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Introduction 
 
Adaptive learning models describe how players adjust their decisions 
over time in response to their experience with analogous games. 
 
The learning process is usually modeled as repetition of a fixed “stage 
game”, so the analogies are perfect; some recent work relaxes that. 
 
Players view their decisions in the stage game as the objects of choice, 
and the dynamics of their decisions are modeled either directly, or 
indirectly in terms of their beliefs with decisions best responding. 
 
In either case, decisions are usually allowed to be “noisy” in the sense 
that the model is taken to describe the mean decision, with errors. 
 
I focus on adaptive learning models because they appear to be the most 
useful for understanding behavior. 
 
But I will also discuss how adaptive learning models relate to other 
models of learning, such as “rational learning” or “long-run equilibrium”. 
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An adaptive learning model has two main components: 
 
● A model of players’ interaction patterns 

● A model of how players adjust decisions in response to experience  
 
Models of interaction patterns follow evolutionary game theory—the main 
reason evolutionary models are interesting for economics, in my view. 
 
I first discuss evolutionary models, illustrating the effects of interaction 
patterns under the standard assumption that the population frequencies 
of players’ decisions increase with their payoffs in the current population. 
 
(That assumption is at least approximately true for the leading adaptive 
learning models, but it is only a proxy for a detailed model of learning.) 
 
I next discuss more detailed adaptive learning models of how players 
adjust their decisions, given the population’s interaction pattern. 
 
I conclude with an analysis of some especially informative experiments. 
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“Evolutionary” models of players’ interaction patterns   

In evolutionary models, a population or populations of players repeatedly 
play a given “stage game”, without or with distinguished player roles. E.g. 
 
● A two-person stage game is played repeatedly by pairs of players 

randomly drawn from a single population, or with asymmetric player 
roles randomly filled from separate, distinguished populations.  

● Or an n-person stage game is played repeatedly by an entire 
 population or (with distinguished player roles) populations. 
 
Players’ payoffs in a given stage are assumed to be determined by their 
own actions and the population action frequencies. 
 
(This is implied by random pairing, assuming expected-payoff 
maximization; but it is restrictive for other interaction patterns.)  
 
Players with a given observable role label are identical but for actions. 
 
For simplicity, players are usually assumed to play only pure actions. 
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In evolutionary models, players’ actions are not chosen but inherited. 

In adaptive learning models actions are chosen, but not fully rationally in 
the sense of equilibrium in the game that describes the entire learning 
process (“rational learning”); instead action choices are shaped by their 
payoffs in the current population.  
 
Other important differences from traditional game theory include: 

● The population is the unit of analysis, rather than the individual. 

● Labeling of actions and/or populations has substantive implications, 
because labels are the “language” in which players (implicitly or 
explicitly) recognize analogies between current and previous games, 
hence the language in which they encode their experience. 

 
A final important difference pertains to the scientific “cultures”: 

● Traditional game theory grew out of von Neumann’s analysis of games 
 of pure conflict, and is at its best in zero-sum two-person games. 

● Evolutionary game theory grew out of analyses of coordination in 
 games like Battle of the Sexes (the “Hawk-Dove” game), and this gives 
 it and adaptive learning models advantages in analyzing coordination. 
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In evolutionary game theory the law of motion of the population action 
frequencies is derived, with a functional form known as the “replicator 
dynamics”, from the assumption that players inherit their actions from 
parents who reproduce at rates (“fitnesses”) equal to current payoffs. 
 
 
Put another way, if we describe game outcomes as fitnesses, in simple 
evolutionary models the replicator dynamics are like accounting 
identities, so that the action frequencies must follow them by definition. 
 
 
In evolutionary game theory and simple adaptive learning models, 
dynamics other than the replicator dynamics are allowed, but the 
population action frequencies usually respond to payoff differences in a 
way that is qualitatively similar to the replicator dynamics. 
 
(The distinction between replicator and non-replicator dynamics can be 
important for some purposes, but it will not matter much here.) 
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The goal of an evolutionary analysis is usually taken to be identifying the 
locally stable steady states of the replicator dynamics. 
 

(The notion of “evolutionary stability” is an imperfect static proxy for this.) 
 
If the dynamics converge, they must converge to a steady state in which 
the actions that persist are optimal in the stage game, given the limiting 
action frequencies; thus, the limiting frequencies are in Nash equilibrium. 
 
Remarkably, even though players’ actions are not rationally chosen—not 
even chosen!—the population collectively “learns” the equilibrium as its 
frequencies evolve, with selection doing the work of strategic thinking. 
 
 
Note that although the limiting action frequencies are in Nash 
equilibrium, individuals’ actions need not be. 
 
If for example individuals play only pure strategies in a game with a 
mixed-strategy equilibrium, then the limiting population action 
frequencies mimic a purified “equilibrium in beliefs”. 
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This link between steady states of the dynamics and Nash equilibria has 
a counterpart for adaptive learning dynamics: 
 
In the simplest models, adaptive learning cannot converge to population 
frequencies that are not in Nash equilibrium. 
 
And though there are no general convergence results, adaptive learning 
dynamics have a strong tendency to converge to some Nash equilibrium. 
 
The interesting question in most applications is, Which equilibrium? 
 

 
The answer depends both on players’ interaction patterns, and on the 
details of the learning rules by which players adjust their decisions. 
 
Identifying the “right” evolutionary model of how players interact goes a 
long way toward analyzing the dynamics, as I illustrate next. 
 
But the details of learning also matter, as I will illustrate later. 
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Evolutionary dynamics  
 
First imagine a large population of men and women repeatedly and 
anonymously paired (heterosexually, and with gender observable so they 
can base their actions on it) to play Battle of the Sexes (“BoS”). 
 

  

Fights 

 

Ballet 

Fights 
1 

2 

0 

0 

Ballet 
0 

0 

2 

1 

 Battle of the Sexes 
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Draw a differential equation phase diagram with the population frequency 
of men playing Fights, m, on the horizontal axis and the frequency of 
women playing Fights, w, on the vertical axis. 

w 

 

m  
The diagram allows a simple analysis of adaptive learning dynamics. 
 
There are four regions of the state space: 
 
m > 2/3, w > 1/3 
m > 2/3, w < 1/3 
m < 2/3, w > 1/3 
m < 2/3, w < 1/3. 
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w 

 

m  
For men the expected payoff of Fights is higher than Ballet whenever w > 
1/3 (2w > 1 – w).  
 
For women the expected payoff of Fights is higher than Ballet whenever 
m > 2/3 (m > 2(1 –  m)). 
 
Thus when (m > 2/3, w > 1/3), m and w rise, so m → 1 and w → 1. 
 
And when (m < 2/3, w < 1/3), m and w fall, so m → 0 and w → 0. 
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w 

 

m  
When (m > 2/3, w < 1/3), m falls and w rises; and when (m < 2/3, w > 
1/3), m rises and w falls.  
 
In these cases, if the initial condition is above the diagonal—if m + w > 
1—the system enters (m > 2/3, w > 1/3), m → 1, and w → 1; if it’s below 
the diagonal, the system enters (m < 2/3, w < 1/3), m → 0, and w → 0. 
 
In all four cases the limiting outcome “is” one of BoS’s two pure-strategy 
equilibria (“is” only in that the game that describes the populations’ 
interactions is not BoS; but there is a simple correspondence). 
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w 

 

m  
 
 
In each case, in the limiting outcome people follow a convention based 
on labels, although labels are assumed irrelevant in traditional theory. 
 
 
In deterministic evolutionary dynamics, which convention people follow is 
completely determined by whether the initial sum of the frequencies of 
arrogant men and wimpy women, m + w > 1.  
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Now consider a closely related model in which players are repeatedly 
and anonymously randomly paired from a large “unisex” population to 
play the same game with two pure-strategy equilibria, one favored by 
one player and the other by the other; but with no observable labeling.  
 
Even without labels, players can distinguish actions via payoffs. 
 
Call the action that could yield a player’s best outcome “Hawk”—in BoS, 
Fights for men and Ballet for women—and call the other action “Dove”. 
 
With these labels BoS has symmetric player roles for men and women, 
an important convenience in modeling the difficulty of coordination: 

 Hawk Dove 

Hawk 
0 

0 

1 

2 

Dove 
2 

1 

0 

0 

 Hawk-Dove Game 
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One way to analyze the dynamics recycles the BoS phase diagram, 
adding the restriction that in a single, unisex population, the frequencies 
of Hawk in each player role are equal, like the previous frequencies m of 
men playing Fights or 1 – w of women playing Ballet; so that m + w = 1. 
This limits the dynamics to the northwest/southeast diagonal. 

w 

 

m  
If it were possible to go off the diagonal, the symmetric mixed-strategy 
equilibrium of the game at Pr{Hawk} = 2/3 would be unstable, and 
players would converge to one of the pure-strategy equilibria. 
 
But the dynamics must now converge to the intersection in the center, 
the symmetric mixed-strategy equilibrium of the game at Pr{Hawk} = 2/3. 
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The lack of observable labels disables the gender- or decision-based 
convention the population used before to break the symmetry of roles as 
needed for efficient coordination, completely changing the outcome. 

 
With no observable labeling, the off-diagonal states, including the pure-
strategy equilibria, are not even in the state space. 
 
Off-diagonal states are ruled out, even though they could occur with 
positive probability, because when players are randomly paired from a 
single population with no observable labeling, there can be no systematic 
difference in the frequencies of Hawk in each player role. 
 
This illustrates how evolutionary game theory models the difficulty of 
coordination, using a careful account of what labels players observe to 
rule out “magical” coordination usually allowed in traditional analyses.  
 
That evolutionary game theory has machinery to do this in a systematic 
way is an important advantage—although such magical coordination is 
now often ruled out in traditional analyses on an ad hoc, intuitive basis. 
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Another, equivalent way to analyze the dynamics graphs the expected 
payoffs of Hawk and Dove in either role against the frequency of Hawk h. 

 

This builds in the restriction that with unisex labeling, the frequency of 
players playing Hawk must be the same in both roles. 

 

This restriction allows us to represent the dynamics in a one-dimensional 
phase diagram, with the expected payoffs of Hawk and Dove on the 
vertical axis and the population frequency of Hawk on the horizontal axis. 

 

 

h 
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h 

When the frequency of Hawk is low, Hawk has higher payoff than Dove; 
and vice versa.  

Thus the dynamics follow the arrows on the horizontal axis, converging 
to the frequency of Hawk where the payoff lines cross, which is Pr{Hawk} 
= 2/3, again as in the game’s mixed-strategy Nash equilibrium. 
 
These simple examples illustrate the methods of evolutionary analyses, 
assuming only that the population frequencies of players’ decisions 
increase with the decisions’ payoffs against the current population. 
 
I will adapt those methods to analyze Van Huyck et al.’s coordination 
experiments, where the details of learning play an essential role; but first 
a brief introduction to the leading adaptive learning models. 
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Adaptive learning models  
 
Adaptive learning models are inherently “irrational” from the viewpoint of 
Nash equilibrium (not necessarily from the viewpoint of decision theory). 
 
 
They implicitly assume that a player thinks other players’ decisions won’t 
adjust, even though the player knows that he himself is adjusting. 
 
And they allow a player’s adjustments to be only partial. 
 
 
I will show that something like these “irrational” (though sensible) 
features are needed to elucidate observed behavior. 
 
Adaptive learning models do share the rationality-based feature that a 
player’s probability of making a decision increases with the payoff that 
decision yielded, or would have yielded, in the current population. 
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There are three leading classes of adaptive learning models: 

● Reinforcement learning 
● Beliefs-based learning 
● Experience-weighted attraction (“EWA”) learning 
 
(Beyond the scope of these lectures are interesting and largely 
orthogonal refinements such as Camerer, Ho, and Chong’s 2002 JET 
“strategic teaching”, Stahl’s 1996 GEB “rule learning”, and Selten’s 1991 
and Conlisk’s 1993ab JEBO “sophisticated learning”.)   
  
All three leading models can be described by assuming that strategies 
have numerical “attractions,” which determine their choice probabilities in 
the same way for all three models. 
 
Given this, specifying an adaptive learning model requires specifying 
each player’s initial attractions, how he updates them in response to his 
experience, and how his choice probabilities depend on the attractions. 
 
Initial attractions are the subject of strategic thinking, discussed later; I 
focus here on updating and choice probabilities. 
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Reinforcement (or “stimulus-response” or “rote”) learning  
 
Reinforcement learning was originally developed to describe the 
behavior of (mostly non-human) laboratory animals in simple settings. 
 
(Snapshots here and below from Camerer and Ho 1999 Econometrica.) 
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In reinforcement and other models, attractions determine choice 
probabilities as follows (with attractions A(∙) generalizing reinforcements 
R(∙) to other models): 
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In reinforcement learning, strategies’ attractions are updated only 
according to the payoffs received for the strategies actually played: 
 

 
 
(The choice probabilities of other strategies can still change via (2.11).) 
 
Reinforcement learning is defined without reference to the structure of 
the game, or even to whether players know they are playing a game. 
 
Thus there can be no hypothetical “what if I had done that instead?” 
thought experiments of the kind humans often seem to engage in when 
trying to learn from experience. (Such thinking depends on the structure.) 
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Despite these limitations, reinforcement learning fits observed human 
behavior well in some games, such as simple matrix games with mixed-
strategy equilibria. 
 
 
 
Reinforcement learning tends to fit best when subjects have little 
information about the structure, but it fits well in some games even when 
subjects know the structure. 
 
 
 
But reinforcement learning often fits poorly in games with larger strategy 
spaces; and it often adjusts far too slowly to describe human behavior, 
as it would in Van Huyck et al.’s experiments discussed below.  
 
(One might argue, uncharitably, that reinforcement learning fits well in 
settings that leave human subjects bored or confused.) 
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Beliefs-based learning 
 
In beliefs-based models such as “fictitious play”, players are assumed, 
by contrast, to know the structure of the game. 
 
Players update probabilistic beliefs about others’ likely strategies from 
past experience, calculate the expected payoffs of their own strategies, 
and choose strategies that have higher payoffs with higher probabilities. 
 
 
Fictitious play assumes others’ strategies are drawn from a stationary 
distribution, so estimated beliefs are simple averages of past history.  
 
At the other extreme is “Cournot dynamics” (best responding to others’ 
last-period play), which discounts all history but the most recent. 
 
 
But beliefs-based learning includes many more sophisticated rules, 
which weight past experience in more plausible ways. 
  



26 
 

For example, in Camerer and Ho’s (1999) treatment of beliefs, 

 

  
 
  



27 
 

EWA (experience-weighted attraction) learning 
 
 
In EWA learning, just as in reinforcement or beliefs-based learning, 
strategies’ attractions reflect prior predispositions; and attractions 
determine choice probabilities according to a rule like the logit in (2.11). 
 
 
EWA nests beliefs-based and reinforcement models of learning. 
 
 
The key idea is “hypothetical reinforcement” of strategies that were not 
chosen, according to the payoff they would have yielded. 
 
 
Hypothetical reinforcement is allowed to have a different weight than 
reinforcement and beliefs-based models’ reinforcement of the strategies 
that were actually chosen. 
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In Camerer and Ho (1999) (with parts that are also pertinent to more 
flexible specifications of beliefs-based models other than EWA):   
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Thus the strength of EWA’s hypothetical reinforcement is tuned by a 
parameter δ; δ = 0 is reinforcement learning and δ = 1 is a class of 
weighted fictitious play beliefs-based learning models. 

The decay parameters φ and ρ in (2.1)-(2.2) depreciate attractions and 
the amount of experience; φ = ρ is belief-based; ρ = 0 is reinforcement.  
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EWA combines the best features of reinforcement and beliefs-based 
models: allowing attractions to begin and grow flexibly as reinforcement 
does, but reinforcing strategies not chosen as belief-based models do. 
 
 
In applications typical estimates of δ are around .50, of φ around 1, and 
of ρ from 0 to φ, showing that the generalization to EWA has bite. 
 
 
Because EWA is nonlinear in δ, the resulting models are (much) more 
than a linear combination of beliefs-based and reinforcement models; 
and in applications EWA often fits better than both extremes. 
 
 
See for example Camerer and Ho’s 1998 J. Mathematical Psychology 
EWA analysis of Van Huyck et al.’s coordination experiments, discussed 
below from Crawford’s 1995 Econometrica beliefs-based point of view. 
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Reinforcement, beliefs-based, and EWA learning models have similar 
convergence properties. 
 
 
Although general results are elusive, and convergence may depend on 
the details of the game and the stochastic structure, these models all 
normally converge to some steady state pattern in the stage game. 
 
 
Moreover, when the stage game is a normal-form game, these models 
can converge only to a Nash equilibrium of that game (with qualifications 
regarding equilibrium in beliefs for mixed-strategy equilibria).  
 
 
When the stage game is a nontrivial extensive-form game, convergence 
may be to a generalization known as self-confirming equilibrium, which 
allows deviations from subgame-perfect or sequential equilibrium in parts 
of the game tree where play does not test strategies’ performance. 
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Just as it is surprising that evolutionary dynamics converge to Nash 
equilibrium, it may be surprising that reinforcement learning usually 
converges to Nash equilibrium, because reinforcement learners lack 
much of the information about the game that its equilibria depend on. 
 
But Hopkins 2002 Econometrica shows that the expected motions of 
particular versions of stochastic fictitious play and reinforcement learning 
with experimentation can both be written as a perturbed form of the 
evolutionary replicator dynamics. This result probably holds for EWA too. 
 
Reinforcement learning yields the same adjustments on average over 
time as stochastic fictitious play, even though fictitious play’s adjustment 
each period depends on details that reinforcement learning ignores. 
 
 
This suggests that the details of learning rules matter mainly in how they 
affect probabilities of “tunneling”: jumping between basins of attraction. 
 
Tunneling probabilities do vary with the details; more on this below. 
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Van Huyck, Battalio, and Beil’s 1990 AER, 1991 QJE experiments 
 

Repeated play of symmetric coordination games in populations of 
subjects, interacting all at once in “large groups”, or with random pairing. 
 
Subjects chose simultaneously among 7 efforts, with payoffs and optimal 
choices determined by their own efforts and the median or minimum 
effort in large groups, or the current pair’s minimum with random pairing. 
 
Explicit communication was prohibited, the median or minimum was 
publicly announced after each play (random pairs told only their own 
pair’s minimum), and the structure was publicly announced at the start. 
 
There were five leading treatments, using the minimum in 1990 and the 
median in 1991, varying the size of the population and their interaction 
patterns in ways that make the results much more informative. 
 
(Here I focus on the “Cd” treatment with repeatedly random pairing, but 
contrast with the “Cf” treatment’s initially random but then fixed pairing.) 
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The stage games have seven strict, symmetric, Pareto-ranked equilibria. 
 
 
The stage games are like a meeting that everyone would prefer to start 
on time, but which can’t start until a given quorum is achieved—100% in 
the large-group minimum game, 50% in the large-group median games. 
 
Although there is an “obviously” right way to play, the Pareto-superior 
equilibrium is intuitively more fragile, the larger the quorum or the group. 
 
 
In the experiments—very surprisingly at the time, because the 
experiments were far ahead of theory—coordination was less efficient, 
the more fragile was the Pareto-superior equilibrium. 
 
 
Traditional equilibrium analysis and refinements (with exceptions like 
Harsanyi and Selten’s 1988 risk-dominance) don’t address this issue; 
and more recent refinements come only slightly closer.  
 



35 
 

 

 

 
VHBB’s Leading Median and Minimum Payoff Tables 
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Results 
 
The five leading treatments all evoked similar initial responses (table 
from Crawford 1991 Games and Economic Behavior, p. 55)). 
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Subjects almost always converged to some stage-game equilibrium. 
 
But the dynamics and limiting outcomes varied with the order statistic, 
interaction pattern, and group size, with very large differences in drift, 
history-dependence, and rate of convergence: 
 
● In 12 out of 12 large-group median runs, there was “lock-in” on the 
 initial median, although it varied across runs and was usually inefficient 

 
● In 9 out of 9 large-group minimum runs, there was strong downward 
 drift, with subjects always approaching the least efficient equilibrium 

 
● In 2 out of 2 random-pairing minimum runs, there was very slow 
 convergence, no discernible drift, and moderate inefficiency 
 
Comparing the first two reveals an “fragility” effect: coordination is less 
efficient, the smaller the groups that can disrupt efficient equilibria. 
 
Comparing the last two reveals a “group size” effect: holding the order 
statistic constant, coordination is less efficient in larger groups. 
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42 
 

Aside 
In case you are wondering, here are the results for the Cf treatment’s 
initially random but then fixed pairing: radically different from Cd’s results. 
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There is clear evidence of “strategic teaching” (Camerer, Ho, and Chong 
2002 JET), with 12 of 14 pairs reaching the most efficient equilibrium. 
 
Subjects seemed to understand that with Cd’s random pairing, teaching 
is pointless, because it’s costly but others reap almost all of the benefits. 
 
But with Cf’s fixed pairing most subjects saw the point of teaching, and 
devised repeated-game strategies that used it to get efficient outcomes. 
 
These outcomes cannot be modeled taking stage-game strategies as the 
objects of choice, because teaching must look beyond current payoffs. 
 
But since subjects played the repeated game that describes their entire 
interaction only once, it’s not clear how to model these outcomes taking 
repeated-game strategies as the objects of choice either. 
 
I return to Van Huyck et al.’s main treatments, which can be modeled 
with subjects thinking of stage-game strategies as the objects of choice.  
 
End of aside 



45 
 

Explaining the results of Van Huyck et al.’s main treatments  
 
Rational learning? 
 
In rational learning models, players’ decisions in the stage game are 
determined by an equilibrium in the repeated game that describes the 
entire learning process, sometimes with a particular selection. 
 
Any pattern of perfectly coordinated jumping from one pure-strategy 
equilibrium to another over time is a rational learning equilibrium, in any 
of Van Huyck et al.’s treatments. (And there are many other equilibria.) 
 
Thus rational learning does not even try to explain the results of Van 
Huyck et al.’s treatments, beyond being possibly consistent with them.  
 
Quantal response equilibrium (“QRE”) in the stage game can be viewed 
as a variant of rational learning, with time-varying precision used to 
describe a learning process. 
 
QRE addresses some but not all of the issues raised by these results. 
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Deterministic evolutionary dynamics? 

Inexperienced subjects’ initial strategic thinking didn’t react strongly to 
order statistic or group size. 
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Thus the strong treatment effects must be due to dynamics of learning.  
 
 
 
Deterministic evolutionary dynamics are the simplest such models. 
 
 
 
Such dynamics give a simple account of history-dependent equilibrium 
selection, in which the population always converges to the equilibrium 
whose basin of attraction includes its initial state.  
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To build intuition I start with simplified, two-effort versions of Van Huyck 
et al.’s treatments, and then generalize.  
 

The random-pairing and large-group minimum games are larger versions 
of two-effort Stag Hunt games (Rousseau’s Discourse on Inequality); and 
the large-group median games can also be simplified this way. 
  

 Other Player   All Other Players 

  

Stag 

 

Rabbit 

 
 

 

All-Stag 
Not All-

Stag 

Stag 
2 

2 

1 

0 

 
Stag 2 0 

Rabbit 
0 

1 

1 

1 

 
Rabbit 1 1 

 Two-Person Stag Hunt   n-Person Stag Hunt 
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Graph the expected payoffs of high (Stag) and low (Rabbit; expected 
payoffs always constant) effort against the population frequency of high 
effort h in the random pairing and large-group minimum games, and in 
the large-group median game. 
 
 
 

   

 
h      h      h 

 

Random-pairing minimum Large-group minimum    Large-group median 
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In the large-group median game, the all-Stag and all-Rabbit equilibria are 
both locally stable. 
 

 

 
h 

 
With random initial conditions, the population is equally likely to converge 
to all-Stag or all-Rabbit. 
 
 
If the initial conditions favor one equilibrium, say via strategic thinking, 
then that equilibrium’s probability of being selected is higher. 
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In the random-pairing minimum game, the all-Stag and all-Rabbit 
equilibria are again both locally stable. 
 

 

 
h 

 
With random initial conditions, the population is equally likely to converge 
to all-Stag or all-Rabbit. 
 
 
If the initial conditions favor one equilibrium, say via strategic thinking, 
then that equilibrium’s probability of being selected is higher. 
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In the large-group minimum game, the all-Rabbit equilibrium is locally 
stable but all-Stag is locally unstable. 
  
 
 

 

 
h 

 
 
With random initial conditions, the population is almost certain to 
converge to all-Rabbit. 
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So, not bad; but what about the actual, seven-effort treatments? 
 
 
Crawford’s 1995 Econometrica model nests deterministic and stochastic 
evolutionary dynamics and beliefs-based adaptive learning.  
 
Learning is characterized in the style of the engineering adaptive control 
literature, with beliefs represented by the optimal choices they imply. 
 
(This style is nonstandard in economics and game theory, but in this 
respect the model is close to Selten’s “learning direction theory”.) 
 
 
Players ignore their influences on the order statistic, as the data suggest. 
 
Learning is purely beliefs-based, in that adjustments are influenced 
equally by what happened and by what would have happened if a player 
had done something else. (Camerer and Ho 1998 J. Math. Psychology 
show that EWA fits somewhat better than a purely beliefs-based model.) 
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Recall that the stage games in all five of Van Huyck et al.’s leading 
treatments have seven strict, symmetric, Pareto-ranked equilibria. 
 
 
Players’ best responses are always an order statistic of the population 
effort distribution. 
 
 
This is true even in the random pairing minimum treatment, where for 
algebraic reasons a player’s best response equals the population 
median; Crawford 1995, p. 110, footnote 10. 
 
 
 
Players’ beliefs are represented by the optimal efforts they imply, xit, 
assumed continuously variable. 
 
(This can be relaxed, with the xit as latent variables in an ordered probit.) 
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The order statistic yt that determines players’ best responses is a 
continuous function of the xit: 
 

(1) ),,...,( ntitt xxfy   

where for any ntt xx ,...1  and constants a and b ≥ 0, 

(2) ).,...,(),...,( 11 nttntt xxbfabxabxaf   

 
 
The initial xit are i.i.d. draws, with mean α0 and shocks ζi0: 
 

(3) 00 iix    . 
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The later xit adjust toward the value suggested by the most recent yt-1: 

 

(4) ,)1( 11 ititttttit xyx     t = 1,…;  t0 ; and 0t  as .t  

The adjustment rule (4) includes fictitious play and best-response 
learning. 
 
Although (4) suggests partial adjustment, think of it as full adjustment to 
players' estimates of their optimal efforts, which respond less than fully to 
new yt observations because they are only part of players' information. 
 
The i.i.d. shocks ζit represent differences in players' initial beliefs and 

interpretations of new observations, with mean 0 and variances
2

t . 

 
The model’s recursive structure and i.i.d. shocks rule out unmodeled 
coordination: Coordination can occur only via player’s independent 
responses to common observations of the order statistic. 



57 
 

In (4), deterministic evolutionary dynamics have 02

0  , 02  ttit    

for all i and t = 1, . . . . This allows unlimited initial heterogeneity but no 

subsequent differences in players' interpretations of new observations. 

Proposition 1 gives a general account of the history-dependence of 
deterministic evolutionary dynamics.  

Proposition 1: Suppose 0t  and ]10( ,t   for all t = 1, . . . , and that 

there is a T ≥ 1 such that 02  tit   for all t = T, . . . . Then for all i, 

1 Tit yx monotonically, without overshooting, and Tt yy   for all t = T, . 

. . , independent of the number of players n and the order statistic )(f . 

 
The proof uses the fact that with no subsequent differences in players' 
interpretations of new observations, yt changes only if more players 

overshoot it in one direction than in the other. By (4) 1 TiT yx  then has 

the same sign as ,11   TiT yx  with xiT closer to yT-1 than xiT-1 was, and the xit 

collapse mechanically on the current value of the order statistic, 

independent of the number of players n and the order statistic )(f . 
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Proposition 1 shows that deterministic evolutionary dynamics imply some 
of the history-dependent equilibrium selection found in the experiments. 
 
 
Deterministic evolutionary dynamics also indirectly capture some effects 
of strategic uncertainty, in that the treatment variables affect the sizes of 
basins of attraction of equilibria. 
 
 
But deterministic evolutionary dynamics rule out the “tunneling” across 
basins of attraction that sometimes occurs in the experiments. 
 
 
E.g. Proposition 1 shows that in the large-group minimum game, 
deterministic dynamics always make the population converge 
monotonically to the initial minimum, without ever changing it. But in the 
experiments the initial minimum was above one in five out of seven 
sessions, but it always converged quickly down to one. For example: 
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Long-run equilibria of stochastic evolutionary dynamics? 
 
Deterministic evolutionary dynamics may have many steady states, and 
which one the population converges to depends on the initial state and is 
hard to predict without knowing the history and players’ learning rules. 
 
A popular way to address this difficulty is via analyses of “long-run 
equilibria” of stochastic evolutionary dynamics (Kandori, Mailath, and 
Rob 1993 Econometrica and Young 1993 Econometrica). 
 
Stochastic evolutionary dynamics allow players’ strategy adjustments to 
be subject to random “mutations”, whose probability is constant over time 
and independent of the state. 
 

In (4), this means 02   t  and 0t  and  t  for all t = 1,. . . . 

 

(4) ,)1( 11 ititttttit xyx     t = 1,…;  t0 ; and 0t  as .t  
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The resulting dynamics are ergodic, losing the influence of initial 
conditions and all but the most recent history. 
 
In the long run the process cycles perpetually among steady states of the 
dynamics without mutations, with “tunneling” across basins of attraction. 
 
The ergodic distribution of the steady states depends on the probability 
of mutations and is hard to characterize in general. 
 
But when the probability approaches zero the ergodic distribution 
approaches a “long-run equilibrium”, which usually puts probability 
approaching one on one steady state of the dynamics without mutations. 
 
Which steady state is determined by the relative difficulties of moving 
from alternative steady states to the basins of attraction of other steady 
states, and can be characterized by counting the number of 
simultaneous mutations it takes for the population to “tunnel” from one 
equilibrium to the edge of the basin of attraction of another. (Once at the 
edge, the deterministic dynamics take over with high probability.) 
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To build intuition I again start with two-effort versions of Van Huyck et 
al.’s treatments, and then generalize.  
 
Recall the large-group median Stag Hunt game, but contemplate 
alternative order statistics. 
 

 

 
h 

When the order statistic is below the median, the discontinuous drop in 
effort 2’s expected payoff occurs in the right half of the horizontal axis. 
 
Transitions between (symmetric pure-strategy) equilibria occur if more 
players cross the order statistic from below than above, or vice versa. 
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h 

When the basin of attraction of the low-effort equilibrium at the left end is 
larger than that of the high-effort equilibrium at the right end, fewer 
mutations are needed to go from the high-effort equilibrium to the edge 
of the basin of attraction of the low-effort equilibrium than vice versa. 
 
A noninfinitesimal mutation probability therefore makes the probability of 
tunneling leftward across the boundary between basins of attraction 
higher than the probability of tunneling rightward, so that the ergodic 
distribution assigns higher probability to the low-effort equilibrium. 
 
As the mutation probability approaches zero, the ratio of the two 
tunneling probabilities approaches infinity, and the probability of the low-
effort equilibrium in the ergodic distribution approaches one. 
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Thus, a long-run equilibrium analysis discriminates among strict 
equilibria and obtains unique predictions in most of VHBB's treatments. 
 
 
 
These predictions are obtained without modeling initial responses or 
using empirical information, by studying ergodic dynamics and passing to 
the limit as the mutation probability approaches zero. 
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What about the actual, seven-effort treatments? 
 
Proposition 3: In Van Huyck et al.’s 1990, 1991 games, the long-run 
equilibrium assigns probability one to the equilibrium with lowest 
(highest) effort whenever the order statistic is below (above) the median, 
and assigns positive probability to every equilibrium when the order 
statistic is the median. In each case the long-run equilibrium is 
independent of the number of players and the order statistic, as long as it 
remains below (or above) the median. 
 
 
The proof is a simple mutation-counting argument like the one given in 
Robles 1997 JET.  
 
 
Proposition 3 shows that a long-run equilibrium analysis discriminates 
among equilibria in ways that are qualitatively generally consistent with 
the variations across treatments Van Huyck et al. observed. 
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But the long-run equilibrium is completely, and unrealistically, 
independent of the number of players and the order statistic, as long as 
the latter remains below (or above) the median. 
 
 
 
 
By limiting the effects of history, a long-run equilibrium analysis 
eliminates much of the information about the effects of changes in the 
environment an analysis of VHBB’s results could provide. 
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Beliefs-based adaptive learning? 

Consider adaptive learning models, with ,02

0   ,02 t  and 0t  (or 

0t  for all t = 1, . . .) 

(3) 00 iix    . 

(4) ,)1( 11 ititttttit xyx     t = 1,…;  t0 ; and 0t  as .t  

The model is a Markov process with nonstationary transition probabilities 
(the expected motion of the learning dynamics plus shocks whose 
stochastic structure is like the nonstationary structure assumed in the 
strong law of large numbers, with nontrivial interactions), whose long-run 
steady states coincide with pure-strategy stage-game equilibria. 
 

Unless  very slowly, Crawford 1995 Econometrica shows that 

the learning dynamics converge, with probability 1, to a symmetric 
equilibrium of the stage game. (The variance condition is just as one 
would expect from the strong law of large numbers.) 

02 t
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The key difference between adaptive learning models and stochastic 
evolutionary dynamics is that the heterogeneity of players’ beliefs 
(modeled as i.i.d. random perturbations about a common mean) 

converges to zero over time ( 02 t ) rather than remaining constant. 

 
 
 
This is what gives adaptive learning dynamics nonstationary transition 
probabilities and makes it nonergodic. 
 
 
 
This is what enables the history-dependence seen in the data, in which 
the dynamics lock in on a particular equilibrium in the stage game. 
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Again, to build intuition I start with two-effort versions of Van Huyck et 
al.’s treatments, and then generalize.  
 
In the large-group median game, the all-Stag and all-Rabbit equilibria are 
both locally stable. 
 

 

 
h 

By symmetry, random shocks are neutral, equally likely to flip the 
population (via “tunneling”) from all-Stag to all-Rabbit or vice versa, so 
the learning dynamics have no trend. 
 
The population is therefore likely to lock in on the initial median, all-Stag 
or all-Rabbit, roughly as it did in Van Huyck et al.’s median experiments. 
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In the random-pairing minimum game, the all-Stag and all-Rabbit 
equilibria are again both locally stable.  

 

 
h 

Random shocks are again neutral, so the learning dynamics have no 
trend. 

The population is therefore likely to lock in on the initial median, all-Stag 
or all-Rabbit, roughly as it did in Van Huyck et al.’s median experiments. 
 
But with random pairing a subject samples only a fraction of the 
population effort distribution each period (his current partner’s effort is an 
estimate of the population median, but a noisy one), so convergence will 
be much slower, as it was in the experiments. 
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In the large-group minimum game, the all-Rabbit equilibrium is locally 
stable but all-Stag is locally unstable. 
  
 

 

 
h 

 
Random shocks are not neutral, and the learning dynamics have a 
strong downward trend, yielding strong convergence to all-Rabbit, much 
as what was observed in Van Huyck et al.’s experiments. 
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What about the actual, seven-effort treatments? 
 
Consider Crawford’s 1995 Econometrica adaptive learning model, with 

,02

0   ,02 t  and 0t  (or 0t  for all t = 1, . . .) 

(3) 00 iix    . 

(4) ,)1( 11 ititttttit xyx     t = 1,…;  t0 ; and 0t  as .t  

The learning process is like a random walk in the aggregate, but with 
declining variances and nonzero drift. 
 
The limiting outcome is determined by the cumulative drift before 
learning eliminates strategic uncertainty and the process locks in on an 
equilibrium. 
 
The model’s implications for equilibrium selection can be summarized by 
the prior probability distribution of the limiting equilibrium, normally 
nondegenerate due to the persistent effects of strategic uncertainty. 
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Proposition 4 shows how the outcome is built up period by period from 
the shocks that represent the differences in players’ beliefs.  
 
Proposition 4: The unique solution of (3) and (4), for all i and t, is 

 

(5) it

t

s

it zfx  




1

0

s0 
 

and 

(6)  
,

1

0

s0 t

t

s

t ffy  





 

where 

(7) 



t

s

is

t-s

itz
0

1( 
 and ),...,( 1 nttt zzff  . 

 
The proof is immediate by induction on t. The solution is constructed 
using the scaling property of f(·)in (2) and the linearity of the average 
adjustment rule to pass the common elements of the xit through f(·). 
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In the learning dynamics, players’ beliefs and efforts differ in response to 
their different experiences and interpretations of their experiences. 
 
 
But as they learn from their common observations of yt, their beliefs and 
efforts become progressively more correlated over time.  
 
 
 
This correlation would normally make analysis difficult. 
 
 
But viewing players as ex ante i.i.d. draws from a common distribution 
and using Proposition 4’s closed-form solution of the dynamics in terms 
of the shocks yields simple expressions for Exit and Eyt in terms of 
behavioral and statistical parameters and treatment variables. 
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Let 
2

zt  denote the common variance of the zit in (7). 

(7) 



t

s

is

t-s

itz
0

1( 
 and ),...,( 1 nttt zzff  . 

(7) implies that .])1[( 22

0

2

zs

st
t

s

zt  



    

Define )./,...,/( 1 ztntzttt zzEf    Because the ztitz /  are standardized, with 

mean 0 and variance 1, t  is completely determined by n, ),(f  and the 

joint distribution of the ./ ztitz    

 
Proposition 5: The ex ante means of yt and the xit, for all i and t, are 

(11) s

t

s

zsitEx  





1

0

0  and 

(12) .
1

0

0 tzts

t

s

zstEy   



 

The proof takes expectations in (5) and (6), whose shock terms are 
known functions of the zit, ex ante i.i.d. across i with 0 means, using (7) 

and (13) szszsnszsszsnss zzfEzzEf   )]/,...,/([),...,( 11 . 
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Proposition 5 shows how the drift that strategic uncertainty imparts to the 
dynamics depends on the variances that represent the dispersion of 
players' beliefs, behavioral parameters, and statistical parameters that 
reflect the influence of the treatment variables. 

Suppose, by way of approximation, that the ztitz / are normal, so that  

 t ; and that S
t

s

zs 
0

  as .t  Then tEy  and itEx → S.0    

This formula shows how the mean coordination outcome is determined 
by the behavioral parameters; the number of players; the order statistic, 
via ;  and the initial dispersion of beliefs and the rate at which it is 

eliminated by learning, via .S  

By symmetry 0  for VHBB's median and random-pairing minimum 

treatments, so there is no drift and tEy , itEx → 0 .  

 

But 74.1  for the large-group minimum treatment, where the 

approximate common limit of tEy , itEx , S,0   is < 1.10. As intuition 

suggests, the downward trend in the large-group minimum treatment is 
stronger, the larger the group or the quorum. 
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Overall, the analysis yields the following conclusions: 
 
● The perfect history-dependence in VHBB’s 1991 median treatments is 

due to no drift and small variance; but convergence to initial median in 
12 of 12 trials may overstate history-dependence: initial median 
“explains” 46-81% of variance of final median. 

 
 
● The lack of history-dependence in VHBB’s 1990 large-group minimum 

treatment is due to strong downward drift, which yields convergence to 
lower bound with very high probability; but convergence in 9 of 9 trials 
may understate the difficulty of coordination: in simulations it occurred 
in 500 of 500 trials. 

 
 
● The slow convergence, weak history-dependence, and lack of trend in 

VHBB’s 1990 random-pairing minimum treatment are due to no drift 
and subjects' observation of only their current pair's minimum, which is 
a very noisy estimate of the population median that determined their 
best responses. 
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The analysis also yields qualitative comparative dynamics conclusions 
about the direct effects of changes in treatment variables, holding the 
behavioral parameters constant: 
 
 
● Coordination is less efficient the lower the order statistic (the smaller 

the subsets of the population that can adversely affect the outcome), 
because small numbers of deviations are more likely than large 
numbers. 
 

 
● Coordination is less efficient in larger groups (holding the order 

statistic constant, measured from the bottom) because it requires 
coherence among more independent decisions. (This is not an up-
down asymmetry!) 
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The dependence of the dynamics and limiting outcomes on empirical 
parameters is eliminated in other approaches. 
 
 
In equilibrium or rational learning analyses this is done by ruling out 
significant strategic uncertainty. 
 
 
In evolutionary long-run equilibrium analyses this is done by ruling out 
any persistent effect of strategic uncertainty, by using ergodic dynamics 
to model learning and letting the probability of mutations go to 0. 
 
 
 
But real-world learning processes are almost always history-dependent. 
 
 
Realistic models of learning and equilibrium selection must come to grips 
with empirical behavioral parameters, and ideally provide a framework 
within which to estimate them. 
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Afterword: Van Huyck, Battalio, and Beil’s 1993 design and results 
 
 
Van Huyck et al.’s 1993 GEB design was the same as their 1991 QJE 
design, with repeated play of one of the 1991 median games, but with 
the right to play auctioned each period to the highest 9 bidders in a 
population of 18 (an English clock auction, with the same price paid by 
all winning bidders). 
 
 
The market-clearing price was publicly announced after each period’s 
auction, the median was publicly announced after each period’s play, 
and the structure was publicly announced at the start. 
 
 
The stage game has a range of symmetric equilibria, in which all bid the 
payoff of some equilibrium of the median game and play that equilibrium, 
unless others bid differently. 
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In 8 of 8 trials, subjects quickly bid the price to a level that could only be 
recouped in the most efficient equilibrium and then converged to that 
equilibrium: strong, precise selection among a wide range of equilibria. 
 
 
 
 
Auctioning the right to play had a strong efficiency-enhancing effect via 
focusing subjects’ beliefs on more efficient ways to coordinate—a new 
and potentially important mechanism by which competition promotes 
efficiency. 
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Explaining Van Huyck et al.’s 1993  results  
 
Crawford and Broseta 1998 AER, following Crawford 1995 Econometrica 
and Broseta 2000 GEB, show that this effect can be understood as 
following from effects that formalize “order statistic,” “optimistic subjects,” 
and “forward induction” intuitions. 
 
The optimistic subjects and order statistic effects together have 
approximately the same magnitude in VHBB’s environment (where the 
right to play a nine-person median game was auctioned in a group of 18) 
as the order statistic effect in an 18-person coordination game without 
auctions in which payoffs and best responses are determined by the fifth 
highest (the median of the nine highest) of all 18 players’ efforts. 
 
Auctioning the right to play a 9-person median game in a group of 18 
effectively turns the game into a “75

th
 percentile” game (0.75 = 13.5/18), 

whose order statistic effect contributes a large upward drift, as the 
previous analyses suggest there would have been in such a game 
without auctions. 
 



85 
 

Crawford and Broseta’s analysis attributes the other half of the 
efficiency-enhancing effect of auctions in VHBB’s environment to a 
strong forward induction effect.   
 
 
The analysis shows that coordination is more efficient with more intense 
competition for the right to play, because it yields higher prices for a 
given level of dispersion in bidding strategies, and it increases the 
optimistic subjects effect. 
 
 
This effect should extend to related environments, but may not always 
yield full efficiency. 
 
 

 

 


