
1 Learning
Game theory has focused mainly on equilibrium concepts. Rational players have
commonly known identical beliefs in equilibrium and by definition it is a self-
enforcing state; once equilibrium is reached no player has incentives to leave the
action or probability mixture over actions prescribed by the equilibrium strategy
profile. However, equilibrium concepts do not explain how rational players get
to have identical beliefs or, in other words, how this self-enforcing state arises.
A traditional explanation of equilibrium is that it results from the analysis,

introspection and reasoning by the players in a situation where the rules of the
game, the rationality of the players, and the players’ payoff functions are all
common knowledge. However, as mentioned in Fudenberg & Levine [22], these
theories have many problems. First, a conceptual problem occurs when there
are multiple equilibria since there is no explanation of how players come to ex-
pect the same equilibrium. Second, the hypothesis of exact common knowledge
of payoffs and rationality might be arguable in many games. And third, equilib-
rium theory does a poor job explaining play in early rounds of most experiments,
although it does much better job in later rounds.
Learning models on the contrary, explain how people learn, adapt or evolve

toward equilibrium. Camerer[5] defines learning as an observed change in be-
havior owing to experience. Statistical learning models, the object of study in
this literary review, predict how probabilities of future choices are affected by
historical information.
However, it would be misleading if we describe learning models as models

that explain how people learn or evolve toward equilibrium. That statement
assumes both, that players always learn the equilibrium and that the learning
models converge always to equilibrium, which neither of them is true. On one
hand, there are many experiments in which people deviate from the equilib-
rium predictions, such as the ultimatum mini-game experiments or many of the
games in which there is a unique mixed Nash equilibrium. On the other hand,
the learning models do not always converge. Different learning models have
different convergence and stability properties and often these properties depend
on the properties of specific games. For instance, in games with a unique mixed
equilibrium reinforcement learning does not converge. However, stochastic fic-
titious play converges in these games but the steady state to which it converges
is not the Nash equilibrium.
It is important to note that the value of learning does not lie only in its ability

to explain how people learn or evolve toward equilibrium. We will explain with
specific experimental examples three situations in which learning models can
have considerable value. The learning models mentioned will be described in
the following section.
The first one is the one already mentioned. Suppose there are clear equi-

librium predictions in an experiment and that subjects initially are far away
from those predictions. However, as time passes by and as subjects play the
game repeatedly they learn through experience to play the equilibrium. A nice
example of this explanatory value of learning models is given by Cooper, Garvin
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& Kagel[10,11]. The experiment is on a signaling game originally proposed by
Milgrom & Roberts[28]. There are two types of monopolists, high cost type
(MH) and low cost type (ML), who decide an output level and the entrant (E),
after observing the output level and not knowing the type of the monopolist,
decides to enter or stay out. In the original control experiment, where entrants
have high cost, the intuitive equilibrium prediction is the pooling equilibrium
where both high cost and low cost monopolists behave the same way. More
specifically, MH plays strategically pretending to be ML. The results show that
monopolists initially did not play the equilibrium prediction, more specifically
both types chose the non strategic output. However, high rates of entrance
showed to high cost type monopolists to play strategically avoiding entrance.
The authors show that a fictitious play type model, adapted to play against one
population can explain this behavior toward equilibrium. Therefore, learning
models can explain how subjects learn the way to equilibrium.
A second useful application is when subjects’ play converges but the steady

state to which it converges is not Nash equilibrium. Learning models bring
valuable contribution of how individuals might proceed in their way to the
convergent state and therefore, why the equilibrium prediction fails. In games
with unique equilibrium in mixed strategies, players usually do not converge to
the equilibrium. Erev & Roth[20] collect all the experiments done on this type of
games that were played for more than 100 periods. In half of these experiments,
players do not show convergence to equilibrium. However, the authors show
that reinforcement learning type models can explain fairly well the evolution of
the play.
The third situation in which learning models are useful is when there are

many equilibrium predictions. Looking at the equilibrium selected by individ-
uals and learning models that predict this equilibrium selection might help to
understand important factors that play a role in the selection criteria. One ex-
ample is given by "continental divide game" carried out by Van Huyck, Battalio
& Cook[33]. It is an order-statistic game in which each of seven players chooses
integers from 1 to 14. A player’s payoff depends on her number and the median
number chosen by the players in her group. There are two pure-strategy Nash
equilibria, at 3 and 12. Five groups started at a median at 7 or below; all of them
flowed toward the low-payoff equilibrium at 3. The other five groups started at
8 or above and flowed to the high-payoff equilibrium. The experiment has three
important findings. First, behavior bifurcates from initial choices in the range
4-8 toward the equilibria at 3 and 12, even though players who end up at low
numbers earn half as much. Second, the currents of history are strong, creating
"extreme sensitivity to initial conditions". And third, convergence is asymmet-
ric; it is much sharper at the equilibrium of 12 than in the neighborhood of 3. As
Camerer[5] points out, no concept in analytical game theory gracefully accounts
for the fact that some groups flow to 3 and earn less, while others flow to 12 and
earn more. Ho, Camerer & Chong[25] show that the Experienced-Weighted At-
traction learning model captures the three characteristics fairly well, compared
to other learning models.
Going back to the two alternative explanations of how equilibrium arises,
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it is important to note that learning models have different underlying assump-
tions from the introspection and careful reasoning explanation. There are two
ways in which these alternative models are differentiated from each other. On
one hand, the rationality attributed to the players is different. The introspec-
tion and careful reasoning assumes that players are rational and therefore they
are capable of rational analysis of the game. However, learning models assume
different levels of rationality. Learning models such as fictitious play assume
rationality in the sense that they best respond with no mistakes to some beliefs.
Others such as stochastic fictitious play assume that payoffs are perturbed and
therefore, according to the perturbation degree players are more or less sensi-
tive to expected payoffs associated with each strategy. Finally, some learning
models are closer to animal learning behavior where no rationality on players is
required, they behave according to reinforcement stimulus. On the other hand,
the assumption on the information used is very different in the two alternative
explanations. In the introspection of rational players’ explanation everything is
common knowledge from the payoff information to the rationality of the players.
In learning models however, the information available and used also differs from
model to model. Reinforcement learning assumes that no information of the
opponents’ play is used. Fictitious play however, explicitly models how beliefs
about opponent’s future play are built, based on his past actions so opponent’s
information is needed.
Learning models are behavioral in nature and therefore based on individuals

and related to psychological features of individual behavior. Learning models
analyzed here can be described by some initial values and two types of rules.
A decision rule, which can be deterministic or probabilistic, that describes how
actions are taken given the available information; and an updating rule, which
can be in terms of beliefs, reinforcements or in general attractions attributed
to each of the strategies. In general, we can say that the way attractions are
updated is the differential element between learning models. This will be clear
later on. Learning models have parameters that try to capture psychological
features of individual reasoning such as how much weight to give to past experi-
ence, initial tendency to play each strategy, how much to experiment and so on.
Apart from a theoretical description of learning models an important part of
the literature focuses on applying these models to experimental data in order to
explain individuals’ behavior and therefore estimation issues arise. This raises
the question of how these models should be estimated, at individual level or
assuming that there is a representative individual in the population of players
in the case of one population or a representative individual in each population
of players in the case of two populations. Both analysis can be found in the
literature, parameter estimation for each individual in Cheung & Friedman[9]
or representative learning model estimation in most of them. Even if they are
basically individual learning models, since the degrees of freedom are a concern
in the estimation of the experimental data these models are usually estimated
assuming representative agent model.
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2 Learning models1:The Experienced-Weighted
Attraction

2.1 The EWA by Camerer & Ho[7]

Experienced-Weighted Attraction, introduced by Camerer & Ho[7], is the cen-
tral learning model we present in this literary review. It is a general model that
tries to capture and isolate as many psychological features of statistical adaptive
behavior. Other learning models that have been used in the literature for many
decades can be derived as particular cases of the Experienced-Weighted Attrac-
tion model, EWA from now on. We proceed to present the general EWA model
and particular cases are derived in the next section. This is done in Camerer &
Ho[7] and therefore, we follow this paper very closely in the next two sections.
EWA assumes each strategy has a numerical attraction, which is going to

determine, through a decision rule the probability of choosing a strategy. Think
of attractions as positive numerical values associated with each of the strategies.
As it will be clear later, this specification, that is, to associate each strategy with
a numerical attraction is the most general specification, which permits particular
interpretations of these numerical attractions such as expected payoffs given
some beliefs or just propensities.
To describe EWA model, as any adaptive learning model, requires specifying

three elements: initial values, an updating rule and a decision rule. Initial values
are treated by the learning literature as black boxes that are unknown and
therefore need to be estimated. Updating rules determine how initial values are
changed from one period to another by experience and a decision rule defines how
attractions in general determine the choice probabilities. Since learning models
are individual learning models, EWA will be introduced for player i. Assume
player i has N strategies and call sji player i’s strategy j, where j = 1, 2, ...Ni.
Also, call xji the probability that player i plays strategy j, that is, the mixed
strategy probability of strategy j.
The main characteristic of this general learning model are two variables that

are updated after each round, so two types of initial values are needed and also
updating is governed by two rules. The first variable, N(t), is interpreted as
the number of observation-equivalent of past experience. The second variable is
Aj
i (t), player i’s attraction of strategy j, or attraction associated with strategy

sji at time t.
Initial Values: the two variables start with some initial values, N(0) and

Aj
i (0), that is, experience measure and attraction at t = 0. Later we will give
a more specific interpretation of all the free parameters of the EWA model but
we can say that these initial values reflect pre-game experience, either due to
learning transferred from different games or due to introspection.
Updating Rules: both variables are updated each round.

(2.1) N(t) = ρ ·N(t− 1) + 1 t ≥ 1
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ρ is the discount factor or depreciation rate of past experience. The sec-
ond rule updates the level of attraction associated with the strategy of each
player. The rule for updating attraction sets Aj

i (t) to be the sum of depre-
ciated experience-weighted previous attraction, plus the weighted payoff from
period t normalized by the updated experience weight. A key feature of EWA
is that attractions are not updated only when the action is taken but the model
weights hypothetical payoffs that non-chosen strategies would have earned by a
parameter δ.

(2.2) Aj
i (t) =

φ·N(t−1)·Aji (t−1)+[δ+(1−δ)·I(sji ,si(t))]·πi(sji ,s−i(t))
N(t) t ≥ 1

I(sji , si(t)) is an indicator function that takes value 1 when s
j
i = si(t). There-

fore, when a strategy is chosen, its attraction is updated summing the obtained
payoff with weight 1. On the contrary, if a strategy is not chosen, its attraction
is updated with the hypothetical payoff that this strategy would have yielded
weighted by δ. φ is the discount factor or decay rate that depreciates past
attractions.
Decision rules: they propose three different decision rules based on three

choice probabilities: logit, power and probit choice probabilities. Notice that
the three proposed decision rules are stochastic, in the sense that, what they
predict is not a strategy but the probability of taking a strategy, that is, the
mixed strategy probabilities. We will call xji individual i’s probability of playing
strategy j. In any decision rule attractions determine the choice probability of
each strategy or the mixed strategy probabilities.
The logit function describes the decision rule in the following way.

(2.3) xji (t) =
eλ·A

k
i (t)PNi

k=1 e
λ·Akk(t)

t ≥ 1 j = 1, 2, ...Ni

The parameter λ measures sensitivity of players to attractions. The logit
function has been used in many applications. Based on Harsanyi[24]’s purifi-
cation theorem, one might consider that payoffs are perturbed, and therefore
the best response is not a correspondence any more but a smooth function. Fu-
denberg & Kreps[23] develop a model of fictitious play along these lines. If we
consider a specific form of the perturbation of the payoffs1, then we get that

1Assume individuals maximize the following perturbed payoff function, in which perturba-
tion to player i’s payoff depends on the action he chose but not on the actions of the other
players:
ui(x) + β · φi(xi)
Furthermore, assume that the perturbation take the form
φi(xi) = −

P
xi
(xi) · log(xi)

Then it can be shown that the best response function has the same form as in (3.3) where
λ = 1/β

5



the smooth best response has the form in (3.3). Quantal Response Equilibrium,
introduced by McKelvey & Palfrey[27], has as special case the logistic quantal
response where the errors follow a log Weibull distribution. The parameter λ
is inversely related to the level of error: λ = 0 means that actions consist of all
error, and λ→∞ means that there is no error. In learning it can have the same
interpretation, especially when attractions are interpreted as expected payoffs,
which will be explained later on. If λ = 0 then the actions are taken with equal
probability and it does not depend on the attractions and if λ→∞ means that
the actions are completely sensitive to attractions.
There are particular cases of this model that use an exact best response

function. This decision rule is not stochastic and therefore it predicts which
action is taken, that is, the mixed strategy predicted is always degenerate. This
can be seen as a special case of the logit function where λ→∞, which will be
cleared later on.
The power utility form is given by

(2.4) xji (t) =
(Aj

i (t))
λPNi

k=1(A
j
k(t))

λ
t ≥ 1 j = 1, 2, ...Ni

As they mention in the paper, the decision rule is not what distinguishes the
EWA from other learning rules since any choice probability is compatible with
EWA. Whether logit, probit or power forms fit better is an empirical question.
In their 1998 paper[6], they conclude that for weakest-link type coordination
data logit form fits better over the power form.

2.2 Interpretation of free parameters of EWA

First of all, notice that in order to fully specify EWA we need to specify initial
values, N(0) and Aj

i (0) for each player and each strategy and the parameters
ρ, φ, δ and λ if either the logit or the power choice probability is used. We can
write EWA as a function of those parameters.

(2.5) EWA(N(0),
PNi

j=1A
j
i (0), ρ, φ, δ, λ)

One of the most important contributions of Camerer & Ho[7] paper is to
provide with interpretation of the free parameters, to specify what general be-
havioral principles of learning these parameters capture.
The number of initial values, initial attractions (Aj

i (0)) and initial strength
(N(0)), depend on the number of players and the number of strategies that each
player has.

N(0) is interpreted as the strength of initial attractions, relative to incre-
mental changes in attractions due to actual experience and payoffs. N(0) can
be therefore thought of as a pre-game experience weight. The most intuitive
interpretation is looking at different values of N(0). For small values of N(0),
the effect of the initial attractions is quickly displaced by experience. If on the
contrary N(0) is large then the effect of the initial attractions persists. As the
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authors point out, setting N(0) < N∗ = 1
(1−ρ) implies that the relative weight

on decayed attractions, compared to recent reinforcement, is always increasing,
the relative weight on observed payoffs is always declining. This implies a law
of declining effect that is widely observed in research of learning.
Initial attractions also need to be specified. These might be derived from

an analysis of the game, from surface similarity between strategies and from
strategies that were successful in similar games.
As briefly mentioned above, initial values of learning models are treated as

black boxes by the learning literature and therefore they are parameters to be
estimated. How people play one shot games or how people discriminate among
strategies without experience are very interesting questions that learning lit-
erature does not ask. Are people able to use simple rules such as never use a
strictly dominated strategy or never think that the opponent might use a strictly
dominated strategy? This question is answered by Costa-Gomes, Crawford &
Broseta[16]. Subjects played 18 different games just one time using a com-
puter interface that allowed subjects to search for hidden payoff information,
while recording their searches. The authors could monitor subjects’ information
searches along with their decisions, which allowed them to better understand
how their decisions are determined. They found a simple view of subjects’ be-
havior. Two types, Naïve and L2 comprised 67-89% of the population and a
third, D1, between 0-20% of the population. Naïve type assumes that the oppo-
nent will play their strategies with equal probability and best respond to that.
L2 type assumes the opponent will play as Naïve and best respond accordingly.
Finally, D1 is capable of one round of elimination of dominated actions by pure
strategies and best responds to a uniform prior over its partner’s remaining
decisions.
Apart from the initial values, there are other free parameters. The discount

factors φ and ρ depreciate past attractions and experience separately. This
is also something novel. This allows learning models which are determined
initially by pre-game experience, that is, very high N(0), and depreciates past
experience a lot, so initial persistence of N(0) disappears quickly but which do
not depreciate past attractions at all, φ = 1.
The parameter δ measures the relative weight given to foregone payoffs,

compared to actual payoffs, in updating attractions. This is the most important
parameter of EWA and captures two basic principles of learning: the law of
actual effect and the law of simulated effect. Behavioral psychologists call law
of effect when successful chosen strategies are subsequently chosen more often,
which has been observed mostly with animal subjects. They re-label this effect
law of actual effect to distinguish it from simulated effect. The law of simulated
effect, on the other side, is a similar effect but as the name tells, it refers
to the effect that non-chosen strategies that would have yielded high payoffs
are more likely to be chosen subsequently. Therefore, it is an imaginary or
simulated success. EWA, when updating attractions, weights the payoff of the
taken action by 1 and weights by δ the payoff when that action was not taken.
In other words, EWA captures both law of actual effect and law of simulated
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effect. δ is a key parameter that differentiates reinforcement from belief-based
learning which will be derived in the coming section.

3 Learning models2: derivation of other learn-
ing models

EWA is a relatively new learning model. It brought to our attention that two
learning models, which had been in the literature for many decades and were
thought to be competing models, were actually special cases of the general EWA
learning model. Following the contribution of Camerer & Ho[7], we are going to
derive as many learning models as possible from the EWA. The two competing
learning models are belief-based learning and reinforcement learning, which are
special cases of EWA.

3.1 Reinforcement learning models

Reinforcement learning models, also called stimulus-response or rote learning,
have their roots in behaviorist psychology, which was popular from about 1920 to
1960. It assumes strategies are reinforced by their previous payoffs. Therefore,
strategies that yielded high payoffs in the past will be more probable to be chosen
in the future than strategies that yielded low payoffs. It is the simplest learning
model we can imagine in the sense that it requires both limited information,
only owns payoffs, and no rationality on individuals. In this sense, the main
characteristic of reinforcement is that only chosen actions matter or influence
future actions, non-chosen actions never get reinforced2.
After behaviorist introduced reinforcement learning, Bush & Mosteller[4]

formalized simple reinforcement rules and applied them to learning in decisions.
Cross[17,18] applied reinforcement learning to economic decisions. Finally in
the nineties, reinforcement learning was revived, first Arthur[1,2] applied to
decision problems and later McAllister[26], Mookerjee & Sopher[47], Roth &
Erev[30], Sarin & Vahid[32] applied reinforcement to games. In the presentation
of reinforcement learning models we follow closely Roth & Erev[30] for the basic
model and Erev & Roth[20] for the extensions and finally Sarin & Vahid[32] for
the averaged version.

3.1.1 Cumulative cases: Roth & Erev[30] and Erev & Roth[20]

Roth & Erev[30]’s two-parameter reinforcement learning Roth & Erev[30]’s
one-parameter reinforcement learning ,One-RL from now on, is easily seen as a
special case of EWA because they have also numerical attractions, called propen-
sities, associated with each of the strategies. The exact equivalence between the
two models is stated in the following equation.

2With the exception of Erev & Roth’s[29] three-parameter learning model, which includes
experimentation and therefore strategies that are not chosen can be reinforced. This model is
described later on.
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(3.1) Two−RL(s1, phi) = EWA(N(0) = 1, Aj
i (0) = s1 · Xi

Ni
, ρ = 0, φ,

δ = 0, λ = 1)

There are two free parameters in this model is s1 and φ, initial strength
parameter, which is assumed to be equal for every player and recency parameter.
The interpretation of s1 parameter is closely related to the experience-

measure in EWA, it measures the sensitivity of propensities to reinforcements or
payoffs. If s1 is high, then actual payoffs and reinforcements will not influence
much the changes in subsequent choices. But if s1 is very low, then reinforce-
ments will highly influence subsequent attractions and therefore the choice rule
will be very sensitive to reinforcement. Notice that reinforcements are called
the actual payoff a chosen strategy gets. Xi refers to average absolute payoff
of player i and Ni is the number of strategies of player i. As it can be seen,
Roth & Erev[30] assume that all the strategies have equal initial attractions
that depend on the initial strength and averaged absolute payoff. If we have
two strategies, both strategies will be chosen with the same probability the first
period, 1/2 in this specific example, because they will have the same attractions
or propensities.

φ allows past attractions or reinforcements to be discounted. They call this
recency effect, recent experience may play a larger role than past experience
in determining behavior. They also describe a One-Parameter reinforcement
learning model in which φ takes value 1 and therefore there is no such effect.
Comparing to EWA, Two-RL sets N(0) = 1 and ρ = 0, then all the experi-

ence measures are equal to 1 every period. The reinforcement learning does not
assume two variables in the updating rule but only one, attractions in general or
propensities, in reinforcement learning jargon. δ is equal to zero, which means
that there is no simulated law of effect, only strategies that have been chosen
can be reinforced. This is the main characteristic of reinforcement learning,
which assumes very low rationality on individuals. They respond only to cho-
sen actions depending on their success. Finally, φ is equal to 1 in the One-RL,
and therefore, past attractions are not discounted. Substituting everything in,
we get the equivalence between the two models stated in equation (3.1).
There is a small difference that should be noted, the reinforcement is sup-

posed to be positive, never negative. Roth & Erev[30] deal with this detail
subtracting the minimum payoff in the game from all the payoffs, that is, pay-
offs are normalized in order to have minimum reinforcement equal to zero.
Roth & Erev[30], also specified a decision rule, they used power probability

choice with λ = 1.

Erev & Roth[20]’s three-parameter reinforcement learning This spe-
cific model has no exact match and equivalence with EWA but the additional
parameter introduced somehow relates to the EWA’s δ parameter. Erev &
Roth[20] introduce experimentation into the updating rule of the attractions.
Even if most of the weight falls into the actually chosen strategy and its rein-
forcement, the other strategies are also reinforced by smaller and equal amount.
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Therefore, the players experiment with other strategies too and therefore there
is some kind of law of simulated effect. However, the law of simulated effect is
captured by a different structure. On the contrary of EWA the chosen strategy
is not reinforced by the full payoff but by a weighted payoff and the rest of the
strategies are also reinforced.
They introduce ε, which is the weight given to non-chosen strategies, and

with (1− ε) the chosen strategy is reinforced. Using the EWA parameters the
updating rule is given by

(3.3) Aj
i (t) = φ ·Aj

i (t− 1) + (1− ε) · πi(sji , s−i(t)) if sji chosen

Ak
i (t) = φ ·Ak

i (t− 1)+
ε

(Ni − 1) ·πi(s
k
i , s−i(t)) if ski chosen k 6= j

Therefore, there is not an exact equivalence between the EWA and three-
parameter reinforcement learning, Three-RL. However, there are parameters
that can be considered equivalent. We can write this equivalence considering δ
equal to ε, abusing notation, even if this is not a true equivalence.

(3.4) Three−RL(s1, phi, �) = EWA(N(0) = 1, Aj
i (0) = s1 · Xi

Ni
, φ,

ρ = 0, δ ∼ ε, λ = 1)

3.1.2 Averaged case: Sarin & Vahid[32]

Sarin & Vahid[32] propose a reinforcement model, in which previous payoffs are
averaged rather than cumulated. They do not call attractions or propensities
but subjective assessments associated with each strategy. There are two main
differences from the Roth & Erev[30] reinforcement model. First, when a strat-
egy is chosen its attraction is updated not just summing the payoffs to previous
attraction but taking an average between past attraction and the obtained pay-
offs. The weight given when taking the average is the only parameter of this
learning model, what they call it the learning parameter, which is between 0
and 1. Following their interpretation, the attractions are updated by adding a
proportion of their surprise, that is, the difference between the observed payoff
and their past subjective assessment. In their specification, the payoffs must be
normalized to the range between zero and one and they argue that payoffs must
have a different interpretation from the Neuman-Morgernsten utilities.
The second difference is the choice rule because they propose a deterministic

choice rule. Individuals choose the strategy that has the highest attraction or
subjective assessment. This can be seen as having a logit stochastic choice where
λ→∞.
This is also a special case of EWA where we have the free parameter φ, their

unique learning parameter, which is the weight given to the surprise effect.

(3.5) SV −RL(phi,Aj
i (0)) = EWA(N(0) =

1

(1− ρ)
, ρ = φ, δ = 0,
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λ→∞)

3.2 Belief-based learning models

Belief-based learning takes a different approach from reinforcement learning.
Individuals are assumed to be rational, they are able to maximize and best re-
spond, however, belief-based learning explicitly models how beliefs are formed
and updated. According to these models, beliefs are formed by observing the
history or past behavior of opponents. In deciding how to weight the past there
are two extreme cases, Cournot and fictitious play. Belief learning dates back
to Cournot[15] who suggested players choose a best response to observed be-
havior in the previous period. Instead of best responding to the most recent
past action, fictitious play assumes that beliefs are formed as an average of all
observed past behavior of the opponent. Theories of fictitious play were pro-
posed by Brown[3] and Robinson[29]. These theories were initially proposed to
compute Nash equilibrium algorithmically, providing a story about how mental
simulation could lead to immediate equilibration in a kind of cognitive taton-
nement. In the 1980s, Fudenberg & Kreps[23] reinterpreted it as a theory of
how players might learn from periods of actual behavior.
There are three ways belief-based learning models can be defined: in terms of

weights associated with each of the strategies, following Fudenberg & Kreps[23]
and Fudenberg & Levine[22], in terms of beliefs, as Young[35] does, or in terms
of expected payoffs, introduced by Shapley[31]. We will briefly mention the
state variable and updating rule of the three different ways of presenting the
special case of fictitious play belief-based learning before starting to show the
equivalence between these models and EWA.
Fudenberg & Kreps[23] and Fudenberg & Levine[22] presented belief-based

learning in terms of weights associated with opponents’ actions and those weights
are used to form beliefs, or in other words, the updated state variable are the
weights. Call wk

−i(t) the weight associated with the player i’s opponent’s strat-
egy profile k. A simpler interpretation is obtained when player i has one op-
ponent with two strategies, then k = 1, 2. k takes a more complex form when
player i’s actions depend on more than one individual’s actions, in which case
k refers to all possible strategy combinations of opponent players. Just for an
example, if player i has two opponents and each has 2 strategies, then k can
take 4 different values k = {(1, 1), (1, 2), (2, 1), (2, 2)}. Therefore, the updating
rule for weights given some initial weights and beliefs are formed as described
in (3.6) and (3.7) It is easy to see that beliefs can be written in terms of past
beliefs3 .

(3.6) wk
−i(t) = wk

−i(t− 1) + I(sk−i, s−i(t)) t ≥ 1
3Write currents weights in terms of past weights and divide both sides by

PM−i
h=1 wh−i(t−1).

The algebra is done in equation (4.12).
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(3.7) Bk
−i(t) =

wk
−i(t)PM−i

h=1 wh
−i(t)

=
PM−i

h=1 wh−i(t−1)·Bk
−i(t−1)+I(sk−i,s−i(t))PM−i

h=1 wh−i(t−1)+1

I(sk−i, s−i(t)) is the indicator function that takes value 1 when the strategy
profile of opponents is equal to sk−i. So, only weights of those strategy combina-
tions chosen by the opponents are changed from one period to another. Then
beliefs are formed as a ratio between the weight associated with a profile k over
the sum of weights of all possible opponents’ strategy combinations. Notice that
Bk
−i(t) refers to individual i’s belief about the probability of occurring strategy

combination k.
A second way is mentioned by Young[35], where the beliefs are the state

variable. This way requires initial beliefs to be defined, that is, in our notation
Bk
−i(1) must be defined for all k = 1, 2, ...M−i.

(3.8) Bk
−i(t) =

(t− 1) ·Bk
−i(t− 1) + I(sk−i, s−i(t))

t
t ≥ 2

This way for estimating belief-based learning models has been used the most.
Initial beliefs usually are taken as the first observed action of the opponent.
This does not require to estimate initial weights associated with the strategies
for every player, which saves a lot of degrees of freedom. The drawback is that
this way does not allow as much flexibility as specifying initial weights.
A third way was introduced by Shapley[31], where the state variable are

expected payoffs. These expected payoffs are updated with the payoff that
would have obtained if they played this strategy. The advantage is that we can
write all the updated expected payoffs for each of the strategies j = 1, 2, ...Ni in
a vector. Call the vector of initial expected payoffs for each strategy for player
i, Ei(0), then the updating rule is a function of opponents’ action, s−i(t).

(3.9) Ei(t) = Ei(t− 1) + (πi(s1i , s−i(t)), ..., πi(sNi
i , s−i(t)))0 t ≥ 1

The relation between the three ways will become transparent when we take
the steps in order to show the equivalence between belief-based learning models
and EWA.

3.2.1 Deterministic choice rule: fictitious play and Cournot model

Weighted-fictitious play is the general case that has as special cases the Cournot
and the fictitious play mentioned above. The derivation of the weighted-fictitious
play from EWA requires few more steps than the derivation of reinforcement
learning.
We start by defining beliefs for every strategy combination that a player

might encounter, given by sk−i , and define these beliefs as the ratio of hypo-
thetical counts of observations of a strategy combination, denoted Nk

−i(0). Then
define the sum of all those Nk

−i(0) for all the possible strategy combination that
a player might see, k = 1, 2, ...,M−i, where M−i : ΠPp=1Sp, P being the number
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of players and Sp the strategy space of player p 6= i. Notice that Nk
−i(0) has

exactly the same interpretation as the weights, wk
−i(0) associated with each

possible strategy combination of opponents’ play in Fudenberg & Levine[22]. In
exactly the same way, we can define the initial beliefs:

(3.10) Bk
−i(0) =

Nk
−i(0)PM−i

k=1 N
k
−i(0)

=
Nk
−i(0)

N−i(0)
with N−i(0), Nk

−i(0) ≥ 0

Then beliefs are updated by depreciating the previous counts by ρ and adding
one for the strategy combination actually chosen by the other players. We can
further simplify the denominator.

(3.11) Bk
−i(t) =

ρ ·Nk
−i(t− 1) + I(sk−i, s−i(t))PM−i

h=1

£
ρ ·Nh

−i(t− 1) + I(sh−i, s−i(t))
¤

=
ρ ·Nk

−i(t− 1) + I(sk−i, s−i(t))
ρ ·N−i(t− 1) + 1 t ≥ 1

Beliefs can be expressed in terms of previous-period beliefs. Divide both
sides by N−i(t − 1), simplifying the expression we get beliefs in terms of past
beliefs.

(3.12) Bk
−i(t) =

ρ ·Nk
−i(t− 1) + I(sk−i, s−i(t))

N−i(t− 1)
ρ ·N−i(t− 1) + 1

N−i(t− 1)
=

ρ ·N−i(t− 1) ·Bk
−i(t− 1) + I(sk−i, s−i(t))

ρ ·N−i(t− 1) + 1 t ≥ 1

This equation is exactly the same as the one presented in Fudenberg &
Levine[22], where Nk

−i(t − 1)s are the wk
−i(t)s, and it is easy to see the two

particular cases: Cournot when ρ = 0 and fictitious play when ρ = 1, for
0 < ρ < 1 it is the weighted fictitious play. However, in order to show the
equivalence between weighted-fictious play and EWA we need to go one step
further and write the expected payoffs according the specified beliefs.

(3.13) Ej
i (t) =

PM−i
k=1 πi(s

j
i , s−i(t)) ·Bk

−i(t) t ≥ 1

Finally, we can express expected payoffs in terms of previous expected pay-
offs. Substitute the expression for beliefs and identify the previous period ex-
pected payoffs. Simplifying the expression we obtain the following expression.

(3.14) Ej
i (t) =

ρ ·N(t− 1) ·Ej
i (t− 1) + πi(s

j
i , s−i(t))

ρ ·N(t− 1) + 1 t ≥ 1

This equation makes clear the equivalence between EWA and weighted-
fictitious play. Suppose initial attractions are equal to expected payoffs given
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initial beliefs that arise from the ‘experience-equivalent’ strategy counts Nk
−i(0),

then substitute δ = 1 and ρ = φ. This leads to attractions that are exactly the
same as expected payoffs.
Weighted-fictitious play assumes that players choose the strategy that gives

the highest expected payoff. Therefore, the actual choice of actions is not sto-
chastic but deterministic. These deterministic models predict the strategy taken
in each period, Xi(t) and not the mixed strategy. To distinguish from the prob-
ability of taking a specific strategy we refer to this with a capital letter. This
means that the decision rule is not given by a choice probability but by a discon-
tinuous maximum function. However, this can be approximated by a probability
choice model, assume we have the logit and that λ→∞. This would represent
the max choice.

(3.15) Xi(t) = max(A1i (t), A
2
i (t), . . . , A

Ni
i (t)) = max(E1i (t), . . . , E

Ni
i (t))

.
The key assumption of belief-based learning models is that the initial attrac-

tions must be defined in terms of expected payoffs associated with prior beliefs,
whereas these prior beliefs are formed as a ratio of initial experience-measures.
Furthermore, looking at equation (3.14), notice that the simulated effect is fully
in charge in the updating rule, that is, players completely ignore the payoff of
the actually chosen strategy. In belief-based learning, when updating beliefs we
do not need to look at what strategy we chose but updating is done looking at
given what the opponent chose and to what we could have earned with all our
possible strategies and choose the one which gives the highest expected payoff.
Notice that to show the equivalence between EWA and belief-based the eas-

iest vehicle is the third way of describing fictitious play. The three ways are
equivalent in a general sense, since all of them take past observed behavior
of the opponent to update beliefs. Moreover, each period we can find equiva-
lence expressions for each of the three ways. However, notice that the first way
updates weights, the second way beliefs and the third way expected payoffs.
To finish, notice that belief-based learning models assumes a specific model

of the opponent behavior. More explicitly, it assumes that the opponent ac-
tions are coming from a fixed distribution. The fictitious player tries to guess
this distribution using past behavior and play optimally against it. As it will
be pointed out in the following section, all the learning models presented in
this literary review share this assumption. We can summarize the equivalence
between belief-based learning models and EWA through these equations, using
FP for fictitious play and WFP for weighted fictitious play.

(3.16) FP (Nk
−i(0)) = EWA(Nk

−i(0), A
j
i (0) = Ej

i (0), ρ = φ = 1,
δ = 1, λ→∞)

(3.17) Cournot(Nk
−i(0)) = EWA(Nk

−i(0), A
j
i (0) = Ej

i (0), ρ = φ = 0,
δ = 1, λ→∞)
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(3.18) WFP (Nk
−i(0), ρ) = EWA(Nk

−i(0), A
j
i (0) = Ej

i (0), ρ = φ,
δ = 1, λ→∞)

3.2.2 Stochastic choice rule: stochastic weighted fictitious play

The derivation is exactly the same except for the choice probability. These
models assume explicitly that the decision rule is stochastic and use normally
the logit choice probability4. Therefore, we have one more parameter. But
the rest is exactly the same. Again, we can summarize the equivalence relation
between these models in the following equations, the S for stochastic.

(3.19) SFP (Nk
−i(0), λ) = EWA(Nk

−i(0), A
j
i (0) = Ej

i (0), ρ = φ = 1,
δ = 1, λ)

(3.20) SCournot(Nk
−i(0), λ) = EWA(Nk

−i(0), A
j
i (0) = Ej

i (0),
ρ = φ = 0, δ = 1, λ)

(3.21) SWFP (Nk
−i(0), ρ, λ) = EWA(Nk

−i(0), A
j
i (0) = Ej

i (0), ρ = φ,
δ = 1, λ)

4 Learning, "strategic teaching" and sophistica-
tion

In this section we point out that all the learning models described in the previous
section hold a common assumption, which is a specific model of opponent’s play.
More specifically, those models assume that opponent’s play is coming from a
fixed and unknown distribution. Moreover, we claim that because of the specific
assumption on opponent’s play, all these models belong to the same class in
the learning literature. This class is called the statistical learning models. In
this sense, learning must be understood as a broader phenomenon that allows
having different models of opponent’s behavior. We further analyze when this
assumption might be sensible both looking at experimental treatments and how
these models fit the experimental data. This is not a new issue. Fudenberg &
Kreps[23] mention explicit conditions under which this assumption might make
sense. Reversing the point of view we also ask when it is not sensible to have such
a simple model of opponent’s play and we provide theoretical and experimental
examples in which the statistical learning approach cannot successfully explain
individual behavior because the assumption of opponent’s model seems to be
different from the one assumed by statistical learning models.

4Cheung & Friedman[12] uses a weighted fictitious play type learning model where the
choice probability is the probit.
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EWA learning model and its variants assume that opponent’s play is com-
ing from a fixed and unknown distribution. The objective of these learning
models is to learn about this distribution and accordingly to learn to play op-
timally. More specifically, individuals learn about this distribution and optimal
play either through their own past actions as reinforcement describes, through
counting opponent’s past actions and best responding to them or through a
mixture of both ways according to a EWA model. This assumption about op-
ponent’s play has a clear implication: individuals do not try to influence the
future play of their opponents. This might be shocking in a game-theoretical
setting since statistical learning ignores the existence of strategic interaction,
that is, not only my payoff depends on the action of other people but my action
also enters on the payoff function of other players. This was pointed out by
Fudenberg & Kreps[23] referring to fictitious play, which they called myopic be-
havior, meaning individuals maximize immediate expected payoffs given some
beliefs. This can be generalized to all the models described here, since in the
description of the model there is not any strategic analysis of the game except
for the initial attractions or initial experience measures. Remember, however,
that in the learning literature these free parameters are treated as black boxes
which are unknown and therefore must be estimated.
After a quick assessment one might argue that statistical learning assumes

individuals are passive learners, where the only learning source is coming from
experience. In the same line, the argument says that in these learning models
individuals never take an active role in playing strategically, making models
of other’s behavior and optimizing accordingly. The latter is called sometimes
sophisticated behavior and it is differentiated from learning. We argue that this
view is a misunderstood view of learning and therefore, the separation between
learning behavior and sophisticated behavior is also mistaken, since both must
be understood under the same phenomenon of learning. In order to reconcile the
above statements we must understand learning as a description of behavior in
a repeated setting that assumes a specific model of opponent’s behavior. When
a learning model describes individuals’ behavior it assumes a specific model of
opponent’s play. The way to reconcile the statements above is to point out
one more time the specific assumption that statistical learning models have:
opponent’s play is coming from a fixed and unknown distribution. Now, given
this assumption two things can be underlined. First, given this assumption it
is sensible to assume that individuals cannot influence other’s actions. Given
this fixed and unknown distribution, there is nothing to be influenced. Second,
individuals are not passive learners but given a fixed and unknown distribution
the only way of learning is through past experience, either own or opponent’s
past behavior or a mixture of the two.
We already mentioned that it can be troubling to have such a simple model

of opponent’s play in a game-theoretical setting. Taking one step further, a
natural question arises: when is it sensible to have this simple model
of opponents’ behavior? In other words, when can we expect that in-
dividuals do not try to influence other players’ actions? Fudenberg &
Kreps[23] actually explain when this myopia might be justifiable. The first two
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reasons are based on individuals having large discount factors and individuals
having beliefs that current action will have little effect in the future. As both
are unsatisfactory they turn to reasons that have to do with the environment.
They propose a situation in which there are a large number of players5 who
interact in small groups. They also propose three matching schemes that would
justify this myopic behavior.
Story 1 : at date t, one group of players is selected to play the game. They

do so, and their actions are revealed to all the potential players. Those who
play at date t are then returned to the pool of potential players and another
group is chosen at random for date t+ 1.
Story 2 : at each date t, there is a random matching of all the players, so

that each player is assigned to a group with whom the game is played. At the
end of the period, it is reported to all how the entire population played. The
play of any particular player is never revealed.
Story 3 : at each date t there is a random matching of the players, and

each group plays the game. Each player recalls at date t what happened in the
previous encounters in which he has involved, without knowing anything about
the identity or experiences of his current rivals.
They argue that myopic behavior seems sensible under this environment.

It is not a surprise that most experimental settings in which learning models
described above are applied use mean matching or random matching schemes.
Mean matching scheme, which has the same informational implications as Story
2, and random matching, which is exactly Story 3. Therefore, there are two key
elements that make myopic behavior or simplistic model of opponents sensible:
many players and anonymous random opponents. Notice that when an indi-
vidual meets different and anonymous opponents along the play she can only
keep track of observed opponent’s actions, if given, and her own payoffs. She
cannot have beliefs associated with each of the different opponent since their
identity is never revealed. In this case, individuals model opponents’ actions as
coming from one individual. But the actions are certainly coming from different
individuals which makes sensible to have the idea of a distribution. Also, no-
tice that even if one individual might realize that her action actually influences
other individuals’ action, since she is only one player that others will encounter
then she realizes that her influence is very limited depending on the number of
players. Therefore, it can be argued that in such environments it might be sen-
sible to assume a simple model of opponent’s behavior and therefore, learning
behavior in these environments can be consistent with statistical learning.
Notice however, that the lack of strategic sophistication characteristic of

these models does not mean that individuals do not end up playing in a strate-
gic way. A good example is Cooper, Garvin & Kagel[10,11]’s signaling game
experiment mentioned in section 2. There are two players, monopolists and en-
trants, monopolist can be either high cost type (MH) or low cost type (ML) and
choose after knowing their type a quantity. Entrants (E) decide to enter or stay

5 In their example they talk about 5000 players 1 and 5000 players 2. Experiments suggest
that a much smaller number of players might have the same effect.
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out. In a specific setting where Es have high cost, there is one intuitive equilib-
rium prediction, which is a pooling equilibrium, where both MH and ML choose
the same quantity and the entrants do not enter. This requires the MH to play
strategically and imitate ML in order to pool and keep the entrant away. The
monopolists start playing no strategically, ignoring the possibility of choosing
the quantity in a way that does not reveal their type in order to avoid entrance.
However, entrants learn that it is optimal to enter and as monopolists see high
rates of entrance move to the strategic choice of actions where they keep the
entrants out. They argue that an adaptive learning model based on fictitious
play does a good job explaining this behavior. This example shows that through
statistical learning individuals can learn strategic behavior even if this learning
assumes individuals do not try to influence other’s actions.
After seeing the conditions that make more sensible the simple model of

opponent’s play, the same question we asked but in negative is also an interesting
question, even more interesting than the original one. That is, when is it
non-sensible to have such a simple model of opponent’s play? When
do subjects show a more sophisticated model of opponents? As the
questions point out two answers can be given. On one hand, there are theoretical
analyses of such a sophisticated model of opponent’s. We present Fudenberg &
Levine[21]’s example that shows the advantage of having a more sophisticated
model of opponent and Ellison[19]’s theoretical analysis of including a rational
or sophisticated player in a population of statistical learners. On the other
hand, there are experiments in which statistical learning models do not a good
job because players show a more sophisticated behavior. Individuals seem to
have more sophisticated models of other individuals and therefore, do not play
as they are playing against an opponent who is playing according to a fixed
distribution but as for example if these individuals were learning through a
fictitious play. An interesting question is to see when a more sophisticated
behavior becomes relevant and which environments or factors enhance a more
sophisticated model of others. There are some answers already. We present
briefly two experimental examples: Camerer, Ho & Chong[8]’s strategic teaching
and Cooper & Kagel[12]’s cross-learning examples.
We start by Fudenberg & Levine[21]’s example. As they pointed out, in the

case of small population a player may attempt to manipulate his opponent’s
learning process and try to "teach" him how to play the game. Suppose there
are two players playing against each other and player2 is a myopic learner who
is best responding to some beliefs about the other player’s strategies. Then
player1, rather than being a statistical learner, he should play as a Stackelberg
leader and teach player1 how to play against him. The example uses a game
represented by the following payoff matrix.

Figure4.1: Payoff matrix in Fudenberg & Levine[21]
Column
1 2

Row 1 1,0 3,2
2 2,1 4,0
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Assume further that both players are learning through fictitious play. Player1
will play 2 since 2 is strictly dominating. Player2 observing this will end up play-
ing 1, which is the unique equilibrium of this game. However, if Player1 guesses
that player2 is learning through fictitious play, she can do better. She can ma-
nipulate player2’s learning process choosing 1 and therefore player2 will end up
doing action 2. Notice that both players end up in a non-equilibrium which
gives them a higher payoff than the equilibrium play.
Notice that this environment of two players is very different from the one

described by Fudenberg & Kreps[23], which justifies myopic behavior, that is,
large population and anonymous random matching environment. However, El-
lison[19] has pointed out that teaching the opponent can also happen in a large
population with random matching due to "contagion effect". Ellison[19]’s paper
is a theoretical paper that looks at the implications on the path of play when
there is one rational or sophisticated learner in a population of statistical learn-
ers. Notice that a sophisticated learner means that this player assumes that
other players are statistical learners, that is, he correctly guesses other players’
behavior. This paper shows with a simple Pareto ranked coordination game
and given specific initial weights that a sophisticated player might be able to
manipulate just with one initial action and following fictitious play afterwards,
the path of selection. Another interesting observation that Ellison[19] makes is
that the incentive to "teach" opponents in a large population in the example is
not robust to noisy play by the players. If players are using a smooth best re-
sponse dynamics then contagion is likely to occur even without the intervention
of a rational "teacher", and so the incentive to intervene is reduced.
Turning to the experimental evidence on sophisticated learning, one inter-

esting case is the strategic teaching case mentioned by Camerer, Ho & Chong[8].
Their case is based on two specific treatments of Van Huyck, Battalio & Rank-
ing[34]’s experimental data on two-person minimum-effort coordination games.
In those games subjects repeatedly and simultaneously chose among seven ef-
forts, with payoffs determined by their own effort and their pair’s minimum
effort. The games have seven symmetric Pareto-ranked pure-strategy equilib-
ria, with all players preferring the one in which both choose the highest effort.
Subjects were told their pair’s minimum after each play, but nothing else about
other subjects’ efforts. The two treatments were identical, except that in treat-
ment Cd, the subjects were randomly repaired for each period in a run of either
three or five periods, whereas in treatment Cf their pairings, while random, were
fixed for an entire run of seven periods. In each case, the structure of the en-
vironment was publicly announced, including whether or not the pairings were
fixed and the fact that the subject population was fixed for the duration. This
difference in pairing schemes led to very different outcomes. In treatment Cd,
subjects’ efforts were widely dispersed, with mean between 4 and 5, moderately
inefficient outcomes, and no apparent convergence or time trend. In treatment
Cf, by contrast, within seven periods, 12 of 14 pairs increased the minimum
effort to its fully efficient level, often starting from much lower levels. The main
difference is that, in treatment Cf subjects were evidently well aware that they
could influence their partners’ future efforts and many exploited this influence;
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but treatment Cd’s subjects apparently treated such influences as negligible.
Therefore, sophisticated individuals deviate from the myopically optimal action
to try to influence others’ future actions when the setting makes this beneficial
as in the case of the fixed partner. If one player is a belief-based type learner and
the other has exactly this model of their opponent, then the sophisticated will
teach the learner to play a specific equilibrium. If two sophisticated players are
matched, the efficient outcome will appear from the very beginning. However,
if two standard learners are matched then there is no guarantee that they will
end up in the efficient outcome.
Another interesting case where there is sophistication is reported by Cooper

& Kagel[12]. They focus on cross-game learning, the ability of subjects to take
what has been learned in one game and transfer it to related games. The ex-
periment is on signaling games and they look at how subjects learn to play
strategically or limit pricing. A monopolist, whether low cost type (MH) or
high cost type (ML) must choose a quantity and the entrant (E) after observing
the quantity must decide whether to enter or stay out. The main treatment
variable is the cost of the entrant which determines the existence of pooling and
separating equilibria. The control group plays with high cost and low cost of en-
try. When high cost of entry, MHs start doing their non-strategic strategy, their
myopic maximum, but after observing high rates of entry, they learn to limit
pricing, which is to pool and imitate the MLs, and Es to stay out. When low
cost of entry, no pooling equilibrium exists and ML should limit pricing separat-
ing themselves from the high type monopolists. However, this learning process
is very slow, only experienced subjects learn to play the separating equilibrium.
The authors explain that intuitively, limit pricing is more difficult to learn as a
ML in the game with low cost entrants than as a MH in the game with high cost
entrants because MHs can rely on imitating the choices of MLs, while low type
monopolists have no such guide to follow in early rounds. In their experiment,
after being playing in a low entry cost environment, they switch to a high entry
cost environment, what they call the crossover. Given that all subjects have
learned to play strategically as MH prior to the crossover, the critical question
is whether this experience will help them to play more strategically following
the crossover as MLs than inexperienced subjects, whether positive transfer ex-
ists or not. They find that after the crossover, MLs showed significantly more
strategic behavior than in inexperienced control group and this strategic play is
statistically indistinguishable from experienced MLs. The authors mention that
the behavior of Ms in the control group is consistent with an adaptive learn-
ing based on fictitious play, Cooper, Garvin & Kagel[10,11]. However, after
the crossover, this model cannot capture the positive transfer. Moreover, this
learning model predicts negative transfer since Ms’ beliefs do not change antic-
ipating a different behavior on low cost Es. In order for the learning model to
track the data, they added sophisticated learners who model their opponents as
unsophisticated (fictitious players) and thereby anticipate the increase in entry
rates following the crossover. Fitting this model to the data, they find a statis-
tically significant fraction of sophisticated learners in the population, and that
the fraction of sophisticated learners increases with experience. The authors in
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subsequent papers [13,14] further analyze the factors that help positive transfer
and report two factors: meaningful context and team or group decision making.
Meaningful context, contrary to generic or abstract context, help subjects to
take advantage of the experience in similar games. Group decision making, two
people making decision instead of individual decision making, also helped the
positive transfer. This is explained by the "truth wins" norm from psychology
literature. Once a strategic play is discovered and mentioned by somebody it
becomes self-enforcing. Notice that in this experimental setting, there are many
players and that different monopolists are matched with different entrants every
round, so the usual key assumption that justified the regular myopic learning
predicted by standard learning models are satisfied. However, cross-game learn-
ing occurs and individuals can predict what is going to happen and therefore
best respond to that, showing sophisticated behavior.
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