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simplify presentation he first assumed that X is a ¢ -algebra, i.e.,
an algebra such that for every sequence of events (4,), it
contains its union UZ  A4,. He then required that P(UZ 4,)
=Z2 P(A,) if the A’s are pairwise disjoint.

This last property is referred to as g-additivity of the
probability P. In this way Kolmogorov transformed large parts
of probability theory into (a special case of) measure theory.
Thus an expectation of a random variable X is

E(X) =_[ X(s)dP(s)
s

where the right side is a Lebesgue integral (if it exists...),
defined as a limit of integrals of random variables with count-
ably many values. Let Y be such a random variable with values
(¥, then

(5.6)

(5.5

E(Y)=3} P(Y=y)y

if the right side is absolutely convergent.

5.7 An example will now be introduced of a finitely additive
probability, i.e. a probability for which (5.3) holds but (5.6)
does not hold. Let S be the set of rational numbers in the
interval [0, 1] and let  be the algebra of all subsets of S. (It is
in fact a o-algebra.) For 0 €a < f <1 define P(SN[a, ) =
B — a and extend P to all subsets of £. Foreach sin §, P(s) = 0.
Since § is countable we can write S = {5, 5,,...} and 1 = P(S)
> XX | P(s;) =0. Defining Y(s,)=1/i for all i, we get a con-
tradiction to (5.6). The finitely additive probability P has also
the property implied by Savage’s P6 (see 2.4): If P(4) > 0 then
there is an event B — A such that 0 < P(B) < P(A).

5.8 Distributions. A non-decreasing right continuous function
on the extended real line is called a distribution function if
F(—0)=0 and F(o0)=1. Given a random variable X, its
distribution function Fy is defined by F,(«) = P(X £ a) for all
real «. Then

«© 0
(5.9) E(X)=JA [l—FX(a)]da—J. F(a)da

0 —©
which is the dual of formula (5.2). If the distribution F,
is smooth we say that the random variable X has a density
Jx:R = R, which is the derivative of F,. In this case

(5.10)

EX)= -[m af (o) da

S.11 Non-additive probability. A function P:L-[0,1] is
said to be non-additive probability (or capacity) if P(S)=1,
P(¢)=0 and for 4 = B, P(4) < P(B). Choquet (1954) sug-
gested to integrate a random variable with respect to non-
additive probability by formula (5.2).

DAVID SCHMEIDLER AND PETER WAKKER

See also ALLAIS PARADOX; MEAN VALUES; RISK; SUBJECTIVE PROBABILITY;
UNCERTAINTY; UTILITY THEORY AND DECISION-MAKING
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expected utility hypothesis. The expected utility hypothesis of
behaviour towards risk is essentially the hypothesis that the
individual decision-maker possesses (or acts as if possessing) a
‘von Neumann-Morgenstern utility function’ U(") or ‘von
Neumann-Morgenstern utility index’ {U,} defined over some
set of outcomes, and when faced with alternative risky
prospects or ‘lotteries’ over these outcomes, will choose that
prospect which maximizes the expected value of U(-) or
{U,}. Since the outcomes could represent alternative wealth
levels, multidimensional commodity bundles, time streams of
consumption, or even non-numerical consequences (e.g. a trip
to Paris), this approach can be applied to a tremendous variety
of situations, and most theoretical research in the economics
of uncertainty, as well as virtually all applied work in the field
(c.g. optimal trade, investment or search under uncertainty) is
undertaken in the expected utility framework.

As a branch of modern consumer theory (e.g. Debreu, 1959,
ch. 4), the expected utility model proceeds by specifying a set
of objects of choice and assuming that the individual possesses
a preference ordering over these objects which may be
represented by a real-valued maximand or ‘preference
function’ V(’), in the sense that one object is preferred to
another if and only if it is assigned a higher value by this
preference function. However, the expected utility model
differs from the theory of choice over non-stochastic
commodity bundles in two important respects. The first is that
since it is a theory of choice under uncertainty, the objects of
choice are not deterministic outcomes but rather probability
distributions over these outcomes. The second difference is that,
unlike in the non-stochastic case, the expected utility model
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imposes a very specific restriction on the functional form of the
preference function V(-).

The formal representation of the objects of choice, and hence
of the expected utility preference function, depends upon the
structure of the set of possible outcomes. When there are a
finite number of outcomes {x,, ..., x,}, we can represent any
probability distribution over this set by its vector of prob-
abilities P =(p,,...,p,) (where p,=prob(X = x,)), and the
preference function takes the form

VIP)y=V(p.,....,P)=ZUp,.

When the outcome set consists of the real line or some subset
of it, probability distributions are represented by their cumu-
lative distribution functions F'(-) (where F(x) = prob(f < x)),
and the expected utility preference function takes the form
V(F)=[U(x)dF(x). (When F(-) possesses a density func-
tion f(-)= F’(-) this integral can be equivalently written as
_[U(x)f(x) dx.) When the outcomes are multivariate com-
modity bundles of the form (z,,...,z,). ¥(-) takes the form
{-..fU@,...,2,)dF(z,,...,2,) over multivariate cumu-
lative distribution functions F(-,...,-). The expected utility
model derives its name from the fact that in each case, the
preference function V(-) consists of the mathematical expec-
tation of the von Neumann-Morgenstern utility function U ("),
U(-,...,"),orutility index {U,} with respect to the probability
distribution F(-), F(-,...,-), or P.

Mathematically, the hypothesis that the preference function
V'(-) takes the form of a statistical expectation is equivalent to
the condition that it be ‘lincar in the probabilities™; that is, either
a weighted sum of the components of P (i.e. ZU,p,) or else a
weighted integral of the functions F(-) orf(-)[j U(x)dF(x)or
[ U(x)f(x) dx]. Although this still allows for a wide variety of
attitudes towards risk, depending upon the shape of the von
Neumann Morgenstern utility function U(-) or index {U,}, the
restriction that ¥ (-) be linear in the probabilities is the primary
empirical feature of the expected utility model and provides the
basis for many of its observable implications and predictions.

It is important to distinguish between the preference function
V(-) and the von Neumann Morgenstern utility function U(-)
(or index {U,}) of an expected utility maximizer, in particular
with regard to the prevalent though mistaken belief that
expected utility preferences are somehow ‘cardinal’ in a sense
which is not exhibited by preferences over non-stochastic
commodity bundles. As with any real-valued representation of
a preference ordering, an expected utility preference function
V(-) is ‘ordinal’ in that it may be subject to any increasing
transformation without affecting the validity of the represen-
tation; thus, for example, if ¥V (F) EI U(x)dF(x) represents the
preferences of some expected utility maximizer, so will the
(nonlinear) preference function Y (F) = [f U(x)dF(x)F. On the
other hand, the von Neumann-Morgenstern utility functions
which generate these preference functions are ‘cardinal’ in the
sense that a function U*(-) will generate an ordinally equivalent
linear preference function V*(F) = j U*(x)dF(x)if and only if
it satisfies the cardinal relationship U*(x)=a-U(x)+b for
some a > 0 (in which case V*(-) =a- V() + b). However, such
situations also occur in the theory of preferences over non-
stochastic commodity bundles: the Cobb-Douglas preference
f}mction a-In(x) + B -In(y) + y -In(z) (written here in its addi-
tive form) can be subject to any increasing transformation
and is clearly ordinal, even though a vector of parameters
(a*, B*.y*) will generate an ordinally equivalent additive form
a*-In(x) + B*-In(y) + y*-In(z) if and only if it satisfies the
cardinal relationship (a*, B*,7*) = 1-(«, B, 7) for some 1 > 0.

In the case of a simple outcome set of the form {x,, x,, x;},
it is possible to illustrate the ‘linearity in the probabilities’

property of an expected utility maximizer’s preferences over
lotteries. Since every probability distribution (p,, p,, p;) over
this set must satisfy the condition Zp,= 1, we may represent
each such distribution by a point in the unit triangle in the
(P, py) plane, with p, given by p, =1 — p, — p, (Figures 1 and
2). Since they represent the loci of solutions to the equations

Uipy+ Uspy+ Uy py = U, = [U, = U))-p, +[U, — U]y
= constant

for the fixed utility indices {U,, U,, U,}, the indifference curves
of an expected utility maximizer consist of parallel straight lines
in the triangle of slope (U, — U,JAU, — U},), as illustrated by the
solid lines in Figure 1. An example of indifference curves which
do not satisfy the expected utility hypothesis (i.e. are not linear
in the probabilities) is given by the solid curves in Figure 2.

Figure I Expected Utihty Indifference Curves

Figure 2 Non-Expected Utility Indifference Curves
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When the outcomes {x,, x,, x;} represent different levels of
wealth with x, < x, < x;, this diagram can be used to illustrate
other possible aspects of an expected utility maximizer’s atti-
tudes toward risk. On the general principle that more wealth is
better, it is typically postulated that any change in a distribution
(P, p3» Py) Which increases p; at the expense of p,, increases p,
at the expense of p,, or both, will be preferred by the individual:
this property is known as ‘first-order stochastic dominance
preference’. Since such shifts of probability mass are repre-
sented by north, west or north-west movements in the diagram,
first-order stochastic dominance preference is equivalent to the
condition that indifference curves are upward sloping, with
more preferred indifference curves lying to the north-west.
Algebraically, this is equivalent to the condition U; < U, < U;.

Another widely (though not universally hypothesized aspect
of attitudes towards risk is that of ‘risk aversion’ (e.g. Arrow,
1974, ch. 3; Pratt, 1964). To illustrate this property of prefer-
ences, consider the dashed lines in Figure 1, which represent loci
of solutions to the equations

X, Py + Xy Py + X3Py = X, =[x, — x, ] py + [x3— X,] s
= constant

and hence may be termed ‘iso-expected value loci’. Since
north-east movements along any of these loci consist of
increasing the tail probabilities p, and p; at the expense of
middle probability p, in a manner which preserves the mean
of the distribution, they correspond to what are termed
‘mean preserving increases in risk’ (e.g. Rothschild and
Stiglitz, 1970, 1971). An individual is said to be ‘risk averse’
if such increases in risk always lead to less preferred
indifference curves, which is equivalent to the graphical
condition that the indifference curves be steeper than the
iso-expected value loci. Since the slope of the latter is given by
[x;—x]/[x;—x,], this is equivalent to the algebraic condition
that [U,—U\J/[x,—x]>[U;— U,)/[x;— x,}. Conversely, indi-
viduals who prefer mean preserving increases in risk are
termed ‘risk loving: such individuals’ indifference curves will
be flatter than the iso-expected value loci, and their utility
indices will satisfy [U,— U \)/[x,~xJ<[U;— U,)/[x;~—x,]

Note finally that the indifference map in Figure | indicates
that the lottery P* is indifferent to the origin, which represents
the degenerate lottery yielding x, with certainty. In such a
case the amount x, is said to be the ‘certainty equivalent’ of
the lottery P*. The fact that the origin lies on a lower
iso-expected value locus than P* reflects a general property of
risk averse preferences, namely that the certainty equivalent of
any lottery will always be less than its mean. (For risk lovers,
the opposite is always the case.)

When the outcomes are elements of the real line, it is
possible to represent the above (as well as other) aspects of
preferences in terms of the shape of the von
Neumann-Morgenstern utility function U(:), as seen in
Figures 3 and 4. In each figure, consider the lottery which
assigns the probabilities 2/3: 1/3 to the outcome levels x’ and
x", respectively. The expected value of this lottery (i.e. the value
X =2/3-x"+1/3-x") is seen to lie between these two values,
two-thirds of the way towards x’. The expected wrtility of this
lottery ~i.e. the value 4 =2/3-U(x") + 1/3- U(x") - is similarly
seen to lie between U(x") and U(x") on the vertical axis,
two-thirds of the way towards U(x’). The point (X, ) will
accordingly lie on the line segment connecting the points
(x’, U(x")) and (x", U(x")), two-thirds of the way towards the
former. In each figure, the certainty equivalent of this lottery is
given by that sure outcome ¢ which also yields a utility level
of 4.
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Figure 4 Von Neumann-Morgenstern Utility Function of a Risk Loving Individual

It is clear from our definition of first-order stochastic
dominance preference above that this property of preferences
can be extended to the case of density functions f{) or
cumulative distribution functions F(-) over the real line (e.g.
Quirk and Saposnik, 1962), and that it is equivalent to the
condition that U(x) be an increasing function of x, as in
Figures 3 and 4. It is also possible to generalize the notion of
a mean preserving increase in risk to density functions or
cumulative distribution functions (e.g. Rothschild and Stiglitz,
1970, 1971), and our ecarlier algebraic condition for risk
aversion generalizes to the condition that U/"(x) <0 for all x,
i.e. that the von Neumann-Morgenstern utility function U(")
be concave, as in Figure 3. As before, the property of risk
aversion implies that the certainty equivalent ¢ of any lottery
will always lie below its mean, as seen in Figure 3, and once
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again, the opposite is true for the convex utility function of a
risk lover, as seen in Figure 4. Two of the earliest and most
important graphical analyses of risk attitudes in terms of the
shape of the von Neumann-Morgenstern utility function are
those of Friedman and Savage (1948) and Markowitz (1952).

The tremendous analytic capabilities of the expected utility
model for the study of behaviour towards risk derive largely
from the work of Arrow (1974) and Pratt (1964). Roughly
speaking, these researchers showed that the ‘degree’ of
concavity of the von Neumann-Morgenstern utility function
can be used to provide a measure of an expected utility
maximizer’s ‘degree’ of risk aversion. Formally, the
Arrow~Pratt characterization of comparative risk aversion is
the result that the following conditions on a pair of (increasing,
twice differentiable) von Neumann-Morgenstern utility func-
tions U,(-) and U,(-) are equivalent:

U,(*) is a concave transformation of U,(-) (i.e.

U,(x) = p[U,(x)] for some increasing concave function p(*)),
=Ul(x)U(x) 2 = Uy (x)/Ug(x), for each x, and

if ¢, and ¢, solve
U,,(c,,)=J.U,,(x)dF(x) and U,,(c,,):J‘U,,(x)dF(x)

for some distribution F(-), then ¢, <¢,,

and if U,(-) and U,(-) are both concave, these conditions are
in turn equivalent to:

if r >0, E[]>r, and a, and o, maximize

JUG[(I —a)r +az}dF(z) and JU,,[(I ~o)r +az]dF(z)

respectively, then a, < «,.

The first two of these conditions provide equivalent
formulations of the notion that U,() is a more concave
function than U,(). In particular, the curvature measure
R(x)= —U"(x)/U’(x) is known as the ‘Arrow-Pratt index of
(absolute) risk aversion’, and plays a key role in the analytics
of the expected utility model. The third condition states that the
more risk averse utility function U, (-) will never assign a higher
certainty equivalent to any lottery F(-) than will U,(-}. The
final condition pertains to the individuals’ respective demands
for risky assets. Specifically, assume that each of them must
allocate $ between two assets, one yielding a riskless (gross)
return of r per dollar, and the other yielding a risky return #
with a higher expected vaiue. This condition thus says that the
less risk averse utility function U,(-) will generate at least as
great a demand for the risky asset than the more risk averse
utility function U,(-). It is important to note that it is the
equivalence of the above certainty equivalent and asset demand
conditions which makes the Arrow—Pratt characterization such
an important result in expected utility theory. (See Ross, 1981,
however, for an alternative and stronger characterization of
comparative risk aversion.)

Although the applications of the expected utility model
extend to virtually all branches of economic theory (e.g. Hey,
1979), much of the flavour of these analyses can be gleaned
from Arrow’s (1974, ch. 3) analysis of the portfolio problem
of the previous paragraph: rewriting (Ir —a)r +az as
Ir + a-(z —r), the first-order condition for this problem can be

expressed as:

JZ'U’[Ir +oa-(z—r)]dF(z)
—r'JU’[Ir +a-(z-r))dF(z) =0,

that is, the marginal expected utility of the last dollar allocated
to each asset is the same. The second-order condition can be
written as:

J.(z —~r)U"Ir +a-(z —r))dF(z) <0

and is ensured by the property of risk aversion [i.e. U"(*) < 0].

As usual, we may differentiate the first-order condition to
obtain the effect of a change in some parameter, say initial
wealth I, on the optimal level of investment in the risky asset
(i.e. on the optimal value of a). Differentiating the first-order
condition (including «) with respect to /, solving for da/d/,
and invoking the second-order condition and the positivity of
r yields that this effect possesses the same sign as:

J(z —~ryU'llr +a-(z —r))]dF(z).

Making the substitution U"(-)= —~ R(-)-U’(-) and subtract-
ing R(Ir) times the first-order condition yields that this term is
equal to:

- J(z —~r){R[Ir +a-(z —r)] - R(I)}
x U'llr +a-(c —r)]dF(z).

On the assumption that « is positive and R () is monotonic, the
expression (z —r)-{R(Ir + a-(z —r)) — R(/r)] will possess the
same sign as R’(-). This implies that the derivative de/df will
always be positive (negative) whenever the Arrow-Pratt index
R(x) is a decreasing (increasing) function of the individual’s
wealth level x. In other words, an increase in initial wealth will
always increase (decrease) the demand for the risky asset if
and only if U(-) exhibits decreasing (increasing) absolute risk
aversion in wealth. Further examples of the analytics of risk
and risk aversion in the expected utility model may be found
in the above references as well as the surveys of Hirshleifer
and Riley (1979), Lippman and McCall (1981) and Machina
(1983b).

Finally, in addition to the case of preferences over
probability distributions, it is also possible to refer to expected
utility preferences over alternative ‘state-payoff bundies’ (e.g.
Hirshleifer, 1965, 1966). This approach postulates a (typically
finite) set of ‘states of nature’ (i.e. a mutually exclusive and
exhaustive partition of the set of observable occurrences) and
the objects of choice consist of state-payoff bundles of the
form (x,, ..., x,), where x, denotes the outcome the individual
will receive should state i occur. An expected utility maximizer
whose subjective probabilities of the n states are given by the
values (p,,...,p,) will rank such bundles according to the
preference function V(x,,...,x,) = ZU(x;)p, or in the event
that the utility of wealth function U,(+) itself depends upon the
state of nature, according to the ‘state-dependent’ preference
function V(x,,...,x,)=ZU(x,)p; (c.g. Karni, 1985). One of
the advantages of the general ‘state-preference’ approach is that
it does not require that we be able to observe the individual’s
probabilistic beliefs, or that different individuals share the same
probabilistic beliefs.

AXIOMATIC DEVELOPMENT. Although there exist dozens of
formal axiomatizations of the expected utility model in its
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different contexts, most proceed by specifying an outcome
space and postulating that the individual's preferences over
probability distributions on this outcome space satisfy the
following four axioms: completeness, transitivity, continuity
and the independence axiom. Although it is beyond the scope
of this entry to provide a rigorous derivation of the expected
utility model in its most general setting, it is possible to
illustrate the meaning of the axioms and sketch a proof of the
expected utility representation theorem in the simple case of a
finite outcome set of the form {x,,...,x,}.

Recall that in such a case the objects of choice consist of all
probability distributions P = (p,, ..., p,) over {x,,...,x,}, so
that the following axioms refer to the individuals’ weak prefer-
ence relation > over this set, where P* = P is read '‘P* is
weakly preferred (i.e. preferred or indifferent) to P’ (the associ-
ated strict preference relation > and indifference relation ~ are
defined in the usual manner):

Completeness: For any two distributions P and P* either
P*> P, P> P* or both.

Transitivity: If P** 2> P* and P* 2 P, then P** = P,

Mixture Continuity: 1If P** > P* > P, then there exists some
4 €0, 1} such that P* ~ AP** + (1 — A)P, and

Independence: For any two distributions P and P*, P* > P
if and only if AP*+ (1 —A)P** = iP + (1 —A)P** for all
A€(0, 1] and all P**,

where AP + (Il — A)P* denotes the ‘probability mixture’ of P
and P*, i.e., the lottery with probabilities

“py+ (A= )pt,... . g, + {1 = D)p}).

The notion of a probability mixture is closely related (though
not identical) to that of a ‘compound lottery’, in the sense
that the probability mixture AP + (1 — A)P* yields the same
probabilities of ultimately obtaining the outcomes {x,,..., x,}
as would a compound lottery yielding a A:(1 — 1) chance of
obtaining the respective lotteries P or P*.

The completeness and transitivity axioms are completely
analogous to their counterparts in the standard theory of the
consumer (in particular, transitivity of > can be shown to
imply transitivity of both > and ~). Mixture continuity states
that if the lottery P** is weakly preferred to P*, and P* is
weakly preferred to P, then there will exist some probability
mixture of the most and least preferred lotteries which is
indifferent to the intermediate one.

As in standard consumer theory, completeness, transitivity
and continuity serve essentially to establish the existence of a
real-valued preference function V(p,, ..., p,), which represents
the relation 2, in the sense that P*2 P if and only if
Vipt,....p8)2V(p:,-..,p,) It is the independence axiom
which, besides forming the basis of its widespread normative
appeal, gives the theory its primary empirical content by
implying that the preference function must take the linear form
Vip,...,p,)=ZUp; To see the meaning of this axiom,
assume that one is always indifferent between a compound
lottery and its probabilistically equivalent single-stage lottery,
and that P* happens to be weakly preferred to P. In that
case, the choice between the mixtures AP* 4+ (1 — A)P** and
AP* + (1 — A)P** is equivalent to being presented with a coin
that has a (1 — 1) chance of landing tails (in which case the prize
will be P**) and being asked before the flip whether one would
rather win P or P* in the event of a head. The normative
argument for the independence axiom is that either the coin will
land tails, in which case the choice would not have mattered,
or it will land heads, in which case one is ‘in effect’ back to a
choice between P and P* and one ‘ought’ to have the same
preferences as before. Note finally that the above statement of
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the axiom in terms of the weak preference relation > also

~

implies its counterparts in terms of strict preference and
indifference.

In the following sketch of the expected utility representation
theorem, expressions such as ‘x; 2z x;” should be read as saying
that the individual weakly prefers the degenerate lottery yield-
ing x; with certainty to that yielding x; with certainty, and
‘Ax; + (1 — A)x;” will be used to denote the 1:(1 — 1) probability
mixture between these two degenerate lotteries, and so on.

The first step in the argument is to define the von
Neumann-Morgenstern utility index {U,} and the expected
utility preference function V(-). Without loss of generality, we
may reorder the outcomes so that x, = x._ .2 - >x, 2 x,.
Since x, > x; = x, for each outcome x;, we have by mixture
continuity that there will exist scalars {U,} < [0, 1] such that
x;~ Ux, + (1 — U))x, for each i (note that we can define U, =0
and U, = 1). Given this, define V' (P) to equal ZU,p, for all P.

The second step is to show that each lottery P =(p,, ..., p,)
is indifferent to the mixture Ax, + (1 — A)x, where 1 =2U,p,.
Since (p,,...,p,) can be written as the n-fold probability
mixture p,-x,+p,' X, + - +p,'x, and each outcome x, is
indifferent to the mixture U,x, + (I — U))x,, an n-fold appli-
cation of the independence axiom yields that (p,,...,p,) is
indifferent to the mixture

o lUix, + (L = U)X+ pp [Upx, + (1 = Up)x) + -
o p e [Unx, + (1= Updxids

which is equal to (ZU.;p,) x,+ (1 = ZU;p))-x,.

The third step is to demonstrate that the mixture
Ax,+(1 —A)x, is weakly preferred to the mixture
7x, + (1 —y)x, if and only if 2 >y. This follows immediately
from the independence axiom and the fact that A >y implies
that these two lotteries may be expressed as the respective
mixtures

and A=-y)yx,+(1—-2+7)Q

G=x+A-i+y)Q
where @ is defined as the mixture
/A=A +px,+{(1=-A)A =42 +9)]x.

The completion of the proof is now simple. For any two
distributions P* and P, we have by transitivity and the second
step that P* 2> P if and only if

EUPN x,+ (A =ZUp!) x, Z(EUP) X, + (1 = ZUpp) x,,

which by the third step is equivalent to the condition that
ZUp? > ZU,p, or in other words, that V(P*) > V(P).

As mentioned, the expected utility model has been
axiomatized many times and in many contexts. The most
comprehensive account of the axiomatics of the model is
undoubtedly Fishburn (1982).

HISTORY. The hypothesis that individuals might maximize the
expectation of ‘utility’ rather than of monetary value was first
proposed independently by the mathematicians Gabriel Cramer
and Daniel Bernoulli, in each case as the solution to a problem
posed by Daniel’s cousin Nicholas Bernoulli (see Bernoulli,
1738). This problem, which has since come to be known as the
‘St Petersburg Paradox’, considers the gamble which offers a 1/2
chance of $1.00, a 1/4 chance of $2.00, a 1/8 chance of $4.00,
and so on, Although the expected value of this prospect is

(1/2)-$1.00 + (1/4)-($2.00) + (1/8)-($4.00) + ---
--- =$0.50 + $0.50 + $0.50 + :-- = %o,
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common sense suggests that no one would be willing to forgo
a very substantial certain payment in order to play it. Cramer
and Bernoulli proposed that instead of looking at expected
value, individuals might evaluate this and other lotteries by
their ‘expected utility’, with utility given by a function such as
the natural logarithm or the square root of wealth, in which
case the certainty equivalent of the St Petersburg gamble
becomes a moderate (and plausible) amount.

Two hundred years later, the St Petersburg Paradox was
generalized by Karl Menger (1934), who noted that whenever
the utility of wealth function was unbounded (as with the
natural logarithm or square root functions), it would be
possible to construct similar examples with infinite expected
utility and hence infinite certainty equivalents (replace the
payoffs $1.00, $2.00, $4.00, ... in the above example by x,,
Xy, Xy,... where U(x,)=2' for each i). In light of this, von
Neumann-Morgenstern utility functions are typically (though
not universally) postulated to be bounded functions of wealth.

The earliest formal axiomatic treatment of the expected
utility hypothesis was developed by Frank Ramsey (1926) as
part of his theory of subjective probability or individuals’
‘degrees of belief in the truth of various alternative
propositions. Starting from the premise that there exists an
‘ethically neutral’ proposition whose degree of belief is 1/2 and
whose validity or invalidity is of no independent value,
Ramsey proposed a set of axioms on how the individual would
be willing to stake prizes on its truth or falsity in a manner
which allowed for the derivation of the ‘utilities’ of these
prizes. He then used these utility values and betting
preferences to determine the individual’s degrees of belief in
other propositions. Perhaps because it was intended as a
contribution to the philosophy of belief rather than the theory
of risk bearing, Ramsey’s analysis did not have the impact
upon the economics literature that it deserved.

The first axiomatization of the expected utility model to
receive widespread attention was that of John von Neumann
and Oskar Morgenstern, which was presented in connection
with their formulation of the théory of games (von Neumann
and Morgenstern, 1944, 1947, 1953). Although both these
developments were recognized as breakthroughs, the mistaken
belief that von Neumann and Morgenstern had somehow
mathematically overthrown the Hicks-Allen ‘ordinal revolu-
tion’ led to some confusion until the difference between ‘utility’
in the von Neumann-Morgenstern and ordinal (i.e. non-
stochastic) senses was illuminated by writers such as Ellsberg
(1954) and Baumol (1958).

Another factor which delayed the acceptance of the theory
was the lack of recognition of the role played by the
independence axiom, which did not explicitly appear in the
von Neumann-Morgenstern formulation. In fact, the initial
reaction of researchers such as Baumol (1951) and Samuelson
(1950) was that there was no reason why preferences over
probability distributions must necessarily be linear in the
probabilities. However the independent discovery of the
independence axiom by Marschak (1950), Samuelson (1952)
and others, and Malinvaud’s (1952) observation that it had
been implicitly invoked by von Neumann and Morgenstern,
led to an almost universal acceptance of the expected utility
hypothesis as both a normative and positive theory of
behaviour toward risk. Practically the only dissenting voice
was that of Maurice Allais, whose famous paradox (see below)
and other empirical and theoretical work (e.g. Allais, 1952) has
provided the basis for the resurgence of interest in alternatives
to expected utility in the late 1970s and 1980s. This period also
saw the development of the elegant axiomatization of Herstein
and Milnor (1953) as well as Savage’s (1954) joint

axiomatization of utility and subjective probability, which
formed the basis of the state-preference approach described
above.

While the 1950s essentially saw the completion of
foundational work on the expected utility model, the 1960s
and 1970s saw the flowering of its analytic capabilities and its
application to fields such as portfolio selection (Merton, 1969),
optimal savings (Levhari and Srinivasan, [969), international
trade (Batra, 1975), and even the measurement of inequality
(Atkinson, 1970). This movement was spearheaded by the
development of the Arrow-Pratt characterization of risk
aversion (see above) and the characterization, by
Rothschild-Stiglitz (1970, 1971) and others, of the notion of
‘increasing risk’. This latter work in turn led to the
development of a general theory of ‘stochastic dominance’
(e.g. Whitmore and Findlay, 1978), which further expanded
the analytical powers of the model.

Although the expected utility model received a small amount
of experimental testing by economists in the early 1950s (e.g.
Mosteller and Nogee, 1951; Allais, 1952) and continued to be
examined by psychologists, interest in the empirical validity of
the model waned from the mid-1950s through the mid-1970s,
no doubt due to both the normative appeal of the
independence axiom and model’s analytical successes. How-
ever, the late 1970s and 1980s have witnessed a revival of
interest in the testing of the expected utility model; a growing
body of evidence that individuals’ preferences systematically
depart from linearity in the probabilities; and the develop-
ment, analysis and application of alternative models of choice
under risk (see below). It is fair to say that today the debate
over the descriptive (and even normative) validity of the
expected utility hypothesis is more extensive than it has been
in 30 years, and the outcome of this debate will have
important implications for the direction of research in the
economic theory of individual behaviour towards risk.

EVIDENCE AND ALTERNATIVE HYPOTHESES. As mentioned above,
the current body of experimental evidence suggests that
individual preferences over lotteries are typically not linear in
the probabilities, but rather depart systematically from this
property. The earliest, and undoubtedly best-known, example
of this is the so-called ‘Allais paradox’ (Allais, 1952), in which
the individual is asked to rank each of the following pairs of
prospects (where $1M = $1,000,000):

0.10 chance of $5M
0.89 chance of $1M
0.01 chance of $0,

a,: {1.00 chance of $1M versus a,:

and:
) 0.10 chance of $5M
°10.90 chance of $0

0.11 chance of $IM
0.89 chance of $0.

Since each of these lotteries involves outcomes in the set {x,,
x5 X3} ={$0, $IM, $5M}, they may be plotted in the (p,.p;)
triangle diagram, as illustrated in Figures 5 and 6. The fact
that the four prospects form a parallelogram in this triangle
makes this problem a useful test of linearity (i.e. the expected
utility hypothesis), since it implies that an expected utility
maximizer will prefer a, to a, if and only if he or she prefers a,
to a, (algebraically, this is in turn equivalent to the inequality
0.00-U(S5M) - 0.11- UBIM) +0.01-U$(0) < 0).

However, experimenters such as Allais (1952), Morrison
(1967), Moskowitz (1974), Raiffa (1968), Slovic and Tversky
(1974) and others, have found that the modal if not majority
choice was for a, in the first pair and a, in the second pair, as
would be chosen by an individual whose indifference curves

versus a,: {
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‘fanned out’ as in Figure 6. Subsequent studies by Hagen
(1979), Karmarkar (1974), MacCrimmon and Larsson (1979),
McCord and de Neufville (1983) and others, using both similar
and qualitatively different types of examples, have also
revealed systematic departures from linearity in the direction
of ‘fanning out’ (see Machina, 1983a, 1983b).

P,

Figure 5 Allais Paradox with Expected Utility Indifference Curves

P]
a, 2y
,-.
5 i
0 G, a,
PI

Figure 6 Allais Paradox with Non-Expected Utility Indifference Curves that
“Fan Out”

In light of this evidence, researchers have begun to develop
alternatives to the expected utility model (typically generaliza-
tions of it) which are capable of exhibiting this form of
nonlinearity as well as other standard properties of risk
preferences such as first-order stochastic dominance preference
and risk aversion. (A set of non-expected utility indifference
curves which exhibits these three properties, for example, is
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given in Figure 2.) Specific nonlinear functional forms for
preference functions which have been proposed include those
of Edwards (1955) and Kahneman and- Tversky (1979)
(CU(x)n(p;)); Chew and MacCrimmon (1979) and Chew
(1983) {[J Ux)dF(x))/[f W(x) dF(x)]}; and Quiggin (1982)
{f UMX)AG[F(x)]}. A general framework for the analysis of
differentiable non-expected utility preference functions in
terms of their local linear approximations, which can be
interpreted as local ‘expected utility’ approximations, is
developed in Machina (1982, 1983a). Finally, the findings by
Lichtenstein and Slovic (1971), Grether and Plott (1979) and
others of systematic intransitivities in preferences over lotteries
(but see Karni and Safra, 1984), have led to the development
of non-transitive models by researchers such as Bell (1982),
Fishburn (1983), and Loomes and Sugden (1982). (For a
more complete survey of the experimental evidence on the
expected utility hypothesis as well as alternative models of
behaviour towards risk, see Machina, 1983b.)

MaRK J. MACHINA

See also BERNOULLI, DANIEL; DECISION THEORY; RAMSEY, FRANK
PLUMPTON; REPRESENTATION OF PREFERENCES;, RISK UNCERTAINTY;
UTILITY THEORY AND DECISION-MAKING.

BIBLIOGRAPHY

Allais, M. 1952. Fondements d'une théorie positive des choix
comportant un risque et critique des postulats et axiomes de
I'école Américaine. Colloques Internationaux du Centre National de
la Recherche Scientifique 40, (1953), 257-332. Trans. as: The
foundations of a positive theory of choice involving risk and a
criticism of the postulates and axioms of the American School, in
Allais and Hagen (1979).

Allais, M. and Hagen, O. (eds) 1979. Expected Utility Hypotheses and
the Allais Paradox. Dordrecht: D. Reidel.

Arrow, K. 1974. Essays in the Theory of Risk-Bearing. Amsterdam:
North-Holland.

Atkinson, A. 1970. On the measurement of inequality. Journal of
Economic Theory 2(3), September, 244-63.

Batra, R. 1975. The Pure Theory of international Trade under
Uncertainty. London: Macmillan.

Baumol, W. 1951. The Neumann-Morgenstern utility index: an
ordinalist view. Journal of Political Economy 59(1), February,
61-6.

Baumol, W. 1958. The cardinal utility which is ordinal. Economic
Journal 68, December, 665-72.

Bell, D. 1982. Regret in decision making under uncertainty. Opera-
tions Research 30, September—October, 961-81.

Bernoulli, D. 1738. Specimen theoriae novae de mensura sortis.
Commentarii Academiae Scientiarum Imperialis Petropolitanae.
Trans. as: Exposition of a new theory on the measurement of
risk, Econometrica 22, January 1954, 23-36.

Chew, S.H. 1983. A generalization of the quasilinear mean with
applications to the measurement of income inequality and
decision theory resolving the Allais paradox. Econometrica 51(4),
July, 1065-92,

Chew, S. and MacCrimmon, K. 1979. Alpha-Nu choice theory: a
generalization of expected utility theory. University of British
Columbia Faculty of Commerce and Business Administration
Working Paper No. 669, July.

Debreu, G. 1959. Theory of Value: An Axiomatic Analysis of Eco-
nomic Equilibrium. New Haven: Yale University Press.

Edwards, W. 1955, The prediction of decisions among bets. Journal
of Experimental Psychology 50(3), September, 201-14,

Ellsberg, D. 1954. Classical and current notions of ‘measurable
utility’. Economic Journal 64, September, 528-56.

Fishbumn, P. 1982. The Foundations of Expected Utility. Dordrecht:
D. Reidel.

Fishburn, P. 1983. Nontransitive measurable utility. Journal of
Mathematical Psychology 26(1), August, 31-67.



expenditure tax

Friedman, M. and Savage. L. 1948. The utility analysis of choices
involving risk. Journal of Political Economy 56, August, 279-304.
Reprinted in Readings in Price Theory, ed. G. Stigler and K.
Boulding, London: George Allen & Unwin, 1953,

Grether, D. and Plott, C. 1979. Economic theory of choice and the
preference reversal phenomenon. American Economic Review
69(4), September, 623-38.

Hagen, O. 1979. Towards a positive theory of preferences under risk.
In Allais and Hagen (1979).

Herstein, 1. and Milnor, J. 1953. An axiomatic approach to measur-
able utility. Econometrica 21, April, 291-7.

Hey, J. 1979. Uncertainty in Microeconomics. Oxford: Martin
Robinson; New York: New York University Press.

Hirshleifer, J. 1965. Investment decision under uncertainty: choice
theoretic approaches. Quarterly Journal of Economics 79, Novem-
ber, 509-36.

Hirshleifer, J. 1966. Investment decision under uncertainty: applica-
tions of the state-preference approach. Quarterly Journal of
Economics 80, May, 252-77.

Hirshleifer, J. and Riley, J. 1979. The analytics of uncertainty and
information — an expository survey. Journal of Economic Litera-
ture 17(4), December. 1375-421.

Kahneman, D. and Tversky, A. 1979. Prospect theory: an analysis of
decision under risk. Econometrica 47(2), March, 263-91.

Karmarkar, U. 1974. The effect of probabilities on the subjective
evaluation of lotteries. Massachusetts Institute of Technology
Sloan School of Management Working Paper No. 698-74,
February.

Karni, E. 1985. Decision Making under Uncertainty: the Case of
State-Dependent Preferences. Cambridge, Mass.: Harvard Univer-
sity Press.

Karni, E. 1985. Increasing risk with state dependent preferences.
Journal of Economic Theory 35(1), 172-7.

Karni, E. and Safra, Z. 1984. *Preference reversal’ and the theory
of choice under risk. Johns Hopkins University Working Papers
in Economics No. 141.

Levhari, D. and Srinivasan, T.N. 1969. Optimal savings under
uncertainty. Retview of Economic Studies 36-2, April, 153-64.
Lichtenstein, S. and Slovic, P. 1971. Reversals of preferences between
bids and choices in gambling decisions. Journal of Experimental

Psychology 89(1), July, 46-55.

Lippman, S. and McCall, J. 1981. The economics of uncertainty:
selected topics and probabilistic methods. In Handbook of
Mathematical Economics, ed. K. Arrow and M. Intriligator,
Vol. 1, Amsterdam: North-Holland.

Loomes, G. and Sugden, R. 1982. Regret theory: an alternative
theory of rational choice under uncertainty. Economic Journal 92.
(368), December, 805-24.

McCord, M. and de Neufville, R. 1983. Empirical demonstration that
expected utility analysis is not operational. In Stigum and
Wenstop (1983).

MacCrimmon, K. and Larsson, S. 1979. Utility theory: axioms versus
‘paradoxes’. In Allais and Hagen (1979).

Machina, M. 1982. ‘Expected utility’ analysis without the indepen-
dence axiom. Econometrica 50(2), March, 277-323.

Machina, M. 1983a. Generalized expected utility analysis and the
nature of observed violations of the independence axiom. In
Stigum and Wenstep (1983).

Machina, M. 1983b. The economic theory of individual behavior
toward risk: theory. evidence and new directions. Institute for
Mathematical Studies in the Social Sciences Technical Report
No. 433, Stanford University, October.

Malinvaud, E. 1952. Note on von Neumann-Morgenstern’s strong
independence axiom. Econometrica 20(4), October, 679.

Markowitz, H. 1952. The utility of wealth. Journal of Political
Economy 60, April, 151-8.

Marschak, J. 1950. Rational behavior, uncertain prospects, and
;ngesz:)surable utility. Econometrica |8, April, 111-41 (Errata, July

).

Menger, K. 1934. Das Unsicherheitsmoment in der Wertlehre.
Zeitschrift fiir Nationalékonomie. Trans. as: The role of uncer-
tainty in economics. in Essays in Mathematical Economics in
Honor of Oskar Morgenstern, ed. M. Shubik, Princeton:
Princeton University Press, 1967.

Merton, R. 1969. Lifetime portfolio selection under uncertainty: the
continuous time case. Review of Economics and Statistics 51(3),
August, 247-57.

Morrison, D. 1967. On the consistency of preferences in Allais’
paradox. Behavioral Science 12(5), September, 373-83.

Moskowitz, H. 1974, Effects of problem representation and feedback
on rational behavior in Allais and Morlat-type problems. Decision
Sciences 2.

Mosteller, F. and Nogee, P. 1951, An experimental measurement of
utility. Journal of Political Economy 59, October, 371404,

Pratt, J. 1964. Risk aversion in the small and in the large.
Econometrica 32, January-April, 122-36.

Quiggin, J. 1982. A theory of anticipated utility. Journal of Economic
Behavior and Organization 3(4), December, 323-43.

Quirk, J. and Saposnick, R. 1962. Admissibility and measurable
utility functions. Review of Economic Studies 29, February,
140-46.

Raiffa, H. 1968. Decision Analysis: Introductory Lectures on Choice
under Uncertainty. Reading, Mass.: Addison Wesley.

Ramsey, F. 1926. Truth and probability. In The Foundations of
Mathematics and Other Logical Essays, ed. R. Braithwaite, New
York: Harcourt, Brace and Co., 1931. Reprinted in Foundations:
Essays in Philosophy, Logic, Mathematics and Economics, ed.

D. Mellor, New Jersey: Humanities Press, 1978.

Ross, S. 1981. Some stronger measures of risk aversion in the small
and in the large, with applications. Econometrica 49(3), May,
621 -38.

Rothschild, M. and Stiglitz, J. 1970. Increasing risk I: a definition.
Journal of Economic Theory 2(3), September, 225-43.

Rothschild, M. and Stiglitz, J. 1971. Increasing risk U: its economic
consequences. Journal of Economic Theory 3(1), March, 66-84.

Safra, Z. 1985. Existence of equilibrium for Walrasian endowment
games. Journal of Economic Theory 37(2), 366--78.

Samuelson, P. 1950. Probability and attempts to measure utility.
Economic Review 1, July, 167-73. Reprinted in Stiglitz (1965).
Samuelson, P. 1952. Probability, utility. and the independence axiom.

Econometrica 20, October, 670-78. Reprinted in Stiglitz (1965).

Savage, L. 1954. The Foundations of Statistics. New York: John
Wiley & Sons. Enlarged and revised edn, New York: Dover,
1972.

Slovic, P. and Tversky, A. 1974. Who accepts Savage's Axiom?
Behavioral Science 19(6), November, 368 -73.

Stiglitz, J. (ed.) 1965. Collected Scientific Papers of Paul A.
Suamuelson, Vol. 1. Cambridge, Mass.: MIT Press.

Stigum, B. and Wenstep, F. (eds) 1983. Foundations of Utility and
Risk Theory with Applications. Dordrecht: D. Reidel.

von Neumann, J. and Morgenstern, O. 1944. Theory of Games and
Economic Behavior. Princeton: Princeton University Press. 2nd
edn, 1947; 3rd edn, 1953.

Whitmore, G. and Findlay, M. (eds) 1978. Stochastic Dominance: An
Approach to Decision Making Under Risk. Lexington, Mass.:
D.C. Heath.

expenditure functions. See COST FUNCTIONS; DUALITY.

expenditure tax. The idea of an expenditure tax has a long
ancestry, dating back at least to Hobbes, who argued that
people should be taxed according to the resources of the
community they absorb not according to what they contribute.
The case was later taken up by J.S. Mill, Marshall, Pigou and
Irving Fisher. In modern times, the advocacy of an
expenditure tax is most associated with the Cambridge
economist Nicholas Kaldor (1955). Recently it has been
espoused by the Meade Committee (Meade, 1978), and
separately by two members of that Committee, Kay and King
(1978).

There are efficiency and equity arguments for considering an
expenditure tax as an alternative to income taxation. As far as
efficiency is concerned, there is a commonly held view that
because income tax involves the double taxation of saving, and
therefore lowers the rate of return on saving below the rate of
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