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Lecture Slides:       First-Year M. Phil. Micro: Ga me Theory/ Industrial Organization                                                                  
Vincent P. Crawford (thanks to Chris Wallace, Joel Sobel, and for figures to MWG)         
University of Oxford                              4  August 2012, corrected 12 November 2012                               
 
There will be 9 or (if needed) 10 lectures, from 9:30-11:00 Monday and Thursday week 5; 
Monday, Tuesday, and Thursday weeks 6 and 7; and Monday and Tuesday week 8. 

The lectures will cover the topics of Chapters 7-9 and 12 of Mas-Colell, Whinston, and 
Green, Microeconomic Theory, Oxford 1995 (“MWG”) in order, with additional material. 
MWG and the lectures will be complements, not substitutes: please read both.     

 
Chapter 7. Basic Elements of Non-Cooperative Games 
A. Introduction 
B. What is a Game? 
C. The Extensive Form Representation of a Game 
D. Strategies and the Normal Form Representation of a Game 
E. Randomized Choices  

Chapter 8. Simultaneous-Move Games 
A. Introduction 
B. Dominant and Dominated Strategies 
C. Rationalizable Strategies 
D. Nash Equilibrium 
E. Games of Incomplete Information: Bayesian Nash Equilibrium 
F. The Possibility of Mistakes: Trembling-Hand Perfection 
Appendix: Existence of Nash Equilibrium 
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Chapter 9. Dynamic Games 
A. Introduction 
B. Sequential Rationality, Backward Induction, and Subgame Perfection 
C. Sequential Rationality and Out-of-Equilibrium Beliefs 
D. Reasonable Beliefs, Forward Induction, and Normal Form Refinements Appendix 
Appendix B: Extensive Form Trembling-Hand Perfection 
 
Chapter 12. Market Power 
A. Introduction 
B. Monopoly Pricing 
C. Static Models of Oligopoly: Bertrand, Cournot, product differentiation 
D. Repeated Interaction: Complete-information repeated games 
E. Entry 
F. The Competitive Limit 
G. Strategic Precommitments to Affect Future Competition 
Appendix A: Infinitely Repeated Games and the Folk Theorem 
Appendix B: Strategic Entry Deterrence and Accommodation 
 
(Plus, time permitting) Cooperative Game Theory 
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Chapter 7. Basic Elements of Non-Cooperative Games  
A. Introduction  
 
There are two leading frameworks for analyzing games: cooperative and noncooperative. 
  
This course focuses on noncooperative game theory, which dominates applications. 
 
Time permitting, we may make a whirlwind tour of cooperative game theory at the end. 
 
But even if not, you should be aware that cooperative game theory exists, and is better 
suited to analyzing some economic settings, e.g. where the structure of the game is 
unclear or unobservable, and it is desired to make predictions that are robust to it. 
 
● Cooperative game theory assumes rationality, unlimited communication, and unlimited 

ability to make agreements. 
 
● It sidesteps the details of the structure by assuming that players reach a Pareto-efficient 

agreement, which is sometimes further restricted, e.g. by requiring symmetry of utility 
outcomes for symmetrically situated players. 

 
● Its goal is to characterize the limits of the set of possible cooperative agreements that 

might emerge from rational bargaining.  
 
● It therefore blends normative and positive elements. 
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● Noncooperative game theory also assumes rationality. 
 
 
 
But by contrast: 
 
 
● Noncooperative game theory replaces cooperative game theory’s assumptions of 

unlimited communication and ability to make agreements with a fully detailed model 
of the situation and a detailed model of how rational players will behave in it. 

 
 
● Its goal is to use rationality, augmented by the “rational expectations” notion of Nash 

equilibrium, to predict or explain outcomes from the data of the situation. 
 
 
● As a result, noncooperative game theory is mainly positive, though it is used for 

normative purposes in some applications, such as mechanism design. 
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Like the term "game" itself, "noncooperative" is a misnomer: 
 
 
● Noncooperative game theory spans the entire range of multi-person or interactive 

decision situations. 
 
● Although zero-sum games, whose players have perfectly conflicting preferences, played 

a leading role in the development of the theory—and its public image—most 
applications combine elements of conflict with elements of coordination. 

 
● Some applications of noncooperative game theory involve predicting which settings are 

better for fostering cooperation. 
 
● This is done by making behavioral assumptions at the individual level (“methodological 

individualism”), thereby requiring cooperation to emerge (if at all) as the outcome of 
explicitly modeled, independent decisions by individuals in response to explicitly 
modeled institutions. 

 
● By contrast, cooperative game theory makes the group-level assumption that the 

outcome will be Pareto-efficient, and (with important exceptions) avoids the incentive 
and coordination issues that are the focus of noncooperative analyses of cooperation.  
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In game theory, maintaining a clear distinction between the structure of a game and 
behavioral assumptions about how players respond to it is analytically as important as 
keeping preferences conceptually separate from feasibility in decision theory. 
 
 
 
We will first develop a language to describe the structure of a noncooperative game. 
 
 
We will then develop a language to describe assumptions about how players behave in 
games, gradually refining the notion of what it means to make a rational decision. 
 
 
In the process we will illustrate how game theory can elucidate questions in economics. 
 
 
 
As you learn to describe the structure, please bear in mind that the goal is to give the 
analyst enough information about the game to formalize the idea of a rational decision. 
 
(This may help you be patient about not yet knowing exactly what it means to be rational.)  
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B. What is a Game?  
 
 
 
From the noncooperative point of view, a game is a multi-person decision situation defined 
by its structure, which includes: 
 
 
● the players, independent decision makers 
 
 
● the rules, which specify the order of players' decisions, their feasible decisions at each 

point they are called upon to make one, and the information they have at such points 
 

 
● how players' decisions jointly determine the physical outcome 
 
 
● players' preferences over outcomes (or probability distributions of outcomes) 
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Assume that the numbers of players, feasible decisions, and time periods are finite. 
 
These can be relaxed, and they will be relaxed here for decisions and time periods. 
 
 
 
Preferences over outcomes are modeled just as in decision theory. 
 
 
Preferences can be extended to handle shared uncertainty about how players' decisions 
determine the outcome as in decision theory, by assigning von Neumann-Morgenstern 
utilities, or payoffs, to outcomes and assuming that players maximize expected payoff. 
 
 
 
Assume for now that players face no uncertainty about the structure other than shared 
uncertainty about how their decisions determine the outcome, that players know that no 
player faces any other uncertainty, that players know that they know, and so on; i.e. that 
the structure is common knowledge.  
 
Later we will develop a way to model other kinds of uncertainty, shared or not. 
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● It is essential that a player's decisions be feasible independent of others' decisions; e.g. 
"wrestle with player 2" is not a well-defined decision, although “try to wrestle with 
player 2” can be well-defined if what happens if 2 doesn’t also try is clearly specified. 

 
● It is essential that specifying all of each player’s decisions should completely determine 

an outcome (or at least a shared probability distribution over outcomes) in the game.  
 
If a specification of the structure of a game does not pass these tests, it must be modified 
until it does. 
 
E.g. if your model includes a (magical, but useful!) fiction like the Walrasian auctioneer, 
who always finds prices that balance players’ supplies and demands even though a 
player’s desired supply cannot be realized without another player’s willing demand, or vice 
versa, you must replace the auctioneer with an explicit model of how players’ decisions 
determine realized trades and prices (as called for by Kenneth Arrow in "Toward a Theory 
of Price Adjustment," Abramovitz et al., eds. The Allocation of Economic Resources: 
Essays in Honor of Bernard Francis Haley, Stanford 1959; and since realized in general 
equilibrium theory by Shapley and Shubik, "Trade Using One Commodity as a Means of 
Payment," Journal of Political Economy 1977, and in auction theory by everyone). 
   
E.g. if you object to a game analysis on the grounds that players are not really required to 
participate in the game as modeled, the (only!) remedy is to explicitly add a player’s 
decision whether to participate to the game, and then to insist that it be explained by the 
same principles of behavior the analysis uses to explain players’ other decisions. 
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C. The Extensive Form Representation of a Game  
 
Some games that are important in economics have simultaneous moves; examples below. 
 
“Simultaneous” means strategically simultaneous, in the sense that players’ decisions are 
made without knowledge of others’ decisions. 
 
It need not mean literal synchronicity, although that is sufficient for strategic simultaneity. 
 
 
But many important games have at least some sequential decisions, with some later 
decisions made with knowledge of others’ earlier decisions. 
 
 
We need a way to describe and analyze both kinds of game.  
 
 
One way to describe either kind of game is via the extensive form or game tree, which 
shows a game’s sequence of decisions, information, outcomes, and payoffs. 
 
 
(The other way is via the strategic or normal form or payoff function, discussed later.) 
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Figure 7.C.1 shows a version of Matching Pennies with sequential decisions, in which 
Player 1 moves first and player 2 observes 1’s decision before 2 chooses his decision. 

 
We can represent the usual Matching Pennies with simultaneous decisions by introducing 
an information set, which includes the decision nodes a player cannot distinguish and at 
which he must therefore make the same decision, as in the circled nodes in Figure 7.C.3 
(or in analogous figures with decision nodes connected by dotted lines as in Kreps). 
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The order in which simultaneous decision nodes are listed has some flexibility, as in 
Figure 7.C.3 where player 2 could have been at the top; but for sequential decisions the 
order must respect the timing of information flows. (Information about decisions already 
made—as opposed to predictions of future decisions—has no reverse gear.) 
 
All decision nodes in an information set must belong to the same player and have the 
same set of feasible decisions. (Why?) 
 
Figure 7.C.2 gives a partial game tree for Tic-Tac-Toe.  
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Players are normally assumed necessarily to have perfect recall of their own past 
decisions (and other information). If so, the tree must reflect this (as in Figure 7.C.2). 
 
Figure 7.C.4 shows two games without perfect recall of players’ own past decisions. 
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Shared uncertainty (in economics, roughly “symmetric information”) can be modeled by 
introducing moves by an artificial player (without preferences) called Nature, who chooses 
the structure of the game randomly, with commonly known probabilities as in Figure 7.C.5. 
 
(It’s a good exercise to describe this variant of Matching Pennies in words.)  
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D. Strategies and the Normal Form Representation of  a Game  
 
 
For sequential games it is important to distinguish strategies from decisions or actions. 
 
 
A strategy is a complete contingent plan for playing the game, which specifies a feasible 
decision for each of a player's information sets in the game. 
 
(Recall that his decision must be the same for each decision node in an information set.)  
 
 
 
Thus a strategy is like a detailed chess textbook, not like a single decision or action. 
 
But in a simultaneous-move game a strategy reduces to a single decision or action. 
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Built into the notions of subgame-perfect, sequential, and perfect Bayesian equilibrium 
defined below is the assumption that conditional on what a player can observes, he can 
predict the probability distributions of his own and others’ future decisions and their 
consequences.  
 
 
 
If players have this kind of foresight, then their rational sequential decision-making in “real 
time” should yield exactly the same distribution of decisions as simultaneous choice of 
fully contingent strategies at the start of play, for reasons essentially like those that justify 
Bellman’s Principle of optimality in dynamic programming. 
 
 
 
This allows us to focus, for the purpose of characterizing equilibria, on simultaneous-move 
games, as including sequential games and blends of simultaneous and sequential games: 
 
“Let us each write our own chess textbook. Then we will give our books to a neutral 
referee and let him play out the game for us and tell us who won.” 
 
(But don’t try this at home with commercially available textbooks, which aren’t complete.)   
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Because strategies are complete contingent plans, players must be thought of as 
choosing them simultaneously (without observing others' strategies), independently, and 
irrevocably at the start of play. 
 
 
Why must a strategy must be a complete contingent plan, specifying decisions even for a 
player’s own nodes that he knows will be ruled out by his own earlier decisions? 
 
Otherwise other players’ strategies would not contain enough information for a player to 
evaluate the consequences of his own alternative strategies, which in general requires a 
complete model of other players’ decisions. 
 
We would then be unable to correctly formalize the idea that a strategy choice is rational. 
 
 
Putting the point in an only seemingly different way, in individual decision theory zero-
probability events can be ignored as irrelevant, at least for expected-utility maximizers. 
 
But in games zero-probability events cannot be ignored because what has zero probability 
is endogenously determined by players' strategies. 
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Some terminology: A game maps strategy profiles (one for each player) into payoffs (with 
outcomes implicit). A game form maps profiles into outcomes, without specifying payoffs. 
 
Specifying strategies make it possible to describe an extensive-form game’s relationship 
between strategy profiles and payoffs by its (unique) normal form or payoff matrix or 
(usually when strategies are continuously variable) payoff function. 

 
 

 



19 
 

 

The mapping from the extensive to the normal form isn’t univalent in both directions, e.g. 
the normal form for the sequential version B of Matching Pennies:  

 
has possible extensive forms other than the one in Figure 7.C.1, such as the canonical: 
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E. Randomized Choices  
 
In game theory it is useful to extend the idea of strategy from the unrandomized (pure) 
notion we have considered to allow mixed strategies (randomized strategy choices). 
 
E.g. Matching Pennies Version C plainly has no appealing pure strategies, but there is a 
convincingly appealing way to play using mixed strategies: randomizing 50-50. (Why?)  
 

 
 

 Heads Tails 

Heads -1 
1 

1 
-1 

Tails 1 
-1 

-1 
1 

 Matching Pennies  
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Our definitions apply to mixed as well as pure strategies, given that the uncertainty about 
outcomes that mixed strategies cause is handled (just as for other kinds of uncertainty) by 
assigning payoffs to outcomes so that rational players maximize their expected payoffs. 
 
 
 
 
Mixed strategies will enable us to show that (reasonably well-behaved) games always 
have rational strategy combinations, i.e. that Nash equilibria always exist.  

 

 
 
In extensive-form games with perfect recall, mixed strategies are equivalent to behavior 
strategies, probability distributions over pure decisions at each node (Kuhn's Theorem; 
see MWG problem 7.E.1).  
 



22 
 

Chapter 8. Simultaneous-Move Games 
 
A. Introduction: Intuition-building Examples 
B. Dominant and Dominated Strategies  
 
Define strictly or weakly dominant and dominated strategies, e.g. (for strictly) in  
 

 L R 

T 2 
2 

1 
2 

B 2 
1 

1 
1 

 Crusoe "v." Crusoe  
Crusoe v. Crusoe is not really a game, just two individual decision problems; each player 
therefore has a strategy that is best independent of the other's strategy, hence dominant. 
 
If there is a (strictly or weakly) dominant strategy, all other strategies must be dominated. 
 
But there can be dominated strategies without there being a dominant strategy, which 
makes the notion of dominated more useful than the notion of dominant strategy. 
 
The idea is that a rational player would never play a strictly dominated strategy, because 
there are no beliefs about others’ strategies that make it a best response. 
 
A rational player might play a weakly dominated strategy if he has sharply focused beliefs. 
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Due to the linearity in probabilities of expected payoffs, dominance (strict or weak) for pure 
strategies implies (strict or at least weak) dominance for mixed strategies with positive 
probabilities only on those pure strategies. 

But there can be dominance by mixed strategies without dominance by pure strategies, 
e.g. for Column in Domination via Mixed Strategies R is strictly dominated by a 50-50 mix 
of L and C. Also see Figure 8.B.5. 

 L C R 

T 10 
4 

0 
3 

3 
1 

B 0 
0 

10 
2 

3 
10 

 Domination via Mixed Strategies  
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 Confess
s 

Don’t 

Confess  -5 
-5 

-10 
-1 

Don’t -1 
-10 

-2 
-2 

 Prisoner’s Dilemma  
 
In Prisoner's Dilemma (unlike in Crusoe v. Crusoe) players' decisions do affect each 
other's payoffs. Even so, each player still has a strictly dominant strategy.  
 
(“Don’t” = “Cooperate”; “Confess” = “Defect”. Why “’s” and not “s’” (which the game’s 
inventor insisted on)? Methodological individualism.) 
 
Because of the way the prisoners’ payoffs interact, individually rational decisions yield a 
collectively suboptimal (i.e. Pareto-inefficient—at least in the prisoners’ view) outcome. 
 
 
Prisoner's Dilemma is the simplest possible model of incentive problems, which makes it a 
popular platform for analyses of institutions that overcome such problems. 
 
And the fact that Prisoner's Dilemmas or similar situations abound in real societies alone 
suffices to show the fatal intellectual flaw in libertarianism. 
 
Yet a Prisoner's Dilemma model is far too simple, because it ignores the difficulty of 
coordination and possible conflicts of interest between different ways to cooperate. 
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 Push Wait 

Push 1 
5 

5 
3 

Wait -1 
9 

0 
0 

 Pigs in a Box  
 
In Pigs in a Box, Row (R) is a dominant (big) pig and Column (C) a subordinate (little) pig. 
The box is a (B.F.) Skinner box. 
 
There is a lever at one end, which when pushed yields 10 units of grain at the other end. 
 
The story behind the matrix: Pushing costs either pig the equivalent of 2 units of grain.  
 
Identify payoffs with the amount of grain consumed, less the cost (if any) of pushing. 
 
Further, if R (big pig) pushes while C (little pig) waits, C can eat 5 units before R lumbers 
down and shoves C aside. 
 
But if C pushes while R waits, C cannot push R aside and R gets all but one unit. 
 
If both C and R push, arriving at the grain at the same time, C gets 3 units and R gets 7.  
 
If both C and R wait, both get 0. 
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When behavior settles down in experiments with pigs, it tends to be at R Push, C Wait. 
 
The little pig (C) does better, even though the big pig (R) can do anything C can do! 
 
 
This couldn't happen in an individual decision problem: a larger feasible set can never 
make a rational decision-maker worse off. 

It happens here because Wait strictly dominates Push for C, but not for R: the way 
players’ payoffs are determined means that only R has an incentive to Push. (This makes 
the game what we will call dominance-solvable below.) 
 
Thus in games, (the right kind of) weakness can be an advantage! R might get a higher 
payoff if he could somehow commit himself, say by limiting his ability to shove C aside, to 
giving C some of the grain to create an incentive for C to Push. 

Understanding which kinds of games such commitments help in, and what kinds of 
commitments help, should help us to understand the usefulness of contracts and other 
ways to change the rules by which relationships are governed. 
 
 
If the pigs had studied game theory, they wouldn't have to "settle down": They could just 
figure out at the start (using “iterated dominance”) that they should play (R Push, C Wait). 
 
That they eventually got there anyway suggests that learning and rationality-based 
arguments yield the same conclusions in the long run. (Why does this happen here?) 
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Define iterated deletion of strictly dominated strategies (iterated strict dominance). 
 

 Push Wait 

Push 1 
5 

5 
3 

Wait -1 
9 

0 
0 

 Pigs in a Box 
 

 L C R 

T 0 
7 

5 
0 

3 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

3 
7 

 Dominance-solvable  
 
The idea is that a rational player would never play a strictly dominated strategy, because 
there are no beliefs about others’ strategies that make it a best response. 
 
(Even so, a rational player might play a weakly dominated strategy for some beliefs.) 
 
Further, a rational player who knows that the other player is rational, knows that the other 
player knows that he himself is rational, and so on, would never play a strategy that does 
not survive iterated deletion of strictly dominated strategies. 
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The result of iterated strict dominance is independent of the order of elimination (MWG, 
problem 8.B.4).  
 
 
When iterated strict dominance reduces the game to a unique strategy profile, the game is 
called dominance-solvable, as in Domination via Mixed Strategies or Dominance-solvable: 
 

 L C R 

T 10 
4 

0 
3 

3 
1 

B 0 
0 

10 
2 

3 
10 

 Domination via Mixed Strategies  
 
 

 L C R 

T 0 
7 

5 
0 

3 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

3 
7 

 Dominance -solvable  
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By contrast, the result of iterated weak dominance may not be independent of the order of 
elimination, as in Give Me a Break: 
 

 
 

 
L 

 
R 

 
T 

1 
1 

1 
0 

 
B 

0 
0 

0 
0 

 Give Me a Break 
 
 
 
Thus even when iterated weak dominance reduces the game to a unique strategy profile, 
the result may not yield a unique profile. 
 
 
 
 
Iterated weak dominance is often useful, but it must be used with care. 
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C. Rationalizable Strategies  
 
 
Now we will start to formalize the idea of rational decisions in games. 
 
 
The idea must be consistent with the idea of rationality for individual decisions, i.e. a 
player’s rational strategy must at least be defined as one that maximizes his expected 
payoff, given some beliefs. 
 
 
But that is not the end of the story, because in games the outcome is influenced by other 
players' decisions as well as the player’s own decisions. 
 
 
Thus a player’s beliefs are not only about background uncertainty, as we know how to 
handle for individual decisions; but also about the strategies chosen by other players. 
 
 
The problem is that those strategies are chosen by players who are presumed also to be 
rational, and who recognize the need to predict the player’s own rational decision, and 
who recognize the player’s need to predict their rational decisions, and so on…. 
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Something is mutual knowledge if all players know it, and common knowledge if all know 
it, all know that all know it, and so on ad infinitum. 
  
 
 
Focus on the problem of predicting other players' strategies by assuming for now that the 
structure of the game is common knowledge. 
 
This allows simultaneous decisions as in Figure 7.C.3, and shared uncertainty about how 
players' decisions determine the outcome with commonly known distributions, modeled as 
“moves by nature” as in Figure 7.C.5; but they won’t matter for this discussion. 
 
 
 
In game theory a game whose structure is common knowledge is called a game of 
complete information (or replacing the old-fashioned game-theory term with a roughly 
equivalent modern economic term, “symmetric information”).  
 
 
“Complete” does not imply “perfect” information, e.g. with simultaneous decisions. 
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A first guess at how to formalize the idea of rational decisions in games is that assuming 
that players are rational in the decision-theoretic sense of maximizing expected payoffs 
given some beliefs is enough to yield a useful theory of behavior in games. 
 
 
 
That guess is correct for games like Crusoe v. Crusoe and Prisoner’s Dilemma. 
 
 
 
But that guess fails badly in even slightly more complex games, such as Pigs in a Box or 
Give Me a Break. 
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A second guess is that assuming that players are rational and that that fact is common 
knowledge yields a useful theory.  
 
That guess works in some games, such as Domination via Mixed Strategies (using mixed 
as well as pure-strategies) or Dominance-solvable: 
 

 L C R 

T 10 
4 

0 
3 

3 
1 

B 0 
0 

10 
2 

3 
10 

 Domination via Mixed Strategies  
 

 L C R 

T 0 
7 

5 
0 

3 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

3 
7 

 Dominance -solvable  
 
In these dominance-solvable games, iterated strict dominance reduces the game to a 
unique strategy profile, which we will see means that common knowledge of players’ 
rationality yields a unique prediction. 
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But even that guess also fails badly in most economically interesting games. 
 
E.g. any strategy is consistent with common knowledge of rationality for some beliefs in 
Matching Pennies, Gives Me a Break, or Unique Equilibrium without Dominance: 
 
 

 L C R 

T 0  
7 

5 
0 

7 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

0  
7 

 Unique Equilibrium without  Dominance  
 
 
In Unique Equilibrium without Dominance there is a “tower” (my co-authors tell me it 
should be “helix”) of beliefs, consistent at all levels with common knowledge of rationality, 
to support any combination of strategies. 
 
But except for the beliefs in the helix that supports the strategy combination (M, C), the 
beliefs that make other strategies consistent with common knowledge of rationality differ 
wildly across players and levels. 
 
We will see that (M, C) is Unique Equilibrium without Dominance’s unique Nash 
equilibrium. 
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Even though the second guess often fails, it is useful to characterize the implications of 
the assumption that it is common knowledge that players are rational. 
 
This leads to a notion called rationalizability. 
 
MWG define a rationalizable strategy as one that survives the iterated removal of 
strategies that are never a (weak) best response to any beliefs. 
 
As with iterated strict dominance, the order of removal of such strategies doesn't matter 
(MWG problem 8.C.2). 
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The set of strategies that survive the iterated removal of never-weak-best response 
strategies cannot be larger than the set that survive iterated strict dominance, because 
strictly dominated strategies can never be weak best responses to any beliefs. 
 
In n–person games, n > 2, the set of strategies that survive the iterated removal of never-
weak-best responses can be smaller than the set that survives iterated strict dominance. 
 
But any strategy that is not strictly dominated must be a best response to some correlated 
combination of others’ strategies (separating hyperplane theorem, MWG Exercise 8.C.4). 
 
In two-person games the two sets are the same because with only one other person, 
never-weak-best-response strategies are exactly those that are strictly dominated 
(separating hyperplane theorem again; in general they can differ; MWG Sections 8.D-E). 
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Focus on two-person games, where the correlation of others’ strategies is irrelevant. 
 
Approach the notion of rationalizability via a sequence of notions called k-rationalizability, 
defined to reflect the implications of k levels of mutual knowledge of rationality (i.e. all 
players know that all are rational, know that all know it, and so on, up to k levels). 
 
 
Rationalizability, which reflects the implications of common knowledge of rationality, is 
then equivalent to k-rationalizability for all k. 
 
 
A 1-rationalizable strategy (the sets R1 on the next slide) is one for which there is a profile 
of others’ strategies that makes it a best response. 
 
A 2-rationalizable strategy (the sets R2) is one for which there exists a profile of others’ 1-
rationalizable strategies that make it a best response. 
 
And so on, recursively…. 
 
 
For two-person games, k-rationalizability for all k is equivalent to MWG’s definition of a 
rationalizable strategy as one that survives iterated removal of never-weak-best response 
strategies; and to a definition in terms of surviving iterated strict dominance. 
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Rationalizability and k-rationalizability generally yield set-valued restrictions on individual 
players’ strategy choices (unlike Nash equilibrium, which restricts their relationship). 
 
In Dominance-solvable, M and C are the only rationalizable strategies; in Unique 
Equilibrium without Dominance all strategies are rationalizable, for each player. (Each 
game has a unique Nash equilibrium (M, C).) 
 

  R1,R2 R1,R2,R3,R4  
  L C R 

R1,R2,R3 T 0  
7 

5 
0 

3 
0 

R1,R2,R3,R4 M 0 
5 

2 
2 

0 
5 

R1 B 7 
0 

5 
0 

3  
7 

  Dominance-solvable 
 
  Rk for all k Rk for all k Rk for all k 

  L C R 

Rk for all k  T 0  
7 

5 
0 

7 
0 

Rk for all k  M 0 
5 

2 
2 

0 
5 

Rk for all k  B 7 
0 

5 
0 

0  
7 

  Unique Equilibrium without Dominance  
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Theorem : Common knowledge of players' rationality implies that players will choose 
rationalizable strategies, and any profile of rationalizable strategies is consistent with 
common knowledge of the structure and rationality. 
 
 
 
Proof: Illustrate for Dominance-solvable and Unique Equilibrium without Dominance 
games. 
 
 
 
(This theorem needs common knowledge only for indefinitely large games. The number of 
levels of iterated knowledge of rationality needed is just the number of rounds of iterated 
dominance, which for finite games is bounded by the size of the payoff matrix.)  
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Consider Ultimatum Contracting. 
 
There are two players, R(ow) and C(olumn), and two feasible contracts, X and Y. 
 
R proposes X or Y to C, who must either accept (a) or reject (r). 
 
If C accepts, the proposed contract is enforced. 
 
If C rejects, the outcome is a third alternative, Z. 
 
This game depends on whether C can observe R's proposal before deciding whether to 
accept. We can represent either version by its extensive form or game tree.  
 
Whether or not C can observe R's proposal, R has two pure strategies, X and Y. 
 
If C cannot observe R's proposal, C has two pure strategies, a(ccept) and r(eject). 
 
 
If C can observe R's proposal he can make his decision depend on it, and therefore has 
four pure strategies, "a (if X proposed), a (if Y proposed)", "a, r", "r, a", and "r, r." 
 
C's additional information with Observable Proposal shows up “only” in the form of extra 
strategies for C. But when the players are rational, this can affect the outcome: It’s 
feasible for C to ignore R’s proposal, but both R and C know that is not always optimal. 
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First suppose R prefers Y to X to Z, while C prefers X to Y to Z. 
 
E.g. R's payoffs u(X) = 1, u(Y) = 2, u(Z) = 0; C's payoffs v(X) = 2, v(Y) = 1, v(Z) = 0. 
 
Then we get the normal forms:  

 
 

a r  a, a a, r r, a r, r 

X 2 
1 

0 
0 

X 2 
1 

2 
1 

0 
0 

0 
0 

Y 1 
2 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

Ultimatum Contracting with 
Unobservable Proposal  

Ultimatum Contracting with  
Observable Proposal  

 
Ultimatum Contracting with Unobservable Proposal is dominance-solvable (C's strategy a 
strictly dominates r; given that, R's strategy Y dominates X), with unique rationalizable 
(and equilibrium) outcome (Y, a). 
 
Intuition: a rational R knows that a rational C will accept whichever contract R proposes 
even if he cannot observe it; and R will therefore propose Y, his most preferred contract. 
 
Ultimatum Contracting with Observable Proposal is not (strictly) dominance-solvable: C's 
strategy (a, a) strictly dominates (r, r), but when (r, r) is eliminated there is no strict 
dominance, so the remaining strategies are all rationalizable. 

(What beliefs support (Y; a, r)? Why are they consistent with common knowledge of 
rationality?)  
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Now suppose that C's payoffs are changed to: v(X) = 2, v(Y) = 0, v(Z) = 1, so that C now 
prefers X to Z, but not Y to Z (R's payoffs are unchanged). 
 

 
 

a r  a, a a, r r, a r, r 

X 2 
1 

1 
0 

X 2 
1 

2 
1 

1 
0 

1 
0 

Y 0 
2 

1 
0 

Y 0 
2 

1 
0 

0 
2 

1 
0 

Ultimatum Contracting with 
Unobservable Proposal  

Ultimatum Contracting with  
Observable Proposal  

 
Ultimatum Contracting with Unobservable Proposal is no longer dominance-solvable 
(there is now no strict dominance), and all strategies are rationalizable. 
 
But there is a unique Nash equilibrium, now (Y, r). 
 
Intuition: C knows that R, knowing that C cannot discriminate between proposals, would 
propose Y, which is worse for C than Z; C will therefore reject. 
 
In Ultimatum Contracting with Observable Proposal all strategies but r, a for C are 
rationalizable. 
 
But there is an equilibrium (X; a, r) that reflects the intuition that if C can observe R's 
proposal, C will accept X but not Y, so R will propose X, which he prefers to Z, and C will 
accept. (There are also unintuitive equibria, which we will learn how to rule out below.) 
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D. Nash Equilibrium  
 
Most economically important games have multiple rationalizable outcomes, so rational 
players must base their decisions on interdependent predictions of others' decisions that 
are not dictated by common knowledge of rationality. 
 
In such games much of game theory's power comes from assuming that players choose 
strategies in Nash equilibrium, a strategy profile for which each player's strategy is a best 
response to other players' strategies (a fixed point of the best-response correspondence). 
 
 
Any equilibrium strategy survives iterated elimination of strictly dominated strategies, and 
is k-rationalizable for all k, hence rationalizable. (Why?) 
 
 
In games that are dominance-solvable in k rounds, the surviving combination of k-
rationalizable strategies is the unique equilibrium, e.g. in Dominance-solvable. 
 
 
But in general, not all combinations of rationalizable strategies are in equilibrium. 
 
E.g. in Unique Equilibrium without Dominance any strategy is rationalizable, for either 
player; but there is a unique equilibrium profile of strategies. 
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A Nash equilibrium is a kind of rational expectations equilibrium, in that if all players 
expect the same strategy profile and choose strategies that are best responses given their 
beliefs, their beliefs will be confirmed if and only if they are in equilibrium. 
 
(This differs from the usual notion of rational expectations in that it is players’ strategies 
that are predicted, and players' predictions interact.) 
 
 
 
Nash equilibrium is therefore often unconsciously identified with rationality in games; but 
equilibrium is a much stronger assumption than common knowledge of rationality. 
 
Equilibrium requires that players' strategies are best responses to correct beliefs; thus it 
reflects the implications of common knowledge of rationality plus common beliefs. 
 
Compare the belief towers supporting equilibrium and non-equilibrium strategy profiles in 
Unique Equilibrium without Dominance. 
 
 
 
Unlike rationalizability, equilibrium is a property of strategy profiles, relationships between 
strategies. Equilibrium strategy often refers to any strategy that's part of an equilibrium. 
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An equilibrium can be either in pure or mixed strategies.  
 
 
A mixed strategy profile is an equilibrium if for each player, his mixed strategy maximizes 
his expected payoff over all feasible mixed strategies (MWG Definition 8.D.2). 
 
Theorem: A mixed strategy profile is an equilibrium if and only if for each player, all pure 
strategies with positive probability yield the same expected payoff, and all pure strategies 
he uses with zero probability yield no higher expected payoff (MWG Proposition 8.D.1; the 
Kuhn-Tucker conditions for maximizing expected payoffs that are linear in probabilities).  
 
 
Mention Nash's population interpretation and the "beliefs" interpretation of mixing. 
 
 
Can use this and best-response functions to compute equilibria, e.g. in Matching Pennies. 
 
Notice Row’s equilibrium strategy is determined by Column’s payoffs, and vice versa! 
 
 
It is a good exercise to show from best-response cycles that Unique Equilibrium without 
Dominance has no mixed-strategy equilibria. 
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Equilibrium is surely a necessary condition for a common, rational prediction about 
behavior, but how might players come to have correct beliefs? 
 
 
Traditional rationale: Players (or hyperintelligent pigs) deduce correct (self-fulfilling) beliefs 
about each other's strategies when they first play a game from common knowledge (why 
common?) of a theory of strategic behavior that makes a unique prediction for the game in 
question, and so (if rational in the decision-theoretic sense) play an equilibrium 
immediately.  
 
Adaptive rationale: Players (like real pigs playing Pigs in a Box) learn to predict others' 
strategies in repeated play of analogous games, adjusting their strategies over time in 
response to observed payoffs; and so (if rational in the decision-theoretic sense) 
eventually converge to equilibrium. 
 
 
Traditional game theory focuses on rationality-based reasoning, while adaptive learning 
models make assumptions directly about how players adjust strategies over time.  
 
Both approaches agree that the possible limiting outcomes are Nash equilibria (in the 
game that is repeated, not the game that describes the entire process). 
 
But the approaches differ on convergence and the likelihoods of alternative equilibria. 
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Existence of Nash Equilibrium  
 

 
Theorem: Every finite game has a mixed-strategy Nash equilibrium (MWG Proposition 
8.D.2). 
 
Existence of equilibrium may require mixed strategies, in general, as in Matching Pennies. 
 
The next theorem gives a more abstract and more general existence result.  
 
Theorem: Every game whose strategy spaces are nonempty, convex, and compact 
subsets of Euclidean space, and whose payoff functions are jointly continuous in all 
players' strategies and quasiconcave in own strategies has a Nash equilibrium (MWG 
Proposition 8.D.3).  
 
Compare with the conditions for existence of an optimum in a decision problem: Need to 
add joint continuity and quasiconcavity in own strategies of payoff functions.  
 
Interpret for mixed strategies in finite games, pure strategies in games with continuously 
variable pure strategies. 
 
 
These theorems also trivially imply the existence of rationalizable strategies. 
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More Intuition-building Examples: Nonuniqueness of Equilibrium and Coordination 

 
These games are worth some attention because economics is about coordination, but 
competitive markets with Walrasian auctioneers beg some important questions.   

  
Go 

 
Wait 

   
Fights 

 
Ballet 

Go 0 
0 

1 
1 

 Fights  1 
2 

0 
0 

Wait  1 
1 

0 
0 

 Ballet  0 
0 

2 
1 

 Alphonse and Gaston    Battle of the Sexes  

Alphonse and Gaston's problem is that there are two ways to solve their coordination 
problem…and therefore maybe no good way! Each of the two ways requires them to 
decide differently even though there may be no clue to break the symmetry of their roles. 
 
Games like Alphonse and Gaston show that coordination may pose nontrivial difficulties 
even when players’ preferences are identical.  
 
(Mixed strategies can help Alphonse and Gaston learn to coordinate in repeated play; but 
they then serve a completely different purpose than in Matching Pennies.) 
 
Battle of the Sexes—the simplest possible bargaining problem—adds to the difficulty of 
coordination by giving players different preferences about how to coordinate, but still no 
clue about how to break the symmetry. 
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(In the early 1900s Frederick B. Opper created the Alphonse and Gaston comic strip, with 
two excessively polite fellows saying "after you, my dear Gaston" or "after you, my dear 
Alphonse" and thus never getting through a doorway. They are mostly forgotten, but they 
live on in the Alphonse-Gaston games in the dual-control lighting circuits in our homes.) 
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        Other Player   All Other Players 

 Stag Rabbit   Stag Rabbit 

Stag 2 
2 

1 
0 

 Stag 2 0 

Rabbit  0 
1 

1 
1 

 Rabbit  1 1 

 Two-person Stag Hunt    n-Person Stag Hunt  

 
In Stag Hunt (Rousseau's story, assembly line, staff meeting), with two or n players, there 
are two symmetric, Pareto-ranked, pure-strategy equilibria, "all-Stag" and "all-Rabbit". 
 
(There's also an uninteresting mixed-strategy equilibrium. Compute it in each case.) 
 
All-Stag is better for all than all-Rabbit. 
 
But Stag is riskier in that unless all others play Stag, a player does better with Rabbit. 
 
The game is like a choice between autarky and participating in a highly productive but 
brittle society, which is more rewarding but riskier because dependent on coordination.  
 
Selection among strict equilibria: Harsanyi-Selten's notions of risk- and payoff-dominance. 
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E. Games of Incomplete Information: Bayesian Nash E quilibrium  
 
 
 
Recall that in game theory a game whose structure is common knowledge is called a 
game of complete information (or replacing the old-fashioned game-theory term with a 
roughly equivalent modern economic term, “symmetric information”).  
 
 
 
Recall that a game of complete information need not have perfect information: There may 
still be simultaneous decisions, so that a player making a decision cannot always observe 
all previous decisions. 
 
 
 
A game of incomplete information (roughly, “asymmetric information”) allows both 
simultaneous decisions and players to have private information about the structure. 
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In 1967-68 Harsanyi, building on von Neumann’s 1928 analysis of Poker and Bluffing 
(Theory of Games and Economic behavior, Chapter 19), showed how to adapt the tools of 
complete-information noncooperative game theory to incomplete-information games.  
 
 
 
He argued that all important informational differences across players could be modeled by 
assigning each player a type that parameterizes his preferences; and assuming a player 
knows his own type when he makes decisions, but other players only have priors about it.  
 
 
 
E.g. if player 1 does not know whether a certain decision is feasible for player 2, player 2 
might have two types, one of which gives that decision extremely low payoff. 
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Harsanyi then argued that it is reasonable to assume that any differences in players' 
beliefs are derived from Bayesian updating of an initially common prior within a common 
model (a view that is now called the Harsanyi doctrine or the common prior assumption). 
 
 
 
Given these arguments, one can reduce a game of incomplete information to an 
equivalent game of complete information, in which Nature first draws players’ types from a 
common distribution and players observe their own types and then play the game. 
(Players never directly observe others’ types, but might be able to infer them during play.) 
 
 
 
The ex ante/complete-information view of the game, in which players choose type-
contingent strategies before observing their own types (hence with symmetric 
information), is then analytically equivalent to the interim/incomplete-information view of 
the game, in which players choose their strategies after observing their own types. 



54 
 

 
A pure-strategy Bayesian Nash equilibrium (or Bayesian equilibrium) is a profile of 
decision rules (mapping a player's type into a strategy) that are in equilibrium in the ex 
ante game of complete information (MWG Definition 8.E.1). 
 
 
A player’s strategy in the ex ante/complete-information game is a complete contingent 
plan as before, but now it is also contingent on the player’s type.  
 
 
For reasons already explained, to formalize the idea that a strategy choice is rational, a 
strategy must be type-contingent even though the player knows his own type before he is 
called upon to make any decisions.   
 
 
Thus a profile of decision rules is a Bayesian Nash equilibrium if and only if for all types 
that have positive prior probability for a player, the player's contingent strategy maximizes 
his expected payoff given his type, where the expectation is taken over other players' 
types, conditional on the player's own type (MWG Proposition 8.E.1). 
 
 
(This definition allows for the possibility that a player’s own type may convey information 
about other players’ types; but it also allows players’ types to be statistically independent.)
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Recall that Ultimatum Contracting has two players, R(ow) and C(olumn). 
 
There are two feasible contracts, X and Y. 
 
R proposes X or Y to C, who must either accept (a) or reject (r). 
 
If C accepts, the proposed contract is enforced. 
 
If C rejects, the outcome is a third alternative, Z. 
 
 
Ultimatum Contracting depends on whether C can observe R's proposal before deciding 
whether to accept. We can represent either version by its extensive form or game tree.  
 
Whether or not C can observe R's proposal, R has two pure strategies, X and Y. 
 
 
If C cannot observe R's proposal, C has two pure strategies, a(ccept) and r(eject). 
 
If C can observe R's proposal he can make his decision depend on it, and C therefore has 
four pure strategies, "a (if X proposed), a (if Y proposed)", "a, r", "r, a", and "r, r." 



56 
 

Suppose as before that R prefers Y to X to Z, e.g. R's payoffs u(X) = 1, u(Y) = 2, u(Z) = 0. 
 
But now suppose that C has two possible types, C1 with probability p and C2 with 
probability (1-p), with C1's preferences v1(X) = 2, v1(Y) = 0, and v1(Z) = 1, and C2's 
preferences v2(X) = 2, v2(Y) = 1, and v2(Z) = 0. 

Thus C2 but not C1 will accept R's favorite contract Y; so that R’s optimal proposal reflects 
a tradeoff between its desirability if accepted and the probability of acceptance.  
 
Only C observes his type, but p and the rest of the structure are common knowledge. 
 
R's pure strategies are still X and Y. 
 
C's pure strategies (type-contingent, hence the same for each type) now map his type and 
R's proposal into an accept or reject decision, so that C has 2x2x2x2 = 16 pure strategies, 
4 for each type, chosen independently. 
 
The extensive form has a move by Nature first, then two decision nodes for R in the same 
information set, then 4 decision nodes for C, each in its own information set. (Why?) 
 
There is a unique (unless p = ½) sensible outcome (which will be called a weak perfect 
Bayesian equilibrium below), in which R proposes Y if p < ½, X if p > ½, and either if p = 
½; C1 accepts X but rejects Y; and C2 accepts X or Y. 
 
The analysis is easy because the only privately informed player has a passive role. 
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Now consider Ultimatum Contracting with a continuously divisible pie, say of size 1; and a 
privately observed, continuously distributed outside option payoff for the responder.  
 
R proposes a division x for R and 1 - x for C, and C accepts or rejects.  
 
If C accepts, R and C get payoffs x and 1 - x. 
 
If C rejects, R gets 0 and C gets outside option payoff y with c.d.f. F(y), where F(0)=0, 
F(1)=1, and F(·) is continuously differentiable with positive density (e.g. uniform, with F(y) 
≡ y when y є [0,1]). 
 
Any proposal risks rejection, with the probability of rejection increasing in x. 

Thus R’s optimal proposal reflects a tradeoff between desirability and probability of 
acceptance as before. 
 
For most F(·) there is an essentially unique intuitive outcome (which we will see below is a 
weak perfect Bayesian equilibrium), in which C accepts iff 1 - x ≥ y (≥ rather than > without 
loss of generality, because the event 1 - x = y has 0 probability) and R proposes x*, 1 - x*, 
where x* solves maxx xF(1 - x). (In the uniform case with F(y) ≡ y, x* = ½.) 
 
For some F(·) the problem maxx xF(1 - x) has multiple solutions, in which case weak 
perfect Bayesian equilibrium is essentially nonunique. 
 
The analysis is again easy because the only privately informed player has a passive role. 
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Now for a harder analysis, where a privately informed player has an active role. 
(Thanks to Chris Wallace for many slides in this section and for chapter 12 below.) 
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F. The Possibility of Mistakes: Trembling-Hand Perf ection  
 

 
Equilibrium eliminates strictly dominated strategies. What about weakly dominated 
strategies?  
 
A Nash equilibrium is (normal-form) trembling-hand perfect if there is some sequence of 
tremble-perturbed games (define; a weakly dominated strategy becomes strictly 
dominated in a tremble-perturbed game) converging to the original game for which there is 
some sequence of Nash equilibria converging to that equilibrium (MWG Definition 8.F.1).  
 
E.g. (T, L) or (T, R) or mixtures in Give Me a Break; but only (T, L) in Give Us a Break. 
 

 
 

 
L 

 
R 

   
L 

 
R 

 
T 

1 
1 

1 
0 

  
T 

1 
1 

0 
0 

 
B 

0 
0 

0 
0 

  
B 

0 
0 

0 
0 

 Give Me a Break   Give Us a Break 
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Theorem: A Nash equilibrium is trembling-hand perfect iff there is a sequence of totally 
mixed strategies converging to the equilibrium such that each player's equilibrium strategy 
is a best response to every element of the sequence (MWG Proposition 8.F.1).  
 
 
 
 
Theorem: In a trembling-hand perfect equilibrium, no weakly dominated strategy can be 
played with positive probability (MWG Proposition 8.F.2). But a trembling-hand perfect 
equilibrium may include strategies that do not survive iterated elimination of weakly 
dominated strategies, such as (T, R) in Give Me a Break. Any strict equilibrium (such as 
(T, L) in Give Us a Break; define) is trembling-hand perfect. Any finite game (define) has a 
trembling-hand perfect equilibrium in mixed strategies, just as we will see below that any 
finite game has an equilibrium in mixed strategies. 
 

 
 
 
Informally define extensive-form trembling-hand perfect equilibrium as trembling-hand 
perfect equilibrium in the agent normal form (MWG Definition 9.BB.1). 
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Chapter 9. Dynamic Games  
 
A. Introduction  
B. Sequential Rationality, Backward Induction, and Subgame Perfection 
 

In sequential games some useful ideas depend essentially on the extensive form. Recall 
Ultimatum Contracting with Observable Proposal. 
 
Two players, R(ow) and C(olumn); two feasible contracts, X and Y. R proposes X or Y to 
C, who must either accept (a) or reject (r). 
 
If C accepts, the proposed contract is enforced. If C rejects, the outcome is a third 
alternative, Z. 
 
R prefers Y to X to Z, and C prefers X to Y to Z. R's payoffs: u(X) = 1, u(Y) = 2, u(Z) = 0; 
C's payoffs: v(X) = 2, v(Y) = 1, v(Z) = 0. 
 

 a, a a, r r, a r, r  

X 2 
1 

2 
1 

0 
0 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

 Ultimatum Contracting with 
Observab le Proposal  
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 a, a a, r r, a r, r 

X 2 
1 

2 
1 

0 
0 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

 Ultimatum Contracting with  
Observable Proposal  

 
The intuitive outcome (Y; a, a) is an equilibrium. But there are other equilibria, (Y; r, a) and 
(X; a, r), one with the counterintuitive outcome X, which survive iterated strict dominance. 
 
More generally, whenever play doesn't reach a given node in an equilibrium, equilibrium 
doesn't restrict the decision at that node at all. (Why?) 
 
In the equilibria (Y; r, a) and (X; a, r), C’s strategy plans to reject one of R's possible 
proposals, irrationally, and R's anticipation of that keeps R from making that proposal. 
 
As a result, C’s irrationality does not reduce his strategy’s payoff in the entire game. 
 
Such equilibria are said to involve "incredible threats"; misleadingly because the threat is 
only implicit in the expectations that support the equilibrium, not explicit like a real threat. 
 
Can rule out some such incredible threats via the notion of subgame-perfect equilibrium. 
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The basic idea is that if our “solution concept” for an entire extensive-form game is 
equilibrium, we ought to be willing to apply it to the games that remain following partial 
play of the game, i.e. our solution concept ought to be time-consistent (off as well as on 
the equilibrium path, so stronger than the decision-theoretic notion of time-consistency). 
 
A subgame is a subset of a game that starts with an information set with a single node, 
contains all and only that node's successors in the tree, and contains all or none of the 
nodes in each information set (MWG Definition 9.B.1, Figure 9.B.5). 
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A subgame-perfect equilibrium is a strategy profile that induces an equilibrium (hence in 
fact a subgame-perfect equilibrium) in every subgame (MWG Definition 9.B.2). 
 
In Ultimatum Contracting with Observable Proposal, the intuitive outcome (Y; a, a) is a 
subgame-perfect equilibrium; but (Y; r, a) and (X; a, r) don’t specify equilibria in the 
subgames in which C rejects. 

 a, a a, r r, a r, r 

X 2 
1 

2 
1 

0 
0 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

 Ultimatum Contracting with 
Observable Proposal  

 
Strict dominance has no power in normal forms derived from extensive-form games, 
because contingencies off the equilibrium path create payoff ties between strategies. 
 
As a result, there can be unintuitive rationalizable and even equilibrium strategies. 
 
But subgame-perfect equilibrium mimics iterated weak dominance in a particular order, 
which the extensive form makes salient. 
 
That order yields a particular, often intuitive equilibrium in undominated strategies. 
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Theorem : Characterization of subgame-perfect equilibria in finite games of perfect or 
imperfect information via backward induction, plugging in payoffs of equilibria in subgames 
and folding back (MWG Proposition 9.B.3, Example 9.B.3 predation game). 
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Subgame-perfect equilibrium in a game with time-sequenced strategy choices yields 
insight into the roles of observability and irreversibility in commitment.  
 
 
 
Without observability decisions are strategically simultaneous, and their temporal order 
doesn't alter the game’s feasible strategies, payoffs, normal form, equilibrium outcomes, 
or subgame-perfect equilibrium outcomes. 
 
 
 
With observability, but without irreversibility (or at least without costly reversibility, in which 
case the decision to incur those costs is what is really irreversible), the initial decision 
inessentially alters the game’s feasible strategies, payoffs, and normal form, and has no 
effect on the game’s equilibrium outcomes or subgame-perfect equilibrium outcomes. 
 
 
In particular, a player’s cheap talk announcement (one with no direct payoff effects) of his 
intention to choose a particular strategy has no effect on the game’s equilibrium or 
subgame-perfect equilibrium outcomes, although it might help to focus players’ beliefs on 
a particular equilibrium in games like Alphonse-Gaston or Stag Hunt. 



78 
 

 
 
Theorem : Existence of pure-strategy subgame-perfect equilibrium, and (if no ties) 
uniqueness of subgame-perfect equilibrium in finite games of perfect information. 
Existence of subgame-perfect equilibrium in games of imperfect or incomplete information 
(MWG Proposition 9.B.2, generalizes Zermelo's Theorem; MWG Example 9.B.3).  
 
 
Trembling-hand perfect equilibria are subgame-perfect, but not vice versa. (Why?) 
 

 
 
Theorem : In finite-horizon games (even with imperfect information) with unique equilibria 
and immediate observability of pure strategies each period, and payoffs summed over 
periods, subgame-perfect equilibrium strategies are the same as the concatenated 
equilibria of the games played each period. Illustrate proof in finitely repeated Prisoner's 
Dilemma (MWG Proposition 9.B.4). 
 
 
 
Theorem : In finite-horizon games with multiple equilibria and immediate observability of 
pure strategies each period, and payoffs summed over periods, subgame-perfect 
equilibrium strategies can differ from the concatenated equilibria of the games played 
each period (MWG Proposition 9.B.9, illustrated below). 
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Subgame-perfect equilibrium is not adequate as a formalization of the idea of sequential 
rationality, because most games that pose nontrivial sequential strategic questions have 
no proper subgames, so that any equilibrium is subgame-perfect. (MWG Example 9.C.1.) 
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C. Sequential Rationality and Out-of-Equilibrium Be liefs 
 
A system of beliefs is a probability distribution over nodes, which gives the relative 
likelihoods of being at each node in an information set, conditional on having reached it 
(MWG Definition 9.C.1).  
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A strategy profile is sequentially rational at an information set if no player can do better, 
given his beliefs about what has happened so far, by changing his strategy (MWG 
Definition 9.C.2). Generalizes notion of sequential rationality to games like MWG Example 
9.C.1, where subgame-perfect equilibrium does not capture idea of sequential rationality.  
 
 
 
 
 
A strategy profile and system of beliefs is a weak perfect Bayesian equilibrium if the 
strategy profile is sequentially rational given the beliefs, and the beliefs are derived from 
the strategy profile using Bayes' Rule whenever possible (MWG Definition 9.C.3, MWG 
Example 9.C.1).  
 
 
("Weak" because the definition is completely agnostic about zero-probability updating.)  
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Theorem : A strategy profile is an equilibrium in an extensive form game if and only if there 
exists a system of beliefs such that the profile is sequentially rational given the beliefs at 
all information sets that have positive probability of being reached by the profile; and those 
beliefs are derived from the profile using Bayes' Rule whenever possible, i.e. except for 
events that have zero probability in the equilibrium (MWG Proposition 9.C.1). 
 
 
A strategy profile and system of beliefs is a sequential equilibrium if the profile is 
sequentially rational given the beliefs, and there exists a sequence of completely mixed 
strategies converging to the profile, such that the beliefs are the limit of beliefs derived 
using Bayes' Rule from the totally mixed strategies (MWG Definition 9.C.4). 
 
 
Sequential equilibrium strengthens weak perfect Bayesian equilibrium by requiring more 
consistency of zero-probability beliefs, adding equilibrium play off equilibrium path.  
 
A sequential equilibrium is trivially a weak perfect Bayesian equilibrium, but not vice versa.  
 
Sequential equilibrium is closely related to perfect Bayesian equilibrium (MWG 452). 
 
Theorem : A sequential equilibrium is subgame-perfect, but not vice versa. (MWG 
Proposition 9.C.2, MWG Example 9.C.1.) 
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Example:  Milgrom and Roberts' (1982 Econometrica) Model of Informational Entry 
Deterrence (Kreps 463-480, Figure 13.2 at Kreps 473).  
 
 
Two expected-profit maximizing firms, Incumbent and (potential) Entrant, choose 
Quantities, perfect substitutes, I in both of two periods, E only in second period. 
 
 
I has two possible unit costs, constant across periods, which only it observes: $3 with 
probability ρ and $1 with probability 1- ρ. 
 
 
E's unit cost is certain and commonly known by both to be $3. 
 
 
Both firms have fixed costs of $3. 
 
 
ρ and the rest of the structure are common knowledge. 
 
 
(Example is typical in having private information only one level below the top; but method 
can handle more general information structures, which however tend to look contrived.)  
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In the first period, I observes its unit cost c and chooses Q, which determines P = 9 - Q. 
 
 
In the second period, E observes the first-period P and chooses whether or not to enter. 
 
 
If E enters, I and E are Cournot competitors in the second period, taking into account 
whatever information is revealed in equilibrium by I's first-period P. 
 
 
If E stays out, I is a monopolist in the second period. 
 
 
 
The analysis is hard because the privately informed I plays an active role. I's first-period 
actions can signal its type to E, and in equilibrium both I and E must weigh the indirect, 
informational payoff implications of I's first-period decisions against their direct effects. 
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First analyze the Cournot subgame following entry, given E's beliefs. 
 
If E assesses that c = 3 has probability µ, the Cournot equilibrium is QE = 2(2+µ)/3, QI|(c = 
1) = (10 - µ)/3, QI|(c = 3) = (7 - µ)/3, with πE = 4(2 + µ)2/9, not including its fixed cost of 3. 
 
Thus E enters iff 4(2 + µ)2/9 > 3, or µ > 0.598. E.g., if E knows c = 3, I and E each set Qi = 
2 and get πi = 1 (= 4 - 3), so it's profitable to enter. If E knows c = 1, I sets QI = 10/3 and E 
sets QE = 4/3 and gets πE = -11/9, so it's not profitable to enter. 
 
Now consider I's first-period decision. The first-period monopoly optimum is Q = 4, P = 5, 
π = 13 if c = 1; Q = 3, P = 6, π = 6 if c = 3. 
 
However, there is no weak perfect Bayesian equilibrium in which each type of I chooses 
its monopoly optimum in the first period. 
 
For in such an equilibrium, E could infer I's type by observing P, and would enter if P = 6, 
believing that c = 3. But then the high-cost type of I would get π = 6 in the first period and 
π = 1 in the second, less over the two periods than the π = 5 and π = 6 it could get (in the 
hypothesized equilibrium) by switching to P = 5 and thereby preventing E from entering. 
 
The conclusion that there is no equilibrium of this kind does not depend on zero-
probability inferences, and therefore holds for weak perfect Bayesian equilibrium or any 
stronger notion. Only one type needs to want to defect to break the equilibrium, and this is 
enough to invalidate it as a prediction even if that type is not realized. (Why?)  
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Now consider whether there can be a weak perfect Bayesian pooling equilibrium, in which 
both types of I charge the same price with probability one, and are therefore not 
distinguishable in equilibrium.  
 
(Looking for each possible kind of equilibrium like this is a characteristic form of analysis.)  
 
If ρ < 0.598, there is a sequential (and weak perfect Bayesian) equilibrium in which: 
 
(i) each type of I sets P = 5 in the first period; 
 
(ii) E sticks with its prior belief ρ < 0.598 and therefore stays out if P ≤ 5 (in any weak 
perfect Bayesian pooling equilibrium, E must stick with its prior on the equilibrium path); 
 
(iii) E infers that I's costs are high and enters if P > 5; and 
 
(iv) entry leads to the Cournot equilibrium with E believing (as common knowledge) that I's 
costs are high. 
 
 
In this pooling equilibrium, the high-cost I "hides behind" the low-cost I by giving up some 
first-period profit to mimic a low-cost I; and both types of I successfully forestall entry. 
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To see that these strategies and beliefs are consistent with sequential equilibrium, note 
that: 
 
(i) E's strategy is sequentially rational, given its beliefs; 
 
(ii) the beliefs are consistent with Bayes' Rule on the equilibrium path; 
 
(iii) when c = 1, I charges its favorite first-period price and prevents entry, the best of all 
possible worlds for I; and 
 
(iv) when c = 3, the only way I could do better is by raising P above 5, but this would 
cause E to enter and thereby lower total profits. 
 
(Assuming the most pessimistic conjectures about consequences of deviations from 
equilibrium is a characteristic strategy for identifying the largest possible set of candidates 
for a weak perfect Bayesian equilibria.) 
 
Note that the beliefs used here also satisfy a natural monotonicity restriction, in that a 
higher P never lowers E's estimate that I's costs are high. 
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If ρ > 0.598, there is no weak perfect Bayesian pooling equilibrium. 
 
For such an equilibrium would always lead to entry, making a high-cost I unwilling to 
charge other than its first-period optimal monopoly price. 
 
A low-cost I would prefer a different price, even if it didn't prevent entry. 
 
However, if ρ > 0.598 (or in fact for any ρ) there is a separating (screening, sorting) 
sequential (hence weak perfect Bayesian) equilibrium in which: 
 
(i) a high-cost I charges its optimal monopoly price, 6, in the first period; 
 
(ii) a low-cost I charges 3.76 in the first period; 
 
(iii) E infers that costs are high if P > 3.76 and therefore enters; 
 
(iv) E infers that costs are low if P ≤ 3.76 and therefore stays out; 
 
(v) both types of I charge their monopoly price in the second period if there is no entry; 
and 
 
(vi) entry leads to the Cournot equilibrium with E believing (as common knowledge) that I's 
costs are high. 
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In this separating equilibrium, a low-cost I successfully distinguishes itself from a high-cost 
I by distorting its first-period price enough to prevent a high-cost I from mimicking it. 
 
Entry occurs exactly when it would with complete information, and the only effect of 
incomplete information is the distortion of the low-cost I's first-period price, which benefits 
consumers and hurts the low-cost I. 
 
That the presence of alternative "bad" types hurts "good" types is typical.  
 
To see that these strategies and beliefs are consistent with sequential equilibrium, note 
that: 
(i) E's strategy is again sequentially rational, given the hypothesized beliefs; 
 
(ii) the beliefs are (trivially) consistent with Bayes' Rule on the equilibrium path (and again 
monotonic); 
 
(iii) a low-cost I would like to set P > 3.76 in the first-period, but that would lead to entry 
and reduce total profits (easy to check); and 
 
(iv) a high-cost I gets π = 6 in the first period and π = 1 following entry in the second, just 
above what it would get by setting P ≤ 3.76 and forestalling entry (3.76 was chosen to 
make it just too costly for the high-cost I to mimic the low-cost I in this equilibrium). 
 
This didn’t depend on ρ, so this is a weak perfect Bayesian equilibrium for any ρ.  
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D. Reasonable Beliefs, Forward Induction, and Norma l Form Refinements  
 
Forward induction is a refinement that restricts beliefs to those that reflect plausible 
inferences from players’ past decisions, which often corresponds to a particular kind of 
iterated weak dominance in the normal form (MWG Figure 9.D.1). 
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Chapter 12. Market Power  
A. Introduction  
B. Monopoly Pricing 
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C. Static Models of Oligopoly: Bertrand, Cournot, p roduct differentiation 

Importance of separating assumptions about structure and behavior. Different "solution 
concepts" as equilibrium or subgame-perfect equilibrium in different games. 
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Theorem: Bertrand duopoly with constant returns to scale, perfectly substitutable 
goods: Simultaneous price choices by firms yields c ompetitive outcome as unique 
equilibrium (MWG Proposition 12.C.1). 
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Theorem: Cournot duopoly with constant returns to s cale, perfectly substitutable 
goods: Simultaneous quantity choices by firms yield s equilibrium (not necessarily 
unique) with prices between competitive and monopol y prices (MWG Proposition 
12.C.2, Example 12.C.1).  
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D. Repeated Interaction  
 
Complete-information repeated games 

 

Define a repeated game as dynamic game in which same stage game is played over and 
over again each period by the same players. The stage game could be anything, even 
another repeated game. 

 

 

View the infinite horizon as only potentially infinite, with conditional probabilities of 
continuation bounded above zero and perhaps discounting too. 

 

(More realistic than assuming an arbitrarily specified endpoint is common knowledge?)  

 

 

The repeated Prisoner's Dilemma is the canonical (but overworked, not representative) 
model of using repeated interaction to overcome short-run incentive problems. 
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There are also many asymmetric subgame-perfect equilibria: 
 
E.g. suppose the implicit contract is: Row alternates between C and D and Column always 
chooses C. This continues until either deviates, after which both choose D from then on. 
 
In the hypothesized equilibrium Column gets 3 + 0δ + 3δ2 +… = 3/(1 – δ2) ≥ 5 + 1(δ + δ2 
+…) = 5 + δ/(1 - δ) if and only if δ ≥ 0.59 (approximately), so the asymmetric implicit 
contract is consistent with subgame-perfect equilibrium as long as δ ≥ 0.59. 
 
Column does worse than Row but the threat is symmetric, so supporting Column's 
strategy as part of a subgame-perfect equilibrium is harder than supporting Row's. 
 
The limit is higher than for the symmetric implicit contract because the asymmetry makes 
it harder to keep both players willing to stay with the implicit contract.  
 
 
Infinite-horizon repeated games have an enormous multiplicity of equilibria, both of 
equilibrium outcomes and the threats that can be used to support them (which in this 
noiseless version of the game never need to be carried out on the equilibrium path).  
 

We've seen one symmetric and one asymmetric efficient equilibrium of the repeated 
Prisoner's Dilemma. Folk Theorems are useful because they give limits on what kinds of 
implicit contracts can be supported as subgame-perfect equilibria in repeated games. 
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Folk Theorem:  In an infinitely repeated game with complete information and observable 
strategies, for any feasible pair of payoffs strictly greater than those that follow from 
repeating players' minimax payoffs in the stage game, there is a discount factor such that 
for all greater discount factors, those payoffs arise in a subgame-perfect equilibrium of the 
repeated game (MWG Proposition 12.AA.5, Example 12.AA.1).  
 
 
 
 
Easy to prove for stage games like Prisoner's Dilemma, where Nash reversion is minimax. 
 
 
 
 
Harder to prove for other stage games. Temporal convexification with high discount 
factors. See MWG Proposition 12.AA.5. 
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Applications to oligopoly 
  
 
Theorem: With a sufficiently high discount factor, the monopoly price can be supported as 
a subgame-perfect equilibrium outcome in an infinitely repeated Bertrand duopoly by 
threats to revert forever to the competitive price if anyone deviates (MWG Proposition 
12.D.1). 
 
 
Theorem: With a sufficiently high discount factor, any price from the competitive to the 
monopoly price can be supported as a subgame-perfect equilibrium outcome in an 
infinitely repeated Bertrand duopoly by threats to revert forever to the competitive price if 
anyone deviates. For low discount factors, only the competitive price can be supported  
(MWG Proposition 12.D.2). 
 
 
Expanding the number of firms in the Bertrand model shrinks the set of implicit contracts 
supportable via the Folk Theorem by making the limit on δ more stringent (MWG 405).  
 
 
Implicit collusion in infinitely repeated Cournot duopoly: Supporting zero payoffs via 
strategies that yield zero-profit quantities followed forever by the monopoly output until 
someone deviates (Kreps 524-526, MWG Example12.AA.1). 
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E. Entry and Dynamic Oligopoly 
 

 
 
 
 

irreversible decisions that affect future interaction is probably the most important of the 
three views of entry deterrence in the literature. The others two are reputation in repeated 
games, and informational as in the Milgrom-Weber entry deterrence model. 
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G. Strategic Precommitments to Affect Future Compet ition  
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(Time permitting) Cooperative Game Theory 
 
The noncooperative alternating-offers model of structured bargaining (MWG Chapter 9, 
Appendix A, covered in this course by Dr. Meyer) is by far the most popular bargaining 
model among economic theorists. 
 
But its main theoretical results are fragile: They don't generalize to n players, discrete 
offers, incomplete information, almost-common knowledge of rationality (Kreps 552-565; 
Kreps, Game Theory and Economic Modelling). 
 
Further, its predictions don't do well when alternating-offers bargaining games are played 
in the laboratory, partly because Responders punish “unfair” offers as in the Ultimatum 
Game, and partly because the longer the horizon the more complex the backward 
induction/iterated dominance argument required to identify the subgame-perfect 
equilibrium; so complex that people don't believe that others will follow it. 
 
When strategic uncertainty and risk of coordination failure are more important than delay 
costs, there's a fixed horizon, but there is no fixed pattern of alternating offers 
(unstructured bargaining), the analysis is very different. 
 
Discuss Nash's (1953 Econometrica) demand game model with strategies viewed as the 
least surplus each player can be induced to accept. Discuss the role of expectations, 
culture, focal points, strategic moves in determining bargaining outcomes. Discuss Nash's 
axiomatic (1950 EMT) solution. 


