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1. Adverse Selection (MWG 436-450; Kreps 625-629; Varian 466-469) 
 
Competitive labor market with many identical, expected profit-maximizing firms. 
 
Many workers with privately observed ability θ (measured as output) distributed on a 
compact interval with c.d.f. F(θ) and reservation ("home") wage r(θ). 
 
Full-information efficient benchmark outcome has each worker working iff r(θ) ≤ θ, each 
paid his θ. 
 
Inefficient equilibrium with r(θ) ≡ r (home wage independent of ability): 
 
If w ≥ r all accept employment; if w < r none do; either way equilibrium wage w* = Eθ.  
 
Whether w* > or < r is determined by proportions of high- and low-ability workers: 
  
If too many lows, firms unwilling to pay wage any will accept, too little employment (some 
workers with θ > r unemployed). If too many highs, firms pay wage that all will accept, too 
much employment (some workers with θ < r employed in equilibrium). 
 
Asymmetric information prevents firms from paying each worker his marginal product, and 
thus prevents market from allocating workers efficiently between work and home. 
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When r(θ) varies with θ, adverse selection can cause market failure. 
 
Figure 13.B.1-2 at MWG 441-442. 
 
Suppose that r(θ) < θ for all θ, so efficiency requires all workers to work; that r(θ) is strictly 
increasing; and that there is a density of abilities θ, privately known. 
 
Then at any given wage only the less able (r(θ) ≤ w) will work, so that lower wage rates 
lower (via adverse selection) the average productivity of those who accept employment. 
 
Equilibrium wage w* = E[θ|r(θ) ≤ w*], the average productivity of those who work. 
 
To induce the best workers to work, w* would have to equal r(θ) for the highest possible θ; 
but in Figure 13.B.1 firms can't break even at this level. 
 
Thus the best workers don't work in equilibrium; the equilibrium is inefficient. 
 
In cases like Figure 13.B.2 (left), adverse selection causes complete market failure: no one 
works, even though efficiency requires all to work. 
 
Equilibrium can be unique as in Figure 13.B.1, or multiple and Pareto-ranked as in Figure 
13.B.2 (right). 
 
The equilibrium with highest wage is better for all workers and no worse for firms, who earn 
zero profits in any equilibrium (there’s a possibility of "coordination failure"). 
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In a two-stage game where firms first simultaneously choose wages and workers then 
choose among firms, with a density of abilities θ, the highest-wage competitive equilibrium 
is the unique subgame-perfect equilibrium. 
 
(Exception: If w* = r(θ) for the lowest θ, there can be multiple subgame-perfect equilibria, 
but all pure-strategy subgame-perfect equilibria yield workers the same payoffs as the 
highest-wage competitive equilibrium.) 
 
Proof (Proposition 13.B.1 at MWG 443-444): Firms can break lower-wage equilibria by 
raising wage and attracting higher-productivity workers.  
 
 
 
We can use the notion of (incentive-)constrained Pareto-efficient allocation (incentive-
efficient allocation for short) to think about the welfare effects of market intervention by a 
planner who faces the same informational limitations as agents in the market (their 
common knowledge, not their private information).  
 
Does the market do as well as possible, given this limited information? Incentive-efficiency 
is the relevant criterion for mortal planners, not full-information efficiency.  
 
A planner who can only observe whether a worker works, not his ability, must pay same 
wage to employed workers, and same (possibly different) wage to unemployed workers. 
 
In this model compensation is only possible by adjusting the wages. 
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A planner can still implement the highest-wage competitive equilibrium by setting employed 
wage we = w* and unemployed wage wu = 0 and respecting workers’ wishes to work or not. 
 
In this model, the highest-wage competitive equilibrium happens to be incentive-efficient. 
 
Proof (Prop. 13.B.2, MWG 447-448): 
 
Any given employed and unemployed wages we and wu will make a range of low-end ability 
types accept employment (those for whom wu + r(θ) ≤ we)—low-end because the pecuniary 
benefits of working are independent of θ, but r(θ) increases with θ. 
 
Call the highest type that accepts employment for particular values of we and wu θ^, and call 
the highest type that works in the highest-wage competitive equilibrium θ*.  
 
Given we and wu, incentive-compatibility (IC) requires wu + r(θ^) = we (< (>) for θ < (>) θ^). 
 
Budget balance (BB) with ability distribution F requires weF(θ^) + wu(1-F(θ^)) = E[θ|θ < θ^]. 



5  
 

Given we and wu, incentive-compatibility (IC) requires wu + r(θ^) = we (< (>) for θ < (>) θ^). 
 
Budget balance (BB) with ability distribution F requires weF(θ^) + wu(1-F(θ^)) = E[θ|θ < θ^]. 
 
Incentive-compatibility plus budget balance means that a planner who chooses we and wu to 
make θ^ = θ* enforces same outcome as the highest-wage competitive equilibrium. 
 
(If he raised wu he’d also have to raise we to preserve incentive-compatibility, but raising 
both is infeasible with θ^ = θ*.)  
 
Can a planner Pareto-improve highest-wage competitive equilibrium by making θ^ < θ*? 
 
Then r(θ^) < r(θ*), so IC implies that the gap between we and wu must be smaller; and 
because fewer and on average less productive people work, total per capita output is 
smaller. Thus we must be smaller, so low-ability workers are worse off than in equilibrium. 
  
Can a planner Pareto-improve highest-wage competitive equilibrium by making θ^ > θ*? 
 
Then r(θ^) > r(θ*), so IC implies that the gap between we and wu must be larger; and 
because more and on average more productive people work, total per capita output is 
larger, but not enough larger to cover the higher wages if wu ≥ 0.  
 
Thus BB implies that wu must be smaller, and high-ability workers are worse off than in the 
highest-wage competitive equilibrium. 
 
(The detailed algebra is at MWG 447-448.) 
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2. Signaling and Screening (MWG 450-467; Kreps 629-652; Varian 469-471) 
 
 
The inefficiency of competitive outcomes with asymmetric information leaves room for 
various tactics by agents to affect the outcome. 
 
(Such tactics may or may not improve the outcome; agents don’t care about efficiency per 
se, but there is a weak tendency for individually beneficial tactics to enhance efficiency.)  
 
 
Consider two commonly observed tactics: 
 
Signaling (actions intended to distinguish their own types taken by informed agents) 
 
Screening (actions to distinguish others’ types taken by uninformed agents) 
 
 
 
“Signaling” and “screening” (usually) refer to agents' actions. 
 
“Sorting”, “separating”, and “pooling” usually refer to kinds of equilibrium outcomes.  
 
However, “screening” is sometimes used to describe a separating equilibrium. 
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Consider first signaling, then screening, in a labor market example, following MWG 450-
467 (and Kreps 629-637 and 645-649). (The original screening analyses of Stiglitz 
(monopoly) and Rothschild-Stiglitz (competition) were set in insurance markets.)  
 
Spence's signaling model: Two firms, one worker (can easily generalize to pool of workers). 
 
Market structure as in Section 1, Adverse Selection: Competitive labor market with 
identical, expected profit-maximizing firms; here two is enough for competition. 
 
However, the worker now has only two ability "types," with productivities θH > θL > 0, where 
0 < Prob{θ = θH} = λ < 1. 
 
Only workers observe their types, but everyone knows λ, as common knowledge. 
 
r(θH) = r(θL) = 0, so the unique equilibrium if workers couldn't signal would have all workers 
employed at wage w* = Eθ, the full-information efficient outcome. 
 
However, workers can now choose education level e, continuously variable within a 
bounded interval, with differentiable and uniformly higher marginal ("single crossing 
property") and total costs for θL. 
 
Figures 13.C.2-3 at MWG 453.  
 
Education has no effect on productivity (can easily relax; Kreps assumes education is 
productive, but the difference is inessential for this purpose; I follow MWG). 
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Although firms cannot directly observe ability, they can observe education levels; because 
of the different costs of education for high- and low-ability workers, chosen levels might 
indirectly signal workers' abilities to firms. 
 
Modern treatments depart from Spence’s by modeling the market explicitly as a game. The 
"rules" are as follows (extensive form in Figure 13.C.1 at MWG 451): 
 
(i) nature chooses the worker's type θ 
 
(ii) worker observes type and chooses education level e 
 
(iii) firms observe e and simultaneously make wage offers wi 

 

(iv) worker observes wi and chooses between firms. 
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Assume firms and worker play a weak perfect Bayesian equilibrium, with one added 
condition: 
 
For all e (not just those chosen in equilibrium), firms use a common posterior µ(e) to update 
their beliefs about the worker's ability and to predict each other's equilibrium wi from the 
equilibrium offer functions. 
 
This consistency of beliefs and strategies off the equilibrium path yields perfect Bayesian 
equilibrium (PBE), here equivalent to sequential equilibrium. 
 
 
 
A set of strategies and beliefs µ(e) is a PBE iff: 
 
 
(i) the worker's strategy is optimal given the firms' strategies 
 
 
(ii) µ(e) is derived from the worker's strategy using Bayes' Rule whenever possible 
 
 
(iii) the firms' wage offers following each possible e are in Nash equilibrium in the 

simultaneous-move wage offer game when the probability that the worker is of high 
ability is µ(e) 
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Characterization of PBE: 
 
As in Bertrand duopoly, if the firms observe e and have beliefs µ(e), their unique equilibrium 
offers are identical and equal to the worker’s expected marginal product given their beliefs: 
µ(e)θH + (1- µ(e))θL.  
 
The worker then picks either firm; it doesn't matter which.  
 
A separating PBE is one in which different worker types choose different e’s, so that in 
equilibrium, observing a worker’s e perfectly reveals his type.   
  
Lemma 13.C.1 at MWG 453: In any separating PBE, each worker type is paid its marginal 
product. 
 
Proof: A straightforward modification of the standard characterization of Bertrand pricing.  
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Lemma 13.C.2 at MWG 454: In any separating PBE, a low-ability worker sets e = 0. 
 
(Given that education is unproductive; otherwise e would maximize productivity net of cost.) 
 
Proof: e > 0 costs more, but it can't help the worker because in the equilibrium he is 
separated, hence paid his marginal product. 
 
Lemma: In any separating PBE, A high-ability worker chooses e~, the lowest e that a low-
ability worker won't wish to imitate. 
 
(Again, given that education is unproductive.)  
 
Proof: Raising e costs more, so a high-ability worker, if he chooses to separate, will choose 
the lowest e that brings it about, given a low-ability worker’s equilibrium choice. 
 
Figures 13.C.5-7 at MWG 454-455. 
 
Figures 13.C.5-6 show separating PBEs with different supporting wage functions w*(e), 
each derived from common beliefs (hence between dotted lines). 
 
In each case firms and workers behave optimally on and off the equilibrium path: Firms bid 
correctly and consistently for each e, and each worker type has a generalized tangency 
between its indifference curve and (w,e) opportunity locus.  
 
The PBE In Figure 13.C.6 has beliefs that satisfy a plausible monotonicity requirement, in 
that higher e never lowers the firms’ estimate of the worker’s expected productivity.  
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Figures 13.C.7-8 at MWG 455. 
 
Figure 13.C.7 at MWG 455 shows a separating PBE in which a high-ability worker chooses 
e > e~, the minimum needed to separate from low-ability worker. 
 
The e in this kind of equilibrium could be as high as the e1 that makes a high-ability worker 
willing to imitate a low-ability worker. 
 
The separating equilibria are Pareto-ranked: The one with the lowest e is best. 
 
Firms get zero profits in all of them. Low-ability workers get the utility of obtaining zero 
education, being identified, and so being paid their marginal product. 
 
High-ability workers are also identified and get paid their marginal product, and so do best 
when e maximizes productivity net of cost, in this case lowering it as much as is consistent 
with separation.    
 
In a separating equilibrium, low-ability workers do worse than when education is 
impossible. 
 
High-ability workers can do better or worse (Figure 13.C.8 at MWG 456; worse is possible 
because they can't duplicate the no-education outcome, in which they’re pooled with low-
ability workers, and the education needed to separate is costly). 
 
Perhaps somewhat surprisingly, the set of separating equilibria is independent of λ.  
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A pooling PBE is one in which different worker types choose the same e’s, so that in 
equilibrium, observing a worker’s e reveals nothing about his type. 
 
(In some models there can be partial pooling equilibria in which one type randomizes and 
the other doesn’t, so that in equilibrium, observing e reveals noisy information about type. I 
ignore this possibility here.)    
 
 
Figures 13.C.9-10 at MWG 457. 
 
Figures 13.C.9-10 show the limits of pooling PBEs: e can range from 0 to e', the e that 
makes a low-ability worker indifferent between being identified as low-ability at e = 0 and 
being pooled with a high-ability worker at e = e'. 
 
Firms and both worker types all behave optimally on and off the equilibrium path: 
 
Firms because they bid correctly and consistently for each e. 
 
Worker types because each has a generalized tangency between its indifference curve and 
its (w,e) opportunity locus. 
 
These pooling equilibria are again Pareto-ranked, with the one with e = 0 best for both 
worker types and the firms indifferent among them. 
 
All pooling equilibria are weakly Pareto-dominated by the equilibrium when education is 
impossible. 
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Figure 13.C.7 at MWG 455. 
 
Figure 13.C.7 illustrates the use of a simple equilibrium refinement to break a separating 
equilibrium in which a high-ability worker chooses e higher than e~. 
 
Any e between e~ and e1 is equilibrium-dominated for the low-ability type, in that it is 
dominated if (but only if) we assume equilibrium beliefs and bids by firms. 
 
 
This kind of argument, which goes beyond sequential equilibrium (and monotonicity, etc.) to 
restrict out-of-equilibrium beliefs, is called in its simplest form the intuitive criterion. 
 
 
Figures 13.C.9-10 at MWG 457. 
 
In this model one can use this kind of argument also to rule out any pooling equilibrium. 
 
Figures 13.C.5-6 at MWG 454-455. 
 
 
The result is a unique prediction of the outcome, that of the separating equilibria with 
different beliefs in Figures 13.C.5-6. 
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The separating equilibria with different beliefs in Figures 13.C.5-6 may not be incentive-
constrained Pareto-efficient: 
 
If the no-signaling equilibrium Pareto-dominates the separating equilibrium, banning 
signaling is a Pareto-improvement. 
 
 
 
Figure 13.C.11 at MWG 458 
 
If the no-signaling equilibrium does not Pareto-dominate the separating equilibrium, market 
intervention by setting separate wages for workers with e above and below a properly 
chosen cutoff (Figure 13.C.11) may still allow a Pareto-improvement by making both worker 
types better off while allowing firms to break even by cross-subsidization (losing on low-
ability workers but gaining on high-ability workers). 
 
 
 
In more realistic models, educational signaling can improve matching between workers and 
jobs and/or enhance productivity. However, the desire to separate can still lead to 
excessive education relative to what would be optimal with observable ability. 
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Now consider signaling in an industrial organization example from Milgrom and Roberts' 
1982 EMT model of entry deterrence, following Kreps 463-480. 
 
Background: Three views of entry deterrence: 
 
(i) Irreversible decisions that affect future interactions: Dixit and Spence entry deterrence 
and accommodation models (MWG 423-427) 
 
(ii) Repeated games 
 
(iii) Informational as in Milgrom and Roberts' analysis. (See also “crazy types” analyses of 
Selten’s chain-store paradox in Kreps and Wilson, and Milgrom and Roberts 1982 JET.)  
 
It was long assumed—Bain-Sylos/Modigliani JPE 1958 (one of the more famous book 
reviews in economics)—that firms could deter entry just by keeping prices low, signaling 
that they would be tough to complete with if anyone entered. 
 
Milgrom and Roberts noted that although this sounds plausible the signaling argument 
should be consistent with sequential equilibrium without commitment, and it depends on the 
existence of post-entry-relevant private information an incumbent’s behavior could transmit.    
 
They built a model in which the incumbent has private information about its own variable 
cost, so its pricing behavior before entry might signal cost, hence behavior following entry.  
 
The conclusion was surprising, as in their working paper’s polemical title: “Equilibrium Limit 
Pricing Doesn’t Limit Entry” (instead it just distorts incumbent’s pricing in a dissipative way).   
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Their model has two expected-profit maximizing firms, Incumbent and potential Entrant. 
 
I and E choose Quantities of goods that are perfect substitutes, I only in the first of the two 
periods, then I and E (if it enters) simultaneously in the second period. 
 
I has two possible values of per-unit variable costs, constant across both periods (so there 
is a payoff-driven link between first-period price and second-period behavior): 
 
$3 or $1 with probabilities ρ and 1- ρ. 
 
Only I observes its cost, but ρ is common knowledge. 
 
It is common knowledge that E's unit cost is $3, and that both I and E have fixed costs $3. 
 
The rules are as follows: 
(i) Nature chooses I's unit cost type c 
 
(ii) In the first period, I observes its unit cost c and chooses Q, which determines P = 9 - Q  
 
(iii) In the second period, E observes first-period P and decides whether or not to enter. 
 

(iv) If E enters, I and E become Cournot competitors, taking into account whatever 
information is revealed in equilibrium by I's first-period choice of P. If E does not enter, 
I becomes a monopolist in the second period. 

 
Figure 13.2 at Kreps 473 gives the extensive form. 
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Like Spence’s analysis, this one is challenging because a privately informed player, I, plays 
an active role. In equilibrium, I must weigh the direct effects of its first-period pricing 
decision against its indirect, informational effects. 
 
 
First analyze Cournot subgame following entry, taking E's beliefs as given (Kreps 475). 
 
 
It’s like a three-person Cournot game, with each type of I like a different player. However, 
the I-types are each fully informed, while E faces uncertainty about I’s quantity choice.  
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If E assesses that c = 3 has probability µ, the Cournot equilibrium is QE = 2(2+µ)/3, QI|(c = 
1) = (10 - µ)/3, QI|(c = 3) = (7 - µ)/3, with πE = 4(2+µ)2/9, not including its fixed cost of 3. 
 
Proof: E chooses QE to maximize QE(9 - QE - EQI - 3) - 3 = QE(6 - QE - EQI) – 3 (note 
certainty-equivalence). FOC: 6 - 2QE - EQI = 0 so QE = 3 - EQI/2. (SOC – 2 < 0, okay.) 
 
I3 (the type of I that observes cost of 3) chooses QI3 to maximize QI3(9 - QE - QI3 - 3) - 3 = 
QI3(6 - QE - QI3) – 3. FOC: 6 - QE - 2QI3 = 0 so QI3 = 3 - QE/2. (SOC okay.) 

 

I1 chooses QI1 to maximize QI1(9 - QE - QI1 - 1) - 3 = QI1(8 - QE - QI1) – 3. FOC: 8 - QE - 2QI1 

= 0 so QI1 = 4 - QE/2. (SOC okay.) 
 
EQI = µQI3 + (1-µ)QI1 = µ(3 - QE/2) + (1-µ)(4 - QE/2) = 4 - µ - QE/2.  
 
Thus QE = 3 - EQI/2 = 3 - (4 - µ - QE/2)/2 = (after simplifying) 4/3 + 2µ/3 = 2(2+µ)/3. 
Similarly, QI1 = 10/3 - µ/3 = (10 - µ)/3 and QI3 = 7/3 - µ/3 = (7 - µ)/3. 
 
E’s expected profit in this equilibrium is QE(6 - QE - EQI) - 3 = (4/3 + 2µ/3)(6 - (4/3 + 2µ/3) - 
4 - µ - (4/3 + 2µ/3)/2) - 3 = (after simplifying) 4(2+µ)2/9 - 3.  
 
Thus E enters iff 4(2+µ)2/9 > 3, which reduces to µ > 0.598. 
 
E.g. if E knows c = 3 (that is, if µ = 1), then I and E both set Qi = 2 and get πi = 1 (= 4 - 3), 
so it's profitable to enter. But if E knows c = 1 (that is, if µ = 0), then I would set QI = 10/3 
and E would set QE = 4/3 and get πE = -11/9, so it would not be profitable to enter. 
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Now consider I's first-period decision. 
 
The first-period monopoly optimum is Q = 4, P = 5, and π = 13 if c = 1; but Q = 3, P = 6, π 
= 6 if c = 3. 
 
Although these ideal monopoly prices are temptingly close for c = 1 and c = 3, there is no 
weak PBE in which each type of I chooses its monopoly optimum in the first period. 
 
In such an equilibrium E could infer I's type by observing whether P = 5 or 6; E would then 
enter if P = 6, thinking that c = 3; but stay out if P = 5. 
 
But then the high-cost type of I would get π = 6 in the first period and π = 1 in the second 
period, less over the two periods than the π = 5 and π = 6 it could get (in the hypothesized 
separating equilibrium) by switching to P = 5 and thereby preventing E from entering. 
 
 
The conclusion that there is no equilibrium of this kind does not depend on zero-probability 
inferences, and therefore holds for any stronger notion as well as weak PBE. 
 
Note that only one type needs to want to defect to break the equilibrium, and this is enough 
to invalidate it as a prediction even if that type is not realized. 
 
Also note that the desired defection does not need to be part of an equilibrium itself: If an 
apparently profitable defection exists, it shows that the hypothesized equilibrium is not 
really an equilibrium, even if the defection does not lead to an equilibrium.      
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We will look later for a separating equilibrium in which one type of I deviates from its first-
period monopoly optimum, and we will find one. 
 
But first consider whether there can be a pooling weak PBE, in which both types of I charge 
the same price with probability one, and are therefore not distinguishable in equilibrium. 
 
If ρ < 0.598, there is a weak PBE in which: 
 
(i) Each type of I sets P = 5 in the first period 
 
(ii) E sticks with its prior ρ < 0.598 and therefore stays out if P ≤ 5 (in any weak PBE, 

observing P conveys no information, so E must stick with its prior on the equilibrium 
path) 

 
(iii) E infers that I's costs are high and enters if P > 5 
 
(iv) Entry leads to the Cournot equilibrium with E believing that I's costs are high 
 
 
In this pooling equilibrium, the high-cost I "hides behind" the low-cost I by giving up some 
first-period profit to mimic the low-cost I, and both types of I successfully forestall entry. 
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To see that these strategies and beliefs are consistent with sequential equilibrium, note 
that: 
 
(i) E's strategy is sequentially rational, given its beliefs (ρ < 0.598) 
 
(ii) the beliefs are consistent with Bayes' Rule on the equilibrium path 
 
(iii) when c = 1, I charges its favorite first-period price and prevents entry, the best of all 

possible worlds 
 
(iv) when c = 3, the only way I could do better is by raising P above 5, but this would cause 

E to enter and thereby lower total profits 
 
Assuming the most pessimistic conjectures about consequences of deviations from 
equilibrium, as in “E infers that I's costs are high and enters if P > 5,” is a characteristic 
form of analysis (“punishing deviations”), and yields the largest possible set of weak PBE. 
 
Here the beliefs also satisfy a natural monotonicity restriction, in that observing a higher P 
never lowers E's estimate that I's costs are high. 
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If ρ > 0.598, there is no pooling weak PBE. 
 
In such an equilibrium µ > 0.598, which would always lead to entry. 
 
This would make a high-cost I unwilling to deviate from its first-period optimal monopoly 
price, but the low-cost I would set a different first-period price, even if it didn't prevent entry. 
 
If, however, ρ > 0.598 (or in fact for any ρ) there is a separating weak PBE in which: 
 
(i) the high-cost I charges its optimal monopoly price, 6, in the first period 
 
(ii) the low-cost I charges 3.76 in the first period 
 
(iii) E infers that costs are high if P > 3.76 and therefore enters 
 
(iv) E infers that costs are low if P ≤ 3.76 and therefore stays out 
 
(v) both types of I charge their monopoly price in the second period if there is no entry 
 
(vi) entry leads to the Cournot equilibrium with E believing that I's costs are high 
 
In this separating equilibrium, the low-cost I distinguishes itself from the high-cost I by 
distorting its first-period price enough to prevent the high-cost I from mimicking it. 
 
Entry occurs exactly when it would with complete information; the only effect of asymmetric 
information is the distortion of the low-cost I's first-period price, which benefits consumers. 
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To see that these strategies and beliefs are consistent with sequential equilibrium, note 
that: 
 
(i) E's strategy is sequentially rational, given the hypothesized beliefs 
 
(ii) the beliefs are (trivially) consistent with Bayes' Rule on the equilibrium path (and again 

monotonic) 
 
(iii) the low-cost I would like to set P > 3.76 in the first-period, but that would lead to entry 

and reduce total profits (easy to check) 
 
(iv) the high-cost I gets π = 6 in the first period and π = 1 following entry in the second, just 

above what it would get by setting P ≤ 3.76 and forestalling entry (3.76 was chosen to 
make it just too costly for the high-cost I to mimic the low-cost I in this equilibrium) 

 
These arguments don't depend on ρ, so this profile is a weak PBE for any ρ.  
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Now consider the Rothschild-Stiglitz competitive (insurance) screening model, transposed 
into the labor-market example (MWG 460-467, Kreps 638-645 and 649-650) 
 
(Stiglitz’s monopoly screening model (MWG 500-501, Kreps 661-680) is a special case of 
the agency models in Section 3.)  
  
Market structure is almost the same as in Spence’s signaling model:  
 
Two firms, but many workers (inessential). 
 
Workers have two ability "types" with productivities θH > θL > 0, where r(θH) = r(θL) = 0. 
 
0 < Prob{θ = θH} = λ < 1. Only workers observe their types, but λ is common knowledge. 
 
Workers no longer choose education, but firms can offer contracts with different "task 
levels" (e.g. hours) to induce workers to reveal their types by their choice of contract. 
 
Task level has no effect on productivity (inessential; easy to relax).  
 
But type-θ worker with wage w and task level t ≥ 0 has utility u(w,t|θ) = w - c(t,θ), where 
c(0,θ) = 0, ct(t,θ) > 0, ctt(t,θ) > 0, cθ(t,θ) < 0 for all t > 0, and ctθ(t,θ) < 0 ("single crossing 
property"). 
 
Thus tasks are purely an annoyance here, useful to the firm only because it can use them 
to screen workers’ ability types. (In Rothschild-Stiglitz tasks are like insurance deductibles.) 
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Modern treatments depart from Rothschild-Stiglitz’s by modeling the market as a game. 
The "rules" are as follows: 
 
(i) nature chooses the workers’ types θ 
 
(ii) firms simultaneously offer sets of (any desired finite number of, but two is enough) 

contracts, each of which is a pair (w,t) 
 
(iii) workers observe their types and each type chooses one of the offered contracts or no 

contract (assume workers who are indifferent between contracts choose the one with 
lower t, workers who are indifferent between a contract and no contract choose the 
contract, and workers whose preferred contract is offered by both firms choose each 
with probability ½) 

 
Study pure-strategy subgame-perfect Nash equilibria (SPNE). Equivalent to weak PBE 
here because active players don’t have private information, so beliefs are constrained. 
 
Suppose first, as a benchmark, that workers' types are observable, so that firms can 
condition offers on a worker's type, offering a contract (wL,tL) restricted to low-ability 
workers and a contract (wH,tH) restricted to high-ability workers. 
 
Proposition 13.D.1 at MWG 461-462: In any SPNE of the game with observable worker 
types, a worker of type θi accepts contract (wi

*,ti
*)=(θi,0), and firms earn zero profits. 

 
Proof: Firms gain by replacing inefficient contracts with ti > 0 by ti = 0, and competition then 
drives wi up to θi. 
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Now suppose that workers' types are unobservable, so that any offered contract can be 
accepted by a worker of either type. 
 
Proposition 13.D.1’s full-information outcome is no longer attainable, because low-ability 
workers prefer the high-ability contract to the low-ability contract, and they can no longer be 
prevented from accepting it. 
 
Instead we will look for pooling or separating equilibria, via a series of lemmas. 
 
 
Lemma 13.D.1 at MWG 462-463: In any equilibrium, pooling or separating, both firms earn 
zero profits. 
 
Proof: If (wL,tL) and (wH,tH) are the contracts chosen by low- and high-ability workers, 
respectively, and firms have positive total profits π, at least one firm must make profit ≤ π/2. 
Such a firm can attract all low-ability workers by offering (wL+ε,tL) and all high-ability 
workers by offering (wH+ε,tH) for some small ε > 0. Since ε can be as small as desired, that 
firm can gets profits close to π, and therefore has a profitable deviation unless π ≤ 0. But π 
< 0 is impossible because firms aren’t required to offer contracts. So in equilibrium π = 0. 
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Figure 13.D.3-4 at MWG 463 
 
 
Lemma 13.D.2 at MWG 463: No pooling equilibria exist. 
 
Proof: If there were a pooling equilibrium contract (wp,tp), by Lemma 13.D.1 it would lie on 
the pooled break-even (0-profit) line in Figure 13.D.3. But then either firm could gain by 
deviating to a contract (w~,t~) in the shaded lens with w < θH, which attracts all high-ability 
workers and no low-ability workers and thus yields positive profits. 
 
 
Lemma 13.D.3 at MWG 463: If (wL,tL) and (wH,tH) are contracts chosen by low- and high-
ability workers in a separating equilibrium, wL= θL and wH = θH so both yield zero profits. 
 
Proof: If wL< θL either firm could get positive profits by offering only a contract with w a little 
above wL, which all low-ability workers would accept, and which would be profitable for both 
low- and high-ability workers. This contradicts Lemma 13.D.1, so wL ≥ θL in any separating 
equilibrium. If wH < θH as in Figure 13.D.4, then (wL,tL) must lie in the lens above the wL = θL 
line as shown, by self-selection and Lemma 13.D.1 (0 profits). But then either firm could get 
positive profits by deviating to a contract in the upper lens below wH = θH line, like (w~,t~), 
which would attract all high-ability workers. Thus wH ≥ θH in any separating equilibrium. 
Since firms break even in any equilibrium by Lemma 13.D.1, in fact wL= θL and wH = θH. 
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Lemma 13.D.4 at MWG 464: In any separating equilibrium, low-ability workers accept 
(θL,0), the same contract they would receive in a full-information competitive equilibrium.  
 
Proof: By Lemma 13.D.3, wL = θL in any separating equilibrium. If tL > 0 in such an 
equilibrium, a firm could do better by offering a contract with lower wL and tL, attracting all 
low-ability workers as in Figure 13.D.5 at MWG 464. 
 
Figure 13.D.6 at MWG 464 
 
Lemma 13.D.5 at MWG 464: In any separating equilibrium, high-ability workers accept 
(θH,tH

^), where tH
^ is chosen so low-ability workers are indifferent between (θL,0) and (θH,tH

^) 
as in Figure 13.D.6, so that θH - c(tH

^, θL) = θL- c(0, θL). 
 
Proof: By Lemmas 13.D.3-4, wH = θH and (wL,tL) = (θL,0). For low-ability workers to accept 
(θL,0), we must have tH ≥ tH

^ in Figure 13.D.6. If the high-ability contract (θH,tH) has tH > tH
^, 

then either firm can get positive profits by offering an additional contract (w~,t~) with lower 
wH and tH as in Figure 13.D.6, which attracts all of the high-ability workers and does not 
change the choices of low-ability workers. Thus, in any separating equilibrium, the high-
ability contract must be (θH,tH

^).  
 
To sum up:  
 
Proposition 13.D.2: In any subgame-perfect equilibrium of the screening game, low-ability 
workers accept contract (θL,0) and high-ability workers accept contract (θH,tH

^) in Figure 
13.D.6, where θH - c(tH

^,θL) = θL- c(0,θL). 
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Proposition 13.D.2 tells what a separating equilibrium must look like if one exists, but does 
not tell us that such an equilibrium exists.  
 
Figure 13.D.7 at MWG 465 
 
Consider the candidates for a separating equilibrium in Figures 13.D.7. 
 
By construction, for any λ, neither firm can gain from deviating in a way that attracts either 
all high- or all low-ability workers. 
 
But varying λ allows us to move Eθ anywhere between θH and θL without affecting the 
candidate equilibrium. In Figure 13.D.7(b) (but not (a)), Eθ is high enough that a firm can 
gain by deviating to a contract (w~,t~) that attracts all workers to a pooling contract. 
 
In this case, since no pooling equilibrium ever exists, no equilibrium of any kind exists. 
(In pure strategies; equilibrium does exist in mixed strategies, but their interpretation in this 
model is problematic.) 
 
As in the signaling model's best separating equilibrium, screening equilibria are Pareto-
inefficient, and low-ability workers are worse off than when screening is impossible. 
 
However, when a screening equilibrium exists it must make high-ability workers better off.  
(Whenever screening would hurt high-ability workers, a pooling contract breaks the 
screening equilibrium candidate.) 
 
When they exist, screening equilibria are (with a qualification) incentive-efficient.  
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3. Agency (MWG 477-506; Kreps 577-614 and 661-674; Varian 441-466; McMillan 91-
129) 
 
Consider a relationship between two people: a principal ("owner" in MWG) who could 
benefit from delegating a decision that affects his welfare to an agent ("manager" in MWG) 
who has relevant skills or private information. 
 
The agent has different preferences over decisions than the principal would if he were fully 
informed, and the principal cannot control the agent's decisions (either because he cannot 
observe them, or for other, unmodeled reasons). 
 
But the principal can design a contract or incentive scheme to influence agent's decisions. 
 
Important distinction between: 
 
Hidden actions/moral hazard (e.g. fire prevention, manager's effort choice that influences 
owner's profit, borrower's investment decisions that influence lender's return on loan) 
 
Hidden information/adverse selection (insurer unable to observe consumer's risk class). 
 
Distinction is logically independent of signaling-screening distinction. 
 
Applications often have some of both. They are analytically somewhat similar in that in 
each case the principal cannot observe the agent's decision rule.  
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Hidden-action analysis: 
 
Agent chooses one-dimensional effort level e from set E, which is costly to the agent. 
 
e influences the principal's profit π. Principal wishes to maximize Eπ net of what he pays 
agent, but cannot observe (or directly control) e. 
 
If relationship between e and π were deterministic, invertible, principal could infer e from π, 
and thereby control e; so assume π has a conditional density f(π|e) > 0 for all e ε E and all 
π ε [π ,π], making any value of π consistent with any value of e. 
 
Special case with two effort levels, eH and eL: 
 
f(π|eH) first-order stochastically dominates f(π|eL) (that is F(π|eH) ≤ F(π|eL)) for all πε[π ,π¯], 
with strict inequality for a nonnegligible set of π's). 
 
 EF(π|eH)π > EF(π|eL)π, so principal prefers agent to choose eH, other things equal. 
 
Agent chooses eε{eH,eL} to maximize E[v(w) - g(e)], where w is wage, v(·) is strictly 
increasing and weakly concave so agent is risk-averse in income, and g(eH) > g(eL) so 
agent dislikes effort. 
 
Principal is risk-neutral and maximizes E[π-w]. 
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Ultimatum model of contracting (standard in principal-agent literature): Principal proposes 
contract to agent, which agent can accept or reject. Acceptance yields binding contract, 
rejection yields agent reservation utility u, a proxy for agent's best alternative in the market, 
assumed exogenous. Assume subgame-perfect equilibrium (SPNE) throughout.  
 
Proposition 14.B.1 at MWG 480-481 (benchmark case): When the agent's effort is 
observable, an optimal (uniquely optimal when v(·) is strictly concave) contract for the 
principal specifies that the agent choose the effort e* that solves  
maxeε{eH,eL} [EF(π|e)π - v-1(u+g(e))] and pays the agent a fixed wage w*= v-1(u+g(e*)). 
 
Proof: When the agent's effort is observable, a contract specifies agent's effort e ε {eH,eL} 
and wage w(π). The principal's problem is maxeε{eH,eL},w(π) EF(π|e)[π - w(π)] s.t. EF(π|e)v(w(π)) 
– g(e) ≥ u, which last constraint is called the participation or individual rationality constraint. 
 
First consider the best w(π) given e, which solves minw(π)EF(π|e) w(π) s.t. EF(π|e)v(w(π)) - g(e) 
≥ u. 
 
Participation constraint is always binding, with Lagrange multiplier γ and first-order 
condition γ = 1/v'(w(π)) for all π. 
 
Given e, if v(·) is strictly concave this implies that w(π) = w*(e) for all π, and if v(·) is weakly 
concave w(π) = w*(e) is still one optimum. (The best way for a risk-neutral principal to get a 
risk-averse agent up to utility level u is for the principal to bear all the risk.) 
 
Thus v(w*(e)) - g(e) = u, so w*(e) = v-1(u+g(e)), with w*(e) increasing in e. Given w*(e) =  
v-1(u+g(e)), the best e, e*, solves maxeε{eH,eL} [EF(π|e)π - v-1(u+g(e))].  
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Proposition 14.B.2 at MWG 482-483: When the agent's effort is unobservable but the agent 
is risk-neutral, the optimal contract leads to the same effort and expected utilities for 
principal and agent as when effort is observable (Proposition 14.B.1). 
 
Proof: Suppose the principal sets w(π) ≡ π - α for some constant α ("selling the project (for 
α) to the agent"). 
 
The agent then chooses e to solve maxeε{eH,eL}[EF(π|e)w(π) - g(e)] = EF(π|e)π – α - g(e). 
 
When v(w) ≡ w, v-1(w) ≡ w, so this problem has the same solution e* that solves maxeε{eH,eL} 
[EF(π|e)π - v-1(u + g(e))] in Proposition 14.B.1 (the maximands differ by a constant). 
 
Setting α = α* where EF(π|e*)π - α* - g(e*) = u satisfies the agent's participation constraint 
and yields the principal utility α* = EF(π|e*)π - g(e*) - u, the same as his utility in the optimal 
contract with observable effort in Proposition 14.B.1. The optimal contract with 
unobservable effort could not possibly improve on this.  
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When the agent's effort is unobservable and the agent is risk-averse, however, there is a 
tension between efficient risk-sharing and providing efficient incentives for the agent that 
makes the problem nontrivial. E.g. perfect fire insurance dilutes incentives to take care 
against fire. The optimal contract is a second-best compromise between these goals.   
 
Proposition 14.B.3 at MWG 483-488: When the agent's effort is unobservable, the agent is 
risk-averse, and there are two possible effort choices, the optimal compensation scheme 
for implementing eH satisfies 1/v'(w(π)) = γ + µ[1 - f(π|eL)/f(π|eH)], gives the agent expected 
utility u, and involves a larger Ew* than when effort is observable. The optimal scheme for 
implementing eL, however, involves the same fixed w as if e were observable. 
 
Whenever the optimal effort with observable e would be eH, the unobservability of e causes 
a welfare loss: 
 
Either it is still optimal to implement eH, in which case the agent faces avoidable risk which 
the principal must compensate him for (the agent still gets u). 
 
Or it is now too expensive to implement eH, and the principal implements eL even though eH 
would allow a Pareto-improvement. 
 
(The fact that unobservable e makes incentive constraints bind and distorts effort 
downward may not be true for more than two effort levels (MWG 502-504, Exercise 14.B.4 
at MWG 507).) 
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Proposition 14.B.3 at MWG 483-488 (copied): When the agent's effort is unobservable, the 
agent is risk-averse, and there are two possible effort choices, the optimal compensation 
scheme for implementing eH satisfies 1/v'(w(π)) = γ + µ[1 - f(π|eL)/f(π|eH)], gives the agent 
expected utility u, and involves a larger Ew* than when effort is observable. The optimal 
scheme for implementing eL, however, involves the same fixed w as if e were observable. 
 
Proof: When e is unobservable the principal's optimal contract specifies a wage w(π). The 
best w(π) given e solves minw(π)EF(π|e)w(π) s.t. two constraints: 
 
(i) EF(π|e)v(w(π)) – g(e) ≥ u (participation or individual rationality) 
 
(ii) e solves maxe'EF(π|e')v(w(π)) - g(e') (incentive compatibility). 
 
If it is desired to implement eL, it is optimal for the principal to offer a fixed wage payment 
w*(eL) = v-1(u + g(eL)), as if he were specifying eL when effort is observable. This makes the 
agent choose eL, because effort doesn't affect w and he prefers eL, other things equal, and 
yields agent u just as when effort is observable. The optimal contract with unobservable 
effort could not possibly improve on this. 
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(Copied) The best w(π) given e solves minw(π)EF(π|e)w(π) s.t. two constraints:  
 
(i) EF(π|e)v(w(π)) – g(e) ≥ u (participation or individual rationality) 
 
(ii) e solves maxe'EF(π|e')v(w(π)) - g(e') (incentive compatibility). 
 
If it is desired to implement eH, constraint (ii) becomes 
 
EF(π|eH)v(w(π)) - g(eH) ≥ EF(π|eL)v(w(π)) - g(eL). 
 
Again letting γ ≥ 0 and µ ≥ 0 be the Lagrange multipliers on constraints (i) and (ii) 
respectively, w(π) must satisfy the following first-order condition for all π: 
 
-f(π|eH) + γv'(w(π))f(π|eH) + µ[f(π|eH) - f(π|eL)]v'(w(π)) = 0, 
 
or 1/v'(w(π)) = γ + µ[1 - f(π|eL)/f(π|eH)]. 
 
When e = eH, both constraints bind, because the agent would like to set e = eL: 
 
Lemma 14.B.1 at MWG 484: In any solution to the principal's problem with e = eH, γ > 0 
and µ > 0.  
 
Proof: Because f(π|eH) first-order stochastically dominates f(π|eL), there must be an open 
set of π throughout which f(π|eL)/f(π|eH) > 1. But if γ = 0 and µ ≥ 0, this contradicts the first-
order condition. And if µ = 0, the first-order condition implies a fixed wage payment, which 
implements eL, not eH. 
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Given this, this first-order condition  
 
1/v'(w(π)) = γ + µ[1 - f(π|eL)/f(π|eH)] 
 
says that the agent gets a "base payment" (in utility) that is independent of π plus a "bonus" 
that is higher to the extent that π is evidence (in the sense of the likelihood ratio 
f(π|eL)/f(π|eH)) that he chose eH. 
 
This evidence affects the bonus not because the principal doubts that the agent chose eH; 
in equilibrium, the principal knows this. Paying the agent partly according to the evidence 
that he chose eH is just the cheapest way to get him to choose eH. 
 
We can also use the first-order condition to ask if w(π) must be increasing. Surprisingly, 
this is not true without further restrictions on f(·), because even when f(π|eH) first-order 
stochastically dominates f(π|eL), f(π|eL)/f(π|eH) need not be decreasing in π. 
 
The monotone likelihood ratio property (MLRP) says that f(π|eL)/f(π|eH) is decreasing in π, 
so that higher π is evidence in favor of eH. 
 
(Fig. 14.B.1 at MWG 485-486 and Kreps 494-495 give examples to show why MLRP is 
necessary.) 
 
One can also use the first-order condition to prove the Mirrlees-Holmstrom Sufficient 
Statistic Theorem (MWG 487-488): If (and only if) π is a sufficient statistic for the agent's 
choice of e, there is no gain to allowing w to depend on any other available indirect 
measure of e. 
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The first-order condition shows that the optimal incentive scheme is generally highly 
nonlinear and sensitive to the details of the environment, including the distribution f(·).  
 
By contrast, real-world incentive schemes (e.g. sharecropping), tend to be simple and 
robust to environmental details. 
 
Why this is true is still largely an open question; MWG 488 discuss a possible explanation.  
 
Inefficiency makes devices like monitoring and cross-checking useful. 
 
MWG 488 discuss extensions to multiple agents with relative performance evaluation 
(tournaments), long-term relationships, competition for agents among multiple principals, 
and multidimensional effort.  
 
Refer to MWG 504 and Kreps 604-608 on the "first-order approach" (different from above 
use of first-order condition) as an imperfect alternative to min w(π) given e when e is 
continuously variable. 
 
Two problems: failure of second-order conditions and discontinuities of e* in w(π). 



40  
 

Hidden-information analysis (MWG 488-501): 
 
Model is almost the same as for hidden actions, but now the agent chooses e ε [0,∞), e is 
observable, and the agent's cost of effort is unobservable. 
 
The principal's gross profit (net of wage payments) is π(e), with π(0) = 0, π'(e) > 0, and 
π"(e) < 0 for all e. 
 
The agent's reservation utility is u, and the agent's vN-M utility function is 
u(w,e,θ) ≡ v(w - g(e,θ)) where v"(·) < 0, so the agent is risk averse in income. 
 
g(·) measures the cost of effort, with g(0,θ) ≡ 0 for all θ and, for all e > 0, ge(·) > 0, gee(·) > 0, 
gθ(·) < 0, and geθ(·) < 0 (the "single-crossing property"), so that e has positive and 
increasing marginal cost, and both are decreasing in θ. 
 
We focus on the special case with two possible θs, θH and θL, with commonly known 
probabilities λ ε (0,1) and 1-λ.  
 
 
Ultimatum model of contracting: Principal proposes contract to agent, which agent can 
accept or reject. Acceptance yields binding contract, rejection yields agent reservation 
utility u, a proxy for agent's best alternative in the market, assumed exogenous. Assume 
subgame-perfect equilibrium (SPNE) throughout.  
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Consider first the case where θ is observable, so that the principal can specify the effort 
level ei and wage wi contingent on each realization of θ, θi. 
 
In the two-outcome case the contract specifies two wage-effort pairs, (wH,eH) and (wL ,eL), 
and the principal chooses these to solve 
 

max (wH,eH) ≥ 0, (wL ,eL) ≥ 0 λ[π(eH) - wH] + (1 - λ)[π(eL) - wL] 
 

s.t. λv(wH - g(eH,θH)) + (1 - λ)v(wL - g(eL,θL)) ≥ u 
 

Proposition 14.C.1 at MWG 492: When θ is observable, the optimal contract for the 
principal involves an effort level ei* in state θi such that π'(ei*)=ge(ei*,θi), and fully insures 
the agent, setting the wage in each state θi at the level wi* such that v(wi* - g(ei*,θi)) = u. 
 
Proof: The participation constraint must bind at the solution, because otherwise the 
principal could increase his profit by lowering wages. Letting γ ≥ 0 be the multiplier on this 
constraint, we have the first-order conditions: 
 
(14.C.2)                                           -λ + γλv'(wH* - g(eH*,θH)) = 0 

 
(14.C.3)                                      -(1-λ) + γ(1-λ)v'(wL* - g(eL*,θL)) = 0 

 
(14.C.4)                  λπ'(eH*) - γλv'(wH* - g(eH*,θH))ge(eH*,θH) ≤ 0, and = 0 if eH* > 0 

 
(14.C.5)            (1 - λ)π'(eL*) - γ(1 - λ)v'(wL* - g(eL*,θL))ge(eL*,θL) ≤ 0, and = 0 if eL* > 0 
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(14.C.2)                                           -λ + γλv'(wH* - g(eH*,θH)) = 0 
 

(14.C.3)                                      -(1-λ) + γ(1-λ)v'(wL* - g(eL*,θL)) = 0 
 
Combining (14.C.2) and (14.C.3) yields the standard condition for efficient insurance of a 
risk-averse party (the agent) by a risk-neutral party (the principal). 
 
(14.C.6)                                 v'(wH* - g(eH*,θH)) = v'(wL* - g(eL*,θL)). 
 
Because v"(·) < 0, (14.C.6) implies that wH* - g(eH*,θH)) = wL* - g(eL*,θL) and 
v(wH* - g(eH*,θH)) = v(wL* - g(eL*,θL)). 
 
Because the participation constraint is binding, the agent has utility u in each state. 
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Because ge(0,θ) = 0 and π'(0) > 0, (14.C.4) and (14.C.5) must both hold with equality and 
with eH* > 0 and eL* > 0. 
 
(14.C.2)                                           -λ + γλv'(wH* - g(eH*,θH)) = 0 

 
(14.C.3)                                      -(1-λ) + γ(1-λ)v'(wL* - g(eL*,θL)) = 0 

 
(14.C.4)                  λπ'(eH*) - γλv'(wH* - g(eH*,θH))ge(eH*,θH) ≤ 0, and = 0 if eH* > 0 

 
(14.C.5)            (1 - λ)π'(eL*) - γ(1 - λ)v'(wL* - g(eL*,θL))ge(eL*,θL) ≤ 0, and = 0 if eL* > 0 
 
Combining (14.C.2) and (14.C.4) and (14.C.3) and (14.C.5) yields  
 
(14.C.7)                                              π'(ei*) = ge(ei*,θi), i = L,H, 
 
the condition for efficient effort choice, the marginal benefit of effort equals its marginal 
(utility) cost in each state (Figure 14.C.1 at MWG 491). The principal’s profit in state i is 
 

Πi* = π(ei*) - v
-1(u) - g(ei*,θi), i = L,H. 

 
From (14.C.7), geθ(e,θ) < 0, π"(e) < 0, and gee(e,θ) > 0 imply eH* > eL* (Figure 14.C.2 at 
MWG 492). This completes the proof, showing that when θ is observable, a risk-neutral 
principal fully insures a risk-averse agent and specifies fully efficient effort for each 
realization of the state θi. 
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When θ is unobservable, the principal's optimal contract must balance the provision of 
insurance for the agent against the need to give the agent incentives to make e vary 
appropriately with θ. (Because θ is unobservable, its relation to e is unobservable.) 
 
 
Figure 14.C.2 at MWG 492 
 
 
The first-best outcome of Proposition 14.C.1 is no longer attainable, because the agent 
always prefers (wL*,eL*) to (wH*,eH*) (Figure 14.C.2). 
 
Thus if the agent is asked to report θ (directly, or indirectly by his choice of effort) he will 
always report θ = θL, and the principal will not realize the first-best outcome. 
 
In characterizing the optimal contract in this case, we must consider the agent's incentives 
to misrepresent θ and how this affects the outcome. 
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The task is simplified by the following general result, which shows that in a sense there is 
no loss of generality in restricting attention to contracts in which the agent is asked to report 
θ (a direct revelation mechanism), and for which truthful reporting is consistent with 
equilibrium (so the mechanism is incentive-compatible).  
 
Proposition 14.C.2 at MWG 493 (Revelation Principle): In determining the optimal contract, 
the principal can without loss of generality restrict attention to contracts in which: 
 
(i) after the agent observes θ, he is required to report it 
 
(ii) the contract specifies an outcome for each possible report 
 
(iii) for every possible realization of θ, the agent finds it optimal to report θ truthfully. 
 
Proof: Given a particular selection among any multiple equilibria that exist in the game 
following a set of contract proposals by the principal, one can collapse any contract that 
creates an incentive for the agent to lie into an equivalent contract that specifies the 
outcome that lying yields in equilibrium. (“Tell me the truth; I’ll lie for you.”)  
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Consider the case where θ is unobservable under the simplifying assumption that the agent 
is infinitely risk averse (maximin or limit of finite risk aversion). 
 
Write the principal's problem as 

 
 max (wH,eH) ≥ 0, (wL ,eL) ≥ 0 λ[π(eH) - wH] + (1 - λ)[π(eL) - wL] s.t. 

 
(i)            wL - g(eL,θL) ≥ v-1(u) (participation constraint for θL) 
 
(ii)           wH-g(eH,θH) ≥ v-1(u) (participation constraint for θH)  
 
(iii)    wH - g(eH,θH) ≥ wL - g(eL,θH) (incentive-compatibility constraint for θH) 
 
(iv)    wL - g(eL,θL) ≥ wH - g(eH,θL) (incentive-compatibility constraint for θL), 

 
where (wL,eL) and (wH,eH) are now interpreted as what happens when the agent announces 
θL or θH. (There is no loss of generality in doing this, by Proposition 14.C.2.) 
 
The participation/individual rationality constraints are given for the "interim" case where the 
agent observes his type before contracting. 
 
But with an infinitely risk averse agent this formulation applies equally well to the "ex ante" 
case where the agent signs the contract before observing his type. 
 
The interim case is often more relevant, and in other models may have different 
implications than the ex ante case. 
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max (wH,eH) ≥ 0, (wL ,eL) ≥ 0 λ[π(eH) - wH] + (1 - λ)[π(eL) - wL] s.t. 
 
(i)            wL - g(eL,θL) ≥ v-1(u) (participation constraint for θL) 
 
(ii)           wH-g(eH,θH) ≥ v-1(u) (participation constraint for θH)  
 
(iii)    wH - g(eH,θH) ≥ wL - g(eL,θH) (incentive-compatibility constraint for θH) 
 
(iv)    wL - g(eL,θL) ≥ wH - g(eH,θL) (incentive-compatibility constraint for θL), 
 
 
Figure 14.C.3 at MWG 495 
 
 
Lemma 14.C.1 at MWG 495: Constraint (ii) is never binding, and can be ignored. 
 
Proof: From (i) and (iii), wH - g(eH,θH) ≥ wL - g(eL,θH) ≥ (because g(eL,θH) ≤ g(eL,θL)), wL -
g(eL,θL) ≥ v-1(u). (If Low agents are happy to sign up, High agents must be even happier.) 
 
Lemma 14.C.2 at MWG 495-496: An optimal contract must have wL - g(eL,θL) = v-1(u), so 
constraint (i) is binding. 
 
Proof: Otherwise the principal could reduce both wH and wL by ε > 0, preserving incentive-
compatibility and increasing profits. (Since High agents are always happier than Low 
agents, and the principal can screw both in a balanced way that does not interfere with 
incentive-compatibility, it is optimal for the principal to screw Low agents to the wall (u).) 
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max (wH,eH) ≥ 0, (wL ,eL) ≥ 0 λ[π(eH) - wH] + (1 - λ)[π(eL) - wL] s.t. 
 
(i)            wL - g(eL,θL) ≥ v-1(u) (participation constraint for θL) 
 
(ii)           wH-g(eH,θH) ≥ v-1(u) (participation constraint for θH)  
 
(iii)    wH - g(eH,θH) ≥ wL - g(eL,θH) (incentive-compatibility constraint for θH) 
 
(iv)    wL - g(eL,θL) ≥ wH - g(eH,θL) (incentive-compatibility constraint for θL), 
 
Lemma 14.C.3 at MWG 496-497: In any optimal contract: 
 
(i) eL ≤ eL* and (ii) eH = eH*, where eL* and eH* are from optimal contract with observable θ. 
 
Figures 14.C.4-6 at MWG 496-497 
Proof: 
  
(i): By Lemma 14.C.2 and incentive-compatibility, (wL,eL) must be on upper boundary of 
shaded region in Figure 14.C.4. If eL ≥ eL*, principal can increase profit by sliding (wL,eL) 
down the agent's u indifference curve to (wL*,eL*) in Figure 14.C.5, leaving Low and High 
agents' utilities unchanged and continuing to satisfy incentive-compatibility. 
 
(ii): Given (wL^,eL^) with eL ≤ eL* as in Figure 14.C.6, the principal must find the (wH,eH) in 
the shaded region in Figure 14.C.6 that maximizes his profit in state θH. The solution occurs 
at a tangency like that at (wH~,eH*) in the figure, with eH=eH* because the only binding 
constraint that involves both eH and θH is (iii), incentive-compatibility for the High agent. 
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The fact that only the incentive-compatibility constraint for the High agent is binding is 
common in such analyses. (With more than two types this generalizes to: only incentive-
compatibility constraints for adjacent types bind, and they only in the "downward" direction.) 
 
Figures 14.C.7-8 at MWG 497-498 
 
Lemma 14.C.4 at MWG 497-498 (also see Appendix B at MWG 504-506): In any optimal 
contract, eL < eL*. 
 
Proof: Start with (wL,eL)= (wL*,eL*) as in Figure 14.C.7 at MWG 497, which by Lemma 
14.C.3 determines the state θH outcome, (wH~,eH*) in the figure. Principal's overall 
expected profit with (wL,eL) = (wL*,eL*) is a (λ, 1 - λ)-weighted average of his profits in states 
θH and θL, which can be read off the vertical axis in the figure (because π(0) = 0, the 
principal's profit = -w). 
 
Sliding (wL,eL) a little down the Low agent's indifference curve, to (wL^,eL^) in Figure 
14.C.8(a) at MWG 498 (note typo in label of (wL^,eL^)) yields a 0th-order reduction in profit 
in state θL, because it involves a small change in (wL,eL) away from the first-best (wL*,eL*) in 
that state (Envelope Theorem). 
 
But it relaxes the incentive-compatibility constraint in state θH and so allows the principal to 
lower wH by a 1st-order amount (Figure 14.C.8(b)). This increases the principal's profit. 
 
The more likely is θH, the more the principal is willing to distort the θL outcome to get higher 
profits in θH. (Follows from the Kuhn-Tucker conditions; see MWG App. B at 504-506.)  
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Proposition 14.C.3 at MWG 499-500: To sum up, in the hidden-information principal-agent 
model with an infinitely risk-averse agent, the optimal contract sets eH = eH* and eL < eL*, 
and the agent is inefficiently insured, getting utility > u in state θH and utility u in state θL. 
The principal's expected profit is lower than when θ is observable, while the infinitely risk-
averse agent's utility is the same.  
 
The conclusions would be the same if π were not publicly observable, in which case we 
could allow θ to affect the relationship between π and e (replacing π(e) by πL(e) and πH(e)). 
 
(We couldn't do this if π were observable, because then the principal could infer θ from π 
and the specified e.) 
 
Stiglitz's (1977 REStud) analysis of monopolistic screening with adverse selection is just 
like this, except that the principal's profit depends directly on the agent's private information 
(MWG 500-501). Although this makes little difference, it is instructive to give Stiglitz's 
analysis, without assuming an infinitely risk-averse agent. Here I follow Kreps 661-674. 
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Figure 18.2-3 at Kreps 664-665 
 
Basic model (Figure 18.3 at Kreps 665): Risk-neutral, expected-profit maximizing insurer 
(principal), risk-averse consumer (agent) with probability πi that endowment will be Y2 and 
probability 1- πi that endowment will be Y1, i = H,L, where πH > πL. Ultimatum contracting. 
 
Graphing consumer's indifference curve in (y1,y2)-space, slope = -(1-π)/π along 45˚ line in 
Figure 18.3. Risk-neutral insurer's indifference curves are linear with slope -(1-π)/π. 
Efficient insurance has tangency on the 45˚ line, risk-averse consumer perfectly insured. 
 
Y2 < Y1, so Y2 is the "accident" outcome and the consumer's endowment (Y1,Y2) is below 
the 45˚ line. Thus, optimal monopolistic contract when insurer knows πi is on the 45˚ line 
where it intersects the consumer's indifference curve through his endowment (Figure 18.3). 
 
(Competition with known πi would also yield a contract on the 45˚ line, but drive insurers' 
expected profits to 0.) 
 
When insurer doesn't know πi but does know prior, ρ, that i = H, he would like to use the 
full-information-optimal monopolistic contracts just derived. 
 
But because low-risk consumer cares less about y2, his indifference curves are uniformly 
steeper in (y1,y2)-space than a high-risk consumer's (Figure 18.2). The optimal monopolistic 
contract for low-risk consumers will then look better for high- as well as low-risk consumers, 
so the insurer won't get the anticipated level of profit by offering the full-information-optimal 
monopolistic contracts. 
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When πi is unknown, we can characterize the optimal contracts as follows. No loss of 
generality in restricting insurer to two contracts (two = number of consumer types), one 
designed for high-risk consumers and one for low-risk consumers, imposing incentive 
compatibility constraints to ensure that consumer types select the right contracts.  
 
Given this, the insurer solves: 
 
max (y1H,y2H), (y1L y2L) ρ[(1-πH)(Y1 - y1

H) + πH (Y2 - y2
H)] + (1-ρ) [(1-πL)(Y1- y1

L) + πL(Y2 - y2
L)] s.t. 

 
(1-πH)u(y1

H) + πH u(y2
H) ≥ (1-πH)u(Y1) + πH u(Y2)   (participation constraint for H) 

 
(1-πH)u(y1

H) + πH u(y2
H) ≥ (1-πH)u(y1

L) + πH u(y2
L)   (incentive compatibility constraint for H) 

 
(1-πL)u(y1

L) + πL u(y2
L) ≥ (1-πL)u(Y1) + πL u(Y2)   (participation constraint for L) 

 
(1-πL)u(y1

L) + πL u(y2
L) ≥ (1-πL)u(y1

H) + πL u(y2
H)   (incentive compatibility constraint for L) 

 
Figure 18.5-6 at Kreps 671, 674 
Proposition 1 at Kreps 670: At the solution, participation for L and incentive compatibility for 
H are binding, and the high-risk contract (y1

H,y2
H) has full insurance, with y1

H = y2
H. Sketch 

of proof (Kreps 670-674): (i) Participation for L binds because can't have both participation 
constraints slack, and the one for L binds before the one for H: low-risk consumers need 
insurance less than high-risk consumers (Figure 18.5(b) at Kreps 671). (ii) Incentive 
compatibility for H binds because first-best contracts would make high-risk consumers want 
the low-risk contract. (iii) Thus the solution is as in Figure 18.6 at Kreps 674. Where it lies 
on 45˚ line depends on ρ: If ρ is near 1 (0), near (maybe at) ideal contract for Highs (Lows). 
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4. Incentives and Mechanism Design (MWG 857-910; Kreps 661-703; McMillan 133-
159) 
 
Agency theory is a leading case of the theory of incentives and mechanism design. 
 
MWG Examples 23.B.1 (Abstract Social Choice), 23.B.2 (Pure Exchange), 23.B.3 (Public 
Project), and 23.B.4 (Allocation of a Single Unit of Indivisible Private Good) give four 
interesting examples of choice problems for which creating incentives for agents to reveal 
their preferences so that a Pareto-efficient outcome can be achieved is problematic. 
 
Focus on MWG Example 23.B.4, where they assume that all agents have preferences that 
are quasilinear in money, so that an allocation is efficient if and only if it allocates the object 
to the agent whose money value for it is highest with probability 1, and no money is wasted. 
 
Here the literature has concentrated on two leading cases: 
 
Bilateral trade (owner and a potential buyer, who may or may not value the object more).  
 
Auctions (a seller who values the good at 0 and I buyers, say I = 2, who may or may not 
value the object more). 
 
I will further narrow the focus here to auctions, but bilateral trade and the Myerson-
Satterthwaite Theorem are also of great interest (MWG 894-910, Kreps 680-703). I also 
focus throughout on the independent-private-values case where bidders can learn nothing 
about their own values from others’ values. Auctions with common and/or affiliated values 
raise significant new difficulties.    
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In the auction case, suppose each buyer’s value for the object is i.i.d., uniform on [0, 1]. 
 
 
 
Imagine that we try to implement a mechanism (MWG equations 23.B.3-8 at 863) that 
always gives the object to the buyer who states that he values it most, breaking ties in favor 
of buyer 1, with that buyer paying his stated value to the seller and the other buyer paying 
nothing. 
 
(This is an example of a direct mechanism, in which each agent is asked to report his value 
(more generally, his private-information type) and then some rule is used to map the profile 
of reported values or types into an allocation.)   
 
 
If buyers tell the truth, this mechanism ensures efficient allocation, with all of the surplus 
going to the seller.  
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But buyers are not required to tell the truth, and there is no way to check up on them. 
 
Yet for the mechanism to work as intended, buyers most report truthfully; more precisely, 
telling the truth must be a Bayesian equilibrium in the game created by the mechanism.     
 
If buyer 2 always announces his true value, will it also be optimal for buyer 1 to do so? 
  
Given the rules of the mechanism, buyer 1’s optimal report θ1^ solves 
 
Choose θ1^ to solve Max (θ1 - θ1^)Pr{θ2 ≤ θ1^} = (given uniformity) (θ1 - θ1^)θ1^. 
 
The optimal θ1^ = θ1/2. 
 
As in a first-price auction (analyzed below), it is optimal for buyer 1 to shade his report 
somewhat below his true value: This creates some risk of not receiving the object even 
though he would be willing to pay the price required to bid it away from buyer 2 (if θ1^ ≤ θ2), 
but makes up for that by lowering the price he has to pay when he does receive the object. 
 
Buyer 2’s analysis is of course the same. 
 
Thus this apparently sensible mechanism may not work as desired. 
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Now imagine that we try to implement a modified version of this mechanism that still gives 
the object to the buyer who states that he values it most, breaking ties in favor of buyer 1, 
but instead of buyer i paying the seller his stated value if he wins the object, he now pays 
the seller the second-highest stated value (in this case, that of the only other buyer).  
 
Again, if buyers tell the truth, this mechanism ensures efficient allocation, though now with 
some of the surplus going to the winning buyer as well as the seller. 
 
Again, for the mechanism to work as intended, telling the truth must be a Bayesian 
equilibrium in the game created by the mechanism. 
 
But now it is a dominant strategy for each agent to state his true value for the object. (And 
so truthtelling is a Bayesian equilibrium.)  
 
Now a buyer’s stated value does not affect what he has to pay if he wins, because that is 
completely determined by the other buyer’s stated value. 
 
The only thing his stated value affects is whether or not he wins the object. 
 
And if he states a value other than his true value, this creates a chance that he will either 
win the object but have to pay more than it is worth to him (if θ1 < θ2^ ≤ θ1^) or lose the 
object when he would have been willing to pay enough to get it (if θ1^ < θ2^ < θ1).  
 
Because stating his true value does not affect his payment when he wins, it is optimal.   
 
Thus this modified mechanism can be expected to work as desired. 
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These examples motivate the question of what can and cannot be accomplished by 
designing a mechanism. 
 
In posing this question, we should not restrict attention to direct mechanisms without further 
thought: Even though they are simple and natural, if we could do better (by whatever 
criterion is applied) with an indirect mechanism, we would presumably want to do so. 
 
As we will see, however, there is a powerful revelation principle argument that restricting 
attention to direct mechanisms entails no loss of generality: Anything we could accomplish 
with an indirect mechanism, we can duplicate (under reasonable assumptions) with a direct 
mechanism.   
 
We should also not restrict attention to incentive-compatible direct mechanisms—those that 
create incentives for agents to report their types truthfully (in the sense of making truth-
telling a Bayesian equilibrium): If we could only do better with a mechanism that created 
incentives to lie, we would presumably want to do so. 
 
However, the revelation principle also shows that restricting attention to incentive-
compatible direct mechanisms entails no loss of generality. 
 
The revelation principle yields powerful techniques for computing optimal mechanisms.  
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First, however, we will look more closely at commonly used mechanisms for the auction 
case.    
 
Consider a first-price sealed-bid auction (MWG Example 23.B.5 at 865-6), under the same 
assumptions maintained before: seller’s value 0, buyers’ values i.i.d. uniform on [0, 1], I = 2: 
The highest bidder wins the object and pays his bid to the seller. 
 
Let’s look for a Bayesian equilibrium in which each bidder’s strategy bi(θi) = αiθi for some αi 

between 0 and 1. Suppose that buyer 2’s strategy takes that form. Then buyer 1’s optimal 
bid solves 
 
Choose b1(θ1) to solve 
 
Max (θ1 - b1)Pr{b2(θ2) ≤ b1} = (given uniformity and b2(θ2) = α2θ2)    (θ1 - b1)b1/α2 

 

The optimal b1(θ1) = θ1/2 if θ1/2 ≤ α2 or α2 if θ1/2 > α2. 
 
The conclusion is of course symmetric for buyer 2. 
 
α1 = α2 = ½, so that b1(θ1) = θ1/2 and b2(θ2) = θ2/2, is a Bayesian Nash equilibrium. 
 
This equilibrium yields an efficient allocation, because the buyer with the highest value 
always wins the object and no money is wasted.  
 
Thus, the first-price sealed-bid auction indirectly implements a mechanism that gives the 
object to the buyer whose bid is highest, with the implied payment to the seller. 
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Now consider a second-price sealed-bid auction (MWG Example 23.B.6 at 866): The 
highest bidder wins the object and pays the second-highest bid to the seller. 
 
As in the example, bi(θi) = θi is a dominant bidding strategy for each buyer, and truthful 
bidding is thus a Bayesian Nash equilibrium.  
 
Thus the second-price auction is an incentive-compatible direct mechanism, and 
implements a mechanism that gives the object to the buyer whose bid is highest, with the 
implied payment to the seller. 
 
 
First- and second-price sealed-bid auctions have familiar progressive counterparts:  
 
A second-price auction is theoretically equivalent (under certain assumptions) to an English 
auction, in which bids increase until all but one buyer drops out, the remaining buyer 
winning and paying (approximately) the second-highest bidder’s last bid. Here, a strategy 
for the dynamic game can be represented by a cut-off above which the buyer will not bid, 
and this (theoretically) functions like the sealed bid in a second-price auction. 
 
Similarly, a first-price auction is theoretically equivalent to a Dutch auction, in which the 
asking price decreases until one buyer says he is willing to pay it. Here, a strategy for the 
dynamic game can be represented by a cut-off at which the buyer will say he is willing, and 
this (theoretically) functions like the sealed bid in a first-price auction. 
 
(The word auction comes from the Latin word for increase, so Roman auctions were 
probably “English”.) 
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Now consider what is possible considering any mechanism, not just a direct, incentive-
compatible one. 
 

In general, a mechanism is any physically feasible way to map actions by the agents into 
an allocation, with no restrictions on how agents choose the actions as functions of their 
types, and no restrictions on how the choices interact to determine the outcome (MWG 
866-867).  
 
A mechanism, once specified, induces a Bayesian game among the agents.  
 
A mechanism is said to implement (MWG definitions 23.B.4, 23.D.2) an outcome function if 
there is an equilibrium in the game that yields the specified relation between agents’ true 
types and the outcome. 
 
(Sometimes implementation is defined more stringently, e.g. by requiring that all equilibria 
yield the specified relation. I ignore this issue here.) 
 
The notion of implementation depends on what kind of equilibria are allowed. Here I focus 
on Bayesian Nash equilibrium, yielding “Bayesian implementation” (MWG 883-891).  
 
A direct revelation mechanism (MWG definition 23.B.5) is one in which agents’ actions are 
reports of their types. 
 
An incentive-compatible mechanism (MWG definitions 23.B.6, Example 23.B.7, definition 
23.D.3) is a direct mechanism in which truthful reporting is a Bayesian Nash equilibrium.  
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The key result (MWG Propositions 23.C.1 at 871 for dominant-strategy equilibrium, and 
23.D.1 at 884 for Bayesian Nash equilibrium) is the Revelation Principle: 
 
If there is a mechanism that implements an outcome function (in dominant strategies, or 
respectively in Bayesian equilibrium), then there is a direct, incentive-compatible 
mechanism that also implements it (making truthtelling a dominant strategy, or respectively 
a Bayesian equilibrium). 
 
Thus, in a sense there is no loss of generality in restricting attention to incentive-compatible 
direct mechanisms, even if other mechanisms are feasible. 
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Now reconsider the auction setting, under the same assumptions maintained before: 
seller’s value 0, buyers’ values i.i.d. uniform on [0, 1], I = 2. 
 
Assume that buyers are risk-neutral. 
 
Restrict attention to direct mechanisms, but allow the possibility of a random assignment of 
the object: yi(θ) is buyer i’s probability of winning the object when the vector of announced 
values is θ = (θ1,…,θI) and ti(θ) is his expected transfer in the mechanism (all that matters 
about transfers, given that buyers are risk-neutral). 
 
Because buyers are risk-neutral, buyer i’s expected utility is θiyi(θ) + ti(θ).  
 
What does it take for a mechanism to be incentive-compatible (MWG Proposition 23.D.2)? 
 
Let yi

-(θi^) ≡ the probability that i gets the object given that he announces his type to be θi^ 
and the others announce truthfully; let ti

-(θi^) ≡ i’s expected transfer given that he 
announces his type as θi^ and the others announce truthfully; and let Ui(θi) ≡ θiyi

-(θi) + ti
-(θi). 

 
Specializing here to the auction case, the mechanism is incentive-compatible if and only if:  
 
(i) yi

-(θi^) is nondecreasing, and 
 
(ii) Ui(θi) = Ui(0) + integral from 0 to θi of yi

-(s)ds for all θi 
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The proof () proceeds by turning the conditions for truthful revelation to be optimal into a 
condition on the derivates of Ui(θi), when they exist, which they do almost everywhere, 
integrating the derivative condition, and using the boundary condition. 
 
MWG 887-891: 
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Now reconsider the equilibria of the first- and second-price sealed-bid auctions, or 
equivalently their progressive Dutch and English counterparts. 
 
With symmetric buyers both assure that the highest valuer wins the object, and both assure 
that a buyer with zero value doesn’t win and gets 0 expected payoff. Thus the Revenue-
Equivalence Theorem shows that both yield the same expected revenue to the seller. 
 
In the second-price or English auction, this expected revenue is always exactly the second-
highest value among the buyers.  
 
In the first-price or Dutch auction, buyers end up paying the highest bid, so it may appear 
that revenue is higher on average.  
 
However, buyers also shade their bids, and it turns out that the optimal shading (for a risk-
neutral buyer) is to shade down to the expectation of the second-highest value, so the 
seller’s expected revenue is exactly the same as in the second-price auction. 
 
But the realization of the seller’s revenue may be higher or lower in a first-price auction, 
depending on whether the second-highest value is lower or higher than its expectation).                 
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MWG 903-905: 
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5. Miscellany (MWG 387-400, 404-417, 423-427; covered only if time permits) 
 
Theorem (Proposition 12.C.1 at MWG 388): Bertrand duopoly with constant returns to 
scale, perfectly substitutable goods: Simultaneous price choices by firms yields competitive 
outcome as unique equilibrium. 
 
Theorem (Proposition 12.C.2 and Example 12.C.1 at MWG 390-392): Cournot duopoly with 
constant returns to scale, perfectly substitutable goods: Simultaneous quantity choices by 
firms yields equilibrium (not necessarily unique) with prices between competitive and 
monopoly prices. 
 
Cournot outcome approaches competitive outcome as number of firms grows (MWG 391-
394). 
 
Capacity constraints and product differentiation (MWG 394-400). 
 
Kreps-Scheinkman and importance of timing of irreversible decisions. 
 
Simultaneous entry followed by Bertrand or Cournot competition (MWG 405-411). 
 
Strategic precommitments, strategic complements and substitutes, direct and indirect 
effects of investment decisions (MWG 414-417). 
 
Dixit and Spence entry deterrence and accommodation models (MWG 423-427). 


