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Introduction 

 
The paper revisits Myerson and Satterthwaite’s 1983 JET (“MS”) 
classic analysis of the design of incentive-efficient mechanisms for 
bilateral trading with independent private values, inspired by 
Chatterjee and Samuelson’s 1983 OR (“CS”) positive analysis. 
 
MS assumed that traders will play any desired Bayesian Nash 
equilibrium in the game created by the chosen mechanism.  
 
I relax MS’s equilibrium assumption in favor of a structural 
nonequilibrium “level-k” model of strategic thinking meant to 
describe people’s responses to novel or complex games, adapted 
to handle asymmetric information. 
 
To focus on nonequilibrium thinking, I maintain standard rationality 
assumptions regarding decisions and probabilistic judgment. 



3 
 

Motivation 

 
● Mechanism design often creates novel games, for which the 

usual learning justification for equilibrium is weak; yet the design 
may still need to work well the first time. 

 
● Even if learning is possible, design may create games complex 
 enough that convergence to equilibrium is behaviorally unlikely. 
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Motivation 

 
● Mechanism design often creates novel games, for which the 

usual learning justification for equilibrium is weak; yet the design 
may still need to work well the first time. 

 
● Even if learning is possible, design may create games complex 
 enough that convergence to equilibrium is behaviorally unlikely. 
 
We usually assume equilibrium anyway, perhaps because: 
 
● We doubt we can identify a credible basis for analysis among 
 the enormous number of possible nonequilibrium models.  
 
● We doubt that any nonequilibrium model could systematically 
 out-predict a rational-expectations notion such as equilibrium. 
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But… 

● There is now a large body of experimental research that studies 
 strategic thinking by eliciting subjects’ initial responses to games 
 (surveyed in Crawford, Costa-Gomes, and Iriberri 2013 JEL). 
 
● The evidence suggests that people’s thinking in novel or 

complex games does not follow the fixed-point or indefinitely 
iterated dominance reasoning that equilibrium often requires. 
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But… 

● There is now a large body of experimental research that studies 
 strategic thinking by eliciting subjects’ initial responses to games 
 (surveyed in Crawford, Costa-Gomes, and Iriberri 2013 JEL). 
 
● The evidence suggests that people’s thinking in novel or 

 complex games does not follow the fixed-point or indefinitely 
iterated dominance reasoning that equilibrium often requires. 

(Learning can still make people converge to something that we 
need fixed-point reasoning to characterize; the claim is that 
fixed-point reasoning doesn’t directly describe people’s thinking.)  

 
● To the extent that people do not follow equilibrium logic, they 
 must  find another way to think about the game. 
 
● Much of the evidence points to a class of nonequilibrium level-k 
 or “cognitive hierarchy” models of strategic thinking. 
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Level-k models 
 
In a level-k model people follow rules of thumb that: 
 
● Anchor their beliefs in a naïve model of others’ response to the 
 game, called L0, often uniform random over feasible  decisions;  

and 

● Adjust their beliefs via a small number (k) of iterated best 
 responses, so L1 best responds to L0, L2 to L1, and so on. 
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Level-k models 
 
In a level-k model people follow rules of thumb that: 
 
● Anchor their beliefs in a naïve model of others’ response to the 
 game, called L0, often uniform random over feasible  decisions;  

and 

● Adjust their beliefs via a small number (k) of iterated best 
 responses, so L1 best responds to L0, L2 to L1, and so on. 
 
People’s levels are usually heterogeneous, and the population 
level frequencies are treated as behavioral parameters and either 
estimated from the data or calibrated from previous estimates. 
 
Estimates vary with the setting and population, but the estimated 
frequency of L0 is normally small or zero and the distribution of 
levels is concentrated on L1, L2, and L3. 
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● Lk (for k > 0) is decision-theoretically rational, with an accurate 
model of the game; it departs from equilibrium only in deriving its 
beliefs from an oversimplified model of others’ responses. 
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● Lk (for k > 0) respects k-rationalizability (Bernheim 1984 ECMA), 
 hence in two-person games its decisions survive k rounds of 
 iterated elimination of strictly dominated strategies. 
 
● Thus Lk mimics equilibrium decisions in k-dominance-solvable 
 games, but may deviate systematically in more complex games. 
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● Lk (for k > 0) is decision-theoretically rational, with an accurate 
model of the game; it departs from equilibrium only in deriving its 
beliefs from an oversimplified model of others’ responses. 

 
● Lk (for k > 0) respects k-rationalizability (Bernheim 1984 ECMA), 
 hence in two-person games its decisions survive k rounds of 
 iterated elimination of strictly dominated strategies. 
 
● Thus Lk mimics equilibrium decisions in k-dominance-solvable 
 games, but may deviate systematically in more complex games. 
 
● A level-k model (with zero weight on L0) can be viewed as a 
 heterogeneity-tolerant refinement of k-rationalizability. 
 
● But unlike k-rationalizability, a level-k model makes precise 

predictions, given the population level frequencies: not only that 
deviations from equilibrium will sometimes occur, but also which 
settings evoke them and which forms they are likely to take. 
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● Level-k models share the generality and much of the tractability 

of equilibrium models (contrast k-rationalizability’s set-valued 
predictions or quantal response equilibrium’s noisy predictions).  
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 conclusions are robust to likely deviations from equilibrium. 
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● Level-k models share the generality and much of the tractability 

of equilibrium models (contrast k-rationalizability’s set-valued 
predictions or quantal response equilibrium’s noisy predictions).  

 
● A level-k analysis can identify settings where equilibrium-based 
 conclusions are robust to likely deviations from equilibrium. 
 
● A level-k analysis can identify settings in which mechanisms 

that yield superior outcomes in equilibrium are worse in practice 
than others whose performance is less sensitive to deviations: 
an evidence-disciplined approach to robustness. 
 
● A level-k analysis may reduce optimal mechanisms’ sensitivity 

to distributional and other details that real mechanisms seldom 
depend on, as advocated by Robert Wilson (1987) and others. 
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Antecedents 
 
 
● Crawford and Iriberri’s 2007 ECMA level-k analysis of 

bidding behavior in sealed-bid independent-private-value and 
common-value auctions, which builds on Milgrom and Weber’s 
1982 ECMA equilibrium analysis. 

 
● Crawford, Kugler, Neeman, and Pauzner’s 2009 JEEA (“CKNP”) 

level-k analysis of optimal independent-private-value auctions, 
which builds on Myerson’s 1981 MathOR equilibrium analysis. 

 
● Saran’s 2011 GEB analysis of MS’s design problem with a 
 known fraction of truthful traders. 
 
● Kneeland’s 2013 analysis of level-k implementation, with 
 illustrations including bilateral trading. 
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Outline 

● CS’s equilibrium analysis of bilateral trading via double auction. 
 
● MS’s analysis of equilibrium-incentive-efficient mechanisms. 
 
● Defining level-k models with asymmetric information. 
 
● Level-k analysis of the double auction: L1 aggressivness and 
 incentive-ineffiency; L2 meekness and incentive-supereffiency. 
 
● Level-k “menu effects” and failures of the revelation principle. 
 
● Mechanisms that are efficient in the set of level-k-incentive- 
 compatible mechanisms for known, one-level populations. 
 
● Generalizations: Relaxing level-k-incentive-compatibility; 
 relaxing the population’s being concentrated on one level. 
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CS’s equilibrium analysis of bilateral trading via double 
auction 
 
CS’s model has a potential seller and buyer of an indivisible 
object, in exchange for money. 
 
Traders’ vN-M utility functions are quasilinear in money: hence 
they are risk-neutral, with money values for the object. 
 
 
Denote the buyer’s value V and the seller’s value C (for “cost”). 
 
V and C are independent, with positive densities f(V) and g(C) on 
their supports and distribution functions F(V) and G(C).  
 
CS and MS allowed the densities to have any bounded 
overlapping supports, but with no important loss of generality I 
take the supports to be identical and normalize them to [0, 1]. 
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In the double auction: 
 
 
● If the buyer’s money bid b ≥ the seller’s money ask a, the seller 
 exchanges the object for a given weighted average of b and a. 
 
 
● CS allowed any weights between 0 and 1, but I take the weights 

to be equal, so the buyer acquires the object at price (a+b)/2, 
the seller’s utility is (a+b)/2, and the buyer’s is V - (a+b)/2. 

 
 
● If b < a, the seller retains the object, no money changes hands, 
 the seller’s utility is C, and the buyer’s utility is 0. 
  
 
● I ignore the possibility that a = b, which will have 0 probability. 
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The double auction has many Bayesian equilibria. 
 
 
 
When f(V) and g(C) are uniformly distributed, CS identify a linear 
equilibrium, which also plays a central role in MS’s analysis. 
 
 
 
Denote the buyer’s bidding strategy b(V) and the seller’s asking 
strategy a(C), with * subscripts for the equilibrium strategies. 
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In the linear equilibrium, with value densities supported on [0,1],  

                    
 
unless V < ¼, when       can be anything that precludes trade;  
 
and 

               
 
unless C > ¾, when       can be anything that precludes trade. 
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In the linear equilibrium, with value densities supported on [0,1],  

                    
 
unless V < ¼, when       can be anything that precludes trade;  
 
and 

               
 
unless C > ¾, when       can be anything that precludes trade. 
 
 
Trade occurs if and only if 2V/3 + 1/12 ≥ 2C/3 +  , or V ≥ C + ¼: 
With positive probability the outcome is ex post inefficient. 
 
The ex ante probability of trade 9/32 ≈ 28% and the expected total 
surplus 9/64 ≈ 0.14, less than the maximum interim individually 
rational probability of trade 50% and expected surplus 1/6 ≈ 0.17. 
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MS’s equilibrium-based analysis of incentive-efficient 
mechanisms for bilateral trading 
 
 
MS characterized ex ante incentive-efficient mechanisms in CS’s 
trading environment, requiring interim individual rationality.  
 
 
MS, like CS, allowed general, independent value distributions with 
strictly positive densities on ranges that overlap for the buyer and 
seller; but I will continue to take both value supports to be [0, 1]. 
 
 
MS assumed that traders will play any desired Bayesian 
equilibrium in the game created by the chosen mechanism. 
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A direct mechanism asks traders to report their values, and makes 
the outcome a function of the reported values. 
 
When traders are risk-neutral in money, denoting their value 
reports v and c (distinct from true values V and C), the payoff-
relevant aspects of an outcome are determined by two functions: 
 
● p(v, c), the probability that the object is transferred, and  
 
● x(v, c), the expected monetary payment from buyer to seller. 
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A direct mechanism asks traders to report their values, and makes 
the outcome a function of the reported values. 
 
When traders are risk-neutral in money, denoting their value 
reports v and c (distinct from true values V and C), the payoff-
relevant aspects of an outcome are determined by two functions: 
 
● p(v, c), the probability that the object is transferred, and  
 
● x(v, c), the expected monetary payment from buyer to seller. 
   
Although these outcome functions depend only on reported 
values, traders’ utilities are determined by their true values. 
 
A mechanism with outcome functions p(∙,∙), x(∙,∙) is incentive-
compatible iff it makes truthful reporting an equilibrium; and is 
(interim) individually rational iff it yields buyer and seller expected 
utility ≥ 0 for every possible realization of their respective values. 
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The revelation principle shows that there is no loss of generality in 
restricting attention to incentive-compatible direct mechanisms: 
 
“We can, without any loss of generality, restrict our attention to 
incentive-compatible direct mechanisms. This is because, for 
any Bayesian equilibrium of any bargaining game, there is an 
equivalent incentive-compatible direct mechanism that always 
yields the same outcomes (when the individuals play the honest 
equilibrium)….[w]e can construct [such a] mechanism by first 
asking the buyer and seller each to confidentially report his 
valuation, then computing what each would have done in the 
given equilibrium strategies with these valuations, and then 
implementing the outcome (transfer of money and object) as in 
the given game for this computed behavior. If either individual 
had any incentive to lie to us in this direct mechanism, then he 
would have had an incentive to lie to himself in the original 
game, which is a contradiction of the premise that he was in 
equilibrium in the original game.” (MS, pp. 267-268) 
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MS’s Theorem 1 uses the conditions for incentive-compatibility 
and individual rationality to derive an “incentive budget constraint”, 
subject to which incentive-efficient outcome functions p(∙,∙) and 
x(∙,∙) maximize the sum of traders’ ex ante expected utilities. 
 
 
MS’s Theorem 2 uses Theorem 1’s conditions to characterize the 
outcome functions associated with incentive-efficient mechanisms. 
 
 
MS’s Corollary 1 shows that no incentive-compatible individually 
rational mechanism is ex post Pareto-efficient with probability one. 
 
 
(The level-k counterparts of these results discussed below will 
explain MS’s results in more detail.) 
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In CS’s example with uniform value densities, MS’s Theorem 2 
yields a closed-form solution for the incentive-compatible form of 
the incentive-efficient mechanism, which transfers the object when 
the reported values satisfy v ≥ c +  , at price (v + c + ½)/3. 
  



30 
 

In CS’s example with uniform value densities, MS’s Theorem 2 
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¼. 
 
 
 

 
  



31 
 

In CS’s example with uniform value densities, MS’s Theorem 2 
yields a closed-form solution for the incentive-compatible form of 
the incentive-efficient mechanism, which transfers the object when 
the reported values satisfy v ≥ c +  , at price (v + c + ½)/3. 
 
The linear equilibrium of the double auction with uniform value 
densities transfers the object when the true values satisfy V ≥ C + 
¼. 
 
Thus, even though the double auction is not incentive-compatible, 
its equilibrium outcome is incentive-efficient: Equilibrium bidding 
strategies shade to mimic the effect of truthful reporting in the 
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In CS’s example with uniform value densities, MS’s Theorem 2 
yields a closed-form solution for the incentive-compatible form of 
the incentive-efficient mechanism, which transfers the object when 
the reported values satisfy v ≥ c +  , at price (v + c + ½)/3. 
 
The linear equilibrium of the double auction with uniform value 
densities transfers the object when the true values satisfy V ≥ C + 
¼. 
 
Thus, even though the double auction is not incentive-compatible, 
its equilibrium outcome is incentive-efficient: Equilibrium bidding 
strategies shade to mimic the effect of truthful reporting in the 
incentive-compatible form of MS’s incentive-efficient mechanism. 
 
(Satterthwaite and Williams 1989 JET showed, however, that for 
generic densities CS’s double auction is not incentive-efficient. 
Thus MS’s result for this example can be viewed as coincidental.) 
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Level-k models with asymmetric information 
 

 
● Recall that in a level-k model, people anchor beliefs in a naïve 
model of others’ reactions to the game, L0, and adjust them via 
iterated best responses: L1 best responds to L0, and so on. 

 
● In complete-information games L0 is usually assumed to make 
 decisions uniformly distributed over the feasible decisions. 
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Level-k models with asymmetric information 
 

 
● Recall that in a level-k model, people anchor beliefs in a naïve 
model of others’ reactions to the game, L0, and adjust them via 
iterated best responses: L1 best responds to L0, and so on. 

 
● In complete-information games L0 is usually assumed to make 
 decisions uniformly distributed over the feasible decisions. 
 
 
● Following Camerer, Ho, and Chong 2004 QJE, Crawford and 
 Iriberri 2007 ECMA, and CKNP, I assume L0’s bids or asks are 
 uniform over the possible values and independent of own value. 
 
● This L0 yields a hierarchy of rules via iterated best responses 
 (called a “random level-k model”, though only L0 is random).   
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● One can imagine more refined specifications, e.g. with an L0 
buyer’s bid (seller’s ask) uniform below (above) its value instead 
of over the entire range, thus eliminating dominated strategies. 

 
● But L0 is not an actual player: It is a player’s naïve model of 
 other players—others whose values he does not observe. 
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of over the entire range, thus eliminating dominated strategies. 

 
● But L0 is not an actual player: It is a player’s naïve model of 
 other players—others whose values he does not observe.  
 
● It is logically possible that players reason contingent on others’ 

possible values, but behaviorally far-fetched. 
 
● And if others’ private information varies over time, no amount of 
 learning is likely to transcend such cognitive limits. 
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● One can imagine more refined specifications, e.g. with an L0 
buyer’s bid (seller’s ask) uniform below (above) its value instead 
of over the entire range, thus eliminating dominated strategies. 

 
● But L0 is not an actual player: It is a player’s naïve model of 
 other players—others whose values he does not observe.  
 
● It is logically possible that players reason contingent on others’ 

possible values, but behaviorally far-fetched. 
 
● And if others’ private information varies over time, no amount of 
 learning is likely to transcend such cognitive limits. 
 
 
● A random level-k model captures people’s aversion to fixed- 

point and contingent reasoning in a tractable way, which gives a 
realistic account of people’s strategic thinking and their naiveté 
regarding others’ uses of private information. 



38 
 

Random level-k models have a long history: 

 

“Son…One of these days in your travels, a guy is going to show 
you a brand-new deck of cards on which the seal is not yet 
broken. Then this guy is going to offer to bet you that he can 
make the jack of spades jump out of this brand-new deck of 
cards and squirt cider in your ear. But, son, do not accept this 
bet, because as sure as you stand there, you're going to wind up 
with an ear full of cider.”  

 —Obadiah (“The Sky”) Masterson, quoting his father in Damon 
 Runyon (Guys and Dolls: The Stories of Damon Runyon, 1932) 

 

Dad is worried that Son will follow a random L1 rule, rational but 
sticking with his prior in the face of an offer “too good to be true”. 
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Milgrom and Stokey’s (1982 JET) “No-Trade Theorem” shows that 
if traders in an asset market start out in market equilibrium—
Pareto-efficient, given their information—giving them new 
information, fundamentals unchanged, cannot lead to new trades. 

Any such new trades would make it common knowledge that both 
had benefited, contradicting the efficiency of the initial equilibrium. 
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This result has been called the Groucho Marx Theorem, because 
it rests on equilibrium-like inferences such as: 
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don’t want to belong to any club that will accept people like me 
as a member’.” 
—Groucho Marx, Telegram to the Beverly Hills Friar’s Club  
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Milgrom and Stokey’s (1982 JET) “No-Trade Theorem” shows that 
if traders in an asset market start out in market equilibrium—
Pareto-efficient, given their information—giving them new 
information, fundamentals unchanged, cannot lead to new trades. 

Any such new trades would make it common knowledge that both 
had benefited, contradicting the efficiency of the initial equilibrium. 

This result has been called the Groucho Marx Theorem, because 
it rests on equilibrium-like inferences such as: 

“I sent the club a wire stating, ‘Please accept my resignation. I 
don’t want to belong to any club that will accept people like me 
as a member’.” 
—Groucho Marx, Telegram to the Beverly Hills Friar’s Club  

Milgrom and Stokey contrast the correct, equilibrium-based 
inference with a rule they call Naïve Behavior, which sticks with its 
prior and otherwise behaves rationally, just as random L1 does; 
and another rule called First-Order Sophistication, which best 
responds to Naïve Behavior, just as random L2 does. 
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Inspired by the No-Trade Theorem, Brocas, Carillo, Camerer, and 
Wang 2014 REStud report powerful experimental evidence from 
three-state betting games (close enough to zero-sum): 

player/state A B C 

1 25 5 20 

2 0 30 5 
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There are three ex ante equally likely states, A, B, C. 
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C; simultaneously, player 2 privately learns either that the state is 
A or that it is {B or C}. 

Players then simultaneously choose to Bet or Pass. 
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Inspired by the No-Trade Theorem, Brocas, Carillo, Camerer, and 
Wang 2014 REStud report powerful experimental evidence from 
three-state betting games (close enough to zero-sum): 

player/state A B C 

1 25 5 20 

2 0 30 5 

There are three ex ante equally likely states, A, B, C. 

Player 1 privately learns either that the state is {A or B} or that it is 
C; simultaneously, player 2 privately learns either that the state is 
A or that it is {B or C}. 

Players then simultaneously choose to Bet or Pass. 

A player who chooses Pass, or who chooses Bet while the other 
chooses Pass, earns 10 in any state. 

If both players choose Bet, they get their respective payoffs in the 
table for whichever state occurs. 

All this is publicly announced (to induce common knowledge). 
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The game has a unique trembling-hand perfect Bayesian 
equilibrium, identifiable via iterated weak dominance. (There’s 
also an imperfect equilibrium in which both players always Pass.) 

Round 1 (Bet, Pass): 
player/state A B C 

1 25 5 20 

2 0 30 5 
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The game has a unique trembling-hand perfect Bayesian 
equilibrium, identifiable via iterated weak dominance. (There’s 
also an imperfect equilibrium in which both players always Pass.) 

Round 1 (Bet, Pass): 
player/state A B C 

1 25 5 20 

2 0 30 5 

Round 2 (Bet, Pass): 
player/state A B C 

1 25 5 20 

2 0 30 5 
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The game has a unique trembling-hand perfect Bayesian 
equilibrium, identifiable via iterated weak dominance. (There’s 
also an imperfect equilibrium in which both players always Pass.) 

Round 1 (Bet, Pass): 
player/state A B C 

1 25 5 20 

2 0 30 5 

Round 2 (Bet, Pass): 
player/state A B C 

1 25 5 20 

2 0 30 5 

Round 3 (Bet, Pass): 
player/state A B C 

1 25 5 20 

2 0 30 5 

In equilibrium, no betting takes place in any state (although player 
1 is willing to bet in state C). 
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Despite this clear equilibrium prediction, in Brocas et al.’s and 
several similar previous experiments, half of the subjects Bet, in 
patterns that varied systematically with player role and state. 
 

Random L1 respects simple dominance (Bet, Pass): 
 

player/state A B C 

1 25 5 20 

2 0 30 5 
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Despite this clear equilibrium prediction, in Brocas et al.’s and 
several similar previous experiments, half of the subjects Bet, in 
patterns that varied systematically with player role and state. 
 

Random L1 respects simple dominance (Bet, Pass): 
 

player/state A B C 

1 25 5 20 

2 0 30 5 

 
 
But if all subjects were random L1s, 100% of player 1s and 67% of 
player 2s would Bet: many more than Bet in Brocas et al.’s data. 
 
Further, 100% of subjects would Bet in states B and C, which is 
also not true in Brocas et al.’s data. 
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However, random L2 respects two rounds of iterated weak 
dominance: 

player/state A B C 

1 25 5 20 

2 0 30 5 

 
And random L3 respects three rounds of iterated weak dominance 
(= trembling-hand perfect Bayesian equilibrium in this 3-
dominance-solvable game): 

player/state A B C 

1 25 5 20 

2 0 30 5 
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However, random L2 respects two rounds of iterated weak 
dominance: 

player/state A B C 

1 25 5 20 

2 0 30 5 

 
And random L3 respects three rounds of iterated weak dominance 
(= trembling-hand perfect Bayesian equilibrium in this 3-
dominance-solvable game): 

player/state A B C 

1 25 5 20 

2 0 30 5 

 
Brocas et al. find clusters of subjects whose behavior corresponds 
to each of L1, L2, and L3; and also a cluster of “irrational” players. 
 
Their random level-k model fits subjects’ decisions (and searches) 
better than equilibrium or any other homogeneous model. 
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Level-k analysis of bilateral trading via double auction 
 
Apply the random level-k model to CS’s trading environment, 
focusing on their leading example with uniform value densities. 
 
Assume that a player’s level is independent of its value. 
 
Set L0’s frequency to zero, and focus on homogeneous 
populations of L1s or L2s, which allows the simplest possible 
illustration of the main points. 
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Level-k analysis of bilateral trading via double auction 
 
Apply the random level-k model to CS’s trading environment, 
focusing on their leading example with uniform value densities. 
 
Assume that a player’s level is independent of its value. 
 
Set L0’s frequency to zero, and focus on homogeneous 
populations of L1s or L2s, which allows the simplest possible 
illustration of the main points. 
 
 
Despite multiplicity of equilibria, a level-k model makes generically 
unique predictions, conditional on population level frequencies. 
 

Denote the buyer’s bidding strategy bi(V) and the seller’s asking 
strategy ai(C), where the subscripts denote levels i = 1,2. 
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L1 aggressivness and incentive-ineffiency 
 
 
An L1 buyer believes that the seller’s ask is uniformly distributed 
on [0, 1], independent of its value. 
 
 
Optimization yields b1(V) = 2V/3 (in the interior). 
 
(L1’s optimal strategy is independent of value densities: unlike 
L2’s, which depends on the seller’s density, or an equilibrium 
trader’s strategy, which depends on both densities.) 
 
 

 

Similarly, an L1 seller’s ask a1(C) = 2C/3 + 1/3 (in the interior).  
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Comparing the equilibrium bidding function                   
and the L1 bidding function b1(V) = 2V/3, an L1 buyer bids 1/12 
more aggressively (that is, bids less) than an equilibrium buyer. 
 
 
An L1 buyer’s naïve model of the seller leads it to underestimate 
the seller’s upward-shaded ask relative to equilibrium, which 
makes it underbid (compare Crawford and Iriberri’s 2007 ECMA 
analysis of random L1 bidding in first-price auctions).  
 
 
Similarly, an L1 seller asks 1/12 more aggressively (that is, asks 
more) than an equilibrium seller. 
 
 
L1 buyers’ and sellers’ strategies have the same slope, 2/3, as 
equilibrium buyers’ and sellers’ strategies, but are 1/12 more 
aggressive. 
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If an L1 buyer meets an L1 seller, trade takes place iff V ≥ C + ½ 
(as opposed to V ≥ C + ¼ for an equilibrium buyer and seller). 
 
The value gap needed for trade is ¼ larger for L1 buyers and 
sellers than for equilibrium buyers and sellers; thus ex post 
efficiency is lost for more value combinations than in equilibrium. 
 
The ex ante probability of trade for L1s is only 1/8 = 12.5%, in 
comparison to the equilibrium probability of 9/32 ≈ 28%, and the 
largest possible interim individually rational probability of 50%. 
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If an L1 buyer meets an L1 seller, trade takes place iff V ≥ C + ½ 
(as opposed to V ≥ C + ¼ for an equilibrium buyer and seller). 
 
The value gap needed for trade is ¼ larger for L1 buyers and 
sellers than for equilibrium buyers and sellers; thus ex post 
efficiency is lost for more value combinations than in equilibrium. 
 
The ex ante probability of trade for L1s is only 1/8 = 12.5%, in 
comparison to the equilibrium probability of 9/32 ≈ 28%, and the 
largest possible interim individually rational probability of 50%. 
 
These highly inefficient outcomes raise the question of whether a 
designer who knows that all traders are L1s can design a 
mechanism that enhances their efficiency by counteracting their 
aggressiveness better than CS’s double auction, which is 
incentive-efficient for equilibrium bargainers, does. 
 
I will show that the answer is Yes. 



58 
 

 
L2 meekness and incentive-supereffiency 
 
 
An L2 buyer’s bid b2(V) maximizes over b ϵ [0, 1] 
 
 

      
   

 
     

      
 

 

     
 

 

    

 
 

where     
       is the density of an L1 seller’s ask a1(C) induced 

by the value density g(C). 
 
For instance, if g(C) is uniform, an L2 buyer believes that the 
seller’s ask a1(C) = 2C/3 + 1/3 is uniformly distributed on [1/3, 1], 
with density 3/2 there and 0 elsewhere.  
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An L2 buyer who believes the seller’s ask is distributed on [1/3, 1] 
believes that trade requires b > 1/3.  
 
For V ≤ 1/3 it is then optimal for an L2 buyer to bid anything it 
thinks yields 0 probability of trade: In the absence of dominance 
among such strategies, I set b2(V) = V for V in [0, 1/3]. 
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An L2 buyer who believes the seller’s ask is distributed on [1/3, 1] 
believes that trade requires b > 1/3.  
 
For V ≤ 1/3 it is then optimal for an L2 buyer to bid anything it 
thinks yields 0 probability of trade: In the absence of dominance 
among such strategies, I set b2(V) = V for V in [0, 1/3]. 
 
For V > 1/3, an L2 buyer’s bid b2(V) maximizes over b ϵ [1/3, 1] 
 

      
   

 
 

 

   

         

 

The second-order condition is satisfied. 

 

Solving the first-order condition (3/2)(V - b) - (3/4)(V - 1/3) = 0 
yields b2(V) = 2V/3 + 1/9 for V ϵ [1/3, 1].  
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In the interior, an L2 buyer bids 1/36 less aggressively (higher) 
than an equilibrium buyer and 1/9 less aggressively than an L1 
buyer. 
 
 
 
 
 
This happens because an L2 buyer’s L1 model of the seller leads 
it to overestimate the seller’s upward-shaded ask relative to 
equilibrium, which induces an L2 buyer to overbid (as in Crawford 
and Iriberri’s analysis of random L2 bidding in first-price auctions).  
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Similarly, an L2 seller’s ask a2(C) maximizes over a in [0, 1] 
 
 
 

 
   

 
    

           
 

 

 

 

    
          

 
 

 

where     
       is the density of an L1 buyer’s bid b1(V) induced 

by the value density f(V). 
 
For instance, if f(V) is uniform, an L2 seller believes that the 
buyer’s bid b1(V) = 2V/3 is uniformly distributed on [0, 2/3], with 
density 3/2 there and 0 elsewhere.  
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An L2 seller who believes the buyer’s bid is distributed on [0, 2/3] 
believes that trade requires a < 2/3. 
 
For C ≥ 2/3 it is therefore optimal for an L2 seller to bid anything it 
thinks yields zero probability of trade. In the absence of 
dominance among such strategies, I set a2(C) = C for C in (2/3, 1].  
 
For C < 2/3, an L2 seller’s ask a2(C) maximizes over a in [0, 2/3]   
 

 
   

 

 
 

 

          
 

 

         

 

The second-order condition is satisfied when f(V) is uniform. 

 

Solving the first-order condition (3/2)(a-C) + (3/2)(2/3 - C)/2 = 0, 
which yields a2(C) = 2C/3 + 2/9 for C in [0, 2/3].  
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In the interior an L2 seller asks 1/36 less aggressively (lower) than 
an equilibrium seller, and 1/9 less aggressively than an L1 seller. 
 
 
 
 
This happens because an L2 seller’s L1 model of the buyer leads 
it to underestimate the buyer’s downward-shaded bid relative to 
equilibrium, which induces an L2 seller to underask.  
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With uniform value densities, L2 buyers’ and sellers’ strategies 
again have the same slope, 2/3, as equilibrium buyers’ and 
sellers’ strategies, but are 1/36 less aggressive. 
 
 
When an L2 buyer meets an L2 seller, trade takes place if V ≥ C + 
1/6, versus V ≥ C + ¼ for an equilibrium buyer and seller. 
 
The value gap needed for trade is 1/12 smaller than for 
equilibrium buyers and sellers and 1/3 smaller than for L1 buyers 
and sellers, so ex post efficiency is lost for fewer values than with 
equilibrium or L1 bargainers. 
 
The ex ante probability of trade is 25/72 ≈ 35%, higher than the 
equilibrium probability of 28% or the L1 probability of 12.5%, but 
still less than the maximum individually rational probability of 50%. 
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These much more efficient outcomes raise the question of 
whether a designer who knows (say) that all traders are L2s can 
design a mechanism that further enhances their efficiency by 
exploiting their meekness even better than CS’s double auction. 
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These much more efficient outcomes raise the question of 
whether a designer who knows (say) that all traders are L2s can 
design a mechanism that further enhances their efficiency by 
exploiting their meekness even better than CS’s double auction. 
 
 
 
I will show that with uniform value densities, if we require 
incentive-compatibility, the answer is No. 
 
 
But if we allow non-L2-incentive-compatible mechanisms such as 
the double auction, the answer may change to Yes. 
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Failures of the revelation principle and “level-k menu effects” 

 

● How can CS’s double auction yield less efficient outcomes for 
L1 traders than the equilibrium-incentive-compatible direct 
version of CS’s double auction, which is MS’s equilibrium-
incentive-efficient direct mechanism? 

 

● How can CS’s double auction yield more efficient outcomes 
for L2 traders than MS’s equilibrium-incentive-efficient 
mechanism? 
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Going from a double auction to MS’s equilibrium-incentive-efficient 
direct mechanism (which is equilibrium-equivalent to it with 
uniform value densities) creates level-k menu effects that change 
the relation between a level-k trader’s beliefs and correct beliefs: 
 
● MS’s equilibrium-incentive-efficient direct mechanism 

neutralizes L1s’ aggressiveness in the double auction by 
rectifying their beliefs. 

● The double auction improves upon MS’s equilibrium-incentive- 
efficient mechanism for L2s by not rectifying their beliefs and 
thereby preserving their beneficial meekness. 
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Going from a double auction to MS’s equilibrium-incentive-efficient 
direct mechanism (which is equilibrium-equivalent to it with 
uniform value densities) creates level-k menu effects that change 
the relation between a level-k trader’s beliefs and correct beliefs: 
 
● MS’s equilibrium-incentive-efficient direct mechanism 

neutralizes L1s’ aggressiveness in the double auction by 
rectifying their beliefs. 

● The double auction improves upon MS’s equilibrium-incentive- 
efficient mechanism for L2s by not rectifying their beliefs and 
thereby preserving their beneficial meekness. 

 
In each case menu effects make the revelation principle fail for 
level-k bargainers, even for direct mechanisms and with L0 fixed. 
 
Such effects are a residue of Lk’s anchoring on L0, which would 
be eliminated by equilibrium thinking.  
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The way the double auction improves upon MS’s equilibrium-
incentive-efficient direct mechanism for L2s by not rectifying their 
beliefs highlights an important feature of level-k mechanism 
design that cannot arise in an equilibrium-based analysis: 
 
Tacit Exploitation of Predictably Incorrect Beliefs (“TEPIB”) 
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The way the double auction improves upon MS’s equilibrium-
incentive-efficient direct mechanism for L2s by not rectifying their 
beliefs highlights an important feature of level-k mechanism 
design that cannot arise in an equilibrium-based analysis: 
 
Tacit Exploitation of Predictably Incorrect Beliefs (“TEPIB”) 
 

● “Predictably” via the level-k model. 

 
 
● “Exploitation” in the benign sense that traders’ incorrect beliefs 
 are used only for their benefit. 
 
 
● “Tacit” in that the mechanism does not actively deceive traders. 
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TEPIB also suggests that viewing “robust” mechanism design as 
achieving equilibrium-incentive-efficient outcomes under weaker 
behavioral assumptions is too narrow. 
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TEPIB also suggests that viewing “robust” mechanism design as 
achieving equilibrium-incentive-efficient outcomes under weaker 
behavioral assumptions is too narrow. 
 
 
 
● A second-price auction seems more robust than an equilibrium- 

revenue-equivalent first-price auction, because it yields the 
equilibrium outcome for any mixture of level-k bidders. 
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TEPIB also suggests that viewing “robust” mechanism design as 
achieving equilibrium-incentive-efficient outcomes under weaker 
behavioral assumptions is too narrow. 
 
 
 
● A second-price auction seems more robust than an equilibrium- 

revenue-equivalent first-price auction, because it yields the 
equilibrium outcome for any mixture of level-k bidders. 

 
 
 
● But auction design for L1s (at least) favors first-price auctions, 

which make L1s overbid, yielding revenue higher than in 
equilibrium; or in a second-price auction, which makes L1 
bidders mimic equilibrium (Crawford and Iriberri 2007, CKNP). 
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The failure of the Revelation Principle for level-k models poses a 
hard choice: Should we require Lk-incentive-compatibility or not? 
 
● Requiring Lk-incentive-compatibility may make implementation 
 simpler, more transparent, and more reliable. 
 
● Not requiring it may unfairly favor those who are willing to lie. 
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The failure of the revelation principle for level-k models poses a 
hard choice: Should we require Lk-incentive-compatibility or not? 
 
● Requiring Lk-incentive-compatibility may make implementation 
 simpler, more transparent, and more reliable. 
 
● Not requiring it may unfairly favor those who are willing to lie. 
 
● Yet many analysts find direct but non-incentive-compatible 
 mechanisms such as the first-price auction acceptable. 
 
● And if Lk-incentive-compatibility is not truly needed to make a 
 mechanism workable, relaxing it may allow efficiency gains. 
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The failure of the revelation principle for level-k models poses a 
hard choice: Require Lk-incentive-compatibility, or not? 
 
● Requiring Lk-incentive-compatibility may make implementation 
 simpler, more transparent, and more reliable. 
 
● Not requiring it may unfairly favor those who are willing to lie. 
 
● Yet many analysts find direct but non-incentive-compatible 
 mechanisms such as the first-price auction acceptable. 
 
● And if Lk-incentive-compatibility is not truly needed to make a 
 mechanism workable, relaxing it may allow efficiency gains. 
 
It’s partly an empirical question, which I do not try to resolve here. 
 
Most of my analysis requires Lk-incentive-compatibility, which 
allows a more complete analysis; but I briefly consider relaxing it. 
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Efficient mechanisms for level-k bilateral trading 

 
In analyzing efficient mechanisms for level-k bilateral trading, I 
restrict attention throughout to direct mechanisms—including the 
double auction, in which bids are conformable to value reports—
for which there is some evidence to guide the specification of L0. 
 
I focus on populations of L1s and L2s, known to the designer; and 
(mostly) assume that the population is concentrated on one level. 

(Screening traders’ levels along with their values is very difficult.) 
 
I ignore the noisiness of people’s decisions, as in MS’s and almost 
all other analyses of design. 
 
● I first require Lk-incentive-compatibility: “mechanisms that are 
 efficient in the set of Lk-incentive-compatible mechanisms”.  
 
● I then consider relaxing it: “Lk-incentive-efficient mechanisms”. 
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Mechanisms that are efficient in the set of Lk-incentive-
compatible mechanisms  

Here my analysis closely parallels MS’s analysis. 

Recall that MS’s Theorems 1 and 2 use conditions for equilibrium-
incentive-compatibility to derive an “incentive budget constraint”, 
subject to which an equilibrium-incentive-efficient mechanism 
must maximize the sum of traders’ ex ante expected utilities. 

MS’s Corollary 1 shows that no incentive-compatible individually 
rational mechanism is ex post Pareto-efficient with probability one. 
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Mechanisms that are efficient in the set of Lk-incentive-
compatible mechanisms  

Here my analysis closely parallels MS’s analysis. 

Recall that MS’s Theorems 1 and 2 use conditions for equilibrium-
incentive-compatibility to derive an “incentive budget constraint”, 
subject to which an equilibrium-incentive-efficient mechanism 
must maximize the sum of traders’ ex ante expected utilities. 

MS’s Corollary 1 shows that no incentive-compatible individually 
rational mechanism is ex post Pareto-efficient with probability one. 
 
In CS’s example with uniform value densities, Theorems 1-2 yield 
a closed-form solution for the incentive-compatible direct form of 
the incentive-efficient mechanism, which then yields the same 
outcomes as CS’s linear equilibrium of the double auction (with 
traders’ equilibrium bidding strategies shading to mimic the effect 
of truthful reporting in MS’s incentive-compatible mechanism). 
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My first result shows that MS’s equilibrium-based result for uniform 
value densities is completely robust to level-k thinking when Lk-
incentive-compatibility is required.  

Theorem A. With uniform value densities, MS’s equilibrium-
incentive-efficient direct mechanism is also efficient in the set of 
level-k-incentive-compatible mechanisms for any population of 
levels with k > 0, known or concentrated on one level or not. 
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My first result shows that MS’s equilibrium-based result for uniform 
value densities is completely robust to level-k thinking when Lk-
incentive-compatibility is required.  

Theorem A. With uniform value densities, MS’s equilibrium-
incentive-efficient direct mechanism is also efficient in the set of 
level-k-incentive-compatible mechanisms for any population of 
levels with k > 0, known or concentrated on one level or not. 

Proof. With uniform value densities, in the truthful equilibrium of 
MS’s equilibrium-incentive-efficient direct mechanism, each trader 
faces a uniform distribution of the other’s reports. L1 traders best 
respond to L0s that also imply uniform distributions. L1 traders’ 
conditions for individual rationality and incentive-compatibility 
therefore coincide with the analogous conditions for equilibrium 
traders; and because they make L1s report truthfully, so on for Lks 
ad infinitum. The objective function, which reflects correct beliefs, 
is also the same as in MS’s equilibrium-based analysis. Q.E.D. 
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But to yield good outcomes for Lk traders, unlike for equilibrium 
traders, MS’s equilibrium-incentive-efficient mechanism must be 
implemented in its direct, Lk-incentive-compatible form. 
 
 
 
 
The examples of failures of the revelation principle above show 
that using the raw double auction for L1 traders is not efficient in 
the set of L1-incentive-compatible mechanisms. 
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Turning to general value densities, the payoff-relevant aspects of 
a direct mechanism are still outcome functions p(∙, ∙) and x(∙, ∙), 
where buyer and seller report values v and c, and p(v, c) is the 
probability the object transfers, for expected payment x(v, c). 
 

For a mechanism (p, x),           and           are the density 

and distribution function of an Lk seller’s beliefs and           
and           of an Lk buyer’s.  
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Turning to general value densities, the payoff-relevant aspects of 
a direct mechanism are still outcome functions p(∙, ∙) and x(∙, ∙), 
where buyer and seller report values v and c, and p(v, c) is the 
probability the object transfers, for expected payment x(v, c). 
 

For a mechanism (p, x),           and           are the density 

and distribution function of an Lk seller’s beliefs and           
and           of an Lk buyer’s.  
 
 

With L0 uniform on [0, 1],             and            .  
 
If           is an L1 buyer’s response to (p, x) with value V and 

          is an L1 seller’s response to (p, x) with cost C, 

              
           and               

          . 
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As in MS’s analysis, we can write the buyer’s and seller’s 
expected monetary payments, probabilities of trade, and utilities 
as functions of their value reports v and c. 
 
 

  
                         

                       
 

 

 
 

 

 

(6.1)   
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For a given k, the mechanism p(∙, ∙), x(∙, ∙) is Lk-incentive-
compatible iff truthful reporting is optimal given Lk beliefs. 
 

That is, if for every V, v, C, and c in [0, 1], 

(6.2)    
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For a given k, the mechanism p(∙, ∙), x(∙, ∙) is Lk-incentive-
compatible iff truthful reporting is optimal given Lk beliefs. 
 

That is, if for every V, v, C, and c in [0, 1], 

(6.2)    
        

       
              

       
        

       

 

 

The mechanism p(∙, ∙), x(∙, ∙) is (interim) Lk-individually rational iff 

for every V and C in [0, 1], 

(6.3)         
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My Theorems B and C parallel MS’s characterization of 
equilibrium-incentive-efficient mechanisms (Theorems 1-2), for 
models with known, homogeneous populations of L1s or L2s. 
 
Theorem B. For any known population of L1 or L2 traders 
concentrated on one level, k, and any level-k-incentive-compatible 
mechanism, 
 
                                                   

(6.4)        
      

    
  

         

    
     

    

    
  

         

    
  

 

 
                   

 

 
 

Furthermore, if p(∙,∙) is any function mapping [0, 1]×[0, 1] into [0, 
1], there exists a function x(∙, ∙) such that (p, x) is level-k-incentive-
compatible and level-k-interim-individually rational if and only if 

  
     is weakly increasing for all (p, x),   

     is weakly decreasing 

for all (p, x), and 

(6.5)         
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With correct beliefs,                and           
      (6.5) is equivalent to MS’s incentive budget constraint. 
 
Because level-k beliefs happen to be correct for uniform value 
densities (for all k), that equivalence implies Theorem A. 
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With correct beliefs,                and           
      (6.5) is equivalent to MS’s incentive budget constraint. 
 
Because level-k beliefs happen to be correct for uniform value 
densities (for all k), that equivalence implies Theorem A. 
 
Proof. The proof follows MS’s, adjusted for nonequilibrium beliefs. 

By (6.1),   
     is weakly increasing and   

     is weakly decreasing 
for any given (p, x), which, as in MS’s proof, yields necessary and 
sufficient conditions for incentive-compatibility: 
 

(6.6)     
       

        
      

 

 
 and 

  
       

        
      

 

 
 for all V and C. 

 

(6.6) implies that   
     is weakly increasing and   

     is weakly 

decreasing, and shows that   
       and   

       suffice for 

individual rationality for all V and C as in (6.3). 
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To derive the incentive budget constraint (6.5), analogous to MS’s 
(2), note that, 

   
 

 

                       
 

 

   
 

 

                      
 

 

  

(6.7)      
              

          
 

 

 

 
  

   
         

                
         

             
 

 

 

 

 

 

 

 
  

  
        

                 
      

 

 

        
      

 

 

  

  
        

                                                          
 

 

 

 
    

Equating the first and last expression in (6.7) yields (6.4), which 
implies (6.5) whenever the mechanism is individually rational. 
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To derive the incentive budget constraint (6.5), analogous to MS’s 
(2), note that, 

   
 

 

                       
 

 

   
 

 

                      
 

 

  

(6.7)      
              

          
 

 

 

 
  

   
         

                
         

             
 

 

 

 

 

 

 

 
  

  
        

                 
      

 

 

        
      

 

 

  

  
        

                                                          
 

 

 

 
    

Equating the first and last expression in (6.7) yields (6.4), which 
implies (6.5) whenever the mechanism is individually rational. 

Finally, given (6.3) and that   
     is increasing and   

     is 

decreasing, MS’s (pp. 270-271) transfer function 

(6.8)           
 

 
    

        
 

 
     

      +          
 

 
     

      

makes (p, x) level-k-incentive-compatible and level-k-interim 
individually rational. Q.E.D. 
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Theorem C. For any known population of L1 or L2 traders 
concentrated on one level, if there exists a mechanism (p, x) that 
is level-k-incentive-compatible and maximizes traders’ ex ante 
expected total surplus  
 

       
 

 

                  
 

 

 

 

s.t.   
       

       and (6.5), then that mechanism is efficient 

in the set of level-k-incentive-compatible and level-k-interim-
individually-rational mechanisms. Further, if 
 

(6.9)      
      

    
  

         

    
     

    

    
  

         

    
  

is increasing in V and decreasing in C for any given (p, x), then 
that mechanism is efficient in the set of level-k-incentive-
compatible and level-k-interim-individually-rational mechanisms.. 
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Proof. The proof adapts the proof of MS’s Theorem 2. Choose 
p(∙, ∙) to maximize ex ante expected total surplus subject to 0 ≤  

p(∙, ∙) ≤ 1,   
       

      , and (6.5). The problem is like a 
consumer’s budget problem, with a continuum of trade 
probabilities        analogous to goods priced linearly. Some of 
the “prices” are negative; but by the logic of the incentive 
constraints, there is no free disposal.  

A solution exists because continuity of the value densities ensures 
continuity of the objective function and the constraint, and the 
feasible region is compact. 

Form the Lagrangean, but for ease of notation without separately 
pricing out the          constraints: 

 
            

 

 
                  

 

 
 

(6.10)         
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The objective function and the constraint are linear in the       , 
so the solution will be “bang-bang”, with        = 0 or 1 a.e. 
 
The Kuhn-Tucker conditions require    , 
 

(6.11)            
      

    
  

         

    
     

    

    
  

         

    
   ≤ 0 

when         , and 
 

(6.12)            
      

    
  

         

    
     

    

    
  

         

    
   ≥ 0 

when           
 
(6.11)-(6.12) are analogous to marginal-utility-to-price ratios 
determining which goods to buy and which not to buy. 
 
Given that          if and only if (6.12) is satisfied, the optimal λ 
is set so that (6.5) holds with equality. 
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If the expression in 
  

(6.9)      
      

    
  

         

    
     

    

    
  

         

    
  

 
is increasing in V and decreasing in C for any given (p, x), then 

       and thus   
     and   

     in (6.1) are respectively 

increasing and decreasing. 
 
Then by Theorem B, the problem’s solution is associated with a 
mechanism that maximizes expected total surplus among all level-
k-incentive-compatible and level-k-individually-rational 
mechanisms. Q.E.D. 
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Theorem C’s condition that the expression in (6.9) is increasing in 
V and decreasing in C for all (p, x) is the level-k analogue of MS’s 
(Theorem 2) equilibrium-based condition for         . 

 
 
Theorem C’s condition with the true, equilibrium densities      
and      replacing the level-k beliefs           and           
reduces to MS’s condition. 
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Theorem C’s condition that the expression in (6.9) is increasing in 
V and decreasing in C for all (p, x) is the level-k analogue of MS’s 
(Theorem 2) equilibrium-based condition for         . 

 
 
Theorem C’s condition with the true, equilibrium densities      
and      replacing the level-k beliefs           and           
reduces to MS’s condition. 
 
 
 
MS’s condition is satisfied when the true densities fit into 
Myerson’s (1981) “regular case”, which rules out strong hazard 
rate variations in the “wrong” direction. 
 
The level-k version of the condition, on (6.9), jointly restricts the 
true densities and level-k beliefs in a similar way.  
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Comparing the level-k incentive budget constraint 
 
(6.5) 

        
      

    
  

         

    
     

    

    
  

         

    
  

 

 
                  

 

 
  

 
with MS’s equilibrium-based incentive budget constraint, and 
comparing the level-k Kuhn-Tucker condition 
 

(6.12)            
      

    
  

         

    
     

    

    
  

         

    
   ≥ 0 

when          
 
with the equilibrium-based Kuhn-Tucker condition shows that the 
design features that foster equilibrium-incentive-efficiency also 
foster efficiency in the set of level-k-incentive-compatible 
mechanisms, although level-k beliefs give them different weights.  
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There are, however, important differences in the level-k analysis.  
 
First, in contrast to MS’s Corollary 1 it is now theoretically possible 
that the optimal λ = 0, so that from (6.12),          if and only if 
V ≥ C (ignoring ties), (6.5) is satisfied even then, and the level-k-
optimal mechanism is ex post efficient with probability 1. 
 
This can be seen, tediously, by trying to adapt MS’s proof of 
Corollary 1 for a population concentrated on one level, k. 
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There are, however, important differences in the level-k analysis.  
 
First, in contrast to MS’s Corollary 1 it is now theoretically possible 
that the optimal λ = 0, so that from (6.12),          if and only if 
V ≥ C (ignoring ties), (6.5) is satisfied even then, and the level-k-
optimal mechanism is ex post efficient with probability 1. 
 
This can be seen, tediously, by trying to adapt MS’s proof of 
Corollary 1 for a population concentrated on one level, k. 
 
 
Second, unless a mechanism that is efficient in the set of level-k-
incentive-compatible mechanisms happens to induce correct 
beliefs (as with uniform value densities, by Theorem A), it must 
use tacit exploitation of predictably incorrect beliefs (“TEPIB”), a 
design feature with no counterpart in MS’s equilibrium analysis. 
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TEPIB favors trade at (V, C) combinations for which traders’ non-
equilibrium beliefs make the “prices” (in curly brackets) in 
 

(6.12)            
      

    
  

         

    
     

    

    
  

         

    
   ≥ 0 

when           
 
more favorable than for equilibrium beliefs. 
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TEPIB favors trade at (V, C) combinations for which traders’ non-
equilibrium beliefs make the “prices” (in curly brackets) in 
 

(6.12)            
      

    
  

         

    
     

    

    
  

         

    
   ≥ 0 

when           
 
more favorable than for equilibrium beliefs. 
 
 

In particular those for which 
         

    
    and/or  

         

    
   are 

favored more than in an equilibrium-incentive-efficient mechanism. 
 
 
And for k = 2 (L1 beliefs don’t depend on the mechanism) TEPIB 
favors mechanisms that increase the advantages of such trades. 
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Finally, Theorem C shows that a mechanism that is efficient in the 
set of level-k-incentive-compatible mechanisms may involve trade 
for some value combinations with V < C: consistent with level-k-
interim-individually-rationality but “perverse” ex post. 
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Finally, Theorem C shows that a mechanism that is efficient in the 
set of level-k-incentive-compatible mechanisms may involve trade 
for some value combinations with V < C: consistent with level-k-
interim-individually-rationality but “perverse” ex post. 
 
Some of the “prices” in the incentive budget constraint (6.5) are 
negative (with no free disposal), which makes (6.12) consistent 
with some trade when V < C. 
 
Such perverse trade can loosen (6.5) enough to compensate for 
the local loss in surplus by enabling trade for other value 
combinations, as illustrated in some of the examples below. 
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Finally, Theorem C shows that a mechanism that is efficient in the 
set of level-k-incentive-compatible mechanisms may involve trade 
for some value combinations with V < C: consistent with level-k-
interim-individually-rationality but “perverse” ex post. 
 
Some of the “prices” in the incentive budget constraint (6.5) are 
negative (with no free disposal), which makes (6.12) consistent 
with some trade when V < C. 
 
Such perverse trade can loosen (6.5) enough to compensate for 
the local loss in surplus by enabling trade for other value 
combinations, as illustrated in some of the examples below. 
 
MS’s Theorem 2 shows that such perverse trade cannot occur in 
an equilibrium-incentive-efficient mechanism.  

(MS note however that their transfer function may require payment 
by a buyer who does not get the object, which is not ex-post-
individually rational.) 
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Examples of mechanisms that are efficient in the set of level-
k-incentive-incentive-compatible mechanisms 
  
Closed-form solutions are available only with uniform value 
densities; but the mechanism that is efficient in the set of level-k-
incentive-compatible mechanisms then induces correct beliefs by 
Theorem A, so that TEPIB has no influence. 
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Examples of mechanisms that are efficient in the set of level-
k-incentive-incentive-compatible mechanisms 
  
Closed-form solutions are available only with uniform value 
densities; but the mechanism that is efficient in the set of level-k-
incentive-compatible mechanisms then induces correct beliefs by 
Theorem A, so that TEPIB has no influence. 
 
To illustrate TEPIB, Figure 1 reports such mechanisms’ trading 
regions for L1s’ and representative linear density combinations. 

(The combinations are a comprehensive coarse subset of all 
possible linear density combinations, with combinations excluded 
only for the few extreme combinations that violate Theorems B-
C’s monotonicity conditions for the mechanism to be truly optimal.) 
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Examples of mechanisms that are efficient in the set of level-
k-incentive-incentive-compatible mechanisms 
  
Closed-form solutions are available only with uniform value 
densities; but the mechanism that is efficient in the set of level-k-
incentive-compatible mechanisms then induces correct beliefs by 
Theorem A, so that TEPIB has no influence. 
 
To illustrate TEPIB, Figure 1 reports such mechanisms’ trading 
regions for L1s’ and representative linear density combinations. 

(The combinations are a comprehensive coarse subset of all 
possible linear density combinations, with combinations excluded 
only for the few extreme combinations that violate Theorems B-
C’s monotonicity conditions for the mechanism to be truly optimal.) 

(For L2s, with           
           and           

          , 
(6.5) and (6.12) depend on the transfer function x(∙, ∙) as well as 
p(∙, ∙), making the dimensionality of search too high.) 
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At least for populations concentrated on one level, mechanisms 
that are efficient in the set of level-k-incentive-compatible 
mechanisms are in most respects similar to equilibrium-incentive-
efficient mechanisms. 
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At least for populations concentrated on one level, mechanisms 
that are efficient in the set of level-k-incentive-compatible 
mechanisms are in most respects similar to equilibrium-incentive-
efficient mechanisms. 

 
When L1 sellers’ beliefs are pessimistic relative to buyers’ true 
densities, L1 mechanisms exploit TEPIB to implement trading 
regions that are supersets of those for equilibrium-incentive-
efficient mechanisms (except in Figure 1’s case “0.75, 1.75”, in 
which they overlap); L1 mechanisms then yield higher surplus. 
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At least for populations concentrated on one level, mechanisms 
that are efficient in the set of level-k-incentive-compatible 
mechanisms are in most respects similar to equilibrium-incentive-
efficient mechanisms. 

 
When L1 sellers’ beliefs are pessimistic relative to buyers’ true 
densities, L1 mechanisms exploit TEPIB to implement trading 
regions that are supersets of those for equilibrium-incentive-
efficient mechanisms (except in Figure 1’s case “0.75, 1.75”, in 
which they overlap); L1 mechanisms then yield higher surplus. 
 
In two such combinations, “0.25, 1.5” and “0.25, 1.75”, L1 
mechanisms have ex post perverse trade for very high V and C. 
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At least for populations concentrated on one level, mechanisms 
that are efficient in the set of level-k-incentive-compatible 
mechanisms are in most respects similar to equilibrium-incentive-
efficient mechanisms. 

 
When L1 sellers’ beliefs are pessimistic relative to buyers’ true 
densities, L1 mechanisms exploit TEPIB to implement trading 
regions that are supersets of those for equilibrium-incentive-
efficient mechanisms (except in Figure 1’s case “0.75, 1.75”, in 
which they overlap); L1 mechanisms then yield higher surplus. 
 
In two such combinations, “0.25, 1.5” and “0.25, 1.75”, L1 
mechanisms have ex post perverse trade for very high V and C. 
 
When L1 sellers’ beliefs are optimistic, L1 mechanisms still exploit 
TEPIB, but equilibrium-incentive-efficient trading regions are 
supersets of the L1 trading regions (except in cases “1.0, 0.25”, 
“1.5, 0.25”, and “1.5, 0.50”, in which they overlap). 
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The seller’s beliefs are more important than the buyer’s because 
trade does not always occur when V > C, so initial ownership of 
the object breaks the symmetry between them. 
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The seller’s beliefs are more important than the buyer’s because 
trade does not always occur when V > C, so initial ownership of 
the object breaks the symmetry between them. 
 
 
 
The terms in the buyer’s density in the incentive budget 
constraints (3.5) and (6.5) are “virtual utilities”, negative for low 
values of V but positive for high values; while the terms in the 
seller’s density are not virtual utilities, and are always positive. 
 
 
 
Even Figure 1’s equilibrium trading regions are not symmetric 
across cases with buyer’s and seller’s densities interchanged.           
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Figure 1. Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 
Equilibrium: 0.25, 0.25 

 

Buyer (—) and seller (···)    

 

L1: 0.25, 0.25 

 
Equilibrium: 0.25, 0.5 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 0.5 

 
Equilibrium: 0.25, 0.75 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 0.75 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 
Equilibrium: 0.25, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.0 

 
Equilibrium: 0.25, 1.25 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.25 

 
Equilibrium: 0.25, 1.5 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.5 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 0.25, 1.75 

 

Buyer (—) and seller (···) 

 

L1: 0.25, 1.75 

 
Equilibrium: 0.5, 0.25 

 

Buyer (—) and seller (···) 

 

L1: 0.5, 0.25 

 
Equilibrium: 0.5, 0.75 

 

Buyer (—) and seller (···) 

 

L1: 0.5, 0.75 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 0.5, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 0.5, 1.0 

 
Equilibrium: 0.5, 1.25 

 

Buyer (—) and seller (···) 

 

L1: 0.5, 1.25 

 
Equilibrium: 0.5, 1.5 

 

Buyer (—) and seller (···) 

 

L1: 0.5, 1.5 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 
Equilibrium: 0.75, 0.5 

 

Buyer (—) and seller (···) 

 

L1: 0.75, 0.5 

 
Equilibrium: 0.75, 0.75 

 

Buyer (—) and seller (···) 

 

L1: 0.75, 0.75 

 
Equilibrium: 0.75, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 0.75, 1.0 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 0.75, 1.25 

 

Buyer (—) and seller (···) 

 

L1: 0.75, 1.25 

 
Equilibrium: 0.75, 1.5 

 

Buyer (—) and seller (···) 

 

L1: 0.75, 1.5 

 
Equilibrium: 0.75, 1.75 

 

Buyer (—) and seller (···) 

 

L1: 0.75, 1.75 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 1.0, 0.25 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 0.25 

 
Equilibrium: 1.0, 0.5 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 0.5 

 
Equilibrium: 1.0, 0.75 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 0.75 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 1.0, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 1.0 

 
Equilibrium: 1.0, 1.25 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 1.25 

 
Equilibrium: 1.0, 1.5 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 1.5 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 1.0, 1.75 

 

Buyer (—) and seller (···) 

 

L1: 1.0, 1.75 

 
Equilibrium: 1.25, 0.5 

 

Buyer (—) and seller (···) 

 

L1: 1.25, 0.5 

 
Equilibrium: 1.25, 0.75 

 

Buyer (—) and seller (···) 

 

L1: 1.25, 0.75 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 1.25, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 1.25, 1.0 

 
Equilibrium: 1.25, 1.25 

 

Buyer (—) and seller (···) 

 

L1: 1.25, 1.25 

 
Equilibrium: 1.25, 1.5 

 

Buyer (—) and seller (···) 

 

L1: 1.25, 1.5 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 1.25, 1.75 

 

Buyer (—) and seller (···) 

 

L1: 1.25, 1.75 

 
Equilibrium: 1.5, 0.25 

 

Buyer (—) and seller (···) 

 

L1: 1.5, 0.25 

 
Equilibrium: 1.5, 0.5 

 

Buyer (—) and seller (···) 

 

L1: 1.5, 0.5 
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Figure 1 (cont.). Trading regions (in black) for equilibrium-incentive-efficient mechanisms 
and mechanisms that are efficient in the set of L1-incentive-compatible mechanisms 

(Buyer’s value V is on the vertical axis; seller’s value C is on the horizontal axis. All value densities are linear; “x, y” means 
the buyer’s density f(V) satisfies f(0) = x and f(1) = 2-x, and the seller’s density g(C) satisfies g(0) = y and g(1) = 2-y.) 

 

Equilibrium: 01.5, 0.75 

 

Buyer (—) and seller (···) 

 

L1: 1.5, 0.75 

 
Equilibrium: 1.5, 1.0 

 

Buyer (—) and seller (···) 

 

L1: 1.5, 1.0 

 
Equilibrium: 1.5, 1.25 

 

Buyer (—) and seller (···) 

 

L1: 1.5, 1.25 
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Mechhanisms that are efficient in the set of level-k-incentive-
efficient mechanisms with general value densities and 
heterogeneous level populations 

 

This case has no counterpart in MS’s analysis. 

 

Continuing to assume that level-k-incentive-compatibility is 
required, and allowing general value densities, relax the 
assumption that the population is concentrated on one level.  

 

Assume a known mixture of L1 and L2 traders, and allow only a 
single direct mechanism, as there is no evidence on which to base 
a specification of a level-k model for more complex menus. 
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Suppose—here it may not follow from optimization—that level-k-

incentive-efficient mechanisms still set   
       

      . 

 
Then only trivial mechanisms can fully screen traders’ values and 
levels. Screening conditions like (6.5) require different transfers for 
different levels, but traders would select the higher transfer. 
 
As a result, it will normally be suboptimal to fully screen traders. 
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Suppose—here it may not follow from optimization—that level-k-

incentive-efficient mechanisms still set   
       

      . 

 
Then only trivial mechanisms can fully screen traders’ values and 
levels. Screening conditions like (6.5) require different transfers for 
different levels, but traders would select the higher transfer. 
 
As a result, it will normally be suboptimal to fully screen traders. 
 
 
If the population contains mostly L1s (L2s), the level-k incentive-
efficient mechanism is probably optimized for L1s (L2s), ignoring 
the rarer level but still getting some expected surplus from it. 
 
In general, however, the problem of screening levels interacts with 
the problem of screening values in complex ways, and there may 
be no simple structure on which values are screened. 
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Lk-incentive-efficient mechanisms relaxing Lk-incentive-
compatibility 
 
This case has no counterpart in MS’s analysis. 
 
Return to a known population of traders concentrated on one 
level. 
 
 
Recall that the revelation principle fails for level-k traders, so that if 
Lk-incentive-compatibility is not required, it might be beneficial to 
allow direct mechanisms that are not Lk-incentive-compatible.  
 
“Lk-incentive-efficient” now refers to a mechanism that cannot be 
improved upon by any feasible direct mechanism for Lk traders. 
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In this case one can still define a general class of feasible direct 
mechanisms; and the payoff-relevant aspects of a mechanism are 
still described by outcome functions p(∙, ∙) and x(∙, ∙). 

 

However, even a direct mechanism’s incentive effects can no 
longer be tractably captured via incentive constraints. Instead they 
must be modeled directly via level-k traders’ responses to it. 

 

For tractability, I focus on double auctions with reserve prices 
chosen by the designer, and on uniform value densities. 
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In this case one can still define a general class of feasible direct 
mechanisms; and the payoff-relevant aspects of a mechanism are 
still described by outcome functions p(∙, ∙) and x(∙, ∙). 

 

However, even a direct mechanism’s incentive effects can no 
longer be tractably captured via incentive constraints. Instead they 
must be modeled directly via level-k traders’ responses to it. 

 

For tractability, I focus on double auctions with reserve prices 
chosen by the designer, and on uniform value densities. 
 
Reserve prices would have no effect if L0 is uniform random on 
the full range of possible values [0, 1], as assumed so far. 
 
But a restricted menu might make Lk players anchor beliefs 
instead on the restricted range of bids or asks, and that can make 
reserve prices useful in trading mechanisms (CKNP). 
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For example, in the double auction with uniform value densities, 
L1 traders believe they face bids or asks uniformly distributed on 
[0, 1], which leads to incentive-inefficient outcomes. 
 
 
To implement the outcome of MS’s equilibrium-incentive-efficient 
direct mechanism via the double auction, L1 traders have to 
believe that they face bids or asks uniform on [1/4, 3/4], the range 
of “serious” bids or asks in CS’s linear double-auction equilibrium. 
 
 
If L1 traders anchor on the restricted menu, those beliefs can be 
induced by restricting bids to [1/4, 3/4] and asks to [1/4, 3/4]. (The 
upper ask limit could be raised to 1 and the lower bid limit to 0.) 
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Thus with uniform value densities, for L1s a double auction with 
reserve prices can take advantage of TEPIB to mimic MS’s 
equilibrium-incentive-efficient mechanism, whose direct form is 
then efficient in the set of L1-incentive-compatible mechanisms. 
  
(MS’s general specification of feasible mechanisms implicitly 
allows reserve prices, and their analysis therefore shows that if 
equilibrium is assumed, reserve prices are not useful here.) 
 
 
 
Computations suggest that more stringent reserve prices can 
further improve upon MS’s equilibrium-incentive-efficient 
mechanism, by taking fuller advantage of TEPIB. 
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For L2s with uniform value densities, my analysis of the double 
auction without reserve prices shows that it can improve upon a 
mechanism that is efficient in the set of L2-incentive-efficient 
mechanisms, or MS’s equilibrium-incentive-efficient mechanism. 
 
Computations again suggest that reserve prices allow even more 
improvement, via TEPIB. 
 
  



139 
 

 
For L2s with uniform value densities, my analysis of the double 
auction without reserve prices shows that it can improve upon a 
mechanism that is efficient in the set of L2-incentive-efficient 
mechanisms, or MS’s equilibrium-incentive-efficient mechanism. 
 
Computations again suggest that reserve prices allow even more 
improvement, via TEPIB. 
 
 
 
 
More generally, relaxing the restriction to level-k-incentive-
compatible mechanisms can yield level-k-incentive-efficient 
mechanisms that differ qualitatively as well as quantitatively from 
equilibrium-incentive-efficient mechanisms, with substantial gains 
in incentive-efficiency. 
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Summary 
 
A level-k analysis adds to the usefulness of equilibrium-based 
design theory in several ways: 
 
● A level-k model adds enough specificity to allow an analysis with 

power comparable to that of an equilibrium analysis, yielding 
characterization results that clarify the role of the equilibrium 
assumption in MS’s analysis in several ways. 
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Summary 
 
A level-k analysis adds to the usefulness of equilibrium-based 
design theory in several ways: 
 
● A level-k model adds enough specificity to allow an analysis with 

power comparable to that of an equilibrium analysis, yielding 
characterization results that clarify the role of the equilibrium 
assumption in MS’s analysis in several ways. 

 
● The revelation principle fails, due to menu effects whereby the 

mechanism influences the correctness of level-k beliefs, which 
can favor a level-k-incentive-compatible mechanism over its 
direct non-level-k-incentive-compatible counterpart or vice versa. 

 
● Such menu effects compel a choice about whether to require 
 level-k-incentive-compatibility.  
  



142 
 

If level-k-incentive-compatibility is required, MS’s analysis is 
surprisingly robust to level-k thinking: 

● MS’s result that with uniform value densities, the equilibrium- 
incentive-efficient direct mechanism mimics CS’s linear double-
auction equilibrium, is completely robust to level-k thinking. 
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If level-k-incentive-compatibility is required, MS’s analysis is 
surprisingly robust to level-k thinking: 

● MS’s result that with uniform value densities, the equilibrium- 
incentive-efficient direct mechanism mimics CS’s linear double-
auction equilibrium, is completely robust to level-k thinking. 

● MS’s characterization of incentive-efficient mechanisms for 
general value densities is fully robust to level-k thinking for 
populations concentrated on one level. 
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If level-k-incentive-compatibility is required, MS’s analysis is 
surprisingly robust to level-k thinking: 

● MS’s result that with uniform value densities, the equilibrium- 
incentive-efficient direct mechanism mimics CS’s linear double-
auction equilibrium, is completely robust to level-k thinking. 

● MS’s characterization of incentive-efficient mechanisms for 
general value densities is fully robust to level-k thinking for 
populations concentrated on one level. 

● As a result, the design features that foster equilibrium-incentive- 
efficiency in MS’s analysis also foster efficiency in the set of 
level-k-incentive-compatible mechanisms, with different weights.   
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If level-k-incentive-compatibility is required, MS’s analysis is 
surprisingly robust to level-k thinking: 

● MS’s result that with uniform value densities, the equilibrium- 
incentive-efficient direct mechanism mimics CS’s linear double-
auction equilibrium, is completely robust to level-k thinking. 

● MS’s characterization of incentive-efficient mechanisms for 
general value densities is fully robust to level-k thinking for 
populations concentrated on one level. 

● As a result, the design features that foster equilibrium-incentive- 
efficiency in MS’s analysis also foster efficiency in the set of 
level-k-incentive-compatible mechanisms, with different weights.   

● The level-k analysis reveals a novel design feature, TEPIB (tacit 
exploitation of predictably incorrect beliefs): Mechanisms that 
are efficient among level-k-incentive-compatible mechanisms 
exploit nonequilibrium beliefs, without active deception, in the 
benign sense of implementing outcomes that increase welfare. 
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● Mechanisms that are efficient among L1-incentive-compatible 
mechanisms perform better when sellers’ uniform beliefs are 
pessimistic relative to buyers’ (upward-sloping) true densities. 

● They then exploit TEPIB to implement trading regions that are 
supersets of ones for equilibrium-incentive-efficient mechanisms 
and thereby obtain higher expected total surplus. 
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● Mechanisms that are efficient among L1-incentive-compatible 
mechanisms perform better when sellers’ uniform beliefs are 
pessimistic relative to buyers’ (upward-sloping) true densities. 

● They then exploit TEPIB to implement trading regions that are 
supersets of ones for equilibrium-incentive-efficient mechanisms 
and thereby obtain higher expected total surplus. 

● Sometimes such mechanisms require ex post perverse trade for 
 a small number of value combinations. 
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● Mechanisms that are efficient among L1-incentive-compatible 
mechanisms perform better when sellers’ uniform beliefs are 
pessimistic relative to buyers’ (upward-sloping) true densities. 

● They then exploit TEPIB to implement trading regions that are 
supersets of ones for equilibrium-incentive-efficient mechanisms 
and thereby obtain higher expected total surplus. 

● Sometimes such mechanisms require ex post perverse trade for 
 a small number of value combinations. 
 
● When sellers’ beliefs are optimistic, such mechanisms still 

exploit TEPIB, but equilibrium-incentive-efficient trading regions 
are usually supersets of the L1 trading regions. 
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● Mechanisms that are efficient among L1-incentive-compatible 
mechanisms perform better when sellers’ uniform beliefs are 
pessimistic relative to buyers’ (upward-sloping) true densities. 

● They then exploit TEPIB to implement trading regions that are 
supersets of ones for equilibrium-incentive-efficient mechanisms 
and thereby obtain higher expected total surplus. 

● Sometimes such mechanisms require ex post perverse trade for 
 a small number of value combinations. 
 
● When sellers’ beliefs are optimistic, such mechanisms still 

exploit TEPIB, but equilibrium-incentive-efficient trading regions 
are usually supersets of the L1 trading regions. 

 
● Despite the possibility that anchoring beliefs on a uniform L0 

might reduce sensitivity to distributional and knowledge 
assumptions, Lk mechanisms are no less sensitive than 
equilibrium-incentive-efficient mechanisms. 
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The level-k analysis also yields several examples of 
nonrobustness, beyond the failure of the revelation principle and 
the possibility of ex post perverse trade noted above: 
 
● Even if level-k-incentive-compatibility is required, MS’s Corollary 

1, that no incentive-compatible, interim individually rational 
mechanism can be ex post efficient with probability one, does 
not fully extend to level-k models with known populations. 
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● Sorting traders’ levels along with their values poses formidable 
 new analytical problems. 
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The level-k analysis also yields several examples of 
nonrobustness, beyond the failure of the revelation principle and 
the possibility of ex post perverse trade noted above: 
 
● Even if level-k-incentive-compatibility is required, MS’s Corollary 

1, that no incentive-compatible, interim individually rational 
mechanism can be ex post efficient with probability one, does 
not fully extend to level-k models with known populations. 

 
● Sorting traders’ levels along with their values poses formidable 
 new analytical problems. 
 
● And if direct but non-level-k-incentive-compatible mechanisms 

are usable, level-k-incentive-efficient mechanisms may differ 
qualitatively as well as quantitatively from equilibrium-incentive-
efficient mechanisms, with possibly substantial efficiency gains. 
 


