms only if implemented in its incentive-compatible form.  
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MS’s equilibrium-incentive-efficient mechanism in this case is 
efficient for level-k traders in the set of Lk-incentive-compatible 
mechanisms only if implemented in its incentive-compatible form.  
 
 
 
The revelation principle does not work as expected here because 
the choice between mechanisms that are outcome-equivalent in 
equilibrium influences the correctness of level-k beliefs by 
changing the mechanism’s relationship to L0, via CKNP’s “level-k 
menu effects”.  
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MS’s equilibrium-incentive-efficient mechanism in this case is 
efficient for level-k traders in the set of Lk-incentive-compatible 
mechanisms only if implemented in its incentive-compatible form.  
 
 
 
The revelation principle does not work as expected here because 
the choice between mechanisms that are outcome-equivalent in 
equilibrium influences the correctness of level-k beliefs by 
changing the mechanism’s relationship to L0, via CKNP’s “level-k 
menu effects”.  
 
 
 
As a result, the revelation principle may fail for level-k players, and 
requiring level-k-incentive-compatibility is not without loss of 
generality. 
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Some analysts of design have argued that incentive-compatibility 
is essential in applications, e.g. for school choice or combinatorial 
auctions, but mostly in equilibrium analyses where it is w.l.o.g. 
 
Others are willing to consider non-incentive-compatible 
mechanisms like the Boston Mechanism or first-price auctions. 
 
 
I don’t try to resolve this issue here; instead I consider both cases. 
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Some analysts of design have argued that incentive-compatibility 
is essential in applications, e.g. for school choice or combinatorial 
auctions, but mostly in equilibrium analyses where it is w.l.o.g. 
 
Others are willing to consider non-incentive-compatible 
mechanisms like the Boston Mechanism or first-price auctions. 
 
 
I don’t try to resolve this issue here; instead I consider both cases. 
 
 
My strongest results assume that Lk-incentive-compatibility is 
required, considering separately the cases where traders’ levels 
are observable or predictable and where they are not. 
 
I then consider allowing any direct mechanism but not requiring 
Lk-incentive-compatibility, still assuming that traders best respond. 
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Design requiring level-k-incentive-compatibility, with 
observable or predictable levels  
 
With general value densities, the payoff-relevant aspects of a 
direct mechanism are still outcome functions p(∙, ∙) and x(∙, ∙), 
where buyer and seller report values v and c, and p(v, c) is the 
probability the object transfers, for expected payment x(v, c). 
 

For a mechanism (p, x), 𝑓𝑘(𝑣; 𝑝, 𝑥) and 𝐹𝑘(𝑣; 𝑝, 𝑥) are the density 

and distribution function of an Lk seller’s beliefs and 𝑔𝑘(𝑐; 𝑝, 𝑥) 

and 𝐺𝑘(𝑐; 𝑝, 𝑥) are those of an Lk buyer’s beliefs.  
 

With L0 uniform on [0, 1], 𝑓1(𝑣; 𝑝, 𝑥) ≡ 1 and 𝑔1(𝑐; 𝑝, 𝑥) ≡ 1.  
 
If 𝛽1(𝑉; 𝑝, 𝑥) is an L1 buyer’s response to (p, x) with value V and 
𝛼1(𝐶; 𝑝, 𝑥) is an L1 seller’s response to (p, x) with cost C, 

𝑓2(𝑣; 𝑝, 𝑥) ≡ 𝑓(𝛽1
−1(𝑣; 𝑝, 𝑥)) and 𝑔2(𝑐; 𝑝, 𝑥) ≡ 𝑔(𝛼1

−1(𝑐; 𝑝, 𝑥)). 
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For ease of notation, assume each trader population has only one 
level (the extension to multiple observable levels is immediate). 
 
 
As in MS’s analysis, the buyer’s and seller’s expected monetary 
payments, probabilities of trade, and utilities can be written as 
functions of their value reports, v and c. 
 
 

𝑋𝐵
𝑘(𝑣) = ∫ 𝑥(𝑣, 𝑐̂)𝑔𝑘(𝑐̂)𝑑𝑐̂, 𝑋𝑆

𝑘(𝑐) = ∫ 𝑥(𝑣̂, 𝑐)𝑓𝑘(𝑣̂)𝑑𝑣̂,
1

0

 
1

0

 

(5.1) 𝑃𝐵
𝑘(𝑣) = ∫ 𝑝(𝑣, 𝑐̂)𝑔𝑘(𝑐̂)𝑑𝑐̂,

1

0
        𝑃𝑆

𝑘(𝑐) = ∫ 𝑝(𝑣̂, 𝑐)𝑓𝑘(𝑣̂)𝑑𝑣̂,
1

0
 

𝑈𝐵
𝑘(𝑉, 𝑣) = 𝑉𝑃𝐵

𝑘(𝑣) − 𝑋𝐵
𝑘(𝑣),        𝑈𝑆

𝑘(𝐶, 𝑐) = 𝑋𝑆
𝑘(𝑐) − 𝐶𝑃𝑆

𝑘(𝑐). 
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For a given k, the mechanism p(∙, ∙), x(∙, ∙) is Lk-incentive-
compatible iff truthful reporting is optimal given Lk beliefs. 
 

That is, if for every V, v, C, and c in [0, 1], 

(5.2)  𝑈𝐵
𝑘(𝑉, 𝑉) ≥ 𝑈𝐵

𝑘(𝑉, 𝑣) = 𝑉𝑃𝐵
𝑘(𝑣) − 𝑋𝐵

𝑘(𝑣) and  

𝑈𝑆
𝑘(𝐶, 𝐶) ≥ 𝑈𝑆

𝑘(𝐶, 𝑐) = 𝑋𝑆
𝑘(𝑐) − 𝐶𝑃𝑆

𝑘(𝑐). 
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For a given k, the mechanism p(∙, ∙), x(∙, ∙) is Lk-incentive-
compatible iff truthful reporting is optimal given Lk beliefs. 
 

That is, if for every V, v, C, and c in [0, 1], 

(5.2)  𝑈𝐵
𝑘(𝑉, 𝑉) ≥ 𝑈𝐵

𝑘(𝑉, 𝑣) = 𝑉𝑃𝐵
𝑘(𝑣) − 𝑋𝐵

𝑘(𝑣) and  

𝑈𝑆
𝑘(𝐶, 𝐶) ≥ 𝑈𝑆

𝑘(𝐶, 𝑐) = 𝑋𝑆
𝑘(𝑐) − 𝐶𝑃𝑆

𝑘(𝑐). 

 

The mechanism p(∙, ∙), x(∙, ∙) is (interim) Lk-individually rational iff 
for every V and C in [0, 1], 

 

(5.3)     𝑈𝐵
𝑘(𝑉, 𝑉) ≥ 0  and 𝑈𝑆

𝑘(𝐶, 𝐶) ≥ 0. 
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Theorems 2 and 3 extend MS’s (Theorems 1-2) characterization 
of equilibrium-incentive-efficient mechanisms to level-k models in 
which the designer can observe traders’ levels, so that s/he can 
enforce a mechanism tailored to each pair of levels, i and j. 

Theorem 2. Assume that traders’ levels are observable or 
predictable, i for the buyer and j for the seller. Then, for any 
mechanism that is incentive-compatible for traders of those levels, 

(5.4) 𝑈𝐵
𝑖 (0,0) +  𝑈𝑆

𝑗(1,1) = minV∊[0,1] 𝑈𝐵
𝑖 (𝑉, 𝑉) + minC∊[0,1]  𝑈𝑆

𝑗(𝐶, 𝐶) 

= ∫ ∫ ([𝑉 −
{1 − 𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
])

1

0

𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉.
1

0

 

And if p(∙,∙) is any function mapping [0, 1]×[0, 1] into [0, 1], there 
exists a function x(∙,∙) such that (p, x) is incentive-compatible and 

interim individually rational iff 𝑃𝐵
𝑖 (∙) is weakly increasing for all (p, 

x), 𝑃𝑆
𝑗
(∙) is weakly decreasing for all (p, x), and 

(5.5) 0 ≤ ∫ ∫ ([𝑉 −
{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
])

1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉.

1

0
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Proof. The proof follows MS’s, adjusted for traders’ level-k beliefs.  
 

By (5.1), 𝑃𝐵
𝑖 (∙) is weakly increasing and 𝑃𝑆

𝑗
(∙) is weakly decreasing 

for any given (p, x), which yields necessary and sufficient 
conditions for incentive-compatibility: 
 
 

(5.6)   𝑈𝐵
𝑖 (𝑉, 𝑉) = 𝑈𝐵

𝑖 (0,0) + ∫ 𝑃𝐵
𝑖 (𝑣̂)𝑑𝑣̂

𝑉

0
 for all V and 

𝑈𝑆
𝑗(𝐶, 𝐶) = 𝑈𝑆

𝑗(1,1) + ∫ 𝑃𝑆
𝑗(𝑐̂)𝑑𝑐̂

1

𝐶
 for all C. 

 
 

By (5.6), 𝑈𝐵
𝑖 (𝑉, 𝑉) is weakly increasing and 𝑈𝑆

𝑗(𝐶, 𝐶) is weakly 

decreasing, so that 𝑈𝐵
𝑖 (0,0) ≥ 0 and 𝑈𝑆

𝑗(1,1) ≥ 0 suffice for 

individual rationality for all V and C as in (5.3). 
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(5.4) follows because the designer’s anticipated expected surplus, 
with correct beliefs, must suffice to incentivize traders with level-k 
beliefs, but with the cost of doing so evaluated for correct beliefs: 

       ∫ ∫ (𝑉 − 𝐶)
1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

0
 

  = 𝑈𝐵
𝑖 (0,0) + ∫ ∫ 𝑃𝐵

𝑖 (𝑣̂)𝑑𝑣̂𝑓(𝑉)𝑑𝑉 +  𝑈𝑆
𝑗(1,1) + ∫ ∫ 𝑃𝑆

𝑗(𝑐̂)𝑑𝑐̂𝑔(𝐶)𝑑𝐶 
1

𝐶

1

0

𝑉

0

1

0
  

(5.7) = 𝑈𝐵
𝑖 (0,0) +  𝑈𝑆

𝑗(1,1) + ∫ [1 −
1

0
𝐹(𝑉)] 𝑃𝐵

𝑖 (𝑉)𝑑𝑉 + ∫ 𝐺(𝐶)
1

0
𝑃𝑆

𝑗(𝐶)𝑑𝐶  

= 𝑈𝐵
𝑖 (0,0) +  𝑈𝑆

𝑗(1,1) + ∫ ∫ [𝐺(𝐶)𝑓𝑗(𝑉) + {1 − 𝐹(𝑉)}𝑔𝑖(𝐶)]𝑝(𝑉, 𝐶)𝑑𝐶𝑑𝑉,
1

0

1

0

 

where the second-to-last equality follows via integration by parts.  
 
(5.4) implies (5.5) when the mechanism is individually rational. 

Given (5.3) and the monotonicity of 𝑃𝐵
𝑗
(∙)  and 𝑃𝑆

𝑘(∙), arguments 

like MS’s show that the analogue of their transfer function, 

(5.8)𝑥(𝑣, 𝑐) =  ∫ 𝑣
𝑉

0
𝑑[𝑃𝐵

𝑖 (𝑣)] − ∫ 𝑐
𝐶

0
𝑑[−𝑃𝑆

𝑗(𝑐)] +∫ 𝑐[1 − 𝐺𝑖(𝐶)]
1

0
𝑑[−𝑃𝑆

𝑗(𝑐)], 

makes (p, x) incentive-compatible and interim individually rational 
for traders’ levels. Q.E.D. 
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Before stating Theorem 3, consider whether MS’s Corollary 1 
generalizes when traders are level-k with observable levels. 
 
MS’s Corollary 1 shows that if traders’ values have positive 
probability densities over [0,1], then no equilibrium-incentive-
compatible and equilibrium-interim individually rational trading 
mechanism can assure ex post efficiency with probability 1. 
 
If the buyer is level i and the seller is level j, and 𝑝(𝑉, 𝐶) ≡ 1 iff V ≥ 
C, the constraint (5.5) reduces to: 
 

 0 ≤ ∫ ∫ ([𝑉 −
{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
])

1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

0
 

(5.9) = ∫ ∫ [(𝑉 − 𝐶)𝑔(𝐶)𝑓(𝑉) − {1 − 𝐹(𝑉)}𝑔𝑖(𝐶) − 𝐺(𝐶)𝑓𝑗(𝑉)]𝑑𝐶𝑑𝑉
𝑉

0

1

0
 

   = ∫ {𝐹(𝑉) − 1}𝐺𝑖(𝑉)𝑑𝑉
1

0
+ ∫ {𝑓(𝑉) − 𝑓𝑗(𝑉)} ∫ 𝐺(𝐶)𝑑𝐶𝑑𝑉

𝑉

0

1

0
. 
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 0 ≤ ∫ ∫ ([𝑉 −
{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
] − [𝐶 +

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
])

1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

0
 

(5.9) = ∫ ∫ [(𝑉 − 𝐶)𝑔(𝐶)𝑓(𝑉) − {1 − 𝐹(𝑉)}𝑔𝑖(𝐶) − 𝐺(𝐶)𝑓𝑗(𝑉)]𝑑𝐶𝑑𝑉
𝑉

0

1

0
 

   = ∫ {𝐹(𝑉) − 1}𝐺𝑖(𝑉)𝑑𝑉
1

0
+ ∫ {𝑓(𝑉) − 𝑓𝑗(𝑉)} ∫ 𝐺(𝐶)𝑑𝐶𝑑𝑉

𝑉

0

1

0
. 

The first term on the right-hand side of (5.9) is analogous to MS’s 

term, but with the level-k beliefs 𝐺𝑖(𝑉); it is again always negative. 

The second term on the right-hand side of (5.9) vanishes for correct 
beliefs and so has no counterpart in MS’s analysis; it is positive for 
some value distributions and negative for others. 
 
To see that the second term can outweigh the first, consider L1 

beliefs: 𝑓𝑗(𝑉) ≡ 1 and 𝑔𝑖(𝐶) ≡ 1. Then, e.g., 𝐹(·) and 𝐺(·) with full 

supports, but with 𝐹(·) approximately uniform on [b, 1] and 𝐺(·) with 
an approximate spike at b, make the right-hand side of (5.9) positive, 
a contradiction that shows that MS’s Corollary 1 does not generalize.  

That said, the tendency MS identified for the incentive constraints to 
hold the probability of ex post efficient trading below 1 persists.  
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Theorem 3 characterizes mechanisms that are efficient in the set 
of level-k-incentive-compatible mechanisms when buyer’s and 
seller’s levels are observable or predictable. 
 

Define, for 𝛽 ≥ 0,  

    𝛹𝑖𝑗(𝑉, 𝐶; 𝛽) = [𝑉 − 𝛽
{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
] − [𝐶 + 𝛽

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
] 

(5.10)    = (𝑉 − 𝐶) − 𝛽 [
{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
+

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
], and 

  𝑝𝛽
𝑖𝑗(𝑉, 𝐶) = 1  if   𝛹𝑖𝑗(𝑉, 𝐶; 𝛽) ≥ 0, and 𝑝𝛽

𝑖𝑗(𝑉, 𝐶) = 0  if  𝛹𝑖𝑗(𝑉, 𝐶; 𝛽) ≤ 0.  

 

If feasible, 𝑝0
𝑖𝑗(𝑉, 𝐶) would yield an ex post efficient allocation; but 

it may violate the incentive budget constraint (5.5). By contrast, 

𝑝1
𝑖𝑗(𝑉, 𝐶) maximizes the slack in (5.5); but it wastes surplus.  

 
The goal is an optimal compromise between these two extremes. 
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Theorem 3. Assume that traders’ levels are observable or 
predictable, i for the buyer and j for the seller. If there exists a 

level-k-incentive-compatible mechanism (p, x) such that 𝑈𝐵
𝑖 (0,0) =

𝑈𝑆
𝑗(1,1) = 0 and 𝑝 = 𝑝𝛽

𝑖𝑗(𝑉, 𝐶) for some 𝛽 ∊ [0, 1], then that 

mechanism maximizes traders’ true ex ante expected total gains 
from trade among all level-k-incentive-compatible and level-k-
interim individually rational mechanisms. Furthermore, if  

𝛹𝑖𝑗(𝑉, 𝐶; 1) is increasing in V and decreasing in C for any given (p, 
x), then such a mechanism must exist. 
  
Proof. The proof adapts MS’s proof. Fix buyer’s and seller’s levels 
i and j, and consider choosing p(∙, ∙) to maximize traders’ ex ante 

expected total gains from trade subject to 0 ≤ p(∙, ∙) ≤ 1, 𝑈𝐵
𝑖 (0,0) =

𝑈𝑆
𝑗(1,1) = 0, and (5.5). (5.5) and (5.10) yield: 

(5.11) max {0 ≤ p(∙, ∙) ≤ 1}  ∫ ∫ (𝑉 − 𝐶)
1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

0
 

   s.t. 0 ≤ ∫ ∫ 𝛹𝑖𝑗(𝑉, 𝐶; 1)𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉
1

0

1

0
. 
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If a solution p(∙, ∙) to (5.11) yields a PB
i (∙) that is weakly increasing 

for all v and a PS
j
(∙) that is weakly decreasing for all c, then by 

Theorem 2 that solution is associated with a mechanism that 
maximizes traders’ ex ante expected total gains from trade among 
all level-k-incentive-compatible and level-k-interim individually 
rational mechanisms.  
 
(5.11) is like a consumer’s budget problem, with trade probabilities 

𝑝(𝑉, 𝐶) like a continuum of goods with “prices” [
{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
+

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
].  

Because the 𝑝(𝑉, 𝐶) enter the objective function and the constraint 
linearly, solutions of problem (5.11) are “bang-bang”, with 
𝑝(𝑉, 𝐶) = 0 or 1 almost everywhere and 𝑝(𝑉, 𝐶) = 1 for the (𝑉, 𝐶) 
pairs with the largest expected gain per unit of incentive cost 
(analogous to the highest marginal-utility-to-price ratios). 
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Form the Lagrangean: 
 

    ∫ ∫ (𝑉 − 𝐶)
1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

0
      

   +𝜆 ∫ ∫ 𝛹𝑖𝑗(𝑉, 𝐶; 1)𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉
1

0

1

0
 

(5.12) = ∫ ∫ (𝑉 − 𝐶 + 𝜆𝛹𝑖𝑗(𝑉, 𝐶; 1))
1

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

0
  

= (1 + 𝜆) ∫ ∫ (𝛹𝑖𝑗 (𝑉, 𝐶;
𝜆

1 + 𝜆
) 𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉)

1

0

1

0

. 

 
 
Any function 𝑝(𝑉, 𝐶) and 𝜆 ≥ 0 that satisfy the constraint with 
equality and the Kuhn-Tucker conditions solves problem (5.11).  
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The Kuhn-Tucker conditions are: 
 

(5.13)   (1 + 𝜆)𝛹𝑖𝑗 (𝑉, 𝐶;
𝜆

1+𝜆
) ≤ 0 or equivalently 

 (𝑉 − 𝐶) −
𝜆

1+𝜆
[

{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
+

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
] ≤ 0, 

when 𝑝(𝑉, 𝐶) = 0, and 

(5.14)   (1 + 𝜆)𝛹𝑖𝑗 (𝑉, 𝐶;
𝜆

1+𝜆
) ≥ 0 or equivalently 

(𝑉 − 𝐶) −
𝜆

1+𝜆
[

{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
+

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
] ≥ 0, when 𝑝(𝑉, 𝐶) = 1. 

 

Given the continuity and monotonicity of 𝛹𝑖𝑗(𝑉, 𝐶; 𝛽), there is a 

unique 𝜆 and 𝑝 = 𝑝𝛽
𝑖𝑗(𝑉, 𝐶) , with 𝛽 =

𝜆

1+𝜆
 (equivalently, 𝜆 =

𝛽

1−𝛽
), 

that satisfy 𝑈𝐵
𝑖 (0,0) = 𝑈𝑆

𝑗(1,1) = 0, (5.5), (5.13), and (5.14). Q.E.D. 
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Theorem 3’s condition that 𝛹𝑖𝑗(𝑉, 𝐶; 1) is increasing in V and 
decreasing in C for all (p, x) is the level-k analogue of MS’s 
Theorem 2 monotonicity conditions, which are satisfied whenever 
the true densities fit Myerson’s (1981) “regular case”, ruling out 
strong hazard rate variations in the wrong direction. 
 

If traders’ beliefs 𝑓𝑗(𝑉; 𝑝, 𝑥) and 𝑔𝑖(𝐶; 𝑝, 𝑥) were equal to the true 

densities 𝑓(𝑉) and 𝑔(𝐶), Theorem 3’s monotonicity condition 
reduces to MS’s Theorem 2 condition.  
 
Otherwise, Theorem 3’s condition restricts traders’ beliefs and the 
true densities in a qualitatively similar way. 
 
 

The proofs of Theorems 2 and 3 show that analogous results 
would go through for any behavioral model that makes unique 
predictions that are best responses to beliefs and satisfies 
analogous monotonicity restrictions. 
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Comparing level-k and equilibrium incentive budget constraints 
((5.5) with (2.5) (MS’s (2)), and the level-k and equilibrium Kuhn-
Tucker conditions ((5.14) with (2.8) (MS’s p. 274) shows that the 
design features that foster equilibrium-incentive-efficiency foster 
efficiency in the set of level-k-incentive-compatible mechanisms, 
with different weights due to incentive effects of different beliefs. 
 
 
(5.14)’s condition for 𝑝(𝑉, 𝐶) = 1 shows that mechanisms that are 
efficient in the set of level-k-incentive-compatible mechanisms, 
like MS’s equilibrium-incentive-efficient mechanisms, never 
require commitment to ex post perverse trade for any values. 
 
 
However, as in MS’s analysis, Theorem 2’s transfer function (5.8) 
may sometimes violate ex-post individual rationality by requiring 
payment from buyers who don’t get the object. 



78 
 

The level-k Kuhn-Tucker conditions (5.14) also reveal that 
mechanisms that are efficient in the set of level-k-incentive-
compatible mechanisms must generally tacitly exploit traders’ 
predictably incorrect beliefs (“TEPIB”): 

● “Predictably” via the level-k model 

● “Exploit” in the benign sense that traders’ incorrect beliefs are 
 used only for their benefit 

● “Tacitly” in that the mechanism does not actively deceive traders 
 

Relative to an equilibrium-incentive-efficient mechanism, TEPIB 
favors trade at (V, C) combinations for which traders’ beliefs make 

the “prices” [
{1−𝐹(𝑉)}𝑔𝑖(𝐶)

𝑓(𝑉)𝑔(𝐶)
+

𝐺(𝐶)𝑓𝑗(𝑉)

𝑔(𝐶)𝑓(𝑉)
] low compared to MS’s 

equilibrium “prices” [
1−𝐹(𝑉)

𝑓(𝑉)
+

𝐺(𝐶)

𝑔(𝐶)
]. 

For L2 and higher levels, TEPIB also tends to favor mechanisms 
that increase the advantages of the first two effects. 
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More generally, the above analysis suggests that if people’s levels 
of thinking are observable or predictable, viewing “robust 
mechanism design” as implementing equilibrium-incentive-efficient 
outcomes under weaker behavioral assumptions is too narrow. 

To use an optimal-auctions example (CKNP):  

● A second-price auction seems more robust than an equilibrium- 
revenue-equivalent first-price auction, because it yields the 
equilibrium level of revenue for any mixture of level-k bidders 

● But revenue-equivalence breaks down for level-k bidders; and 
 design for L1s tends to favor first-price auctions, which make 

L1s overbid relative to equilibrium, over second-price auctions, 
which make L1 bidders mimic equilibrium bidders (Crawford and 
Iriberri 2007, CKNP) 

 
By contrast, I will show that if traders’ levels are unobservable and 
unpredictable, a level-k-incentive-compatible mechanism cannot 
screen values and levels at the same time, and must be robust.   
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I now give some examples of mechanisms that are efficient in the 
set of level-k-incentive-incentive-compatible mechanisms. 

As in MS’s analysis, I have closed-form solutions only with uniform 
value densities, for which TEPIB has no influence (Theorem 1). 

To illustrate TEPIB, I report computed trading regions for such 
mechanisms for L1s and combinations of linear densities. 

(Figure 1 in the paper reports L1s’ trading regions for a coarse 
subset of linear density combinations, excluding only extreme 
combinations that violate Theorems 2-3’s monotonicity conditions. 

For L2s, with 𝑓2(𝑣) ≡ 𝑓(𝛽1
−1(𝑣; 𝑝, 𝑥)) and 𝑔2(𝑐) ≡ 𝑔(𝛼1

−1(𝑐; 𝑝, 𝑥)), 
(5.5) and (5.14) depend on both the transfer function x(∙, ∙) and 
p(∙, ∙), making the dimensionality of search too high.) 
 
The examples show that mechanisms that are efficient in the set 
of L1-incentive-compatible mechanisms are qualitatively quite 
similar to equilibrium-incentive-efficient mechanisms. 
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From Figure 1. Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 
Equilibrium: 1.0, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 1.0 

 

Uniform value densities 

Equilibrium: 0.25, 1.75 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.75 

 

Pessimism makes L1 trading region larger than for equilibrium 
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From Figure 1. Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 
Equilibrium: 1.5, 0.5 

 

Buyer (—) and seller (···) 

 

L1: 1.5, 0.5 

 

Optimism makes L1 trading region smaller than for equilibrium  
   

   
Equilibrium: 1.25, 1.5 

 

Buyer (—) and seller (···) 

 

L1: 1.25, 1.5 
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Optimism/pessimism intuition fails: overlapping trading regions 
 

   
   

Design requiring level-k-incentive-compatibility, with 
unobservable, heterogeneous levels  

I now relax the assumption that traders’ levels are observable or 
predictable, continuing to require level-k-incentive-compatibility. 
 
Theorem 1 shows that with uniform value densities, even in this 
case, MS’s equilibrium-incentive-efficient direct mechanism is 
efficient in the set of level-k-incentive-compatible mechanisms. 

But with general value densities, unobservable and unpredictable 
levels pose significant new difficulties for design. 
 
 
A “random posted-price mechanism” is a distribution over prices π 
and a function μ(∙) such that trade occurs at price π with 
probability μ(π) iff v ≥ π ≥ c, with no trade or transfer otherwise.  
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A “deterministic posted-price mechanism” is a random posted-
price mechanism for which the distribution over prices is a spike.  
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Theorem 4. Assume that traders’ levels are unobservable and 
unpredictable, but the designer knows that the population level 
distributions for buyers and sellers include L1 and at least one 
higher level with positive probabilities. Then, if 𝑓(∙), g(∙) ≠ 1 almost 
everywhere, level-k-incentive-compatibility requires that the 
mechanism is equivalent to a random posted-price mechanism. 
 
Further, a mechanism that maximizes traders’ true expected total 
gains from trade among level-k-incentive-compatible and interim 
individually rational mechanisms is equivalent to a deterministic 

posted-price mechanism with 𝑈𝐵
𝑖 (0,0) = 𝑈𝑆

𝑗(1,1) = 0 for all levels i 

in the buyer population and j in the seller population.  
 
Finally, the optimal posted price, π, is unique, characterized by the 
first-order condition: 

(5.15)    
𝑓(𝜋)

𝑔(𝜋)
=

∫ (𝑉−𝜋)
1

𝜋 𝑓(𝑉)𝑑𝑉

∫ (𝜋−𝐶)
𝜋

0 𝑔(𝐶)𝑑𝑐
=

𝐸(𝑉−𝜋|𝑉≥𝜋)

𝐸(𝜋−𝐶|𝐶≤𝜋)
. 
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Proof. By Theorem 2, (5.6) must hold for any levels in the buyer 

and seller populations. If a mechanism is L1-incentive-compatible, 

the proof of Theorem 1 shows that it is Lk-incentive-compatible for 

all k > 1 if and only if it is also equilibrium-incentive-compatible: 

(5.6)   𝑈𝐵
𝑖 (𝑉, 𝑉) = 𝑈𝐵

𝑖 (0,0) + ∫ 𝑃𝐵
𝑖 (𝑣̂)𝑑𝑣̂

𝑉

0
 for all V and 

𝑈𝑆
𝑗(𝐶, 𝐶) = 𝑈𝑆

𝑗(1,1) + ∫ 𝑃𝑆
𝑗(𝑐̂)𝑑𝑐̂

1

𝐶

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐶 

Standard arguments show that this is a contradiction unless the 
mechanism is equivalent to a random posted-price mechanism. 
A random posted-price mechanism is level-k-incentive-compatible 
for any k. By linearity, there are always “bang-bang” 𝑝(𝑣, 𝑐) 

solutions with 𝑝(𝑉, 𝐶) = 0 or 1 almost everywhere, so μ(∙) ≡ 1 
w.l.o.g. An optimal deterministic posted-price mechanism solves: 

(5.25)  max {0 ≤ π ≤ 1} ∫ ∫ (𝑉 − 𝐶)
𝜋

0
𝑝(𝑉, 𝐶)𝑔(𝐶)𝑓(𝑉)𝑑𝐶𝑑𝑉

1

𝜋
. 

The second-order condition is satisfied, so the unique optimal 
posted price satisfies the first-order condition (5.15). Q.E.D. 
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Theorem 4 shows that if traders’ levels are unobservable and 
unpredictable, a mechanism that is efficient in the set of level-k-
incentive-compatible mechanisms must be a deterministic posted-
price mechanism with a particular price, which mechanism makes 
truthful revelation of values a dominant strategy for all levels.  
 
Thus, in that case, a mechanism’s inability to screen levels and 
values simultaneously rules out the sensitivity to reported values 
of mechanisms that are equilibrium-incentive-efficient or efficient 
in the set of level-k-incentive-compatible mechanisms. 
 
This result would extend to any well-behaved nonequilibrium 
model where strategic thinking falls into identifiable discrete 
classes and decisions are unique best responses to some beliefs. 
 
Theorem 4 derives dominant-strategy implementation from the 
incentive constraints and the heterogeneity of strategic thinking, 
rather than assuming it as in robust mechanism design analyses. 
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To assess the cost of giving up sensitive dependence on reported 
values, suppose that value densities are approximately uniform. 
 
The equilibrium-incentive-efficient mechanism then approximately 
yields ex ante probability of trade 9/32 ≈ 28% and expected 
surplus 9/64 ≈ 0.14. The optimal posted price with uniform 
densities is ½, which then yields probability of trade 1/4 = 25% 
and expected surplus 1/8 = 0.125: a modest cost for robustness. 
 
Such static posted-price mechanisms come closer to satisfying 
Wilson’s (1987) desideratum, in that their rules are distribution-
free. However, the optimal posted price is determined, via (5.15), 
by conditional means that are sensitive to the full value densities. 
 
However, Čopič and Ponsatí’s (2016 JET) continuous-time double 
auction with bids revealed to traders only once they are 
compatible avoids such dependence on the densities, in that any 
(even random) posted-price mechanism can be so implemented. 
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Design relaxing level-k-incentive-compatibility, with 
observable or predictable levels 
 
 
 
Relaxing level-k-incentive-compatibility, one can still define a 
general class of feasible direct mechanisms; and with quasilinear 
utilities the payoff-relevant aspects of a mechanism are still 
described by outcome functions p(∙, ∙) and x(∙, ∙). 

 

 

However, even a direct mechanism’s incentive effects can no 
longer be tractably captured via incentive constraints. Instead they 
must be modeled via level-k traders’ best responses to it. 
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For tractability, I focus on double auctions with reserve prices 
chosen by the designer, and on uniform value densities. 
 
 
 
Reserve prices have no benefit when L0 is uniform random on the 
full range of possible values [0, 1], as assumed so far. 
 
 
 
But a restricted menu might make Lk players anchor beliefs 
instead on the correspondingly restricted range of bids or asks, 
which can make reserve prices useful (CKNP). 
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For example, in the double auction with uniform value densities, 
L1 traders believe they face bids or asks uniformly distributed on 
[0, 1], which leads to incentive-inefficient outcomes. 

To implement the outcome of MS’s equilibrium-incentive-efficient 
direct mechanism via the double auction, L1 traders have to 
believe that they face bids or asks uniform on [1/4, 3/4], the range 
of “serious” bids or asks in CS’s linear double-auction equilibrium. 

If L1 traders anchor on the restricted menu, those beliefs can be 
induced by restricting bids to [1/4, 3/4] and asks to [1/4, 3/4]. (The 
upper ask limit could be moved to 1 and the lower bid limit to 0.) 

Thus with uniform value densities, for L1s a double auction with 
reserve prices can mimic MS’s equilibrium-incentive-efficient 
mechanism, whose direct form is then efficient in the set of L1-
incentive-compatible mechanisms. 

(MS’s general specification of feasible mechanisms implicitly 
allows reserve prices, and their analysis therefore shows that if 
equilibrium is assumed, reserve prices are not useful here.) 



92 
 

 
 
 
 
For L2s with uniform value densities, my analysis of the double 
auction without reserve prices shows that it can improve upon a 
mechanism that is efficient in the set of L2-incentive-efficient 
mechanisms, or MS’s equilibrium-incentive-efficient mechanism. 
 
 
 
 
It can be shown that reserve prices allow no further improvement, 
so the double auction without reserve prices is optimal for L2s. 
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Design relaxing level-k-incentive-compatibility, with 
unobservable and unpredictable, heterogeneous levels 
 

With unobservable and unpredictable, heterogeneous levels, 
suppose for tractability that the designer knows that the population 
includes multiple levels, but that one’s frequency is very high. 
 
Then a mechanism that would be efficient in the set of level-k-
incentive-compatible mechanisms for the frequent level, or 
perhaps a level-k-incentive-efficient mechanism (relaxing level-k 
incentive-compatibility) for that level, can generally improve upon 
a mechanism that is efficient in the set of level-k-incentive-
compatible mechanisms for the full heterogeneous population. 
 
Such a mechanism gains the benefits of sensitive dependence on 
reported values for most traders, at bounded cost for the rest.   
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For example, in the case of approximately uniform value densities 
a mechanism that is efficient in the set of level-k-incentive-
compatible mechanisms is a posted-price mechanism, with 
approximate optimal posted price ½, probability of trade 1/4 = 
25%, and expected total surplus 1/8 = 0.125. 

By contrast, a mechanism that is efficient in the set of L1-
incentive-compatible mechanisms with uniform value densities 
yields ex ante probability of trade 9/32 ≈ 28% and expected 
surplus 9/64 ≈ 0.14 for almost all traders, a significant gain. 

Alternatively, the L2-incentive-efficient double auction without 
reserve prices yields ex ante probability of trade 25/72 ≈ 35% and 
expected surplus 11/72 ≈ 0.15, an even larger gain. 

More generally, relaxing the restriction to level-k-incentive-
compatible mechanisms can yield level-k-incentive-efficient 
mechanisms that differ qualitatively as well as quantitatively from 
equilibrium-incentive-efficient mechanisms, and which can yield 
substantial gains in efficiency. 


