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The paper builds on recent experimental papers that study subjects’ cognition in games by 
monitoring their searches for hidden but freely accessible information about payoffs. 
 
The methods for monitoring search originated in MouseLab studies of decisions. 
(MouseLab is an automated way to track search as in eye-movement studies; see Payne, 
Bettman, and Johnson, The Adaptive Decision Maker, 1993. A modern analog, with more 
capabilities, is used in Wang, Spezio, and Camerer, "Pinocchio's Pupil: Using Eyetracking 
and Pupil Dilation To Understand Truth-telling and Deception in Games," 2006.) 
 
These experiments all randomly and anonymously paired subjects to play series of 
different but related two-person games, with no feedback between games. 
 
Suppressing learning from experience and repeated-game effects allows the designs to 
elicit subjects' initial responses, game by game. 
 
This allows them to focus on strategic thinking—how players model others' decisions—
uncontaminated by learning (which can make even amoebas converge to equilibrium). 
 
("Eureka!" learning remains possible, but it can be tested for and seems to be rare.) 
 
(The results yield insights into cognition that also help us think about how to model 
learning from experience, but that's another story.) 
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The previous experimental studies include: 
 
Camerer, Johnson, Rymon, and Sen, "Cognition and Framing in Sequential Bargaining for 
Gains and Losses," in Kenneth Binmore, Alan Kirman, and Piero Tani (editors), Frontiers 
of Game Theory, 1993 (“CJ”); and  

Johnson, Camerer, Sen, and Rymon, "Detecting Failures of Backward Induction: 
Monitoring Information Search in Sequential Bargaining," JET 2002 (“CJ”) 

In these experiments subjects played series of two-person, three-round alternating-offers 
bargaining games, in which the "pie" varies across rounds to simulate discounting at a 
common rate; within a publicly announced extensive-form structure, each game was 
presented to subjects as a series of searchable pies. (Here and below, subjects were not 
allowed to write, and did not memorize the payoffs.) 

These designs test backward-induction and social-preferences explanations of behavior in 
alternating-offers bargaining games.   

Camerer and Johnson, "Thinking about Attention in Games: Backward and Forward 
Induction," in Isabel Brocas and Juan Carrillo (editors), The Psychology of Economic 
Decisions, Volume Two: Reasons and Choices, Oxford, 2004 

In these experiments played simple extensive-form games with searchable payoffs, 
designed to test forward induction. 
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Costa-Gomes, Crawford, and Broseta, "Cognition and Behavior in Normal-Form Games: 
An Experimental Study," Econometrica 2001 (“CGCB”) 

In these experiments subjects played series of two-person matrix games with various 
kinds of iterated dominance or with unique pure-strategy equilibria without dominance; 
each game was presented to subjects as a set of independently searchable payoffs. 

 

Costa-Gomes and Crawford, "Cognition and Behavior in Two-Person Guessing Games: 
An Experimental Study," American Economic Review (December 2006) (“CGC”) 

In these experiments subjects played series of dominance-solvable two-person guessing 
games; each game was presented to subjects as a set of searchable payoff parameters. 

 

These normal-form designs test equilibrium and iterated dominance against alternative 
decision rules such as the “level-k” types of Stahl and Wilson (1994 JEBO, 1995 GEB).  
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The experiments for the AER paper included two kinds of treatment: 

A Baseline treatment, in which subjects played the games with other subjects 

Several Robot/Trained Subjects (“R/TS”) treatments, in which different subjects played the 
same series of games against a “robot” (framed as “the computer”) and the computer 
played according to a pre-specified decision rule; those subjects were trained to identify 
the guesses the computer’s rule yields and paid for their payoffs against the computer. 

(There were six different R/TS treatments: one each for the decision rules or “types” L1, 
L2, L3, D1, D2, or Equilibrium as defined below.) 

The AER paper focuses on reporting and analyzing Baseline subjects’ guesses, which 
yield a clear view of the distribution of subjects’ decision rules, but with some puzzles. 

 

The current paper will report and analyze R/TS subjects’ guesses and Baseline and R/TS 
subjects’ information search data, with a focus on resolving the puzzles. 
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Outline 
 
I begin by summarizing CGC’s experimental design and results for guesses.  
 
 
I then present representative search data and discuss how to model search behavior and 
use the data to draw inferences regarding cognition; combining search with a rudimentary 
analysis of cognitive process can better identify subjects' decision rules, sometimes even 
directly revealing the algorithms subjects use to choose their decisions.  
 
 
Finally, I illustrate the possibilities for search analyses by showing how the search data 
(and R/TS results) can help to resolve the puzzles left open by the analysis of guesses. 

 6



CGC’s experimental design 
 
In CGC's guessing games, each player has his own lower and upper limit, both strictly 
positive; but players are not required to guess between their limits. 
 
Guesses outside the limits are automatically adjusted up to the lower or down to the upper 
limit as necessary (a trick to enhance separation of rules via search). 
 
Each player also has his own target, and his payoff increases with the closeness of his 
adjusted guess to his target times the other’s adjusted guess. 
 
The targets and limits vary independently across players and 16 games, with the targets 
either both less than one, both greater than one, or mixed. 
 
(In the previous guessing experiments of Nagel (1995 AER) and Ho, Camerer, and 
Weigelt (1998 AER; "HCW"), targets and limits were always the same for both players, 
and varied either only across treatments or not at all.) 
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The 16 games subjects played are finitely dominance-solvable in 3-52 rounds, with 
essentially (because the only thing about a guess that matters is its adjusted guess) 
unique equilibria determined by the targets and limits in a simple way.  
 
E.g. in game γ4δ3, player i's limits and target are [300, 500] and 1.5 and player j's are 
[300, 900] and 1.3. The product of targets 1.5 × 1.3 > 1, which implies that players' 
equilibrium adjusted guesses are determined (at least indirectly) by their upper limits. 
Player i's equilibrium adjusted guess equals his upper limit of 500, but player j's 
equilibrium adjusted guess is below his upper limit at 650.  
 
The way in which equilibrium is determined here, by players' upper limits when the product 
of their targets is greater than 1, or by players' lower limits when the product of their 
targets is less than 1, is general in CGC's guessing games. 
 
CGC's design exploits the discontinuity of the equilibrium correspondence when the 
product is 1 by including some games that differ mainly in whether the product is slightly 
greater, or slightly less, than 1; equilibrium responds very strongly to such differences, but 
empirically plausible non-equilibrium decision rules are largely unmoved by them. 
 
The way in which equilibrium is jointly determined by both players' parameters also helps 
to separate the search implications of equilibrium and other rules.
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Leading Strategic Decision Rules or Types 
CGC's analysis of decisions, like Stahl and Wilson's (1995 GEB) and CGCB's, uses a 
structural non-equilibrium model of initial responses in which each subject's decisions are 
determined by one of several decision rules or types. 
 
(Types play a central role in CGC's and CGCB's model of cognition, search, and 
decisions, which takes a procedural view of decision-making, in which a subject's type 
determines his search and his type and search determine his decision.) 
 
I focus on CGC's normal-form types, assuming risk-neutrality with no social preferences:  
 
L1, which best responds to a uniform random L0 "anchoring type" 
 
L2 (L3), which best responds to L1 (L2) 
 
Equilibrium, which makes its equilibrium decision 
 
D1 (D2), which does one round (two rounds) of deletion of dominated decisions and then 
best responds to a uniform prior over the other's remaining decisions 
 
Sophisticated, which best responds to the probabilities of other's decisions, as estimated 
from subjects' observed frequencies 
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Remarks: 
 
L0 usually has 0 estimated frequency (or is confounded with the error structure). 
 
Lk for k > 0 is rational, but deviates from equilibrium because it uses a simplified model of 
others' decisions. It is k-level rationalizable and so coincides with equilibrium in games 
that are k-dominance solvable. With plausible population type frequencies, this yields an 
inverse relationship between strategic complexity and equilibrium compliance as is often 
observed, e.g. CGCB, Table II. 
 
Previous analyses have considered alternative definitions of L2, etc.: Stahl and Wilson's 
L2 best responds to a noisy L1; and Camerer, Teck-Hua Ho, and Juin-Kuan Chong's ("A 
Cognitive Hierarchy Model of Games," 2004 QJE) L2 best responds to an estimated 
mixture of L1 and L0. CCG discuss the evidence. 
  
By a quirk of our notation, L2 (not L1) is D1's cousin, and L3 is D2's. It is those pairs 
whose guesses are perfectly confounded in Nagel's games; and in two-person games, Lk 
guesses are k-rationalizable, just as Dk-1's are.   
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CGC’s Results for Guesses 
 
The large strategy spaces and independent variation of targets and limits in CGC's design 
enhance separation of types' implications for decisions, to the point where many subjects' 
types can be precisely identified from guesses alone. 
 
Of 88 subjects, 43 made guesses that complied exactly (within 0.5) with one type's 
guesses in 7-16 of the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium). 
 
E.g. CGC's Figure 2 shows the "fingerprints" of the 12 subjects whose apparent types 
were L2. Of their 192 guesses, 138 (72%) were exact. With games in Figure 2's 
unrandomized order, exact L2 guesses track the pattern: 105, 175, 175, 300, 500, 650, 
900, 900, 250, 225, 546, 455, 420, 525, 315, 315, more complex in randomized order.   
 
Given how strongly CGC's design separates types' guesses (CGC’s Figure 5), and that 
guesses could take 200-800 different rounded values in their games, these subjects' 
compliance is far higher than could occur by chance. 
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Further, because the types specify precise, well-separated guess sequences in a very 
large space of possibilities, their high exact compliance rules out (intuitively or 
econometrically) alternative interpretations of their behavior. 
 
In particular, because the types build in risk-neutral, self-interested rationality and perfect 
models of the game, the deviations from equilibrium of the 35 subjects whose apparent 
types are L1, L2, or L3 can be attributed to non-equilibrium beliefs rather than irrationality, 
risk aversion, altruism, spite, or confusion. 
 
(By contrast, in Stahl and Wilson's or CGCB's matrix-game designs, even a perfect fit 
does not distinguish a subject's best-fitting type from nearby omitted types; and in Nagel's 
and HCW's guessing-game designs, with large strategy spaces but with each subject 
playing only one game, the ambiguity is worse.) 
        
CGC's other 45 subjects' types are less apparent from their guesses; but L1, L2, L3, and 
Equilibrium are still the only ones that show up in econometric estimates.  
 
Unlike the common interpretation of Nagel's and HCW's results—that subjects are 
explicitly performing finitely iterated dominance—CGC's clear separation of Lk from Dk-1 
shows that Dk types don't exist in any significant numbers, at least in this setting.  
 
Sophisticated, clearly separated from Equilbrium, also doesn't exist in significant numbers.
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Two Puzzles Left Unresolved by CGC’s Analysis of Guesses 
 
A. What are Those Baseline “Equilibrium” Subjects Really Doing? 
 
Consider the eight Baseline subjects with near-Equilibrium fingerprints (CGC's Figure 4). 
 
Ordering the games by strategic structure, with CGC's 8 games with mixed targets on the 
right, shows that their deviations from equilibrium almost always occur with mixed targets. 
 
Thus these subjects, whose compliance with Equilibrium guesses is “off the scale,” are 
following a rule that only mimics Equilibrium, and only in games without mixed targets.  
 
Yet all the ways we teach people to identify equilibria (best-response dynamics, 
equilibrium checking, iterated dominance) work just as well with mixed targets; thus 
whatever these subjects are doing, it's something we haven't thought of yet. 
 
(All 44 of these subjects' deviations from Equilibrium (solid line) when it is separated from 
L3 (dotted line) are in the direction of (and sometimes beyond) L3 guesses. So they have 
a structure. But this could just reflect the fact that L3 guesses are always less extreme.) 
 
By contrast, CGC's Equilibrium R/TS subjects' compliance is equally high with and without 
mixed targets. (Those subjects were taught the usual ways to identify equilibria.) 
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Fingerprints of 10 UCSD Equilibrium R/TS Subjects
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B. Why Are Lk the Only Types other than Equilibrium with Nonnegligible 
Frequencies? 
 
CGC's analysis of decisions and search revealed significant numbers of subjects of types 
L1, L2, Equilibrium, or hybrids of L3 and/or Equilibrium, and nothing else. 
 
(More precisely, a careful analysis of the data, including CGC’s specification test, reveals 
no other types that do better than a random model of guesses for more than one subject.)   
 
Why do these rules predominate, out of the enormous number of possiblilities? 
 
(Why, for instance, don't we get Dk rules, which are closer to what we teach?)  

 
 
 
I suggest possible ways to resolve both puzzles after discussing the search analysis.  
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CGC’s Analysis of Information Search  
 
In CGC’s design, within a publicly announced structure, each game was presented via 
MouseLab, which normally concealed the targets and limits but allowed subjects to look 
them up as often as desired, one at a time (click option, versus rollover option). 
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With search costs as low as subjects' search patterns make them seem, free access 
made the entire structure effectively public knowledge, so the results can be used to test 
theories of behavior in complete-information versions of the games.  
 
These designs also maintain tight control over subjects' motives for search by making 
information from previous plays completely irrelevant to current payoffs. 
 
Design Desiderata for Studying Cognition via Search 
 
CGC’s design combines the strengths of Camerer and Johnson’s and CGCB’s designs.  
 
Camerer and Johnson’s design allows subjects to search for a small number of hidden 
payoff parameters (pies) within a simple, publicly announced structure, but makes their 
search patterns essentially one-dimensional, and so less informative than they could be. 
 
CGCB’s design makes search roughly three-dimensional (up-down in own payoffs, left-
right in other's payoffs, transitions from own to other's payoffs) and independently 
separates the implications of leading types for search and decisions, but search is 
complex (8-16 payoffs in games with no common structure beyond being matrix games).   
 
CGC's design has a simple parametric structure but makes search patterns high-
dimensional, with leading types' search implications (almost) independent of the game. 
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Search Data for Representative R/TS and Baseline Subjects 
 
Let’s start by comparing the search data for representative R/TS and Baseline subjects 
whose guesses conform closely to their assigned or estimated type, type by type, with the 
implications of CGC’s theory of cognition and search (which is close to CGCB’s theory, 
and was therefore specified almost completely before these data were generated).    
 
Compliance with types’ search implications as summarized in the tables will suggest that 
there some usable structure in the data, and then we can figure out how to model it. 
 
 
But first…. 
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SPEAK RODENT LIKE A NATIVE IN ONE EASY LESSON! 
 

    
 
 

  a p  B
You (i) 1   2 3
S/he (j) 4   5 6

 
MouseLab Box Numbers 
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Selected R/TS Subjects' Information Searches and Assigned Types' Search Implications
        

 
  Types' Search Implications 

  MouseLab box numbers L1 {[4,6],2} 
   a p b L2 {([1,3],5),4,6,2}
  You (i) 1  2 3 L3 {([4,6],2),1,3,5}
  S/he (j) 4   5 6 D1 {(4,[5,1], (6,[5,3]),2}   
     D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
      Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1   
      

Subject                 904 1716 1807 1607 1811 2008 1001 1412 805 1601 804 1110 1202 704 1205 1408 2002
Type(#rt.) L1 (16) 

 
L1 (16) 

 
L1 (16) 

 
L2 (16)

 
L2 (16)

 
L2 (16)

 
L3 (16)

 
L3 (16) D1 (16)

  
D1 (16) 

 
D1 (3) D2 (14)

16)
D2 (15)

  
Eq (16)

 
Eq (16)

 
Eq (15)

 
Eq (16) 

 Alt.(#rt.) L2 (
Est. style late often early often early early

Game
1 123456 146462 462513 135462 134446 111313 462135 146231 154356 254514 154346 135464 246466 123456 123456 123123 142536

4623 134646 1313 5213*4 131313 21364* 564623 423213 36231 5213 2646*1 135464 363256 424652 456445 125365
23 6 5423 246231 1 2642 313 641321 565365 562525 632132 253616

52 342462 626365 6352*4 11 361454
422646 652651 65 613451
124625 452262 213452
5*1224 6526 63
654646

2 123456 462462 462132 135461 134653 131313 462135 462462 514535 514653 515135 135134 123645 123456 123456 123456 143625
4231 13 25 354621 125642 566622 642562 546231 615364 6213 365462 642163 132462 525123 244565 456123 361425

3 313562 333 223146 546231 23 3 451463 426262 652625 565263 643524 142523
52 2562*6 211136 241356 635256 212554 1 625656

2 414262 462*13 262365 146662 3
135362 524242 456 654251
*14654 466135 44526*

6 6462 31
The subjects' frequencies of making their assigned types' (and when relevant, alternate types') exact guesses are in parentheses after the assigned type. 
ct's look-up sequence means that the subject entered a guess there without immediately confirming it. 
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Selected Baseline Subjects' Information Searches and Estimated Types' Search Implications 
    Types' Search Implications

MouseLab box numbers L1 {[4,6],2}
a p b L2 {([1,3],5),4,6,2}

You (i) 1 2 3 L3 {([4,6],2),1,3,5}
  S/he (j) 4 5 6 D1 {(4,[5,1], (6,[5,3]),2}

D2 {(1,[2,4]),(3,[2,6]),(4,[5,1],(6,[5,3]),5,2}
    Eq {[2,5],4} if pr. tar.<1,{[2,5],6} if > 1

Subject 101 118 413 108 206 309 405 210 302 318 417 404 202 310 315
Type(#rt.) L1 (15) L1 (15) L1 (14) L2 (13) L2 (15) L2 (16) L2 (16) L3 (9) L3 (7) L1 (7) Eq (8) Eq (9) Eq (8) Eq (11) Eq (11)
Alt.(#rt.) Eq (9) Eq (7) D1 (5) L3 (7) L2 (6) D2 (7)
Alt.(#rt.) D2 (8) L2 (5) L3 (7)
Est. styleearly/late early late early early ate early early early early early early early early/late early

Game
1 146246 

 
246134 123456 135642

 
533146 1352 144652 123456 221135 132456 252531 462135 123456 123126 213465

 213
 

626241 545612 213 313312 123456 465645 465252 464656 464655 254613 544121 624163
 32*135

 
 3463*

 
 

 
   
    
    
    
    

  
   
    
   

   
    
    

    

546232 213456 213213 13242* 446531 645515 621342 565421 564121
 12512 254213 45456* 1462

 
641252 21354* *525 254362 325466

 654 541 462121 135462 *21545
 3 426256 4*

 356234
 131354
 645

2 46213 
 

246262 123564 135642
 

531462 135263 132456 123456 213546 132465 255236 462461 123456 123546 134652
 2131 62213*

 
3 31 1526*2 253156 465562 566213 132*46 62*365 352524 445613 216326 124653

 *3 456545 231654 545463 2
 

243563 261315 255462 231456 656121
 463123 456*2 21*266 463562 513565 *62 3
 156562 54123

 
23

 62
3 462*46 

 
246242 264231 

  
135642 535164 135263 312456 123455 265413 134652 521363 462135 123456 123655 132465

 466413 53 2231 5231*1 645612 232145 1323*4
 

641526 215634 123562 463213 544163
 *426 236545 3 563214 5263*6 *52 3 *3625
 5233** 563214 52
 513 523*65
 4123
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Modeling Cognition and Search 
 
Different papers have taken different positions on how cognition shows up in search: 
 
Camerer, Johnson, et al. gave roughly equal weight to look-up durations and to the 
numbers of look-ups of each pie ("acquisitions") and the transitions between pies. 
 
Rubinstein, "Instinctive and Cognitive Reasoning: A Study of Response Times," EJ 2007, 
which considers some matrix games, considered only durations. 

 
Camerer, Johnson, et al.’s and Rubinstein's analyses were also conducted at a very high 
level of aggregation, both across subjects and over time. 
 
Gabaix, Laibson, Moloche, and Weinberg, "Costly Information Acquisition: Experimental 
Analysis of a Boundedly Rational Model," American Economic Review, 2006, focused on 
numbers of look-ups (not durations) and considered some aspects of their order too; they 
also conducted their analysis mostly at a high level of aggregation. 
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Studying Cognition via Numbers and Order of Subjects' Look-ups  
 
CGCB and CGC argued that cognition is sufficiently heterogeneous and search 
sufficiently noisy that they are best studied at the individual level. 
 
They also presumed that which look-ups subjects make, in which order, reveals at least as 
much information about cognition as durations or transition frequencies. 
 
This should not be surprising, because simple theories of cognition more readily suggest 
roles for which look-ups subjects make, in which orders, than durations. 
 
(No claim that durations are irrelevant was intended, just that they don't deserve the 
priority they have been given. CGCB (Table IV) do present some results on durations, 
under the heading of "gaze times.")  
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Types as Models of Cognition, Search, and Decisions 
 
CGC's and CGCB's models of cognition, search, and decisions are based on a procedural 
view of decision-making, in which a subject's type determines his search, and his type and 
search then determine his decision. This is the key to linking them in the analysis.  
 
(Because a type's search implications depend not only on what decisions it specifies, but 
why, something like a types-based model seems necessary here.) 
 
Each type is naturally associated with algorithms that process payoff information into 
decisions; the analysis uses those algorithms as models of cognition, deriving a type's 
search implications under simple assumptions about how it determines search. 
 
With their derived search implications, the types will provide a kind of basis for the 
enormous space of possible decision and search sequences, imposing enough structure 
to allow us to describe subjects' behavior in a comprehensible way, and to make it 
meaningful to ask how decisions and searches are related. 
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Cognition and Search 
 
Without further assumptions, nothing precludes a subject's scanning and memorizing the 
information and going into his brain to figure out what to do, in which case search reveals 
nothing about cognition. 
 
But subjects’ actual searches appear to contain a lot of information about cognition. 
 
We need to make enough additional assumptions to allow us to extract the signal from the 
noise in searches, but not so many that they distort the meaning of the signal. 
 
CGC's (like CGCB's) additional assumptions are conservative in that they rest on types' 
minimal search implications, and they add as little structure to these as possible.   
 
Types' minimal search implications in CGC's games can be derived from their ideal 
guesses, those they would make if they had no limits. (With automatic adjustment of 
guesses to fall within their limits, and quasiconcave payoffs, this is all they need to know.) 
 
The left side of Table 4 lists formulas for types' ideal guesses in CGC's games. 
 
The right side lists types' search implications, first in terms of our notation, then in terms of 
the box numbers in which MouseLab records the data. 
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Types' Search Implications 
 
Evaluating a formula for a type's ideal guess requires a series of operations, some of 
which are basic in that they logically precede any other operation. 
 
E.g. [aj+bj] is the only basic operation for L1's ideal guess, pi [aj+bj]/2. 
 
The search implications in Table 4 assume subjects perform basic operations one at a 
time via adjacent look-ups, remember their results, and otherwise rely on repeated look-
ups rather than memory. 
 
Basic operations will then be represented by adjacent look-up pairs that can appear in 
either order, but cannot be separated by other look-ups.   
 
Such pairs are grouped within square brackets, as in {[aj,bj],pi} for L1. 
  
Other operations can appear in any order and their look-ups can be separated. 
 
They are represented by look-ups grouped within curly brackets or parentheses.  
 
(Table 4 shows the look-ups associated with a type's operations in the order that seems 
most natural, if there is one; but this is not a requirement of the theory.)  
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Evidence on Cognition and Search  
These assumptions are based on several sources of evidence: 
 
(i) Camerer and Johnson’s Robot/Trained Subjects' searches, which led them to 
characterize subgame-perfect equilibrium via backward induction search in terms of 
transitions between the second- and third-round pies 
 
(ii) CGCB's Trained Subjects' searches, which suggest a similar view of Equilibrium 
search in matrix games 
 
(iii) CGC's R/TS and Baseline subjects with high compliance with their types’ guesses, 
whose searches suggest a similar view of L1 and L2 search 
 
(CGC's specification analysis turned up only one clear violation of the proposed 
characterization of types' search implications: Baseline subject 415, whose apparent type 
was L1 with 9 exact guesses, had 0 L1 search compliance in 9 of the 16 games because 
s/he had no adjacent [aj,bj] pairs as we required for L1. Her/his look-up sequences were 
unusually rich in (aj,pi,bj) and (bj,pi,aj) triples, in those orders. Because the sequences 
were not rich in such triples with other superscripts, this is clear evidence that 415 was an 
L1 who happened to be more comfortable with several numbers in working memory than 
our characterization of search assumes, or than our other subjects were. But because this 
violated our assumptions on search, this subject was "officially" estimated to be D1.) 
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Search Data for Representative R/TS and Baseline Subjects 
The above search data suggest the following conclusions:  
 
(i) There is little or no difference between the look-up sequences of R/TS and Baseline 
subjects of a given type (assigned for R/TS, apparent for Baseline); perhaps this is 
unsurprising, because R/TS subjects were not trained in search strategies 
 
(ii) A subject’s type’s predicted sequence (Table 4) is unusually dense in his search 
sequences, at least for L1 and L2 (CGC's econometric analysis measures search 
compliance for a type as the density of its relevant sequences in the subject's sequences) 
 
(iii) One can quickly learn to see the algorithms many subjects are using in the data. (And 
if we can learn to do it, the right kind of econometrics can do it too: many of CGC's 
subjects' types can be reliably identified from search alone (CGC's Table 7).) 
 
(iv) For some subjects search is an important check on decisions; e.g. Baseline subject 
309, with 16 exact L2 guesses, misses some of L2's relevant look-ups, avoiding deviations 
from L2 only by luck (s/he later has a Eureka! moment between games 5 and 6, and from 
then on complies perfectly); reminiscent of CJ's finding that in their alternating-offers 
bargaining games, 10% of the subjects never looked at the last-round pie and 19% never 
looked at the second-round pie. Even if their decisions had conformed to subgame-perfect 
equilibrium, they could not have been making them for the reasons the theory assumes.) 
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CGC's Econometric Analysis of Guesses and Search 
Most subjects' guesses-and-search type estimates reaffirm the guesses-only estimates. 
 
For some the guesses-and-search type estimate resolves a tension between guesses-
only and search-only estimates in favor of a type other than the guesses-only estimate. 
 
In more extreme cases, a subject's guesses-only type estimate is excluded because it has 
0 search compliance in 8 or more games, like subject 415. 
 
Overall, search refines and sharpens the conclusions and confirms the absence of 
significant numbers of types other than L1, L2, Equilibrium, or hybrids of L3 or Equilibrium. 
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Possible Sources of Answers to the Puzzles 
 
A. What are Those Baseline “Equilibrium” Subjects Really Doing? 
 
(i) Can we tell how Baseline Equilibrium subjects find equilibrium in games without mixed 
targets: best-response dynamics, equilibrium checking, iterated dominance, or something 
else that doesn’t "work" with mixed targets? 
 
(The absence of Baseline Dk subjects suggests that they are not using iterated 
dominance. Best-response dynamics, perhaps truncated after 1-2 rounds, seems more 
likely. We plan to check by refining CGC's characterization of Equilibrium search and 
redoing the econometrics, separately with and without mixed targets.) 
 
(ii) Is there any identifiable difference in Baseline Equilibrium subjects' search patterns in 
games with and without mixed targets? If so, how do the differences compare to those for 
L1, L2, or L3 subjects? 
 
(Our 20 Baseline L1 subjects' compliance with L1 guesses (CGC, Figure 1) is almost the 
same with and without mixed targets: unsurprisingly because the distinction is irrelevant to 
L1. But our 12 L2 (CGC, Figure 2) and 3 L3 subjects' compliance with apparent types' 
guesses is noticeably lower with mixed targets. This is curious, because for L2 and L3, 
unlike for Equilibrium, games with mixed targets require no deeper understanding.) 
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(iii) Can we tell how R/TS Equilibrium subjects with high compliance manage to find their 
Equilibrium guesses even with mixed targets? How does their search in those games 
differ from Baseline Equilibrium subjects' search? 
 
(CGC strove to make the R/TS Equilibrium training as neutral as possible, but something 
must come first. They were taught equilibrium-checking first, then best-response 
dynamics, then iterated dominance. To the extent that they used one of those methods, it 
explains why they have equal compliance with and without mixed targets. If they used 
something else, and it deviates from equilibrium in games with mixed targets, it might 
provide a clue to what the Baseline Equilibrium subjects did.)  
 
(Note that CGC's Baseline subjects with high compliance for some type are, to the extent 
that we are confident in inferring their beliefs, like robot untrained subjects. These don't 
usually exist because you can't tell robot subjects how they will be paid without teaching 
them how the robot works, and so training them. 
 
Thus CGC's design provides an unusual opportunity to separate the effects of training and 
strategic uncertainty, by comparing Baseline and R/TS subjects: Either Equilibrium is 
natural with mixed targets, but subjects don't see it without training; or Equilibrium is 
unnatural, and/or subjects don't believe that others, even with training, will make 
Equilibrium guesses with mixed targets.) 
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B. Why Are Lk the Only Types other than Equilibrium with Nonnegligible 
Frequencies? 
 
(i) Most R/TS subjects could reliably identify their type's guesses, even Equilibrium or D2. 
(These average rates are for exact compliance, and so are quite high. Individual subjects' 
compliance was usually bimodal within type, on very high and very low.)  
  
 
 

R/TS Subjects' Exact Compliance with Assigned Type's Guesses 
      L1 L2 L3 D1 D2 Eq. 

Number of subjects 25      27 18 30 19 29
% Compliance|Passed UT2

 
80.0      

 
91.0 84.7 62.1 56.6

 
70.3

% Failed UT2 0.0 0.0 0.0 3.2 5.0 19.4
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(ii) But there are noticeable signs of differences in difficulty across types: 
(a) No one ever failed an Lk Understanding Test, while some failed the Dk and many 
failed the Equilibrium Understanding Test. 
 
(b) For those who passed, compliance was highest for Lk types, then Equilibrium, then Dk 
types. This suggests that Dk is even harder than Equilibrium, but could just be an artifact 
of the more stringent screening of the Equilibrium Test.   
 
(c) Among Lk and Dk types, compliance was higher for lower k as one would expect, 
except that L1 compliance was lower than L2 or L3 compliance. (We suspect that this is 
because L1 best responds to a random L0 robot, which some subjects think they can 
outguess; while L2 and L3 best respond to a deterministic L1 or L2 robot.) 
 
(d) Remarkably, 7 of our 19 R/TS D1 subjects passed the D1 Understanding Test, in 
which L2 answers are wrong; and then "morphed" into L2s when making their guesses, 
significantly reducing their earnings. E.g. R/TS D1 subject 804 made 16 exact L2 (and so 
only 3 exact D1) guesses. (Recall that it is L2 that is D1's cousin.) This kind of morphing, 
in this direction, is the only kind that occurred. We view this as pretty compelling evidence 
that Dk types are unnatural. 
 
(e) A comparison of Lk's and Dk-1's search and storage requirements may have 
something to add. (E.g. Dk-1 requires more memory than Lk.) 
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Appendix 1: A "Theory" of Optimal Search for Hidden Payoff Information   
 
I now sketch a simple model of optimal search with costs of storing numbers in working 
memory, which rationalizes the stylized facts of search behavior in these experiments. 
 
The model views search for hidden payoff information as just another decision, and takes 
the formula that relates a type's desired decisions to the hidden parameters as given. 
Thus a subject's type determines both an optimal search pattern and an optimal decision. 
 
Occurrence 
 
The usual rationality assumption implies that a player will look up all costlessly available 
information that might affect his beliefs and best respond to his beliefs.  
 
When, as here, observing a parameter will normally cause a nonnegligible change in 
beliefs and the optimal decision, this conclusion extends to all relevant information that is 
available at a sufficiently small but non-0 cost. (There is a lot of evidence that subjects 
perceive the cost of a look-up as close to negligible.) 
 
Thus, if a type's decision depends on a hidden parameter, then that parameter must 
appear in the type’s look-up sequence. But so far any order will do. 
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Adjacency  
 
Assume that there is a cost of keeping numbers in working memory, which starts out 
small, but is much larger, even for one number, than the cost of a look-up; and that this 
cost increases with the number of stored numbers and is proportional to storage time. 
(Thus a player's "lifetime" total memory cost is the time integral of an increasing function 
of the number of stored numbers.) (There is some evidence for these assumptions too.) 
 
Given these assumptions, a player minimizes his total memory plus look-up cost for 
evaluating an expression like L1's ideal guess, pi [aj+bj]/2, containing a basic operation like 
[aj+bj], by processing [aj+bj] separately, storing the result (in the meanwhile "forgetting" aj 

and bj), and combining the result with pi.  
 
(The alternative, processing pi aj separately, storing the result, then processing pi bj 

separately and combining it with pi aj, requires leaving more numbers in working memory 
longer: The sequence of numbers in memory for the method in the previous paragraph is 
1, 2, 1, 2, 1; the sequence for the method in this paragraph is 1, 2, 1, 2, 3, 2, 1. The 
previous method also saves by eliminating the repeated look-up of pi, but this is of 
second-order importance.) 
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I have only illustrated the cost savings from giving priority to basic operations, but I 
conjecture that the argument is general. If so, it justifies assuming that subjects perform 
basic operations one at a time via adjacent look-ups, remembering the results, and 
otherwise relying on repeated look-ups rather than memory. 
 
The argument also seems likely to extend to CJ's extensive-form games, justifying their 
focus on transitions between pies from adjacent rounds. 
 
The theory implies more than this, regarding both the order of operations (basic ones 
should come first) and how non-basic operations are executed. I defer such implications in 
favor of mentioning an issue regarding CGC's search data: 
 
Many Baseline subjects usually look first at their apparent type's relevant sequence and 
then make irrelevant look-ups or stop (e.g. 108, 118, and 206, labeled "early" in the above 
look-up data). Others make irrelevant look-ups first, and look at the relevant sequence 
only near the end (e.g. 413, labeled "late"). Others repeat the relevant sequence many 
times (e.g. 101, labeled "early/late"). The theory is actually consistent with this kind of 
heterogeneity when look-up costs are negligible (but storage costs are not). Because 
MouseLab allows a subject to enter a tentative guess without confirming it (the *s in the 
look-up data), this kind of storage has zero cost in CGC's and CGCB's designs; and so 
subjects can satisfy their curiosity (early or late) without running up storage costs.  

 42



Appendix 2: Costa-Gomes, Crawford, and Broseta's Matrix-Game Experiments 
 
CGCB adapted CJ's methods to study cognition via search for hidden payoffs in matrix 
games, eliciting initial responses to 18 games with various patterns of iterated dominance 
or unique pure-strategy equilibria without dominance (CGCB, Figure 2). 
 
CGCB's design strongly separates leading types' implications for decisions. 
 
Previous experiments (e.g. Stahl and Wilson, GEB 1995) found systematic deviations 
from the equilibrium decisions when players have pecuniary preferences (in games that 
probably disable social preferences). 
 
CGCB's results for decisions replicated most patterns in previous experiments, with high 
equilibrium compliance with in games solvable by one or two rounds of iterated 
dominance but lower compliance in games solvable by three rounds or by the circular 
logic of equilibrium without dominance (CGCB, Table II). 
 
CGCB's design replicated previous results in a way that allowed a more precise 
assessment of subjects' cognition, which confirms the view of subjects' behavior 
suggested by analyses of decisions alone, with some differences. 
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Monitoring Search via MouseLab in Matrix Games 
 
Within a publicly announced structure, CGCB presented each game to subjects as a 
matrix via MouseLab, which normally concealed payoffs but allowed subjects to look up 
their own and their partner's payoffs for each decision combination as often as desired, 
one at a time (click option in MouseLab). 
 
Row and Column players' payoffs were spatially separated to ease cognition and make 
search more informative. 
 
(Subjects were always framed as Row players, although each played each of our games 
once as Row and once as Column player, in a sequence that disguised those 
relationships and randomized away effects of patterns in their structures.) 
 
(Subjects were not allowed to write down the payoffs, and the frequencies with which they 
looked them up made clear that they did not memorize them.) 
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CGCB's Figure 1. MouseLab Screen Display (for a 2×2 game) 
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Separation of Types' Implications for Decisions in CGCB's Design: Figure 2 
 

2A (1,2) A,P,N      
     

D12,L2,E,S 2B (1,2) A,P,N D12,L2,E,S
A 72,93 31,46 D 94,23 38,57
D 84,52     55,79 A 45,89 14,18

 
3A (2,1) D      

     
A 3B (2,1) D A

D12,L2,E,S 75,51 42,27 A,P,N 21,92 87,43
A,P,N 48,80     89,68 D12,L2,E,S 55,36 16,12

 
4A (2,1)  D      

      
A 4B (2,1) A D

A,P,N 59,58 46,83 85,61 D12,L2,E,S 31,32 68,46
D12,L2,E,S 38,29      70,52 37,23 P 72,43 47,61

       A,N 91,65 43,84
 

4C (1,2) D12,L2,E,S       
    

A,P,N 4D (1,2) D12,L2,E,S
 

P A,N
28,37 57,58 D 42,64 57,43 80,39

A 22,36    60,84 A 28,27 39,68 61,87
D 51,69      82,45  

 
5A (3,2) A,P,N      

     
D12,L2,E,S 5B (3,2) A,P,N D12,L2,E,S

A 53,86 24,19 A 76,93 25,12
P,N,D1,L2,S 79,57     42,73 D2,E 43,40 74,62

D2,E 28,23    71,50  P,N,D1,L2,S 94,16 59,37
 

6A (2,3) A     
  

D2,E,S P,N,D1,L2 6B (2,3) D2,E A P,N,D1,L2,S
D12,L2,E,S 21,26 52,73 75,44 A,P,N 42,45 95,78 18,96 

A,P,N 88,55 25,30 59,81  D12,L2,E,S 64,76 14,27 39,61 
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7A (∞,∞) N,D12,L2,S

 
       

 
A,P E 7B (∞,∞) N,D12,L2,S

 
A,P E

L2,E,S 87,32 18,37 63,76 A,P,N,D12 67,91 95,64 31,35
A,P,N,D12 65,89   96,63 24,30 L2,E,S 89,49 23,53 56,78

 
8A (∞,∞) L2,E,S     

     
A,P,N,D12 8B (∞,∞) L2,E,S A,P,N,D12

E 72,59 26,20 A,P 46,16 57,88
A,P 33,14     59,92 E 71,49 28,24

N,D12,L2,S 28,83     85,61 N,D12,L2,S 42,82 84,60
 

9A (1,2) D12,L2,E,S        
    

A,P,N 9B (2,1) A D
22,14 57,55 A,P,N 56,58 38,29 89,62 32,86

   30,42 28,37  D12,L2,E,S 15,23 43,31 61,16 67,46
A 15,60       61,88  
D 45,66        82,31

 
(A = Altruistic, P = Pessimistic (minimax), N = Naïve (CGCB's name for L1) and Optimistic 
(maximax, decisions not separated from Naïve's), E = Equilibrium, S = Sophisticated, D12 
= D1 and D2, D = dominant decision = all types but A.) 
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Separation of Types' Implications for Search in CGCB's Design 
 
CGCB's design also makes it possible to test and compare types via search. 
 
They make two assumptions about how cognition affects search, Occurrence and 
Adjacency that are close to CGC's characterization of cognition and search.  
 
In CGCB's display, a subject's searches can vary in three main dimensions: 
 
(i) the extent to which his transitions are up-down in his own payoffs, which under  
Occurrence and Adjacency is (for a Row player) naturally associated with rationality in the 
decision-theoretic sense; 
 
(ii) the extent to which his transitions are left-right in other's payoffs, which under  
Occurrence and Adjacency is associated with thinking about other's incentives;  
 
(iii) the extent to which he makes transitions from own to other's payoffs and back for the 
same decision combination, which under Occurrence and Adjacency is associated with 
interpersonal fairness or competitiveness comparisons. 
 
This variation allows strong separation of types' implications for search. 
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The independent separation of types' implications for decisions and search is an important 
strength of the design: Searches and decisions together, and their relationships, yield a 
much clearer view of a subject's type than decisions alone. 
 
Some types' implications under Occurrence and Adjacency in game 3A (Column has 
dominant decision, "nonstrategic" Rows pick B and "strategic" Rows pick T) 
 

 S/He: L S/He: R S/He: L S/He: R 
You: T      75 42 51 27
You: B      48 89 80 68

 Your   Points Her/His Points
 You: T  You: B  

Naïve (L1) compares expected payoffs of own decisions given a uniform prior over other's, 
via either up-down or left-right own payoff comparisons. Occurrence requires look-ups 75, 
48, 42, and 89. Adjacency requires either the set of comparisons {(75,42), (48,89)} or the 
set of comparisons {(75,48), (42,89)}. 
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 S/He: L S/He: R S/He: L S/He: R 

You: T      75 42 51 27
You: B      48 89 80 68

 Your   Points Her/His Points
 You: T  You: B  

 
L2 needs to identify other's Naïve decision and L2's best response to it; Occurrence 
requires all other's look-ups plus 75 and 48, the own look-ups for other's Naïve decision. 
Adjacency requires either the set of comparisons {(51,27), (80,68)} or the set of 
comparisons {(51,80), (27,68)} to identify other's Naïve decision, plus the comparison 
(75,48) to identify L2's best response.  

If Equilibrium has a dominant decision it needs only to identify it. If not, it can use iterated 
dominance or equilibrium-checking, decision combination by combination or via "best-
response dynamics." Occurrence requires look-ups 51, 27, 80, 68, 75, and 48. Adjacency 
requires comparisons (51,27), (80,68), and (75,48). 
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CGCB's Results 
 
The most frequent estimated types are Naïve (L1) and L2, each nearly half of the 
population. 
 
Incorporating search compliance into the econometric analysis shifts the estimated type 
distribution toward Naïve, at the expense of Optimistic and D1. 
 
Part of this shift occurs because Naïve's search implications explain more of the variation 
in subjects' searches and decisions than Optimistic's, which are too unrestrictive to be 
useful in the sample; another part occurs because Naïve's search implications explain 
more of the variation in subjects' searches and decisions than D1's, which are more 
restrictive, but too weakly correlated with subjects' decisions.  
 
D1 also loses some frequency to L2, even though their decisions are weakly separated in 
CGCB's design, because L2's search implications explain much more of the variation in 
subjects' searches and decisions. 
 
Overall, CGCB's analysis of decisions and search yields a significantly different 
interpretation of behavior than their analysis of decisions alone. The analysis suggests a 
strikingly simple view of behavior, with Naïve and L2 65-90% of the population and D1 0-
20%, depending on confidence in their model of search. 
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