Lecture Slides: First-Year M. Phil. Micro: Ga me Theory/ Industrial Organization
Vincent P. Crawford (thanks to Chris Wallace, Joel Sobel, and for figures to MWG)
University of Oxford 4  August 2012, corrected 12 November 2012

There will be 9 or (if needed) 10 lectures, from 9:30-11:00 Monday and Thursday week 5;
Monday, Tuesday, and Thursday weeks 6 and 7; and Monday and Tuesday week 8.

The lectures will cover the topics of Chapters 7-9 and 12 of Mas-Colell, Whinston, and
Green, Microeconomic Theory, Oxford 1995 (“MWG”) in order, with additional material.
MWG and the lectures will be complements, not substitutes: please read both.

Chapter 7. Basic Elements of Non-Cooperative Games

A. Introduction

B. What is a Game?

C. The Extensive Form Representation of a Game

D. Strategies and the Normal Form Representation of a Game
E. Randomized Choices

Chapter 8. Simultaneous-Move Games

A. Introduction

B. Dominant and Dominated Strategies

C. Rationalizable Strategies

D. Nash Equilibrium

E. Games of Incomplete Information: Bayesian Nash Equilibrium
F. The Possibility of Mistakes: Trembling-Hand Perfection

Appendix: Existence of Nash Equilibrium
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Chapter 9. Dynamic Games

A. Introduction

B. Sequential Rationality, Backward Induction, and Subgame Perfection

C. Sequential Rationality and Out-of-Equilibrium Beliefs

D. Reasonable Beliefs, Forward Induction, and Normal Form Refinements Appendix
Appendix B: Extensive Form Trembling-Hand Perfection

Chapter 12. Market Power

A. Introduction

B. Monopoly Pricing

C. Static Models of Oligopoly: Bertrand, Cournot, product differentiation
D. Repeated Interaction: Complete-information repeated games

E. Entry

F. The Competitive Limit

G. Strategic Precommitments to Affect Future Competition

Appendix A: Infinitely Repeated Games and the Folk Theorem
Appendix B: Strategic Entry Deterrence and Accommodation

(Plus, time permitting) Cooperative Game Theory



Chapter 7. Basic Elements of Non-Cooperative Games
A. Introduction

There are two leading frameworks for analyzing games: cooperative and noncooperative.
This course focuses on noncooperative game theory, which dominates applications.
Time permitting, we may make a whirlwind tour of cooperative game theory at the end.
But even if not, you should be aware that cooperative game theory exists, and is better
suited to analyzing some economic settings, e.g. where the structure of the game is

unclear or unobservable, and it is desired to make predictions that are robust to it.

e Cooperative game theory assumes rationality, unlimited communication, and unlimited
ability to make agreements.

e |t sidesteps the details of the structure by assuming that players reach a Pareto-efficient
agreement, which is sometimes further restricted, e.g. by requiring symmetry of utility
outcomes for symmetrically situated players.

e Its goal is to characterize the limits of the set of possible cooperative agreements that
might emerge from rational bargaining.

e |t therefore blends normative and positive elements.
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e Noncooperative game theory also assumes rationality.

But by contrast:

e Noncooperative game theory replaces cooperative game theory’s assumptions of
unlimited communication and ability to make agreements with a fully detailed model
of the situation and a detailed model of how rational players will behave in it.

e |ts goal is to use rationality, augmented by the “rational expectations” notion of Nash
equilibrium, to predict or explain outcomes from the data of the situation.

e As a result, noncooperative game theory is mainly positive, though it is used for
normative purposes in some applications, such as mechanism design.



Like the term "game" itself, "noncooperative" is a misnomer:

e Noncooperative game theory spans the entire range of multi-person or interactive
decision situations.

e Although zero-sum games, whose players have perfectly conflicting preferences, played
a leading role in the development of the theory—and its public image—most
applications combine elements of conflict with elements of coordination.

e Some applications of noncooperative game theory involve predicting which settings are
better for fostering cooperation.

e This is done by making behavioral assumptions at the individual level (“methodological
individualism”), thereby requiring cooperation to emerge (if at all) as the outcome of
explicitly modeled, independent decisions by individuals in response to explicitly
modeled institutions.

e By contrast, cooperative game theory makes the group-level assumption that the
outcome will be Pareto-efficient, and (with important exceptions) avoids the incentive
and coordination issues that are the focus of noncooperative analyses of cooperation.



In game theory, maintaining a clear distinction between the structure of a game and
behavioral assumptions about how players respond to it is analytically as important as
keeping preferences conceptually separate from feasibility in decision theory.

We will first develop a language to describe the structure of a noncooperative game.

We will then develop a language to describe assumptions about how players behave in
games, gradually refining the notion of what it means to make a rational decision.

In the process we will illustrate how game theory can elucidate questions in economics.

As you learn to describe the structure, please bear in mind that the goal is to give the
analyst enough information about the game to formalize the idea of a rational decision.

(This may help you be patient about not yet knowing exactly what it means to be rational.)



B. What is a Game?

From the noncooperative point of view, a game is a multi-person decision situation defined
by its structure, which includes:

e the players, independent decision makers

e the rules, which specify the order of players' decisions, their feasible decisions at each
point they are called upon to make one, and the information they have at such points

e how players' decisions jointly determine the physical outcome

e players' preferences over outcomes (or probability distributions of outcomes)



Assume that the numbers of players, feasible decisions, and time periods are finite.

These can be relaxed, and they will be relaxed here for decisions and time periods.

Preferences over outcomes are modeled just as in decision theory.

Preferences can be extended to handle shared uncertainty about how players' decisions
determine the outcome as in decision theory, by assigning von Neumann-Morgenstern
utilities, or payoffs, to outcomes and assuming that players maximize expected payoff.

Assume for now that players face no uncertainty about the structure other than shared
uncertainty about how their decisions determine the outcome, that players know that no
player faces any other uncertainty, that players know that they know, and so on; i.e. that
the structure is common knowledge.

Later we will develop a way to model other kinds of uncertainty, shared or not.



e It is essential that a player's decisions be feasible independent of others' decisions; e.qg.
"wrestle with player 2" is not a well-defined decision, although “try to wrestle with
player 2” can be well-defined if what happens if 2 doesn’t also try is clearly specified.

e It is essential that specifying all of each player’s decisions should completely determine
an outcome (or at least a shared probability distribution over outcomes) in the game.

If a specification of the structure of a game does not pass these tests, it must be modified
until it does.

E.g. if your model includes a (magical, but useful!) fiction like the Walrasian auctioneer,
who always finds prices that balance players’ supplies and demands even though a
player’s desired supply cannot be realized without another player’s willing demand, or vice
versa, you must replace the auctioneer with an explicit model of how players’ decisions
determine realized trades and prices (as called for by Kenneth Arrow in "Toward a Theory
of Price Adjustment," Abramovitz et al., eds. The Allocation of Economic Resources:
Essays in Honor of Bernard Francis Haley, Stanford 1959; and since realized in general
equilibrium theory by Shapley and Shubik, "Trade Using One Commodity as a Means of
Payment," Journal of Political Economy 1977, and in auction theory by everyone).

E.g. if you object to a game analysis on the grounds that players are not really required to
participate in the game as modeled, the (only!) remedy is to explicitly add a player’s
decision whether to participate to the game, and then to insist that it be explained by the
same principles of behavior the analysis uses to explain players’ other decisions.
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C. The Extensive Form Representation of a Game
Some games that are important in economics have simultaneous moves; examples below.

“Simultaneous” means strategically simultaneous, in the sense that players’ decisions are
made without knowledge of others’ decisions.

It need not mean literal synchronicity, although that is sufficient for strategic simultaneity.

But many important games have at least some sequential decisions, with some later
decisions made with knowledge of others’ earlier decisions.

We need a way to describe and analyze both kinds of game.

One way to describe either kind of game is via the extensive form or game tree, which
shows a game’s sequence of decisions, information, outcomes, and payoffs.

(The other way is via the strategic or normal form or payoff function, discussed later.)
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Figure 7.C.1 shows a version of Matching Pennies with sequential decisions, in which
Player 1 moves first and player 2 observes 1's decision before 2 chooses his decision.

Player 1

Player 2

Heads
Up

<Player I’s Payoﬁ) (—1)
—
Player 2’s Payoff +1

Tails Heads
Up Up

() ()

We can represent the usual Matching Pennies with simultaneous decisions by introducing
an information set, which includes the decision nodes a player cannot distinguish and at
which he must therefore make the same decision, as in the circled nodes in Figure 7.C.3
(or in analogous figures with decision nodes connected by dotted lines as in Kreps).

/Terminal nodes Figure 7.C.1

A Extensive form for
<_ > Matching Pennies

+1 Version B.

Tails Heads
Up
Figure 7.C.3
Extensive form for
1’s Payoff -1 <+1> <+ 1) <~1> Matching Pennics
<2’s Payoff> - <+1> -1 -1 +1 Version C.
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The order in which simultaneous decision nodes are listed has some flexibility, as in
Figure 7.C.3 where player 2 could have been at the top; but for sequential decisions the
order must respect the timing of information flows. (Information about decisions already
made—as opposed to predictions of future decisions—has no reverse gear.)

All decision nodes in an information set must belong to the same player and have the
same set of feasible decisions. (Why?)

Figure 7.C.2 gives a partial game tree for Tic-Tac-Toe.

Upper-right /Player X
Corner "

Player O

Lower-right
/

Corner
/Player X

Middle Square

/Player (0]
Lower-center Square
\\ Player X
Lower-left Corner
Uppeeletr Commer., X gets three in a row ——
Player O terminal node e
= » X P( it ) Part of the extensive
o SoTAr form for
<— 1> < O's Fayett ) Tick-Tack-Toe.

1 which Af thace nadac cha ic arntually at Tha rancan far thic innAranans ia
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Players are normally assumed necessarily to have perfect recall of their own past
decisions (and other information). If so, the tree must reflect this (as in Figure 7.C.2).

Figure 7.C.4 shows two games without perfect recall of players’ own past decisions.

Player 1

Player 2\ /Player 2

(a)

Player 2

Player 1

AwAwAwA

(b) satisfying perfect recall.
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Shared uncertainty (in economics, roughly “symmetric information”) can be modeled by
introducing moves by an artificial player (without preferences) called Nature, who chooses
the structure of the game randomly, with commonly known probabilities as in Figure 7.C.5.

(It's a good exercise to describe this variant of Matching Pennies in words.)

Nature

(1)

65 Gy B ) ) N ) ) O O B el

Figure 7.C.5 Extensive form for Matching Pennies Version D.
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D. Strategies and the Normal Form Representation of a Game
For sequential games it is important to distinguish strategies from decisions or actions.
A strategy is a complete contingent plan for playing the game, which specifies a feasible

decision for each of a player's information sets in the game.

(Recall that his decision must be the same for each decision node in an information set.)

Thus a strategy is like a detailed chess textbook, not like a single decision or action.

But in a simultaneous-move game a strategy reduces to a single decision or action.
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Built into the notions of subgame-perfect, sequential, and perfect Bayesian equilibrium
defined below is the assumption that conditional on what a player can observes, he can
predict the probability distributions of his own and others’ future decisions and their
consequences.

If players have this kind of foresight, then their rational sequential decision-making in “real
time” should yield exactly the same distribution of decisions as simultaneous choice of
fully contingent strategies at the start of play, for reasons essentially like those that justify
Bellman’s Principle of optimality in dynamic programming.

This allows us to focus, for the purpose of characterizing equilibria, on simultaneous-move
games, as including sequential games and blends of simultaneous and sequential games:

“Let us each write our own chess textbook. Then we will give our books to a neutral
referee and let him play out the game for us and tell us who won.”

(But don’t try this at home with commercially available textbooks, which aren’t complete.)
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Because strategies are complete contingent plans, players must be thought of as
choosing them simultaneously (without observing others' strategies), independently, and
irrevocably at the start of play.

Why must a strategy must be a complete contingent plan, specifying decisions even for a
player’'s own nodes that he knows will be ruled out by his own earlier decisions?
Otherwise other players’ strategies would not contain enough information for a player to
evaluate the consequences of his own alternative strategies, which in general requires a
complete model of other players’ decisions.

We would then be unable to correctly formalize the idea that a strategy choice is rational.
Putting the point in an only seemingly different way, in individual decision theory zero-

probability events can be ignored as irrelevant, at least for expected-utility maximizers.

But in games zero-probability events cannot be ignored because what has zero probability
is endogenously determined by players' strategies.
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Some terminology: A game maps strategy profiles (one for each player) into payoffs (with
outcomes implicit). A game form maps profiles into outcomes, without specifying payoffs.

Specifying strategies make it possible to describe an extensive-form game’s relationship
between strategy profiles and payoffs by its (unique) normal form or payoff matrix or
(usually when strategies are continuously variable) payoff function.

Player 1

Player 2

Heads Tails Heads Tails
Up Up Up Up
/Terminal nodes :g:re TC; f
) xtensive form for
(P]ayer 1’5 Payoﬁ") . (—1) (+1) (-{—1) -1 Matching Pennies
Player 2’s Payoff +1 -1 -1 +1 Version B.
Player 2
S Sa S3 S4
H|-1L+1|—1,+1{+1, =1+, -1 Figure 7.D.1
Player 1 The normal form of
Tl+1, —1|—1, 41| +1, —1|—-1, +1 Matching Pennies
Version B.
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The mapping from the extensive to the normal form isn’'t univalent in both directions, e.qg.
the normal form for the sequential version B of Matching Pennies:

Player 2
5y Sy S3 S4
H|-1, +1 -1, +1|+1, —-1]+1, -1 Figure 7.D.1
Player 1 The normal form of
T+, 1| =1, +1|+1,—-1|—-1, +1 Matching Pennies
Version B.

has possible extensive forms other than the one in Figure 7.C.1, such as the canonical:

Player 2

(l’s Payoff
2’s Payoff

QK
+1) (+1

A GG ) () Q)

Figure 7.0.2 An extensive form whose normal form is that depicted in Figure 7.D.1.
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E. Randomized Choices

In game theory it is useful to extend the idea of strategy from the unrandomized (pure)
notion we have considered to allow mixed strategies (randomized strategy choices).

E.g. Matching Pennies Version C plainly has no appealing pure strategies, but there is a
convincingly appealing way to play using mixed strategies: randomizing 50-50. (Why?)

Tails

<1’s Payoﬁ) (—1>
sy
2’s Payoff +1

Heads

Heads

Talils

Heads 1

-1

-1

Talls

-1

1

1

-1

Matching Pennies

20
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Extensive form for
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Our definitions apply to mixed as well as pure strategies, given that the uncertainty about
outcomes that mixed strategies cause is handled (just as for other kinds of uncertainty) by
assigning payoffs to outcomes so that rational players maximize their expected payoffs.

Mixed strategies will enable us to show that (reasonably well-behaved) games always
have rational strategy combinations, i.e. that Nash equilibria always exist.

In extensive-form games with perfect recall, mixed strategies are equivalent to behavior
strategies, probability distributions over pure decisions at each node (Kuhn's Theorem,;
see MWG problem 7.E.1).
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Chapter 8. Simultaneous-Move Games

A. Introduction: Intuition-building Examples
B. Dominant and Dominated Strategies

Define strictly or weakly dominant and dominated strategies, e.g. (for strictly) in

L R

2 1
2 2

2 1
1 1

Crusoe "v." Crusoe
Crusoe v. Crusoe is not really a game, just two individual decision problems; each player
therefore has a strategy that is best independent of the other's strategy, hence dominant.

T

If there is a (strictly or weakly) dominant strategy, all other strategies must be dominated.

But there can be dominated strategies without there being a dominant strategy, which
makes the notion of dominated more useful than the notion of dominant strategy.

The idea is that a rational player would never play a strictly dominated strategy, because
there are no beliefs about others’ strategies that make it a best response.

A rational player might play a weakly dominated strategy if he has sharply focused beliefs.
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Due to the linearity in probabilities of expected payoffs, dominance (strict or weak) for pure
strategies implies (strict or at least weak) dominance for mixed strategies with positive

probabilities only on those pure strategies.

But there can be dominance by mixed strategies without dominance by pure strategies,
e.g. for Column in Domination via Mixed Strategies R is strictly dominated by a 50-50 mix

of L and C. Also see Figure 8.B.5.

L C R
T 4 - 3 ° 1
B 0 ° 2 - 10
Domination via Mixed Strategies
up,
Player 2 10

L R

Randomized Strategy

/{%U +1D

vl | o4

Player | M

D

4,2

4,3

0,5

10,2

(a)
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Confess Don't

-5 -10
-5 -1

-1 -2
-10 -2
Prisoner’s Dilemma

Confess

Don’t

In Prisoner's Dilemma (unlike in Crusoe v. Crusoe) players' decisions do affect each
other's payoffs. Even so, each player still has a strictly dominant strategy.

(“Don’'t” = “Cooperate”; “Confess” = “Defect”. Why “’s” and not “s’ (which the game’s
inventor insisted on)? Methodological individualism.)

Because of the way the prisoners’ payoffs interact, individually rational decisions yield a
collectively suboptimal (i.e. Pareto-inefficient—at least in the prisoners’ view) outcome.

Prisoner's Dilemma is the simplest possible model of incentive problems, which makes it a
popular platform for analyses of institutions that overcome such problems.

And the fact that Prisoner's Dilemmas or similar situations abound in real societies alone
suffices to show the fatal intellectual flaw in libertarianism.

Yet a Prisoner's Dilemma model is far too simple, because it ignores the difficulty of
coordination and possible conflicts of interest between different ways to cooperate.
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Push Wait

1 5
Push 5 3

. -1 0
Walt 9 0

Pigs in a Box

In Pigs in a Box, Row (R) is a dominant (big) pig and Column (C) a subordinate (little) pig.
The box is a (B.F.) Skinner box.

There is a lever at one end, which when pushed yields 10 units of grain at the other end.
The story behind the matrix: Pushing costs either pig the equivalent of 2 units of grain.
|dentify payoffs with the amount of grain consumed, less the cost (if any) of pushing.

Further, if R (big pig) pushes while C (little pig) waits, C can eat 5 units before R lumbers
down and shoves C aside.

But if C pushes while R waits, C cannot push R aside and R gets all but one unit.

If both C and R push, arriving at the grain at the same time, C gets 3 units and R gets 7.

If both C and R wait, both get 0.
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When behavior settles down in experiments with pigs, it tends to be at R Push, C Wait.

The little pig (C) does better, even though the big pig (R) can do anything C can do!

This couldn't happen in an individual decision problem: a larger feasible set can never
make a rational decision-maker worse off.

It happens here because Wait strictly dominates Push for C, but not for R: the way
players’ payoffs are determined means that only R has an incentive to Push. (This makes
the game what we will call dominance-solvable below.)

Thus in games, (the right kind of) weakness can be an advantage! R might get a higher
payoff if he could somehow commit himself, say by limiting his ability to shove C aside, to
giving C some of the grain to create an incentive for C to Push.

Understanding which kinds of games such commitments help in, and what kinds of
commitments help, should help us to understand the usefulness of contracts and other
ways to change the rules by which relationships are governed.

If the pigs had studied game theory, they wouldn't have to "settle down": They could just
figure out at the start (using “iterated dominance”) that they should play (R Push, C Wait).

That they eventually got there anyway suggests that learning and rationality-based
arguments yield the same conclusions in the long run. (Why does this happen here?)
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Push

Push

Define iterated deletion of strictly dominated strategies (iterated strict dominance).

Wait

1

5 3
-1 0
9 0
Pigs in a Box

Wait

Dominance-solvable

The idea is that a rational player would never play a strictly dominated strategy, because
there are no beliefs about others’ strategies that make it a best response.

(Even so, a rational player might play a weakly dominated strategy for some beliefs.)

Further, a rational player who knows that the other player is rational, knows that the other
player knows that he himself is rational, and so on, would never play a strategy that does

not survive iterated deletion of strictly dominated strategies.
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The result of iterated strict dominance is independent of the order of elimination (MWG,
problem 8.B.4).

When iterated strict dominance reduces the game to a unique strategy profile, the game is
called dominance-solvable, as in Domination via Mixed Strategies or Dominance-solvable:

L

C

R

10
4

3

0

1

0
0

2

10

10

Domination via Mixed Strategies

L C R
T7 50 3
M5 25 ’
Bo 57 3

Dominance -solvable
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By contrast, the result of iterated weak dominance may not be independent of the order of
elimination, as in Give Me a Break:

1 1
T |1 0

0 0
B |0 0
Give Me a Break

Thus even when iterated weak dominance reduces the game to a unique strategy profile,
the result may not yield a unique profile.

lterated weak dominance is often useful, but it must be used with care.

29



C. Rationalizable Strategies

Now we will start to formalize the idea of rational decisions in games.

The idea must be consistent with the idea of rationality for individual decisions, i.e. a
player’s rational strategy must at least be defined as one that maximizes his expected
payoff, given some beliefs.

But that is not the end of the story, because in games the outcome is influenced by other
players' decisions as well as the player’'s own decisions.

Thus a player’s beliefs are not only about background uncertainty, as we know how to
handle for individual decisions; but also about the strategies chosen by other players.

The problem is that those strategies are chosen by players who are presumed also to be
rational, and who recognize the need to predict the player’'s own rational decision, and
who recognize the player’s need to predict their rational decisions, and so on....
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Something is mutual knowledge if all players know it, and common knowledge if all know
it, all know that all know it, and so on ad infinitum.

Focus on the problem of predicting other players' strategies by assuming for now that the
structure of the game is common knowledge.

This allows simultaneous decisions as in Figure 7.C.3, and shared uncertainty about how

players' decisions determine the outcome with commonly known distributions, modeled as
“moves by nature” as in Figure 7.C.5; but they won’t matter for this discussion.

In game theory a game whose structure is common knowledge is called a game of
complete information (or replacing the old-fashioned game-theory term with a roughly
equivalent modern economic term, “symmetric information”).

“Complete” does not imply “perfect” information, e.g. with simultaneous decisions.
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A first guess at how to formalize the idea of rational decisions in games is that assuming
that players are rational in the decision-theoretic sense of maximizing expected payoffs
given some beliefs is enough to yield a useful theory of behavior in games.

That guess is correct for games like Crusoe v. Crusoe and Prisoner’s Dilemma.

But that guess fails badly in even slightly more complex games, such as Pigs in a Box or
Give Me a Break.
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A second guess is that assuming that players are rational and that that fact is common
knowledge yields a useful theory.

That guess works in some games, such as Domination via Mixed Strategies (using mixed
as well as pure-strategies) or Dominance-solvable:

L

C

10
4

3

0

0
0

2

10

10

Domination via Mixed Strategies

L C R
T7 OO 50 3
M5 O2 25 ’
Bo 70 57 3

Dominance -solvable

In these dominance-solvable games, iterated strict dominance reduces the game to a
unique strategy profile, which we will see means that common knowledge of players’

rationality yields a unique prediction.
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But even that guess also fails badly in most economically interesting games.

E.g. any strategy is consistent with common knowledge of rationality for some beliefs in
Matching Pennies, Gives Me a Break, or Unique Equilibrium without Dominance:

L C R
T , OO 50 7
M . O2 25 0
B . 70 57 0

Unique Equilibrium without  Dominance

In Unique Equilibrium without Dominance there is a “tower” (my co-authors tell me it
should be “helix”) of beliefs, consistent at all levels with common knowledge of rationality,
to support any combination of strategies.

But except for the beliefs in the helix that supports the strategy combination (M, C), the
beliefs that make other strategies consistent with common knowledge of rationality differ
wildly across players and levels.

We will see that (M, C) is Unique Equilibrium without Dominance’s unique Nash
equilibrium.
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Even though the second guess often fails, it is useful to characterize the implications of

the assumption that it is common knowledge that players are rational.

This leads to a notion called rationalizability.

MWG define a rationalizable strategy as one that survives the iterated removal of

strategies that are never a (weak) best response to any beliefs.

As with iterated strict dominance, the order of removal of such strategies doesn't matter

(MWG problem 8.C.2).

Player 2
b, b, by b,
a,| 0,7 2.5 7,0 0,1
a2l 52 3,3 5,2 0,1
Player 1
as| 7,0 2.5 0,7 0,1
as] 0,0 [{0,—-2( 0,0 |10, —1
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The set of strategies that survive the iterated removal of never-weak-best response
strategies cannot be larger than the set that survive iterated strict dominance, because
strictly dominated strategies can never be weak best responses to any beliefs.

In n—person games, n > 2, the set of strategies that survive the iterated removal of never-
weak-best responses can be smaller than the set that survives iterated strict dominance.

But any strategy that is not strictly dominated must be a best response to some correlated
combination of others’ strategies (separating hyperplane theorem, MWG Exercise 8.C.4).

In two-person games the two sets are the same because with only one other person,
never-weak-best-response strategies are exactly those that are strictly dominated
(separating hyperplane theorem again; in general they can differ, MWG Sections 8.D-E).

{(ug, up): Jug + 4, = 3u,(M, R)
i %ul(M7 L)}

)

108

Figure 8.C.2

In a two-player game,
a strategy is a best
response if it is not
strictly dominated.
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Focus on two-person games, where the correlation of others’ strategies is irrelevant.

Approach the notion of rationalizability via a sequence of notions called k-rationalizability,
defined to reflect the implications of k levels of mutual knowledge of rationality (i.e. all
players know that all are rational, know that all know it, and so on, up to k levels).

Rationalizability, which reflects the implications of common knowledge of rationality, is
then equivalent to k-rationalizability for all k.

A 1-rationalizable strategy (the sets R1 on the next slide) is one for which there is a profile
of others’ strategies that makes it a best response.

A 2-rationalizable strategy (the sets R2) is one for which there exists a profile of others’ 1-
rationalizable strategies that make it a best response.

And so on, recursively....

For two-person games, k-rationalizability for all k is equivalent to MWG's definition of a
rationalizable strategy as one that survives iterated removal of never-weak-best response
strategies; and to a definition in terms of surviving iterated strict dominance.
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Rationalizability and k-rationalizability generally yield set-valued restrictions on individual
players’ strategy choices (unlike Nash equilibrium, which restricts their relationship).

In Dominance-solvable, M and C are the only rationalizable strategies; in Unique
Equilibrium without Dominance all strategies are rationalizable, for each player. (Each
game has a unique Nash equilibrium (M, C).)

R1,R2 R1,R2,R3,R4
L C R
0 5 3
R1,R2,R3 T 2 0 0
0 2 0
R1,R2,R3,R4 M 5 5 5
7 5 3
R1 B 0 0 7
Dominance-solvable
Rk for all k Rk for all k Rk for all k
L C R
0 5 7
Rk for all k T - 0 0
0 2 0
Rk forallk M 5 5 5
7 5 0
Rk for all k B 0 0 v

Unique Equilibrium without Dominance
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Theorem : Common knowledge of players' rationality implies that players will choose
rationalizable strategies, and any profile of rationalizable strategies is consistent with
common knowledge of the structure and rationality.

Proof: Illustrate for Dominance-solvable and Unique Equilibrium without Dominance
games.

(This theorem needs common knowledge only for indefinitely large games. The number of
levels of iterated knowledge of rationality needed is just the number of rounds of iterated
dominance, which for finite games is bounded by the size of the payoff matrix.)
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Consider Ultimatum Contracting.

There are two players, R(ow) and C(olumn), and two feasible contracts, X and Y.
R proposes X or Y to C, who must either accept (a) or reject (r).

If C accepts, the proposed contract is enforced.

If C rejects, the outcome is a third alternative, Z.

This game depends on whether C can observe R's proposal before deciding whether to
accept. We can represent either version by its extensive form or game tree.

Whether or not C can observe R's proposal, R has two pure strategies, X and Y.

If C cannot observe R's proposal, C has two pure strategies, a(ccept) and r(eject).

If C can observe R's proposal he can make his decision depend on it, and therefore has
four pure strategies, "a (if X proposed), a (if Y proposed)”, "a, r*, "r, a", and "r, r."

C's additional information with Observable Proposal shows up “only” in the form of extra
strategies for C. But when the players are rational, this can affect the outcome: It's
feasible for C to ignore R’s proposal, but both R and C know that is not always optimal.
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First suppose R prefers Y to X to Z, while C prefers X to Y to Z.

E.g. R's payoffs u(X) = 1, u(Y) = 2, u(Z) = 0; C's payoffs v(X) = 2, v(Y) = 1, v(Z) = 0.

Then we get the normal forms:

X

Y

a

1

2

0

0

2

1

0

0

Ultimatum Contracting with
Observable Proposal

Ultimatum Contracting with
Unobservable Proposal

Ultimatum Contracting with Unobservable Proposal is dominance-solvable (C's strategy a
strictly dominates r; given that, R's strategy Y dominates X), with unique rationalizable
(and equilibrium) outcome (Y, a).

Intuition: a rational R knows that a rational C will accept whichever contract R proposes
even if he cannot observe it; and R will therefore propose Y, his most preferred contract.

Ultimatum Contracting with Observable Proposal is not (strictly) dominance-solvable: C's
strategy (a, a) strictly dominates (r, r), but when (r, r) is eliminated there is no strict
dominance, so the remaining strategies are all rationalizable.

(What beliefs support (Y; a, r)? Why are they consistent with common knowledge of
rationality?)
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X

Y

a

r

1

2

0

1

Now suppose that C's payoffs are changed to: v(X) = 2, v(Y) =0, v(Z) = 1, so that C now
prefers X to Z, but not Y to Z (R's payoffs are unchanged).

2

0

0

1

Ultimatum Contracting with
Unobservable Proposal

Ultimatum Contracting with
Observable Proposal

Ultimatum Contracting with Unobservable Proposal is no longer dominance-solvable
(there is now no strict dominance), and all strategies are rationalizable.

But there is a unique Nash equilibrium, now (Y, r).

Intuition: C knows that R, knowing that C cannot discriminate between proposals, would
propose Y, which is worse for C than Z; C will therefore reject.

In Ultimatum Contracting with Observable Proposal all strategies but r, a for C are
rationalizable.

But there is an equilibrium (X; a, r) that reflects the intuition that if C can observe R's
proposal, C will accept X but not Y, so R will propose X, which he prefers to Z, and C will
accept. (There are also unintuitive equibria, which we will learn how to rule out below.)
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D. Nash Equilibrium

Most economically important games have multiple rationalizable outcomes, so rational
players must base their decisions on interdependent predictions of others' decisions that
are not dictated by common knowledge of rationality.

In such games much of game theory's power comes from assuming that players choose
strategies in Nash equilibrium, a strategy profile for which each player's strategy is a best
response to other players' strategies (a fixed point of the best-response correspondence).

Any equilibrium strategy survives iterated elimination of strictly dominated strategies, and
Is k-rationalizable for all k, hence rationalizable. (Why?)

In games that are dominance-solvable in k rounds, the surviving combination of k-
rationalizable strategies is the unique equilibrium, e.g. in Dominance-solvable.

But in general, not all combinations of rationalizable strategies are in equilibrium.

E.g. in Unique Equilibrium without Dominance any strategy is rationalizable, for either
player; but there is a unique equilibrium profile of strategies.
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A Nash equilibrium is a kind of rational expectations equilibrium, in that if all players
expect the same strategy profile and choose strategies that are best responses given their
beliefs, their beliefs will be confirmed if and only if they are in equilibrium.

(This differs from the usual notion of rational expectations in that it is players’ strategies
that are predicted, and players' predictions interact.)

Nash equilibrium is therefore often unconsciously identified with rationality in games; but
equilibrium is a much stronger assumption than common knowledge of rationality.

Equilibrium requires that players' strategies are best responses to correct beliefs; thus it
reflects the implications of common knowledge of rationality plus common beliefs.

Compare the belief towers supporting equilibrium and non-equilibrium strategy profiles in
Unique Equilibrium without Dominance.

Unlike rationalizability, equilibrium is a property of strategy profiles, relationships between
strategies. Equilibrium strategy often refers to any strategy that's part of an equilibrium.



An equilibrium can be either in pure or mixed strategies.

A mixed strategy profile is an equilibrium if for each player, his mixed strategy maximizes
his expected payoff over all feasible mixed strategies (MWG Definition 8.D.2).

Theorem: A mixed strategy profile is an equilibrium if and only if for each player, all pure
strategies with positive probability yield the same expected payoff, and all pure strategies

he uses with zero probability yield no higher expected payoff (MWG Proposition 8.D.1; the
Kuhn-Tucker conditions for maximizing expected payoffs that are linear in probabilities).

Mention Nash's population interpretation and the "beliefs" interpretation of mixing.

Can use this and best-response functions to compute equilibria, e.g. in Matching Pennies.

Notice Row’s equilibrium strategy is determined by Column’s payoffs, and vice versa!

It is a good exercise to show from best-response cycles that Unique Equilibrium without
Dominance has no mixed-strategy equilibria.
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Equilibrium is surely a necessary condition for a common, rational prediction about
behavior, but how might players come to have correct beliefs?

Traditional rationale: Players (or hyperintelligent pigs) deduce correct (self-fulfilling) beliefs
about each other's strategies when they first play a game from common knowledge (why
common?) of a theory of strategic behavior that makes a unique prediction for the game in
guestion, and so (if rational in the decision-theoretic sense) play an equilibrium
immediately.

Adaptive rationale: Players (like real pigs playing Pigs in a Box) learn to predict others'
strategies in repeated play of analogous games, adjusting their strategies over time in
response to observed payoffs; and so (if rational in the decision-theoretic sense)
eventually converge to equilibrium.

Traditional game theory focuses on rationality-based reasoning, while adaptive learning
models make assumptions directly about how players adjust strategies over time.

Both approaches agree that the possible limiting outcomes are Nash equilibria (in the
game that is repeated, not the game that describes the entire process).

But the approaches differ on convergence and the likelihoods of alternative equilibria.
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Existence of Nash Equilibrium

Theorem: Every finite game has a mixed-strategy Nash equilibrium (MWG Proposition
8.D.2).

Existence of equilibrium may require mixed strategies, in general, as in Matching Pennies.
The next theorem gives a more abstract and more general existence result.

Theorem: Every game whose strategy spaces are nonempty, convex, and compact
subsets of Euclidean space, and whose payoff functions are jointly continuous in all
players' strategies and quasiconcave in own strategies has a Nash equilibrium (MWG

Proposition 8.D.3).

Compare with the conditions for existence of an optimum in a decision problem: Need to
add joint continuity and quasiconcavity in own strategies of payoff functions.

Interpret for mixed strategies in finite games, pure strategies in games with continuously

variable pure strategies.

These theorems also trivially imply the existence of rationalizable strategies.
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More Intuition-building Examples: Nonuniqueness of

These games are worth some attention because economics is about coordination, but
competitive markets with Walrasian auctioneers beg some important questions.

Go

Walit

Go

Wait

0

0

1

1

1

0

Fights

Ballet

Fights

Ballet

Equilibrium and Coordination

2

1

0

0

0

0

1

2

Alphonse and Gaston Battle of the Sexes

Alphonse and Gaston's problem is that there are two ways to solve their coordination
problem...and therefore maybe no good way! Each of the two ways requires them to
decide differently even though there may be no clue to break the symmetry of their roles.

Games like Alphonse and Gaston show that coordination may pose nontrivial difficulties
even when players’ preferences are identical.

(Mixed strategies can help Alphonse and Gaston learn to coordinate in repeated play; but
they then serve a completely different purpose than in Matching Pennies.)

Battle of the Sexes—the simplest possible bargaining problem—adds to the difficulty of
coordination by giving players different preferences about how to coordinate, but still no
clue about how to break the symmetry.
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(In the early 1900s Frederick B. Opper created the Alphonse and Gaston comic strip, with
two excessively polite fellows saying "after you, my dear Gaston" or "after you, my dear
Alphonse" and thus never getting through a doorway. They are mostly forgotten, but they
live on in the Alphonse-Gaston games in the dual-control lighting circuits in our homes.)

povier licght ! !
EOLICE X |
X '
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Other Player

All Other Players

Stag Rabbit Stag Rabbit
2 1
Stag 5 0 Stag 2 0
: 0 1 :
Rabbit 1 1 Rabbit 1 1

Two-person Stag Hunt n-Person Stag Hunt

In Stag Hunt (Rousseau's story, assembly line, staff meeting), with two or n players, there
are two symmetric, Pareto-ranked, pure-strategy equilibria, "all-Stag" and "all-Rabbit".

(There's also an uninteresting mixed-strategy equilibrium. Compute it in each case.)
All-Stag is better for all than all-Rabbit.
But Stag is riskier in that unless all others play Stag, a player does better with Rabbit.

The game is like a choice between autarky and participating in a highly productive but
brittle society, which is more rewarding but riskier because dependent on coordination.

Selection among strict equilibria: Harsanyi-Selten's notions of risk- and payoff-dominance.
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E. Games of Incomplete Information: Bayesian Nash E  quilibrium

Recall that in game theory a game whose structure is common knowledge is called a
game of complete information (or replacing the old-fashioned game-theory term with a
roughly equivalent modern economic term, “symmetric information”).

Recall that a game of complete information need not have perfect information: There may
still be simultaneous decisions, so that a player making a decision cannot always observe
all previous decisions.

A game of incomplete information (roughly, “asymmetric information”) allows both
simultaneous decisions and players to have private information about the structure.
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In 1967-68 Harsanyi, building on von Neumann’s 1928 analysis of Poker and Bluffing
(Theory of Games and Economic behavior, Chapter 19), showed how to adapt the tools of
complete-information noncooperative game theory to incomplete-information games.

He argued that all important informational differences across players could be modeled by
assigning each player a type that parameterizes his preferences; and assuming a player
knows his own type when he makes decisions, but other players only have priors about it.

E.g. if player 1 does not know whether a certain decision is feasible for player 2, player 2
might have two types, one of which gives that decision extremely low payoff.
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Harsanyi then argued that it is reasonable to assume that any differences in players'
beliefs are derived from Bayesian updating of an initially common prior within a common
model (a view that is now called the Harsanyi doctrine or the common prior assumption).

Given these arguments, one can reduce a game of incomplete information to an
equivalent game of complete information, in which Nature first draws players’ types from a
common distribution and players observe their own types and then play the game.
(Players never directly observe others’ types, but might be able to infer them during play.)

The ex ante/complete-information view of the game, in which players choose type-
contingent strategies before observing their own types (hence with symmetric
information), is then analytically equivalent to the interim/incomplete-information view of
the game, in which players choose their strategies after observing their own types.

53



A pure-strategy Bayesian Nash equilibrium (or Bayesian equilibrium) is a profile of
decision rules (mapping a player's type into a strategy) that are in equilibrium in the ex
ante game of complete information (MWG Definition 8.E.1).

A player’s strategy in the ex ante/complete-information game is a complete contingent
plan as before, but now it is also contingent on the player’s type.

For reasons already explained, to formalize the idea that a strategy choice is rational, a
strategy must be type-contingent even though the player knows his own type before he is
called upon to make any decisions.

Thus a profile of decision rules is a Bayesian Nash equilibrium if and only if for all types
that have positive prior probability for a player, the player's contingent strategy maximizes
his expected payoff given his type, where the expectation is taken over other players'
types, conditional on the player's own type (MWG Proposition 8.E.1).

(This definition allows for the possibility that a player’s own type may convey information
about other players’ types; but it also allows players’ types to be statistically independent.)
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Recall that Ultimatum Contracting has two players, R(ow) and C(olumn).

There are two feasible contracts, X and Y.

R proposes X or Y to C, who must either accept (a) or reject (r).

If C accepts, the proposed contract is enforced.

If C rejects, the outcome is a third alternative, Z.

Ultimatum Contracting depends on whether C can observe R's proposal before deciding
whether to accept. We can represent either version by its extensive form or game tree.

Whether or not C can observe R's proposal, R has two pure strategies, X and Y.

If C cannot observe R's proposal, C has two pure strategies, a(ccept) and r(eject).

If C can observe R's proposal he can make his decision depend on it, and C therefore has
four pure strategies, "a (if X proposed), a (if Y proposed)”, "a, r*, "r, a", and "r, r."
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Suppose as before that R prefers Y to X to Z, e.g. R's payoffs u(X) = 1, u(Y) =2, u(Z) = 0.

But now suppose that C has two possible types, C; with probability p and C, with
probability (1-p), with C,'s preferences v,(X) =2, vi(Y) =0, and v,(Z) = 1, and C,'s
preferences v,(X) = 2, vo(Y) = 1, and v,(Z) = 0.

Thus C, but not C, will accept R's favorite contract Y; so that R’s optimal proposal reflects
a tradeoff between its desirability if accepted and the probability of acceptance.

Only C observes his type, but p and the rest of the structure are common knowledge.

R's pure strategies are still X and Y.

C's pure strategies (type-contingent, hence the same for each type) now map his type and
R's proposal into an accept or reject decision, so that C has 2x2x2x2 = 16 pure strategies,

4 for each type, chosen independently.

The extensive form has a move by Nature first, then two decision nodes for R in the same
information set, then 4 decision nodes for C, each in its own information set. (Why?)

There is a unique (unless p = %2) sensible outcome (which will be called a weak perfect
Bayesian equilibrium below), in which R proposes Y if p <%, X if p > %, and either if p =
Y5, C, accepts X but rejects Y; and C, accepts X or Y.

The analysis is easy because the only privately informed player has a passive role.
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Now consider Ultimatum Contracting with a continuously divisible pie, say of size 1; and a
privately observed, continuously distributed outside option payoff for the responder.

R proposes a division x for R and 1 - x for C, and C accepts or rejects.
If C accepts, R and C get payoffs x and 1 - x.

If C rejects, R gets 0 and C gets outside option payoff y with c.d.f. F(y), where F(0)=0,
F(1)=1, and F(-) is continuously differentiable with positive density (e.g. uniform, with F(y)
=y wheny e [0,1]).

Any proposal risks rejection, with the probability of rejection increasing in X.

Thus R’s optimal proposal reflects a tradeoff between desirability and probability of
acceptance as before.

For most F(-) there is an essentially unique intuitive outcome (which we will see below is a
weak perfect Bayesian equilibrium), in which C accepts iff 1 - x =2 y (= rather than > without
loss of generality, because the event 1 - x =y has 0 probability) and R proposes x*, 1 - x*,
where x* solves max, XF(1 - x). (In the uniform case with F(y) =y, x* = %4.)

For some F(+) the problem max, xF(1 - X) has multiple solutions, in which case weak
perfect Bayesian equilibrium is essentially nonunique.

The analysis is again easy because the only privately informed player has a passive role.
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Now for a harder analysis, where a privately informed player has an active role.
(Thanks to Chris Wallace for many slides in this section and for chapter 12 below.)

Bayesian Battle of the Sexes

“Two M.Phil. students simultaneously decide whether to meet in a pub or a cafe. The first prefers
the cafe, whilst the second prefers the pub. Perhaps because of this fact, the first M.Phil. student
likes the second; but the feeling may not be mutual. In fact, the second likes the first with probability

% and hates the first with probability é Students prefer to spend time with people they like.”

Players. M.Phil. student 1, and two types of M.Phil. student 2 (2; and 24).
Actions. Each of the players can choose between Cafe and Pub.

Payoffs. The payoffs are given in the below matrices, each of which occurs with probability <:
. o 4

Cafe Pub Cafe Pub
Cafe . 1 Cafte 0 2
4 1 or 4 1
Pub ! 2 Pub 3 !
0 3 0 3

Information. Player 2 knows which matrix applies. Player 1 doesn’t (assigns probability L toeach).
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The Strategic-Form Version

Model this situation as a three-player strategic form game:

Players. Three playersi € N = {1, 2, 2;}.
Strategies. Foreachi € N, s; € {Cafe, Pub}. Write s; € {C, P} and s3, € {C}, F;}.

Payoffs. Payolffs are represented in the following matrix:

Ci, Ch Ci, Py Py, Chy Py By

4

3

0

|ba|en

3

4

| b |

0

4

9%

b L

3
2

=

|Co

3

4

Player 1 gets the payoff in the bottom-left corner, player 2; gets the payoft in the middle, and player

25, gets the payoff in the top-right corner. Payoffs from best-responses are underlined.
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Nash Equilibria

Having represented the Bayesian (or incomplete information) game as a strategic-form game, a
“Bayesian-Nash equilibrium” (BNE) of the former is a Nash equilibrium of the latter.

Pure-Strategy Equilibrium. A single pure-strategy Nash equilibrium exists at {C', (', P }.

e The expected payoff to player 1 from playing C'is+ x 4 +1 x 1 =2 ..
X

e Which is more than they would get from deviating to P: § x 0 42 x 3 = 3.

e Player 2; can do no better (deviating to F; yields 1 rather than 3).

e Player 2j can do no better (deviating to '}, vields O rather than 4).

Of course, in actuality it is player 2 that chooses (; and F},. Could player 2 do any better by varying

both strategies? No! Player 2;'s decision does not affect player 2;,’s payoffs, and vice-versa.

The equilibrium entails student 1 going to the cafe (which is preferred) and student 2 deciding
whether or not to go to the cafe depending on whether they like student 1. Seems natural.

Mixed-Strategy Equilibria. There are two: {(5.%), P, (3,3)}and {(3.3), (3, 3). Pu}.
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Mixed Equilibria
To check these mixed equilibria, recall the requirement for indifference.
e Consider {(% %) P, (% %) . Looking at the payoff matrix on slide 2, what is player 1's payoff?

e From C player 1 receives 2 x 3 + 1 x 1 = 2. From P player 1 receives 2 x 2 + 1 x 3 = 2.

e Indifferent, and prepared to mix. .. what about player 2;7

e From (] receives% X 340 = 1. From P, receives 1 x 1 4+ % x 4 = 3. So will choose F.
e Player 2j, gets 0+ 2 x 3 = 2 from Cy, and 3 x 4+ 2 x 1 = 2 from P}, Indifferent, so can mix.

It is straightforward to confirm the other mixed equilibrium, and prove that there are no other
equilibria, pure or mixed (left as an exercise!)

Put these ideas in a formal framework. ..
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Bayesian Games of Incomplete Information

Definition 15. A Bayesian game of incomplete information consists of:

1. Players. A finite set of players labelledi € N = {1,...,n}.

2. Types. Foreach i € N, a set of types T;, with typical member t; € T;.

3. Actions. Foreachi € N, a set of actions A;, with member typical a; € A;.

4. Beliefs. For each i € N and t; € T;, a probability measure p; over T'_;, written p;(f_;|t;).

5. Payoffs. For each i € N, a vINM utility function u; : A x T' — R.

Anything with these five features can be written as a Bayesian game:
' = (N.{Ti}ien,{ Aitien s {Pi}ien, {witien)-

Notation. Once again, definea € A = X;eyA;and t € T = x,;cNT;, as action and type profiles.
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Formulating the Bayesian Battle of the Sexes

This 15 a rather formal definition. How does the earlier example fit into 1t?

1. Players. There are two: N = {1,2}.

2. Types. Player 1 has only one type T} = {1}. Player 2 has two: t; € T = {l. h}

3

Actions. For each player the actions available are A; = A, = {Cafe, Pub}.

4. Beliefs. Player 1 has p;(1|1) = pi(h|1) = 1. Player 2 has p2(1|h) = p1(1|l) = 1.

o

Payoffs. Are as described in the matrices on the first slide.

Notice that types are independent: p(t_;|t;) = p(t_;). Players own types do not reveal

information about their opponent’s types. This need not be the case — e.g. global games.

Notice that types are private: u;(a,t) = u;(a,t;). Payoffs only depend upon own-type draws,

and not directly upon opponents’ types draws.
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Bayesian-Nash Equilibrium

Definition 16. A Bayesian-Nash Equilibrium of a Bayesian game I' is a Nash equilibrium of the

strategic-form game G = (N, {gi}ieﬁ" {4}, where:

1. Players. The set of playersis N = x ;cx {j x T}}, e.g. playeri = (j,t;) € N.

2. Strategies. Foreach i = (j.t;) € N with j € N the set of strategies is S; = A; forall t; € T}.

3

Payoffs. For each i = (j.t;) € N with j € N the vNM utility function @, : S — R is

Qi(sivs—i) = ) pi(t—jlty) x wi(si s—5(t—5); t. t—5),

E'—jET—j

where for each player-type pair’s strategy, s ) = s§(7) € Apfor7 € Ty, and s; € 8, = Aj.

Players are all combinations of players and types: “player-type pairs”. Strategy sets for each player-
type pair is the action set for the associated player. Payoffs to strategy profiles are expectations over
beliefs of payoffs to the associated action profiles of each player-type pair.

A Bayesian-Nash equilibrium is a situation in which no player-type pair has a profitable deviation.
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Bayesian Strategies

Sounds complicated...but isn't difficult to apply.
A Bayesian Strategy for a i € N is a mapping from their types to their actions s; : T; — Aj.

It is straightforward to extend this to mixed strategies. A strategy is then a mapping from a given
player’s type space to the set of probability distributions over their action space:

£ - T{ — &(ﬁ-’li)

The Bayesian-Nash equilibrium strategy profiles from the earlier game are:

1. Player 1 plays s;(1)

C'. Player 2 plays s;(t3) where s5(1) = C' and s3(h) = P.
,2). Player 2 plays s5(l) = P and s2(h) = (2, 3).

2. Player 1 plays s;(1)

Lalby Ll

(
3. Player 1 plays s;(1) = (3. 3). Player 2 plays s5(1) = (3. 3) and s3(h) = P.
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Another Noisy Battle of the Sexes

Consider the following variation. Player 1 (row) does not know what payoffs player 2 (column)
receives from playing Pub. In fact, there is some “noise” on player 2’s payoff, 6. Likewise player 1's

payoff to Cafe is perturbed by some &, from the perspective of player 2. Suppose 9. £ ~ U]JO0, al.

Cafe Pub
Cafe 3 S
A= g 1+ ¢
Pub 0 44 4
0 3

The payoff matrix above illustrates this game. A Bayesian strategy for player 2 maps all their types
(of 8) to an action (either Cafe or Pub). Consider the following “cut-off” strategy for player 2:

If § < 6 play Cafe, if § > 4 play Pub:

A pure strategy. The probability that player 2 plays Cafe, from player 1's perspective, is d /a.
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A Pure-Strategy Equilibrium

’.;‘e_l =5

What should player 1 do given player 2 uses this strategy? Play Cafe if
5 )
1——)23(1——) & £>2-6
e (1

[4—1—5]2—!—[14—5](

Thus player 1 defines their cut-off strategy with # = 2 — 60 /a as:
If ¢ > Z play Cafe, if ¢ < Z play Pub.

2a

Given this strategy, an analogous argument yields § = 2 — 6&/a. Solving for & and &:

“:’|

y =

:B—j—a

Thus, there is a Bayesian-Nash equilibrium in cut-off strategies where player 1 plays Cafe if ¢ =
2a /(6 + a) and Pub otherwise. Player 2 plays Pub if 6 > 2a /(6 + a) and Cafe otherwise.
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Purifying Bayesian-Nash Equilibria

Recall the perfect-information battle-of-the-sexes payoffs with e = = O:

Cafe Pub
3 1
Caf
afe 4 i
Pub 2 =
0 3

Recall that the mixed Nash equilibrium involves player 1 playing Cafe with probability 2, and Pub
with 1. Player 2 plays Cafe with probability 5 and Pub with 2.

Notice that the probability with which player 1 plays Cafe in the Bayesian game is

2a 2
Py g = =1— - — as a — 0.
6+ a 6+ a 3
a — 0 collapses the distribution to a point at 0. The pure-strategy Bayesian-Nash equilibrium

resembles the mixed-strategy Nash equilibrium of the unperturbed game: “purification”.
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Purification

“The probability distributions over strategies induced by the pure-strategy (Bayesian-

Nash) equilibria of the perturbed game converge to the distribution of the (mixed Nash)
equilibrium of the unperturbed game.”

This is Harsanyian purification. The statement can be made precise, but the idea is simple:

A mixed-strategy Nash equilibrium of an unperturbed game closely resembles a pure-strategy
Bayesian equilibrium of a perturbed game when the perturbations become vanishingly small.

Does this fact offer a justification for the prediction of mixed equilibria? Does it blur the distinction
between pure and mixed equilibria? Possibly. ..

e Notice there are other Bayesian-Nash equilibria of the perturbed game...
e Player 1 plays Cafe for all £, and player 2 plays Cafe for all 6.
e Player 1 plays Pub for all ¢, and player 2 plays Pub for all 4.
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F. The Possibility of Mistakes: Trembling-Hand Perf  ection

Equilibrium eliminates strictly dominated strategies. What about weakly dominated
strategies?

A Nash equilibrium is (normal-form) trembling-hand perfect if there is some sequence of
tremble-perturbed games (define; a weakly dominated strategy becomes strictly
dominated in a tremble-perturbed game) converging to the original game for which there is
some sequence of Nash equilibria converging to that equilibrium (MWG Definition 8.F.1).

E.g. (T, L) or (T, R) or mixtures in Give Me a Break; but only (T, L) in Give Us a Break.

1 1 1 0
T |1 0 T |1 0
0 0 0 0
B |0 0 B |0 0

Give Me a Break Give Us a Break
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Theorem: A Nash equilibrium is trembling-hand perfect iff there is a sequence of totally
mixed strategies converging to the equilibrium such that each player's equilibrium strategy
IS a best response to every element of the sequence (MWG Proposition 8.F.1).

Theorem: In a trembling-hand perfect equilibrium, no weakly dominated strategy can be
played with positive probability (MWG Proposition 8.F.2). But a trembling-hand perfect
equilibrium may include strategies that do not survive iterated elimination of weakly
dominated strategies, such as (T, R) in Give Me a Break. Any strict equilibrium (such as
(T, L) in Give Us a Break; define) is trembling-hand perfect. Any finite game (define) has a
trembling-hand perfect equilibrium in mixed strategies, just as we will see below that any
finite game has an equilibrium in mixed strategies.

Informally define extensive-form trembling-hand perfect equilibrium as trembling-hand
perfect equilibrium in the agent normal form (MWG Definition 9.BB.1).
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Chapter 9. Dynamic Games

A. Introduction
B. Sequential Rationality, Backward Induction, and Subgame Perfection

In sequential games some useful ideas depend essentially on the extensive form. Recall
Ultimatum Contracting with Observable Proposal.

Two players, R(ow) and C(olumn); two feasible contracts, X and Y. R proposes X or Y to
C, who must either accept (a) or reject (r).

If C accepts, the proposed contract is enforced. If C rejects, the outcome is a third
alternative, Z.

R prefers Y to X to Z, and C prefers Xto Y to Z. R's payoffs: u(X) = 1, u(Y) = 2, u(Z) = 0;
C's payoffs: v(X) =2, v(Y) =1, v(Z2) = 0.

Ultimatum Contracting with
Observab le Proposal
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Ultimatum Contracting with
Observable Proposal

The intuitive outcome (Y; a, a) is an equilibrium. But there are other equilibria, (Y; r, a) and
(X; a, r), one with the counterintuitive outcome X, which survive iterated strict dominance.

More generally, whenever play doesn't reach a given node in an equilibrium, equilibrium
doesn't restrict the decision at that node at all. (Why?)

In the equilibria (Y; r, a) and (X; a, r), C’'s strategy plans to reject one of R's possible
proposals, irrationally, and R's anticipation of that keeps R from making that proposal.

As a result, C’s irrationality does not reduce his strategy’s payoff in the entire game.

Such equilibria are said to involve "incredible threats"; misleadingly because the threat is
only implicit in the expectations that support the equilibrium, not explicit like a real threat.

Can rule out some such incredible threats via the notion of subgame-perfect equilibrium.
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The basic idea is that if our “solution concept” for an entire extensive-form game is
equilibrium, we ought to be willing to apply it to the games that remain following partial
play of the game, i.e. our solution concept ought to be time-consistent (off as well as on
the equilibrium path, so stronger than the decision-theoretic notion of time-consistency).

A subgame is a subset of a game that starts with an information set with a single node,
contains all and only that node's successors in the tree, and contains all or none of the
nodes in each information set (MWG Definition 9.B.1, Figure 9.B.5).

Subgames and Imperfect Information

A subgame must always start at a singleton information set. It must also never break an information
set. So, for example, there is no subgame starting at player 2’s move in the game below:

_ =
2 121
- E— 3 |

4 1 5

4 1 5

4 1 0 2

Nor is there any subgame starting from player 3’s move. In fact, this game has only one subgame
— the whole game. Backward induction and subgame perfection do not help refine the equilibria.
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A subgame-perfect equilibrium is a strategy profile that induces an equilibrium (hence in
fact a subgame-perfect equilibrium) in every subgame (MWG Definition 9.B.2).

In Ultimatum Contracting with Observable Proposal, the intuitive outcome (Y; a, a) is a
subgame-perfect equilibrium; but (Y; r, a) and (X; a, r) don’t specify equilibria in the
subgames in which C rejects.

Ultimatum Cont?acting with
Observable Proposal

Strict dominance has no power in normal forms derived from extensive-form games,
because contingencies off the equilibrium path create payoff ties between strategies.

As a result, there can be unintuitive rationalizable and even equilibrium strategies.

But subgame-perfect equilibrium mimics iterated weak dominance in a particular order,
which the extensive form makes salient.

That order yields a particular, often intuitive equilibrium in undominated strategies.
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Theorem : Characterization of subgame-perfect equilibria in finite games of perfect or
imperfect information via backward induction, plugging in payoffs of equilibria in subgames
and folding back (MWG Proposition 9.B.3, Example 9.B.3 predation game).

Entry Deterrence with an Explicit Threat

Modity the entry deterrence game to allow for an explicit threat at a cost of e. ..

|
Silent Threat
1 I Truce ——— Enter Enter Truce 1
I E E I =
1 1l —=¢
Fight Stay Out Stay Out Fight
{ L 1
—1 0 0 i
—1 2 2 —c¢ —1 —¢

There are 5 subgames. Need to find a Nash equilibrium of each, or use backward-induction. .. there
are many Nash equilibria, but only {(Silent, Truce,Truce), (Enter,Enter) } is subgame perfect.
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Subgame-perfect equilibrium in a game with time-sequenced strategy choices yields
insight into the roles of observability and irreversibility in commitment.

Without observability decisions are strategically simultaneous, and their temporal order
doesn't alter the game’s feasible strategies, payoffs, normal form, equilibrium outcomes,
or subgame-perfect equilibrium outcomes.

With observability, but without irreversibility (or at least without costly reversibility, in which
case the decision to incur those costs is what is really irreversible), the initial decision
inessentially alters the game’s feasible strategies, payoffs, and normal form, and has no
effect on the game’s equilibrium outcomes or subgame-perfect equilibrium outcomes.

In particular, a player’s cheap talk announcement (one with no direct payoff effects) of his
intention to choose a particular strategy has no effect on the game’s equilibrium or
subgame-perfect equilibrium outcomes, although it might help to focus players’ beliefs on
a particular equilibrium in games like Alphonse-Gaston or Stag Hunt.
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Theorem : Existence of pure-strategy subgame-perfect equilibrium, and (if no ties)
unigueness of subgame-perfect equilibrium in finite games of perfect information.
Existence of subgame-perfect equilibrium in games of imperfect or incomplete information
(MWG Proposition 9.B.2, generalizes Zermelo's Theorem; MWG Example 9.B.3).

Trembling-hand perfect equilibria are subgame-perfect, but not vice versa. (Why?)

Theorem : In finite-horizon games (even with imperfect information) with unique equilibria
and immediate observability of pure strategies each period, and payoffs summed over
periods, subgame-perfect equilibrium strategies are the same as the concatenated
equilibria of the games played each period. lllustrate proof in finitely repeated Prisoner's
Dilemma (MWG Proposition 9.B.4).

Theorem : In finite-horizon games with multiple equilibria and immediate observability of
pure strategies each period, and payoffs summed over periods, subgame-perfect
equilibrium strategies can differ from the concatenated equilibria of the games played
each period (MWG Proposition 9.B.9, illustrated below).
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Subgame-perfect equilibrium is not adequate as a formalization of the idea of sequential
rationality, because most games that pose nontrivial sequential strategic questions have
no proper subgames, so that any equilibrium is subgame-perfect. (MWG Example 9.C.1.)

Subgame Perfection and Imperfect Information

Imperfect-information games may have no “proper” subgames: all equilibria are subgame perfect.

A 2
1 6 z .
k A Al 2 6 2 6
B [rememmmmes 2 — L[ o 1 3 9
l \r‘ E/ T R i 3 I 5
0 3 1 1
1 2 3 5

The above game has no proper subgames. All Nash equilibria are subgame perfect:

e There is a subgame-perfect equilibrium at { A, ['}. This yields payoffs of (2. 6).
e There is a subgame-perfect equilibrium at { L, v }. This yields payoffs of (3, 2).

e There are also mixed equilibria (A with probability 1 and I with probability p > 3).

Surely player 2 will play r if called upon to move? 1 should play L! = sequential rationality.
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Modifying the Extensive Form

Rewrite the extensive-form game from the last slide in the following way:

B A |2
1 1 "

L R

S 2
AT N
0 3 1 1
1 2 3 5

This has (almost) the same strategic form. But there is now a subgame starting from history (B).

e There is a unique Nash equilibrium of this subgame: {L, r}.
e A subgame-perfect equilibrium must induce a Nash equilibrium in each subgame.

e Hence r mustbe played in equilibrium. {(B, L), r} is the unique subgame-perfect equilibrium.

Extend notion of perfection to games with imperfect/incomplete information next week.
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Extensive-Form Games with Imperfect Information

When there is imperfect information, there may be no proper subgames — so subgame perfection
may coincide with Nash equilibrium and hence not provide tighter predictions.

e Sometimes it will be possible to modify the extensive form...
e ...and subgame perfection may once again rule out some “incredible” threats.

e Often modification of the extensive form will still leave multiple subgame-perfect equilibria.
In this case, further refinements are possible — motivated by players’ reasoning.

e Forward Induction may reduce the number of subgame-perfect equilibria. ..
e ...via the iterated deletion of weakly dominated strategies.
e Perfect-Bayesian equilibrium involves the introduction of “beliefs” for players...

e ...and can itself be refined: for example, via the intuitive criterion.
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Games with no Proper Subgames

Recall the follow ing game. It has no proper subgames. All Nash equilibria are subgame perfect.

1 2
0

\ Y

3, pesomss 3

: | L]
4 1 5 2
4 5 | 5 2
4 1 0 2

If player 3 is called upon to move, cannot observe what player 1 has done, and hence whether or

not player 2 has had a move. But 3's optimal action depends upon what has happened.

e Does modifying the extensive form help make a prediction? If not. ..

e What does player 3 believe has happened? Will this help predict?
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C. Sequential Rationality and Out-of-Equilibrium Be liefs

A system of beliefs is a probability distribution over nodes, which gives the relative
likelihoods of being at each node in an information set, conditional on having reached it

(MWG Definition 9.C.1).
Beliefs

Recall Definition 23: a strategy for player i € N is a function mapping each history where i is
called upon to move (thatis, P(h) = i) to an action A(h). Recall that A(h) = A(R")if h, h' € L.

Add to this the notion of a belief. Each player assigns probabilities to each possible history within
a particular information set, and does so for every one of their information sets,

Definition 26. Beliefs for i € N are probability distributions i I, I; — [0, 1] foreach I; € Z,.

An assessment or prospect is a strategy profile and a set of beliefs for each player (s, p).

Rather than equilibria being particular strategy profiles, they will now be particular assessments.
Beliefs are part of any equilibrium.

These may include beliefs over information sets that are never reached. It is vitally important, when
calculating and writing down equilibria, to remember this.
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Applying Beliefs

Defining player 3's beliefs in the example from earlier (a version of “Selten’s Horse”) yields:

3
A A
1 2 3
0
D D
\ \
p| 3 p----- 3 [1—p
L R L R
L L
4 1 5 2
4 1 5 2
4 1 0 2

A strategy profile is an action for each of the three players,e.g. {A, A, L}.

Beliefs are given by the probability distribution (p. 1 — p) over player 3's information set.
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Optimality and Beliefs

Suppose the belief of player 3 that history () has occurred is set at p.

P| 3 F----- 3

K R L
| Y

1 5

1 5

4 1 0

Payoff from L and K

Payoff from L

- —— Payoff from R

Probability (1 — p) that history (A, D) occurs.

The payoffs for L and R are L =4pand R = p + 2(1 — p). L is a best response whenever:

2 3
L>R <« 4p2p+2(1-p) < P g {Drl—pﬂg]-
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Inconsistent Beliefs

Set p > 2. Compute best responses, player 3 strictly prefers L. So...

3
A A
1 2 - 3
0
D D
L

R

-4 1 D 2
4 1 5 2
-4 1 0 2

Player 2 will play D), so player 1 will play A. But now the belief p is inconsistent with the play of
the game: history (A, D) occurs with probability one, not with probability 1 — p < 2.
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Consistent Beliefs

Set p < % Now player 3 (weakly) prefers to play R, so...

3
A A
1 2 3
0
D D
p| 3 pe=e=- 3 [1—»p
L R i R
)
4 1 5 2
4 1 5 2
4 1 0 2

Player 2 will play A, and player 1 will play A. The belief p is not inconsistent with the play of the
game. It is not however, uniquely defined. For any such p there is a “ perfect-Bayesian equilibrium”.
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A strategy profile is sequentially rational at an information set if no player can do better,
given his beliefs about what has happened so far, by changing his strategy (MWG
Definition 9.C.2). Generalizes notion of sequential rationality to games like MWG Example
9.C.1, where subgame-perfect equilibrium does not capture idea of sequential rationality.

A strategy profile and system of beliefs is a weak perfect Bayesian equilibrium if the
strategy profile is sequentially rational given the beliefs, and the beliefs are derived from

the strategy profile using Bayes' Rule whenever possible (MWG Definition 9.C.3, MWG
Example 9.C.1).

("Weak" because the definition is completely agnostic about zero-probability updating.)
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Perfect-Bayesian Equilibrium

Bringing together ideas of the optimality of strategies given beliefs and the consistency of beliefs
given equilibrium play motivates the notion of perfect-Bayesian equilibrium.

Definition 26. A (weak) perfect-Bayesian equilibrium is a strategy profile (see definition 22) and a
set of beliefs for each player (see definition 25), (s*, p#*) such that:

1. At every information set I; player i’s strategy maximises their payoff, given the actions of all
the other players, and player i's beliefs.

2. At information sets reached with positive probability when s” is played, beliefs are formed
according to s and Bayes’ rule when necessary.

3. At information sets that are reached with probability zero when s* is played, beliefs may be
arbitrary but must be formed according to Bayes’ rule when possible.

Intuitively: optimal actions given beliefs and consistent beliefs in equilibrium.

Note. A formal definition will not be given here, it takes a little too long. See Fudenberg and Tirole (1991), pp. 331-333.
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Theorem : A strategy profile is an equilibrium in an extensive form game if and only if there
exists a system of beliefs such that the profile is sequentially rational given the beliefs at
all information sets that have positive probability of being reached by the profile; and those
beliefs are derived from the profile using Bayes' Rule whenever possible, i.e. except for
events that have zero probability in the equilibrium (MWG Proposition 9.C.1).

A strategy profile and system of beliefs is a sequential equilibrium if the profile is
sequentially rational given the beliefs, and there exists a sequence of completely mixed
strategies converging to the profile, such that the beliefs are the limit of beliefs derived
using Bayes' Rule from the totally mixed strategies (MWG Definition 9.C.4).

Sequential equilibrium strengthens weak perfect Bayesian equilibrium by requiring more
consistency of zero-probability beliefs, adding equilibrium play off equilibrium path.

A sequential equilibrium is trivially a weak perfect Bayesian equilibrium, but not vice versa.
Sequential equilibrium is closely related to perfect Bayesian equilibrium (MWG 452).

Theorem : A sequential equilibrium is subgame-perfect, but not vice versa. (MWG
Proposition 9.C.2, MWG Example 9.C.1.)
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Example: Milgrom and Roberts' (1982 Econometrica) Model of Informational Entry
Deterrence (Kreps 463-480, Figure 13.2 at Kreps 473).

Two expected-profit maximizing firms, Incumbent and (potential) Entrant, choose
Quantities, perfect substitutes, | in both of two periods, E only in second period.

| has two possible unit costs, constant across periods, which only it observes: $3 with
probability p and $1 with probability 1- p.

E's unit cost is certain and commonly known by both to be $3.

Both firms have fixed costs of $3.

p and the rest of the structure are common knowledge.

(Example is typical in having private information only one level below the top; but method
can handle more general information structures, which however tend to look contrived.)
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In the first period, | observes its unit cost ¢ and chooses Q, which determines P =9 - Q.

In the second period, E observes the first-period P and chooses whether or not to enter.

If E enters, | and E are Cournot competitors in the second period, taking into account
whatever information is revealed in equilibrium by I's first-period P.

If E stays out, | is a monopolist in the second period.

The analysis is hard because the privately informed | plays an active role. I's first-period
actions can signal its type to E, and in equilibrium both | and E must weigh the indirect,
informational payoff implications of I's first-period decisions against their direct effects.
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First analyze the Cournot subgame following entry, given E's beliefs.

If E assesses that ¢ = 3 has probability y, the Cournot equilibrium is Qg = 2(2+u)/3, Q)|(c =
1) = (10 - w)/3, Q||(c = 3) = (7 - W/3, with g = 4(2 + p)2/9, not including its fixed cost of 3.

Thus E enters iff 4(2 + y)2/9 > 3, or y > 0.598. E.g., if E knows ¢ = 3, | and E each set Q; =
2and getti=1 (=4 - 3), soit's profitable to enter. If E knows c =1, | sets Q, = 10/3 and E
sets Qe = 4/3 and gets g = -11/9, so it's not profitable to enter.

Now consider I's first-period decision. The first-period monopoly optimum is Q =4, P =5,
m=13ifc=1;Q=3,P=6, m=6ifc=3.

However, there is no weak perfect Bayesian equilibrium in which each type of | chooses
its monopoly optimum in the first period.

For in such an equilibrium, E could infer I's type by observing P, and would enter if P = 6,

believing that ¢ = 3. But then the high-cost type of | would get 1™ = 6 in the first period and
T = 1 in the second, less over the two periods than the 1 = 5 and 1 = 6 it could get (in the
hypothesized equilibrium) by switching to P = 5 and thereby preventing E from entering.

The conclusion that there is no equilibrium of this kind does not depend on zero-
probability inferences, and therefore holds for weak perfect Bayesian equilibrium or any
stronger notion. Only one type needs to want to defect to break the equilibrium, and this is
enough to invalidate it as a prediction even if that type is not realized. (Why?)
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Now consider whether there can be a weak perfect Bayesian pooling equilibrium, in which
both types of | charge the same price with probability one, and are therefore not
distinguishable in equilibrium.

(Looking for each possible kind of equilibrium like this is a characteristic form of analysis.)
If p < 0.598, there is a sequential (and weak perfect Bayesian) equilibrium in which:

(i) each type of | sets P =5 in the first period,;

(i) E sticks with its prior belief p < 0.598 and therefore stays out if P < 5 (in any weak
perfect Bayesian pooling equilibrium, E must stick with its prior on the equilibrium path);

(i) E infers that I's costs are high and enters if P > 5; and
(iv) entry leads to the Cournot equilibrium with E believing (as common knowledge) that I's

costs are high.

In this pooling equilibrium, the high-cost | "hides behind" the low-cost | by giving up some
first-period profit to mimic a low-cost I; and both types of | successfully forestall entry.
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To see that these strategies and beliefs are consistent with sequential equilibrium, note
that:

(i) E's strategy is sequentially rational, given its beliefs;
(i) the beliefs are consistent with Bayes' Rule on the equilibrium path;

(i) when ¢ = 1, | charges its favorite first-period price and prevents entry, the best of all
possible worlds for I; and

(iv) when ¢ = 3, the only way | could do better is by raising P above 5, but this would
cause E to enter and thereby lower total profits.

(Assuming the most pessimistic conjectures about consequences of deviations from
equilibrium is a characteristic strategy for identifying the largest possible set of candidates
for a weak perfect Bayesian equilibria.)

Note that the beliefs used here also satisfy a natural monotonicity restriction, in that a
higher P never lowers E's estimate that I's costs are high.
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If p > 0.598, there is no weak perfect Bayesian pooling equilibrium.

For such an equilibrium would always lead to entry, making a high-cost | unwilling to
charge other than its first-period optimal monopoly price.

A low-cost | would prefer a different price, even if it didn't prevent entry.

However, if p > 0.598 (or in fact for any p) there is a separating (screening, sorting)
sequential (hence weak perfect Bayesian) equilibrium in which:

(i) a high-cost | charges its optimal monopoly price, 6, in the first period,;
(i) a low-cost | charges 3.76 in the first period,;

(i) E infers that costs are high if P > 3.76 and therefore enters;

(iv) E infers that costs are low if P < 3.76 and therefore stays out;

(v) both types of | charge their monopoly price in the second period if there is no entry;
and

(vi) entry leads to the Cournot equilibrium with E believing (as common knowledge) that I's
costs are high.
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In this separating equilibrium, a low-cost | successfully distinguishes itself from a high-cost
| by distorting its first-period price enough to prevent a high-cost | from mimicking it.

Entry occurs exactly when it would with complete information, and the only effect of
incomplete information is the distortion of the low-cost I's first-period price, which benefits
consumers and hurts the low-cost I.

That the presence of alternative "bad" types hurts "good" types is typical.

To see that these strategies and beliefs are consistent with sequential equilibrium, note
that:
(i) E's strategy is again sequentially rational, given the hypothesized beliefs;

(i) the beliefs are (trivially) consistent with Bayes' Rule on the equilibrium path (and again
monaotonic);

(i) a low-cost | would like to set P > 3.76 in the first-period, but that would lead to entry
and reduce total profits (easy to check); and

(iv) a high-cost | gets 11 = 6 in the first period and 11 = 1 following entry in the second, just
above what it would get by setting P < 3.76 and forestalling entry (3.76 was chosen to
make it just too costly for the high-cost | to mimic the low-cost | in this equilibrium).

This didn’t depend on p, so this is a weak perfect Bayesian equilibrium for any p.
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D. Reasonable Beliefs, Forward Induction, and Norma | Form Refinements

Forward induction is a refinement that restricts beliefs to those that reflect plausible
inferences from players’ past decisions, which often corresponds to a particular kind of
iterated weak dominance in the normal form (MWG Figure 9.D.1).

Battle of the Sexes Revisited

“Two M.Phil. students need to meet up (again) to discuss their love for economics. They can meet
in either the pub or the cafe. The first likes coffee, and prefers the cafe. The other is a big fan of
beer

and prefers the pub. They would both rather meet (wherever it may be) than miss each
other. The first student, however, always has the option not to go at all. A deep passion for childish
PlayStation-type activities leads them to obtain a bigger payoff staying at home than they would
receive from going to the pub.”

1 Home 35
0
Cafe Pub
R e 2
Cafe \ Pub Cafe / Pub
4 1 0 3
3 1 0 4

98



Multiple Subgame-Perfect Equilibria

This game has no proper subgames, so all Nash are subgame perfect. Modify extensive form:

Out Home | 3.5
1= 1 =
0
Cafe Pub
2 p-mmmmmm oo 2
Cafe \ Pub Cafe / Pub
4 1 0
3 1

Home, Pub
Home, Cafe
Qut, Cafe
Qut, Pub

Cafe Pub
3.5 0 35 0
3.5 D 3.5 0

4 3 1. I

0 O 3 4

This modification still has multiple pure-strategy subgame-perfect equilibria. . .

e Two (pure) Nash equilibria of the subgame starting at (Out): {Cafe, Cafe} and {Pub, Pub}.

e Every strategy combination of the subgame at (Home) is a Nash equilibrium.

e Thus {(Out, Cafe), Cafe} and {(Home, Pub), Pub} are subgame perfect.




Forward Induction

But is there something fishy about the equilibrium {(Home, Pub), Pub}? Why would player 1 ever
choose to go to the Pub? They could do better by staying at Home.

e Hence, given that they choose Out, surely they intend to choose Cafe?
e {(Out, Cafe), Cafe} is the only equilibrium that survives forward induction.

e This requires a consideration of player 2's beliefs about player 1's action.
Equilibria that survive forward induction will survive the iterated deletion of weakly dominated
strategies (again, the order of deletion can matter).

e Notice that (Out, Pub) is strictly dominated by (Home, Pub) for player 1.
e In the reduced game (Pub) is weakly dominated by (Cafe) for player 2.

e (Home, Pub) and (Home, Cate) are now strictly dominated for player 1.

More formally: forward induction requires an equilibrium to remain an equilibrium even when
strategies dominated in that equilibrium are removed from the game, and this procedure is iterated.
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Chapter 12. Market Power
A. Introduction
B. Monopoly Pricing

Monopoly

Consider a single firm in an industry. It faces a demand curve z(p), and so will choose p via. ..

max 7(p) = mgx{p:r(p) — E(:r('p))} & maxm(q) = max {P(Q)fj — c‘-(cr)}

At an optimal quantity, ¢* > 0 therefore, a first-order condition holds: p'(¢")¢" + p(q¢*) = '(¢")

Marginal revenue is 7'(q) = p'(q)q + p(q).

L]

e Marginal cost is ¢/(g). Optimum = ¢'(¢*) = r'(q").
;— e Demand is downward sloping = p'(-) < 0. So
’:_._: = I E .

p(a’) >c(q)
e Recall perfectly competitive price p*™ = ¢/(q™).
| | |
\_ e Soq" < q"and p* > p" = deadweight loss
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C. Static Models of Oligopoly: Bertrand, Cournot, p  roduct differentiation

Importance of separating assumptions about structure and behavior. Different "solution
concepts"” as equilibrium or subgame-perfect equilibrium in different games.

Static Oligopoly

In the remainder of this lecture, the game-theoretic ideas and concepts already introduced are
applied to the standard industrial organisation models of static oligopoly. For example:

Pricing. Two firms selling identical products must choose their prices. The firm with the lower
(=)
price gains the entire market, but firms would rather charge high prices.

Production. Two profit-maximising firms must choose the scale of their output. Increasing output
increases sales, but depresses the market price (which affects both firms).

Investment. Two firms choose investment levels. The firm with the higher investment wins the
market, but firms would like to invest as little as is necessary to do so.

The concepts from the previous two lectures are applicable to these games. ..

1. Represent such interactions as strategic-form games.
2. Iteratively delete strictly dominated strategies where possible.
3

. Construct best-reply functions for the players (and plot them).

o

Find pure-strategy and mixed—atrateg}r Nash equi]jbria.
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Theorem: Bertrand duopoly with constant returns to scale, perfectly substitutable
goods: Simultaneous price choices by firms yields ¢ ompetitive outcome as unigue
equilibrium (MWG Proposition 12.C.1).

Bertrand Competition

“Two firms selling identical products must simultaneously choose what price to charge. The firm
that charges the lower price gains the entire market, but firms would rather charge high prices. A
group of consumers will only buy if the price is less than p. For simplicity, and without loss of

generality, the marginal cost of production is zero.”

Players. Two firms labelled i € N = {1.2}.
Strategies. Player i chooses price p; € [0, 0o).

Payoffs. Payoffs are profits. There is a unit mass of consumers. If p; = p» the market is split 50:50.

Di p: < min{p, p;},
e — pi/2 pi=p; <P
0 p; = pand/or p; > p;.

103



Bertrand-Nash Equilibrium

There is a unique pure-strategy Nash equilibrium at p; = p, = O

— If the lowest price were negative, then that firm will make a loss.
— If the lowest price were strictly positive, then opponent should undercut.
— If one price is zero, e.g. 0 = p; < p; then tirm i should raise its price.

— Hence only possibility is p; = ps = 0, where there is no better reply.
Notice that best-reply functions are not well-defined everywhere:

— Suppose, for example, that 0 < p; < p.
— Always a best-reply for player i to undercut player j.
— But if player i undercuts by &, then £ as small as possible without = = 0.

— Mathematically, the set of feasible payoffs is open above, cannot attain a maximum.
The Bertrand specification is degenerate — owing to the discontinuity in payoffs.

Be careful when using continuous action sets!
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Theorem: Cournot duopoly with constant returns to s cale, perfectly substitutable
goods: Simultaneous quantity choices by firms yield s equilibrium (not necessarily
unique) with prices between competitive and monopol y prices (MWG Proposition
12.C.2, Example 12.C.1).

Cournot Competition with Linear Demand

“Two profit-maximising firms simultaneously choose production quantities of a homogeneous
good. Market price is decreasing in total quantity @, with linear demand, so that p = a — bQ.

There are constant unit production costs of ¢ for each firm.”

Players. Two firms labelled i € {1,2}.
Strategies. Player 1 chooses quantity = € [0. co) and player 2 chooses quantity y € [0, co).

Payoffs. Payoffs are profits. That is, for players 1 and 2 respectively:

m=z[la—blr+y)—¢c] and wa=yla—-0blz+7y)— |-

=21

. Fix firm 2's strategy. Calculate a best reply for firm 1, yielding a best-reply function.

]

. Fix firm 1's strategy:. Calculate a best reply for firm 2: a second ["IESl—l‘Epl}’ function.

3. Combine the two best-reply functions. Solve to find a Nash equilibrium.
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Cournot Best-Reply Functions

Fixing y, profits for player 1 are m; = x [a — b(x 4 y) — ¢]. This is strictly concave in x, so can
calculate first-order conditions for a solution:

f_}?T]_

— =Ja—-b(r+y)—c —br=a—2bxr — by —c=0.

x

Rearrange this to obtain: 2bx = a — by — ¢ which implies By (y) = (a — by — ¢) /2b.

1.0
\\\ e Plot of reaction function for a=b=1, ¢=0.
0.8 — ----B 5% .
"\\ 1(¥) e This is downward sloping;:
R :
£ \ 9B:y) 1 .4
o 0.4 N Ay 2
\
02— kY s ; :
\ e (Quantities are strategic substitutes.
0.0 i i A i i | e This is a submodular game.

00 02 04 06 08 1.0

Frm1: =
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Cournot-Nash Equilibrium

At a Nash equilibrium, players mutually best-respond: ¥ = Bs(x) and = = B(y). So,

a— by —c a—bxr —ec
= and y = .
2D 2b
Solve these two equations simultaneously. The solution will be symmetric since the first-order

conditions (e.g. bx = a — b(x + y) — ¢ = a — bQ — ¢) depend only upon Q.

T
‘\‘ e From symmetry: © = (a — bz — ¢)/2b.
) wrmzies .

48 "x\ 1(y) e Multiplying up: 2bx = a — bxr — c.
L, Ba(z ; :
g 06— ‘x‘ 2(=) e Adding a term to both sides: 3bx = a — e.
E 6.d— e So, finally: z* = y* = (a — ¢) /3b.

" e Plot the B; functions and equilibrium.

A

0.0

00 02 04 06 08 1.0

Firm 1: =
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Iterative Deletion of Strictly Dominated Strategies

The Cournot-Nash equilibrium strategies are the only survivors from the iterated deletion of strictly
dominated strategies. To see this, simplify the gamea =b=1lande=0,s0m = (1 — = — y).

Consider the strategies = & ( % oc). These are strictly dominated by = = %. The profits from

playing these strategies are respectively, (1 — = — y) and 3(3 — v). Suppose to the contrary
r(l—z—y)>1/2—y)/2 & ({1/2—-z)y>1/4—x+2°

Sincey = 0,and = € (% o0 ), the left-hand side is less-than-or-equal-to zero. The right-hand side

is minimised at zero when = = £, and therefore is positive, a contradiction. Similarly for y > 3.

Now consider = € [0, 1). These strategies are strictly dominated by = = 1. The payoffs are

(1 — = —y) and £(3 — y). Suppose again, to the contrary, that

t(l—z—y)>B/4—y)/4 < ((1/4—z)y>3/16 —z+ 2"

Now 1y < % so this is true Vy if and only if (é = -_1')% > 1—?;‘) —r+rPe 0> 11—6 — %.I + 7%, Which
1

is a contradiction. This process continues until * = y = 3 remains.
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Equilibrium in General Cournot Games

General: n firms, firm i has constant marginal cost ¢;, inverse demand FP(Q).

Maximise profits for firm i. If P(Q) < ¢; then g; = 0. Otherwise:

Uy ' P(Q) — G4
mi = q;| P(Q) — ¢; = - = | — B + P — {)) — i = —
a[P(Q) — ci 24, (Q) +a:P(Q) q P/(Q)

Individual quantities are uniquely defined by industry supply Q.
Thus, if ¢; = c for all 4, then any equilibrium is symmetric.
Sum the first-order conditions for all n firms, divide by n to obtain:

nP(Q—-Nial , QPQ) _, . P@-—z¥i,a_ 1

P(Q) P(Q) P(Q) ne

Hence outcome determined by industry-average of marginal cost.
In games where there is a single “state variable” (here, () determining equilibria. ..

... the solution boils down to a single fixed-point equation.
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Cournot versus Monopoly and Perfect Competition

Let marginal costs be constant and equal to ¢ for every firm. In n-firm Cournot, from previous slide

PQ) +aP(@=c = nP(Q)+P( qu—rw = P@+P@Z=c
T

e Since P'(-) < 0 (demand is downward sloping), P(Q) > ¢,50 Q < q* (where P(¢") = ¢).
Competitive industries produce more, and at a lower price.

e Now, suppose the monopoly optimal quantity is q*. Suppose g* > Q.
e Take a particular firm 7, and let firm i increase g; so that the new industry quantity = ¢*.
e Joint profits must increase (they are maximised at g™ by definition).

e But aggregate quantity has risen, so price has fallen, so the other firms (who didn’t alter their
quantities) are worse off. As joint profits have risen, i must be better off =- a profitable deviation.

e Soq" < Q.Butq® # Q since above equation can’t be satisfied by same Q atn > land n = 1.

Monopolies produce less, and at a higher price.

110



The Hotelling Line

Two firms are located at either end of a unit interval [0, 1]. A unit mass of consumers is distributed
uniformly on the interval. The firms charge p; for a good produced with constant marginal cost c.

e The cost of buying from firm i is p; + td. 1 is a transport cost and d is the distance from firm .
e A particular consumer z € [0, 1] will buy from ¢ (positioned at0) if p; + tz < p; + t(1 — 2).
e The indifferent consumer 2 satisfies p; + t£ = p; + t(1 — £). Thus

P L+ Pj — Pi
2t

e Assuming £ € [0, 1], if i charges p; and j charges p; then firm i's demand is given by

1 Py — 1y
2+ 2t

&y

qdi =

o IfZ > 1theng; =1, and if £ < 0 then ¢q; = 0. (Note this assumes consumers always buy one
of the products, this can be guaranteed if their valuation for the good is sufficiently high).

/ Firm 1 Firm 2 \
3 I Fi
[« _J gure 12.C.5
Ti - .
M Consumers Uniformly Distributed on Segment The linear city.
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Differentiated Products

An alternative interpretation: “Two firms selling differentiated producl‘s simultaneously choose
prices. Total market size is a single unit mass. Suppose that each consumer is willing to pay a large
amount to obtain a product. They do not necessarily buy from the cheapest firm, however.”

e If p; — p; > t then firm i captures the whole market: ¢; = 1 and ¢; = 0.

e If |p; — p;| <t then the split depends on the price difference:

1  p; — p;
g=—p =L
2 2 21

Players. Two firms N = {i, j}.
Strategies. Player i chooses p; € [0, o0).
Payoffs. It p;, — p; > t,thenm; = 0. If p; — p; > t, then m; = p; — ¢. Otherwise

1 pj—pi

Figure 12.C.6
py + 1z X pr+1(1—2) Consumer purchase
v o < v v Y

1 decisions given p; anc
/l ! p p,. (a) Some
. | i ’ consumers do not bu;
! : +t P, + (1 - 2) (b) All consumers buy
' ! pyt1iz ! 2 -
l{ | ™S | vl
|
| | Py I{ 123
| | -
0 Z4 b 1 0 z . 1
;_v_/;_v_gx g v
Buy From No Buy From Buy From Bu}f From
Firm |  Purchase  Firm 2 Firm 1 Firm 2
(a) (b)
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Differentiated Products Best-Reply Functions

Profit is concave in price. Differentiate to obtain the first-order condition

omg  t+p;—2pi+ec

: =50
Op; 2t

Solving for p; yields the best-reply function B;(p;) = (t + ¢+ p;)/2. This is upward sloping since
dB;/0p; > 0. Prices are strategic complements — the game is supermodular.

e This solution applies when |p; — p;| < t. In fact,

c pi <ec—1i,
Bi(pj) =4 (t+c+pj)/2 e—t<p; <3t+ec,
pj—t 3t + ¢ < p;.

Firm j: p

e For an interior equilibrium, p; = (t + ¢+ p;) /2.
e Symmelry ensures p; = p; = p .

e Sop"=(t+c+p")/2 andsop” =t + e

113



D. Repeated Interaction

Complete-information repeated games

Define a repeated game as dynamic game in which same stage game is played over and
over again each period by the same players. The stage game could be anything, even
another repeated game.

View the infinite horizon as only potentially infinite, with conditional probabilities of
continuation bounded above zero and perhaps discounting too.

(More realistic than assuming an arbitrarily specified endpoint is common knowledge?)

The repeated Prisoner's Dilemma is the canonical (but overworked, not representative)
model of using repeated interaction to overcome short-run incentive problems.
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The Prisoners’ Dilemma Again (and Again)

Recall (a version of) the Prisoners’ Dilemma game. Wouldn't it be nice if players could cooperate?

C D
3 5

C

D
5 1

Perhaps if the game is played repeatedly, cooperation would be possible in early periods by
threatening to defect later if cooperation was not observed? Suppose the game is repeated 7' times:

¢ In the last time period (T'), IJ is a dominant strategy for both players.
e In period 7" — 1 neither player can influence future decisions so each will play D.

e This logic continues: iterating back to the first period, both players play D throughout.

Thus the unique subgame-perfect equilibrium involves defection in every period, regardless of
previous play. This is also the unique Nash equilibrium! Why?
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...and Again

Consider a strategy that called upon a player to play €' in some period 1 < ¢ < T'. This is
dominated by a strategy that is identical everywhere except that it calls for D at period t.

Continuing (and tightening) this iterated dominance argument yields a unique Nash equilibrium.

However, this depends upon the uniqueness of the equilibrium in the one-shot game. .. repeating a
game in this manner will usually expand the set of achievable outcomes in the stage game.

L M R
T 0 O 3 4 6 0
M 4 3 0 0 0 O
B 0 6 0 0O 5 5

In the above game { B, R} is not a Nash equilibrium of the stage game, but it can be played in the
first period, as part of a subgame-perfect equilibrium, if the game is played twice.
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Repeated Games with Discounting
A stage game is a (mixed extension of the) strategic-form game G = (N, {S;}ien. {wi}ien).

Definition 27. The repeated game with discounting of the stage-game G is the extensive-form game
I' = (N, H, P,{U,}icn} with,

1. H = UL ,S* (where S® = () is the initial history and T is the number of stages).
2. P(h) = N for each non-terminal history h € H.

3. Payoffs involve a discount factor, 6 € (0, 1), and are such that

T
U, = Z ﬁt_lut-(st),
=1

where s € S is the strategy profile of the game G played instaget € {1...., T}.

For infinitely repeated games let T' = oo and (normalising to per-period payoffs)
(=]

Ui=(1—28))_ " ‘ui(s").

t=1
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The Stage Game

So: how do players play { B, R} in equilibrium in the following game when repeated twice?

L M R
T 0 0 3 4 6 0
M 4 3 0 O 0 O
B 0 6 0 0 5 5

The pure-strategy Nash equilibria of the stage game are {7, M } and {M. L}.

Consider a mixed-strategy o for row player placing probability p on T"and 1 — p on M. Row gets:

L M R
o | 41 —p) | 3p | 6p
B 0 0| 5

This shows row’s payoffs from the mixed-strategy o and from the pure-strategy B. Thus o
dominates B, with 1 > p > 2. By symmetry, R is dominated for column player.
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The Reduced Stage Game

Deleting strictly dominated strategies yields the following reduced game:

T (=)
M (1 —zx)
Expected

L(y) M(1—y)

0 O 3 4

4 3 0 O
31 —x) dx

Expected
3(1 —y)
4y

Note that there are three Nash equilibria of this reduced game, two pure and one mixed:

0.0 0.2 0.4 0.6

x = Pr[Row plays T

0.8 1.0

The strategy profile { B, R} Pareto dominates each of these equilibria. How can this be obtained?
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Repeating the Stage Game: Conditional Strategies

The game is played twice, with discount rate & < 1. Suppose { B, R} is played in the first period.

L il i T, M =% i = (3,4

T [ 00 3 42 ] 6 0 | 1. M } % =(3,4)
| = with Z = {M,L} = u=(4,3)
B 0 6 0 0 5 5 TR TN

Conditional Strategy: if { B, R} is observed in the first period, row plays M and column plays L.

If anything else is observed, row player places probability % on T and j‘: on M. Column player
places probability 2 on L and 7 on M. These strategies constitute a subgame-perfect equilibrium.

e In the second period (nine subgames) play corresponds to a Nash equilibrium.
e In the first period (a single subgame), by following the above strategy, row gets 5 4 40.
e Column gets 5 + 34. By deviating, the greatest column could get would be 6 + 224.

This is a (subgame-perfect) equilibrium so longas: 5+36 > 6+ 25 or: 4§ >

o]=3
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Another Example

Consider the below game, played twice with a discount factor § < 1.

L M R
& 2 2 0 O 6 0
M 0 O 4 4 0 O
B 0 6 0 0O 5 5

Note that { B, R} is not a Nash equilibrium of the stage game. Nevertheless, consider:

e Play { B, R} in the first period. If { B, R} observed, play { M, M } in the second.
e If { B, R} is not observed in the first period, play {7, L}.
e Payoff from playing strategy is 5 + 40.

e Payoff from deviating is at most 6 + 24.

Ifd > % these strategy profiles are a subgame-perfect equilibrium.
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Equilibria in Repeated Games

Suppose this game is repeated three times. How many subgames are there? Showing that a given
strategy profile is a subgame-perfect equilibrium might seem like a daunting task. However. ..

The One-Deviation Principle will simplify this task.

Additionally in repeated games, the number of subgame-perfect equilibria might be very large
indeed. Characterising them would once again seem like a very daunting task. However. ..

The Folk Theorems will simplify this task.

The rest of the lecture introduces these ideas and applies them to some examples.
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The One-Deviation Principle

Definition 28. A strategy for player i satisfies the one-deviation principle (or property) if for any
history h € H such thati € P(h), there is no deviation that i could make to increase their payoff

whilst leaving all the other players’ strategies fixed, and the rest of their own strategy.

“A strategy profile in a finite-horizon extensive-form game or in an infinitely
repeated game with discount factor 6 < 1 is a subgame-perfect equilibrium
if and only each player’s strategy satisfies the one-deviation principle.”

e In other words, only need to check one-deviation-at-a-time at every stage for each player.

e Ignore multiple contemporaneous deviations or multiple sequential deviations.

L M R
£ 5
2 2 0 O 6 0O (x 3) .
M 0 0O 4 4 0O O
B 0 6 0 O 5 5
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Thrice-Repeated Example

1. Consider the strategy: Play B, then B if { B. R} is observed and 7' if anything else, then M if
({B.,R}.{B, R}) is observed and T' if anything else (for row player).

2. Suppose column player is playing R, then R if { B, R} is observed and L if anything else, then
M if ({B, R}, {B, R}) is observed and L if anything else.

3. Need only check single deviations for each player at each stage. No profitable deviations in the
last stage — if { B, R}, { B, R} is observed M is a best response, and if not, 7" is a best response.

4. At penultimate stage, B yields a higher payoffif 5446 > 6426 (or 0 > %). This second payoff
arises from the most profitable single deviation possible at this stage.

5. At initial stage, B yields a higher payoff if 5 4+ 55 + 45% > 6 4 2§ + 26% (or 6 > 0.28ish). This
second payoff arises from the most profitable single deviation possible at this stage.
6. Symmetry implies column player’s strategy is also subgame perfect for 6 > %

No need to check any other deviant strategies: e.g. Play B then T'. ..
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Multiple Equilibria in Repeated Games

There are many such subgame-perfect equilibria in this repeated game. In fact, when games are
repeated, many many different outcomes can be supported as equilibria. e.g.

e Playing the same Nash equilibrium in every stage is always subgame perfect.

e Playing any sequential combination of Nash equilibria is subgame perfect.

e Conditioning the future Nash equilibrium to be played on current choices. ..

e ...allows non-Nash strategies to be part of subgame-perfect equilibria.

Rather than characterise all these equilibria, characterise the (normalised one-period) payoffs that
are achievable as part of a Nash (and subgame-perfect) equilibrium.

e In the finitely repeated Prisoners’ Dilemma, this argument did not work. ..

e ...because there is a unique Nash equilibrium of the stage game and hence. ..

e ...there is no choice of equilibria with which to condition behaviour.

e In the infinitely repeated game, however, there is a multiplicity of equilibria.
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Characterising a Game in Payoff Space

Consider the Prisoners” Dilemma. Plotting row player’s payoffs against column player’s payoffs,
and allowing players to mix, which payoffs are achievable in the one-shot game?

E | ™
X

0 | | I 4
0 1 2 3 4 5 6

Appropriate mixtures over the two strategies generate all the payoffs inside the diamond. This is
the convex hull of the payoffs to pure strategies. All these payoffs are feasible.

Which of these are supportable as part of an equilibrium in an infinitely-repeated game?
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The Nash-Threats Folk Theorem

“Every feasible payoff profile above the Nash equilibrium payoft profile
can be achieved by a subgame-perfect equilibrium of the infinitely-repeated
game for ¢ large enough.”

|en

—
[

|

(W]

| e
1=

|

How? Play strategies that generate required payoff combination. If anyone deviates, play the stage
Nash equilibrium forever. Consider payoff profile (3, 3) in the Prisoners’ Dilemma. ..
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Cooperation and Collusion

Compare the payoff stream from {C', C'} forever with the payoff stream from a single deviation in
any subgame (using one-deviation principle and noting all subgames look the same):

3 1
LT SR L g gy SRy
+ 35 + L g 2%y Rl S0 LN

1

This requires 6 > 5. The “grim” strategies (play C forever unless D is ever observed, in which

=
case play D forever) constitute a subgame-perfect equilibrium. Logic carries over to collusion. ..

Consider an infinitely-repeated n-firm Bertrand pricing game. Charge the monopoly price with
profits wys /. Any deviation prompts marginal-cost pricing for 1" periods.

8T+ rar

TM = 1 1 7
I 3 = ————— versus Ty + - .
i e 1—0on l—0mn

The former is greater than the latter if 1 — 6” ™' > n(1 — &), which holds certainly if § and T are
large enough (in the grim strategy, T' is infinite, and § > 1 — 1 is the appropriate condition).
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There are also many asymmetric subgame-perfect equilibria:

E.g. suppose the implicit contract is: Row alternates between C and D and Column always
chooses C. This continues until either deviates, after which both choose D from then on.

In the hypothesized equilibrium Column gets 3 + 05 + 35°+... = 3/(1 - &) 25+ 1(d + &°
+...)=5+03/(1 - ®) if and only if & = 0.59 (approximately), so the asymmetric implicit
contract is consistent with subgame-perfect equilibrium as long as 6 = 0.59.

Column does worse than Row but the threat is symmetric, so supporting Column's
strategy as part of a subgame-perfect equilibrium is harder than supporting Row's.

The limit is higher than for the symmetric implicit contract because the asymmetry makes
it harder to keep both players willing to stay with the implicit contract.

Infinite-horizon repeated games have an enormous multiplicity of equilibria, both of
equilibrium outcomes and the threats that can be used to support them (which in this
noiseless version of the game never need to be carried out on the equilibrium path).

We've seen one symmetric and one asymmetric efficient equilibrium of the repeated
Prisoner's Dilemma. Folk Theorems are useful because they give limits on what kinds of
implicit contracts can be supported as subgame-perfect equilibria in repeated games.
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Even More Equilibria

Consider the following game, with its associated payoff representation.

—_————m

| s
[ =
|
o
3 .
Py |
--————.h-

D

The Nash-threat Folk Theorem only indicates that (4, 4) can be achieved. But many other payoffs
can be achieved by subgame-perfect equilibria also. To do this, need to define “minmax” payoffs:

The lowest payoff one player can force the other player to, given the other player best-responds.
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Minmax Payoffs and another Folk Theorem

Player i’s minmax payoff is given by: u;" = min
& " s

—1i

{ max 'tLI'(S)} . The folk theorem says:

54

“Every feasible payoff profile above the minmax payoff profile can be
achieved by a subgame-perfect equilibrium of the infinitely-repeated game
for & large enough.” (There is a technical full dimensionality condition.)

& D

[
| =
[9%]
o
o%] o=
s |
=
|
|
|
|
|
|
|
i

D

=
L —e
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Folk Theorem: In an infinitely repeated game with complete information and observable
strategies, for any feasible pair of payoffs strictly greater than those that follow from
repeating players' minimax payoffs in the stage game, there is a discount factor such that
for all greater discount factors, those payoffs arise in a subgame-perfect equilibrium of the
repeated game (MWG Proposition 12.AA.5, Example 12.AA.1).

Easy to prove for stage games like Prisoner's Dilemma, where Nash reversion is minimax.

Harder to prove for other stage games. Temporal convexification with high discount
factors. See MWG Proposition 12.AA.5.
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Another Example

Consider the following game. What are the minmax payoffs? What are the subgame-perfect
equilibrium payoffs achievable in the infinitely-repeated version?

L R e |
7 [ =& 8 | 2 —1 5 F
M[ 2 -1 | -1 3 | e
B[ 1 2 1 2 — |
= ®

Minmax payoffs are the worst thing that others can do to a player, whilst that player best responds.

e Minmax payoff for the row player is 1, e.g. by column playing L& R with probability % each.

e Minmax for the column player is 1, e.g. play 7' with probability 3 and M with probability 3.

So: every feasible payoff combination above (1, 1) is the outcome of a subgame-perfect equilibrium

of the infinitely-repeated game. Requires complex “punishment and reward” strategies.
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Applications to oligopoly

Theorem: With a sufficiently high discount factor, the monopoly price can be supported as
a subgame-perfect equilibrium outcome in an infinitely repeated Bertrand duopoly by

threats to revert forever to the competitive price if anyone deviates (MWG Proposition
12.D.1).

Theorem: With a sufficiently high discount factor, any price from the competitive to the
monopoly price can be supported as a subgame-perfect equilibrium outcome in an
infinitely repeated Bertrand duopoly by threats to revert forever to the competitive price if

anyone deviates. For low discount factors, only the competitive price can be supported
(MWG Proposition 12.D.2).

Expanding the number of firms in the Bertrand model shrinks the set of implicit contracts
supportable via the Folk Theorem by making the limit on & more stringent (MWG 405).

Implicit collusion in infinitely repeated Cournot duopoly: Supporting zero payoffs via
strategies that yield zero-profit quantities followed forever by the monopoly output until
someone deviates (Kreps 524-526, MWG Examplel2.AA.1).
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A Model of Collusion with Incomplete Information

Even when an opponent’s actions are not directly observable, similar results are available. The
following example illustrates (formal statements are beyond the scope of the course):

e Recall the repeated Bertrand model introduced briefly earlier.

e Suppose now that the price set by one firm is not observable by the other.

e Strategies are conditioned on some publicly-observed state variable, e.g. market demand.
Suppose that with probability (1 —« ), demand follows from the standard Bertrand model, but with
probability cr, demand falls to zero (owing to conditions outside the firms’ control). Strategies:

e Play pys (monopoly price) and split the market as long demand is non-zero.

e Play pc (marginal cost) for T' periods if zero demand is observed by either firm.

e Note the firm that cheated (set a price p < ppr) will know that the other firm has observed zero

demand in that period! Hence both firms know when a “price war” will start.

This last feature is critical to the ensuing analysis. First, calculate payoffs. ..
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Calculating Payoffs

Start by considering the payoffs to a player that accrue when players collude and charge pys. Denote
expected payoffs in the collusive phase and in a price war phase as Vo and Viy respectively. Then,

M " o 5
Vo=(1-a) |2+ Vo Vw and Vi = 5TVe,
&= ﬂ*){ 5 + c} — oV, an W Cs

\_V—' Enmr Wﬂr Wait T PE'riﬂdE fﬂr C Phﬂse
High Demand=-Retain C Phase

where 7y is monopoly profit. A deviating player would obtain at most Vp, where

i = (]_ — {_1) [Tﬁu + (il-’;w'] + adViy.

So if the following inequality obtains, these strategies will form an equilibrium:

(1 — @) [ty + 6Vir] + adViw < (1 — a)

Ue.vi s i
T —+ él’f{‘] -+ oV Ww.
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Supporting Collusion

Subtracting ard Vi from both sides, and dividing by (1 — «), this condition becomes

TM

T A
my + 0V < + Ve or % < (Ve — Vw).

Solving simultaneously for Vi and Viy from the initial equalities on the previous slide yields

. (1 — I‘.‘E)ﬂ'ﬁ.f/g
1 —(1—a)d— adT+!

(1—a)éTnn/2

Ve = .
8 1— (1— )b — adT+H

and Vi

Finally, substituting into the inequality above gives the condition
9(1 — &)F —i(1 —2&a)8" T 3 1.

This is satisfied for appropriate values of 6 and « given a large enough T, (i.e. for o small, ¢ large

and 7" large). So Folk Theorems are available under incomplete information.
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E. Entry and Dynamic Oligopoly
Dynamic Oligopoly

App]}f the notion of subgame—perfect equilibrium to a variel}r of d}rnamic Dligopnl}r models.

e Stackelberg Leadership. The simplest possible application: one firm (the leader) chooses a
quantity to produce first, and a second (the follower) chooses a quantity to produce next.

e Simple Models of Entry. Firms simultaneously choose whether to pay a fixed cost of entry, and
afterwards they simultaneously decide how much to produce, or what price to charge.

e Strategic Pre-commitment. One firm (the incumbent) has the option to make a pre-competition

strategic investment, after which it competes (in prices or in quantities) with another firm.

e Location Choice. Two firms simultaneously choose the extent to which their products are
differentiated (a position on the Hotelling line) and then they simultaneously compete in prices.

e Entry Deterrence. The incumbent chooses a level of pre-competition investment. A second firm
(the entrant) chooses whether to enter the industry, and then (quantity) competition takes place.

irreversible decisions that affect future interaction is probably the most important of the
three views of entry deterrence in the literature. The others two are reputation in repeated
games, and informational as in the Milgrom-Weber entry deterrence model.
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Stackelberg Leadership

“A firm (the leader) chooses a quantity, observed by a second (the follower), which then sets its
quantity. Price is determined by the total quantity produced, and profits accrue accordingly.”

Players. Two firms labelled i € {I, f}.
Histories. Firm [ chooses a quantity = € R and then player 2 chooses quantity y € R ™. The set
of histories is H = {(0), (0),...,(z),...,(0,0),..., (@ 4)55 3 =B WRTY R

Player Function. P({)) =land P(x) = f forallz € R™.

Payoffs. Payoffs are profits. Suppose demand is linear. That is, for players [ and [ respectively:
mi=zla—blr+y)—¢c and mp=yla—-blzx+ y)—cl.

e Representing this game in strategic form game yields strategies s; = = and sy = y(x).

e The follower’s strategy maps every choice that the leader could make onto a quantity for f.

139



Nash and Subgame-Perfect Equilibria

There are many Nash equilibria: any strategy profile s; = & and sy = y(x) where (1) is a best
reply to & can be supported as a Nash equilibrium by suitable choice of §j(z) for = # .

Only one of these is “credible” (subgame pertect): this requires a best-reply in every subgame. ..
Following every z, firm f must play a best reply: thus y(z) = By(z). Recall

f‘ﬂ?r_,- a—bxr —c
— =0 = Bjy(r)=
Ay 2

Firm [ plays a best reply in the first period: chooses the optimal x given firm f plays By(x). So

maxx [a — b(zx + Bf(x)) —¢c] = 2z’ = “ ; © and sspe = (x", By(x))

Note that firm ['s profits must rise relative to Cournot...l could always choose the Cournot
quantity. In this linear and strategic-substitutes example above, f’s profits fall (not generally true).
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Entry

“A large number of symmetric firms simultaneously decide whether to pay an entry fee F' to enter
the market. In the second period, those that entered compete in quantities (or prices).”

e A subgame-perfect equilibrium requires Nash play in every subgame.
e In the final period, suppose n firms have entered, they must play a Nash equilibrium.
e Suppose profits (excluding the sunk entry fee) from the second period are given by ,,.

e Consider an equilibrium value of n, call it n". There are firms that enter, and some that don’t.
— If firm 7 is an entrant then this is only profitable if w,« > F.

— If another firm j did not enter it must be the case that w+,; < F.

e Itis reasonable to assume that 7, is decreasing in 7. In this case there is a unique n* that satisfies
these two inequalities. Note that the equilibrium is not unique—which firms enter?

Suppose that firms compete in prices (Bertrand) in the second period. Then m,, = 0 whenever n >
2. So, if F' > 0, the equilibrium must involve n* = 1 (so long as monopoly profits, m; = 7™ > F)!

Now consider a Cournot example of this game. ..
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Cournot Competition and Entry

Suppose in the second period, the n firms compete in quantities with demand given by P(Q).
Assume the firms have identical and constant marginal costs ¢. Recall

= gP(Q)—d =3 P(Q) %+ P(@) 2=

rn

Now for the linear case, P(Q) = a — bQ and P'(Q) = —b, so, substituting in,

b 1—i—1 0 . Q) L fig—e 1. fa—e\?
o — = —= & e S0 |
1 d () b\n+4+1 b\n+1

Firms will enter in the first period so long as w,, > F, and won't if m,, 1 < F. Therefore

# -~ -
n = |fi|] where 7n =
As F falls, the equilibrium number of entrants increases; and () approaches competitive output.

Notation. |n | is the largest integer less or equal to n.
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Entry and Welfare

Welfare is the sum of consumer surplus and total firm profits (including the entry fee F'). Consider
n symmetric firms producing a total quantity of @ at a price P(Q). Then

Q Q
Wi(n) = /o P(X)dX — QP(Q)+nm, —nF = W((n)= /.:. P(X)dX — Qc —nF

" 4 total profits
consumer surplus

The problem is to choose n to maximise W (n ). Now total quantity is given by @ = nq(n) where
q(n) is each firm's optimal quantity when there are n entrants. Thus

aQ = nqg'(n) + q(n) so M

dn A =0 <& ['n'qf(n) + Q(ﬂ-)] (P(Q) — C‘.) =i

The welfare-maximising n is different from the number choosing to enter the industry: ignoring
integer problems, n* was determined by 7, = q(n)[P(Q) — ¢] = F — the first term is absent!

In Bertrand there is clearly (in general) under-entry, in Cournot...

Figure 12.E.3
Equilibrium in the
one-stage entry game

discussed in Example
12.E.4.
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Cournot Competition and Over-Entry

Using the simple linear specification of the earlier slides and lecture, g(n) is given by

() 1({1—0) ,() 1l a—c
n)=— 50 n)= ——————
? b\n-+1 1 b(n+1)2

Again, ignore integer issues. Welfare W (n) is maximised where n satisfies

[-n.q’(ﬂ-) + G‘(”)} (P(Q) B C) = %(;;;2 (

a—c) B 1(a —¢)?
n+1/) b(n+1)3

But recall that the equilibrium number of entrants satisfies (n* + 1) = (a — ¢)?/bF, so
% 3/2 *
(n"+1)=(n+1)™ = n >n
The equilibrium number of entrants exceeds the socially optimal number, there is over-entry.

This is a result of the business-stealing effect: entering firms do not care that some of their profits
come from taking sales away from other firms, but no social welfare is generated by such activity.
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G. Strategic Precommitments to Affect Future Compet  ition

Strategic Pre-commitment
Consider the following general two-period game between two firms (1 and 2).

Period 1. Firm 1 chooses k' € R. This is a strategic investment which alters its own best-reply
function in the second period, as well as its profits directly.

Period 2. Firm 1 and firm 2 engage in competition (e.g. price or quantity) by simultaneously
choosing strategies s, € R and s; € R respectively. Their profits are given by

m1(s1.82. k) and ma(sy, s2) respectively
Equilibrium in the subgame following a choice % is where the best-reply functions cross, that is
(s],s5) where s] = Bi(s;,k) and s; = Bs(s])
In the subgame-perfect equilibrium, firm 1’s chooses & to maximise its profits:

)

m?){?rl(gl,sg,k) subject to  (s;, 83) = (s

s

b3 #

Ed
1
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Strategic Cost Reduction in Cournot

As an example, consider a situation in which £ is an investment in (marginal) cost reduction. The
firms then compete in quantities (Cournot). With a very simple form for the cost of investment:

T1(q1. g2, k) = @1[P(Q) — (k)] — &k and m2(q1, q2) = ¢2[P(Q) — ]

Where firm 1’s marginal cost is ¢(k) with ¢/(k) < 0, and firm 2’s marginal cost is c.

If priceis P(Q) = 1 — @ then firm 1’s best reply is

1 — g2 — c(k)
2

Ba(q1)

- N EaEsaaa Bl(qQ,kF)

Bi(q2, k) =

e Increasing k in the first period reduces ¢(k) and so...

Firm 2: g2

e ...pushes the best-reply function out (k" > £').
e Equilibrium in second period involves higher q;.. .

e ...and lower g9, which is beneficial for firm 1.
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Price Competition and Strategic Pre-commitment

The simple example on the previous slide is one of strategic substitutes (9B;/dq; < 0). In

differentiated-product price competition (for example) 9B;/dq; > 0: ie. strategic complements.
m = (p1—c(k)(5+p2—p1) —k and 7w = (p2—c) (3+p1—Dp2).

(Hotelling profits from lecture 3 with t = %). Again c'(k) < 0 and investment costs are simply k.

e Now the best-reply function for firm 1 is

1 g + ek
Bi(r"?! ;‘-) — Z _|_ %

e (For p; € [e(k) — 5. c(k) + 3], ignore other p,).

Firm 2: po

e Increasing k (from k' to k") reduces ¢(k) and...
e ...shifts B in, lowering equilibrium p; and...

e ...also lowering ps, which is bad for firm 1.
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Direct and Strategic Effects

In general, firm 1 must consider the strategic effect on equilibrium prices/ quantities in the post-
investment game (as well as the direct effect on its e.g. costs) of pre-competition investments.

e Consider the effect on equilibrium profits of a change in investment £:

dmi(s1(k), s5(k), k) = omy(s], S5, k) i Omi(s], 85, k) dsi (k) 4 Oi(97, 45, k) dss(k)
dk Ak 81 dk 189 dk
e But the second term’s first element 97, /9s; is zero in equilibrium (firm 1 maximises), so

dmi(si(k), s5(k), k)  Om(s], sy, k) o d'ﬂ'l(ﬂ sy, k) dsi(k)

17 8 22
direct effect 5tr;|beé\i:-: effect

e The sign of the strategic effect is determined by whether firm 1’s profits increase with firm 2’s
choice (e.g. in the price competition example, yes; in the quantity competition example, no).. .

e ...and the sign of ds;(k)/dk, which is determined by the slopes of the best-reply functions..
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The Strategic Effect

e To determine the sign of ds}(k)/dk, note that in equilibrium s (k) = Ba(B;(s5(k). k)). Now

dsi(k) dBs F‘)Bl ds; (k) E‘)Bl}

dk  ds; | 9sy dk + Ok

= s K — / 1 — :
dk ds ok ds, dss

e In “stable” games, the denominator is 4ve: sequences of best-replies converge to equilibrium,
so the product of best-reply slopes is less than 1 (the product is & in both previous examples).

{'i}ﬂ’l ng -{')Bi
K —
f_'}S:g dSl ok

sign[Strategic Effect] = sign [ — X
— Would firm 1 like to lower or raise firm 2’s strategic choice?

— How does strategic investment affect firm 1's best-replies?
— Is firm 2 competing in strategic substitutes or complements?

Note. The firms's best-reply functions can, in general, have different signs—the above argument is unaffected.
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Submodular and Supermodular Games

Players. Two players labelled i € N = {1, 2}.
Strategies. Player 1 chooses * € X C R, player 2choosesy € ¥ C R.

Payoffs. Payoffs are u;(x, y) and ua(y, x), with symmetry u; = us = wu.

Calculate the slope of a player’s best-reply function:

ou(x,
r = Bi(y) =% % = 0,

Fu(z,y) ul(x,y)dx

= — + - =)

dxdy dxr? dy

dr O*u(x,y)/0xdy

=1 — = —— —.
dy ?u(zx,y)/Ox>

Denominator is negative from second-order conditions. Sign determined by numerator, i.e.

9u(z, y) . (dx .| &%u(z,y)
S ikl Tl | —, SIoN & ~— ¢ =BIENA ~— (70— .
2 dy dxrdy
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Informal Definitions

Definition 13. The game G = ({1,2}, {X, Y}, {w, u}) is supermodular if 9*u(x, y) /0xdy > 0,
and so B(y) is upward sloping. X and Y are said to be strategic complements.

Definition 14. The game G = ({1,2}, {X. Y}, {u, u}) is submodular if *u(z,y)/0xdy < 0,
and so Bi(y) is downward sloping. X and Y are said to be strategic substitutes.

These are only informal definitions. True definitions are a little bit more general. Some examples:

e Cournot competition is typically submodular. Quantities are strategic substitutes: an increase
in an opponent’s quantity reduces the incentive a firm has to raise quantity.

e Bertrand competition is typically supermodular. Prices are strategic complements: an increase

in an opponent’s price increases the incentive a firm has to raise price.

e Sometimes best-re pl}F functions can be non-monotonic. ..
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th

bl(QZa k’)\

Strategic Strategic
Substitutes: Complements
() o db()
ds, ds,
ok dk dk
ob(*) & ds%(k) 50 ds3(k) <0
ok dk dk
p2 p by(1/p2, k')

/bl(qZ! k")

Nash Equilibrium
with Cost c(k')

Nash Equilibrium
with Cost (k")

Nash Equilibrium
with Cost c(k')

C

Nash Equilibrium
with Cost c(k")

by(1/py, k")

b(1/p1)

(b)
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Figure 12.G.1

Determinants of the
sign of ds%¥(k)/dk.

Figure 12.G.2

Strategic effects of a
reduction in marginal
cost from c(k') to
c(k”) < e(k').

(a) Quantity model.
(b) Price model.



An Advertising Game

“Two firms sell a product in a market of fixed size. Suppose that prices are fixed (at 1), but that each
firm must choose an advertising budget, denoted by = and y respectively. Advertising is costly,
but firms want to obtain a high market share. Advertising is the sole determinant of market share,
yielding sales of /(= + y) and y/(x + vy ) respectively.”

Players. The two firms (N = {1, 2}).
Strategies. Firm 1 chooses = € [0, oc) and Firm 2 chooses y € [0, oc).

Payoffs. Profits are given by

T
wilm, ) = —x and ma(y,x) = — .
r+y T+ Y
To calculate best-reply functions, consider Firm 1’s maximisation problem:
Oy 1 T 1 T

— S (R

_ . 41,
dr x4y (xz+1y)? |

z+y (z+y)?
= t+y=z+ (z+vy)>%
A Vy=2z+y.
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Non-Monotonic Best-Replies

This yields the best-reply functions Bi(y) = /v — y and Ba(x) = /x — .

At a Nash equilibrium y = By(z) and = = B;(y). Hence 2* = y* = 1
1.0,
X e The best-reply functions for this game slope
0.8 ‘\t --- Bi(y) =T —vy upward initially, then downward.
A "-.‘L — Ba(E) = JF — e The game is neither sub- nor supermodular.
S ‘t‘ e Variables are both strategic complements and
E 0.4 — ‘1‘ substitutes, depending on the region.
! e Equilibrium at (0, 0)? It would seem not. ..
0.2 7 : e Since m;(0,0) = m2(0, 0) = 3 seems apt.
’
0.0 == | | | |

0o 02 04 06 08 10
Firm 1: =
Note. B and B5 only make sense for y > 0 and = > 0. Setting 7 (0,0) = m3(0,0) = 1 generates an equilibrium at

(0, 0), but doesn't make much sense. In any case it would not be a very “stable” equilibrium, whereas [i—. —i—] is.

154



Strategic Entry Deterrence

An important example of a strategic pre-commitment is that of a firm using e.g. capacity as a
mechanism to deter (or accommodate) entry by a rival firm. Consider the following 3-stage game:

1. Pre-Entry Commitment. Firm 1 (the incumbent) chooses a level of capacity (k). Capacity costs
r per unit purchased. The firm can now produce up to £ units of the good at marginal cost c.

2. Entry Decision. In the second period firm 2 (the entrant) decides whether or not to enter the
industry. The entrant must pay an entry fee of f if they decide to enter.

3. Quantity Competition. In the final period, if firm 2 has entered, the firms engage in quantity
competition; firm 2's marginal cost is ¢ + 7. If firm 2 didn’t enter, firm 1 is a monopolist.

Find the subgame-perfect equilibrium(s) by backward induction in the usual way. ..
B2(q1) = B(gqi;¢c+r) and Bi(gz.k) = min{B(qz;c).k}

B(q; x) is the Cournot best-reply function when marginal cost is = and the opponent produces q.
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Nash Equilibrium in Stage 3

If the entrant has not entered, the incumbent, firm 1, is a monopolist. Equilibrium is simply to play
the monopoly quantity, or (given the capacity constraint k) as close as possible ¢, = B, (0. k).

In the subgame following entry, the firms compete a la Cournot. To find the equilibrium. ..

Bi(q2, k) — Bi(q2, k)
B("?Zvc}
B(QQ!C_E_ r)
I o
& o
: B
i in
Firm 1: q Firm 1: ¢4

Any quantity g; up to § may be induced as part of the final-period Nash equilibrium, by appropriate
choice of k: if £ > § it would not be credible to produce at capacity. So gy (k) < 4.

156



by(gglk;) = Min{b(gg|w), k;}.

g5 A
Firm 2’s Stage 3 Profits = F
Z
/ b (QI ‘ w+ I’)
dr
& | e 4
b(gg|w +71)
bi(qe | ki)
bz k) A
Nash Equilibrium
b(qe|w)
b(gg|w) 0 b(q[w+r)
kl rq, k; T 7‘11
kg
9 A
bi(qe | ki)
Nash
Equilibrium
o balwn

Figure 12.BB.1

Firm E’s stage 3
best-response function
after entry.

Figure 12.BB.2 (left)

Firm I’s stage 3
best-response function
after entry.

Figure 12.BB.3 (right)

Stage 3 Nash
equilibrium after entry.

Figure 12.BB.4

A stage 3 equilibrium
in which firm I does not
use all of its capacity.



Blockaded Entry and Accommodation

In stage 2, firm 2 will choose to enter the industry only if, given the equilibrium induced by £ it will
make profits of at least f. This will happen only if g, is sufficiently small (recall 972 /9q; < 0).

— Bi(g2, k°)

Firm 2: g2

Firm 2: go

Firm 1: q Firm 1: ¢4

Entry is blockaded if point o (where o = f) is left of B(0, ¢ + r), the optimal monopoly output.

Firm 1 builds capacity k* = B(0, ¢ 4+ r), firm 2 does not enter as f is too high, and ¢; = k”.

If v is to the right of ¢, accommodation =- choose Stackelberg leader’s quantity k° (or g if ¢ < k%)
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Entry Deterrence

Finally, firm 1 may be able to deter entry, but may or may not wish to. ..

e Again, v is where 3 = f: to the left of B(qg2, ¢).
— Bl(q3, ¢)
......... B{:qu C _|_ '.-IP}
————— Ba(qq) e Firm 1 has a choice: deter entry by setting k = k...

e Here, entry is neither blockaded nor inevitable.

e ...or accommodate entry optimally with k = k°.

Firm 2: g2

e Which is better? Compare firm 1’s profit m(q1, g2; k),

w1(k*, 0, k") with m(k°, Ba(k®); k)

LS L™ e [f the former is larger, deter. If not, accommodate.
Firm 1: q

Note that firm 1 chooses k& to be just large enough to deter entry in the case that entry is deterred.

Note also that £® exceeds optimal monopoly output k* = B(0,¢ + r). The incumbent firm
overinvests in capacity to deter entry, raising output: the threat of entry alone increases welfare.
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Figure 12.BB.5 (left)
Blockaded entry.

Figure 12.BB.6 (right)

Strategic entry
accommodation when
entry is inevitable.

Figure 12.BB.7 (left)

Entry deterrence is
possible but not
inevitable.

Figure 12.BB.8 (right)

Entry deterrence
versus entry
accommodation.
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(Time permitting) Cooperative Game Theory

The noncooperative alternating-offers model of structured bargaining (MWG Chapter 9,
Appendix A, covered in this course by Dr. Meyer) is by far the most popular bargaining
model among economic theorists.

But its main theoretical results are fragile: They don't generalize to n players, discrete
offers, incomplete information, almost-common knowledge of rationality (Kreps 552-565;
Kreps, Game Theory and Economic Modelling).

Further, its predictions don't do well when alternating-offers bargaining games are played
in the laboratory, partly because Responders punish “unfair” offers as in the Ultimatum
Game, and partly because the longer the horizon the more complex the backward
induction/iterated dominance argument required to identify the subgame-perfect
equilibrium; so complex that people don't believe that others will follow it.

When strategic uncertainty and risk of coordination failure are more important than delay
costs, there's a fixed horizon, but there is no fixed pattern of alternating offers
(unstructured bargaining), the analysis is very different.

Discuss Nash's (1953 Econometrica) demand game model with strategies viewed as the
least surplus each player can be induced to accept. Discuss the role of expectations,
culture, focal points, strategic moves in determining bargaining outcomes. Discuss Nash's
axiomatic (1950 EMT) solution.
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