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Economics 172A Final Exam                  NAME________________________________ 
Vincent Crawford                                                                                           Winter 2008 
 
Your grade from this exam is 55% of your course grade. The exam ends at 11:00, so you 
have three hours. You may not use books, notes, calculators or other electronic devices. 
There are six questions, weighted as indicated. Answer them all. If you cannot give a 
complete answer, try to explain what you understand about the answer. Write your name 
in the space above, now. Write your answers below the questions, on the back of the 
page, or on separate sheets. Explain your arguments and show your work. Good luck! 
 
1. Graph the feasible region and use your graph to solve the following problem: 
  
Minimize Z =  3x1 + 2x2, 
subject to  2x1 +  x2  ≥ 10 
  -3x1 + 2x2 ≤ 6    
     x1 +   x2  ≥ 6 
    x1 ≥ 0, x2 ≥ 0. 
 
The optimal solution is (x1, x2) = (4, 2) with Z = 16. 



2. Slim-Down Manufacturing makes a line of nutritionally complete weight-reduction 
beverages. One of their products is a strawberry shake which is designed to be a complete 
meal. The strawberry shake consists of several ingredients. Some information about each 
of these ingredients is given in the table below. 
 
 
Ingredient 

Calories 
from fat 

(per tbsp) 

Total 
Calories 
(per tbsp) 

Vitamin 
Content 

(mg/tbsp) 

 
Thickeners 
(mg/tbsp) 

 
Cost 

(¢/tbsp) 
Strawberry flavoring  1  50  20  3  10 
Cream  75  100  0  8  8 
Vitamin supplement  0  0  50  1  25 
Artificial sweetener  0  120  0  2  15 
Thickening agent  30  80  2  25  6 
 
The nutritional requirements are as follows. The beverage must total at least 380 calories. 
No more than 20% of the total calories must come from fat. There must be at least 50 
milligrams (mg) of vitamin content. There must be at least two tablespoons (tbsp) of 
strawberry flavoring for each tbsp of artificial sweetener. Finally, there must be exactly 
15 mg of thickeners in the beverage. Management would like to select the quantity of 
each ingredient for the beverage which would minimize cost while meeting the above 
requirements. 
 
(a) Formulate a linear programming model for this problem, and put the constraints into 
standard “≥≥≥≥ constant” or “= constant” form. Please use the following notation for the 
decision variables: S = Tablespoons of strawberry flavoring, C = Tablespoons of cream, 
V = Tablespoons of vitamin supplement, A = Tablespoons of artificial sweetener, T = 
Tablespoons of thickening agent, and Z = Total cost. 
 
(a) Minimize   Z =  10S + 8C + 25V + 15A + 6T 
subject to 50S + 100C + 120A + 80T ≥≥≥≥ 380 

     S+75C+30T≤≤≤≤0.2(50S+100C+120A+80T), rewrite as 9S–55C+0V+24A–14T≥≥≥≥0 
 20S + 50V + 2T ≥ 50 
      S ≥≥≥≥ 2A, rewrite as S - 2A ≥≥≥≥ 0 
      3S + 8C + V + 2A + 25T = 15 
      S ≥≥≥≥ 0, C ≥≥≥≥ 0, V ≥≥≥≥ 0, A ≥≥≥≥ 0, T ≥≥≥≥ 0.  

 



(b) Write the dual of your linear programming problem from part (a), using Y to denote 
the dual objective function value and F, G, H, I, and J to denote the dual variables 
associated with the five primal constraints in the order listed in the verbal statement (so 
that F is the dual variable associated with the primal constraint that says the beverage 
must total at least 380 calories, G is the dual variable associated with the primal 
constraint that says no more than 20% of the total calories must come from fat, and so 
on). Make sure you have the primal constraints in standard “≥≥≥≥ constant” or “= constant” 
form before you do this. There is no need to explain your answer here, as long as it is 
correct; but if you’re unsure, explanations of why you did what you did it might help.  
 
(b) The primal constraints (with dual prices in parentheses on the right) are: 

50S + 100C + 120A + 80T ≥≥≥≥ 380 (F) 
     9S – 55C + 0V + 24A – 14T ≥≥≥≥ 0 (G) 
 20S + 50V + 2T ≥ 50 (H) 
      S - 2A ≥≥≥≥ 0 (I) 

       3S + 8C + V + 2A + 25T = 15 (J) 
S ≥≥≥≥ 0, C ≥≥≥≥ 0, V ≥≥≥≥ 0, A ≥≥≥≥ 0, T ≥≥≥≥ 0. 

 
Using the standard recipe to write the dual: 
 
Maximize   Y =  380F + 0G + 50H + 0I + 15J 

subject to             50F + 9G + 20H + 1I + 3J ≤≤≤≤ 10 
100F - 55G + 0H + 0I + 8J ≤≤≤≤ 8 
0F + 0G + 50H - 2I + 1J ≤≤≤≤ 25 
120F + 24G + 0H + 0I + 2J ≤≤≤≤ 15 
80F - 14G + 2H + 0I + 25J ≤≤≤≤ 6 

                              F ≥≥≥≥ 0, G ≥≥≥≥ 0, H ≥≥≥≥ 0, I ≥≥≥≥ 0, J unrestricted.  
 
(c) Suppose you have solved the primal, and you find that for the optimal values of S, V, 
and T, 20S + 50V + 2T > 50. What must be true of the optimal value of H in the dual? 
 
(c) H* = 0. 
 
(d) What is the interpretation of the optimal value of F in the dual for how the minimized 
value of the primal objective function when the data of the problem (objective function 
coefficients and/or constraint constants) change? What must be true about the optimal 
basis before and after a change in the data of the problem for this interpretation to be 
exact (rather than an approximation)? 
 
(d) F* = the derivative of minimized primal value with respect to the constraint 
constant whose initial value is 380. The optimal basis must be the same before and 
after the change (though the optimal solution might change).    
 



3. Consider the problem choose x (a scalar) to solve minimize 2x subject to  x ≤ 5 
     x ≥ b 

x ≥ 0 
where b (also a scalar) ≥ 0. 
 
(a) For what values of b ≥ 0 does the problem have a nonempty feasible region? For what 
values of b ≥ 0 does the problem have a solution? 
(a) b ≤ 5. b ≤ 5. 
 
(b) For all values of b ≥ 0  for which the problem has a solution, graphically or by 
inspection, whichever you prefer, write x*(b), the optimal value of x, as a function of the 
parameter b. Your answer must tell what the optimal value of x is for any value of b ≥ 0; 
that is, it must be a clearly specified function of b. 
(b) Clearly x*(b) = b for all b such that 0 ≤ b ≤ 5. 
 
(c) Put the primal constraints into standard (“≥ constant”) form and write the dual, using 
yi to represent the dual variable that is the shadow price of the ith constraint in the primal. 
(c) Rewrite the first primal constraint as –x ≥ -5, so that all the constraints are in 
standard form. Using the standard recipe to write the dual: 
Choose y1, y2 to solve  maximize -5y1 + by2   subject to  -y1 + y2 ≤ 2  

y1 ≥ 0, y2 ≥ 0. 
 
(d) For what values of b ≥ 0 does the dual have a nonempty feasible region? 
(d) The dual has a nonempty feasible region for all values of b ≥ 0: y1 = y2 = 0 is 
always feasible. 
 
(e) For what values of b ≥ 0 does the dual have a solution? For those values, graphically 
or by inspection, compute y1*(b) and y2*(b), the optimal values of y1 and y2, as functions 
of the parameter b. Your answer must tell what the optimal values of y1 and y2 are for any 
value of b. 
(e) The dual has a solution for all values of b ≥ 0 such that b ≤ 5: Clearly y1*(b) = 0, 
y2*(b) = 2 is then the unique solution. The dual does not have a solution for b > 5: 
Then setting y1 = y2 ≥ 0 is always feasible, and letting y1 and y2 increase indefinitely 
yields unbounded objective function value. 
 
(f) Use the Duality Theorem to show that your solutions to the primal in (b) and the dual 
in (c) are both optimal for all values of b for which the primal and dual have solutions. 
(f) With x*(b) = b for all b such that 0 ≤ b ≤ 5, the primal objective function value is 
2b. With y1*(b) = 0, y2*(b) = 2 for all b such that 0 ≤ b ≤ 5, the dual objective 
function value is 2b. Since both solutions are feasible for their respective problems, 
and they yield equal objective function values, both are optimal by the Duality 
Theorem. 
 



(g) For all values of b for which the primal in (a) and the dual in (c) have solutions, verify 
directly that your solutions to the primal and dual satisfy Complementary Slackness, 
saying clearly what Complementary Slackness requires.     
(g) Complementary Slackness requires that if a primal (dual) control variable is 
strictly positive, then the associated dual (primal) constraint must be binding; and 
that if a primal (dual) constraint is slack (non-binding), then the associated dual 
(primal) control variable must be zero. Checking: (i) y1*(b) = 0 for all b such that 0 
≤ b ≤ 5, so the requirement for the first primal constraint is satisfied; (ii) y2*(b) = 2 > 
0 for all b such that 0 ≤ b ≤ 5, but x*(b) = b for all such b, so the requirement for the 
second primal constraint is satisfied; (iii) x*(b) = b > 0 (unless b = 0) but -y1*(b) + 
y2*(b) = 0 + 2 = 2, so the requirement for the dual constraint is satisfied. 
 
(h) For all values of b for which the primal in (a) and the dual in (c) have solutions, 
compute V(b), the maximized value of the primal objective function, as a function of b. 
Check that V’(b) = y2*(b). 
(h) For all b such that 0 ≤ b ≤ 5, V(b) = 2x*(b) = 2b and V’(b) = 2 = y2*(b).  
 



4. Consider an assignment problem with four workers, A, B, C, and D, and three jobs, 1, 
2, and 3:  

 1 2 3 
A 4 6 5 
B 3 -1 7 
C 9 2 8 
D 7 6 9 

 
(a) Put into standard form for the Hungarian Method, increasing or decreasing costs and 
creating dummy workers or dummy jobs as necessary. (For ease of grading, please do 
your costs increases or decreases before creating dummy workers or jobs.) Explain why 
your cost increases or decreases don’t distort the optimal assignment of workers to jobs. 
Explain why your assignment of costs to dummy workers or jobs doesn’t distort the 
optimal assignment of real workers to real jobs. 
 
(a) There are two problems with the problem: one cost is < 0, and there are more 
workers than jobs. First add one to all costs, making them all nonnegative. Then 
create a dummy job with all costs 0, to finish putting the problem into standard 
form (the order doesn’t really matter, but do the former first for ease of grading): 
 

 1 2 3 4 
A 5 7 6 0 
B 4 0 8 0 
C 10 3 9 0 
D 8 7 10 0 

 
(b) Start to solve the problem in standard form by the Hungarian Method, by doing row 
reduction first and then column reduction. Explain why row and column reduction don’t 
distort the optimal assignment of workers to jobs. (You are not asked to keep track of the 
dual variables.)   
 
(b) Row reduction doesn’t change the problem at all in this case, because there are 
0s in all entries in the fourth column. It wouldn’t distort the optimal assignment 
anyway because all people must be assigned, and so it is like subtracting a constant 
from the cost of all assignments. Column reduction doesn’t distort the optimal 
assignment for the same reason, and changes the problem to: 
    

 1 2 3 4 
A 1 7 0 0 
B 0 0 2 0 
C 6 3 3 0 
D 4 7 4 0 

 



(c) Continue solving the problem by identifying a maximal set of independent zeros (for 
ease of grading, please identify them by *s as I did in class) and a minimal cover with the 
same number of lines (please identify them by +s as I did in class). Identify the smallest 
uncovered entry and do a pivot step to obtain a new reduced cost matrix. Use the new 
matrix to find the optimal assignment, and calculate its cost in the original matrix. 
 
(c) * identify a maximal set of three independent 0s, covered by the three row or 
column lines marked by +s. The smallest uncovered entry is 3, and the pivot step 
yields the second reduced cost matrix, in which a maximal set of four independent 
zeroes are marked by *s. These are optimal, with total cost (translating back into 
the original problem) 3 + 2 + 5 + 0 = 10.  
 

 1 2 3 4+ 
A+ 1 7 0* 0 
B+ 0 0* 2 0 
C 6 3 3 0* 
D 4 7 4 0 

 
 1 2 3 4 

A 1 7 0* 3 
B 0* 0 2 3 
C 3 0* 0 0 
D 1 4 1 0* 

 



(d) Solve the original assignment problem (with four workers, three jobs, and a negative 
cost) by the branch and bound method, without putting it into standard form. Branch by 
solving the relaxed version of the problem in which you can fill each job with whomever 
you wish, without regard to duplication. Then branch on how to fill job 1, job 2, etc. 
 
(d) Return to the original problem: 
 

 1 2 3 
A 4 6 5 
B 3 -1 7 
C 9 2 8 
D 7 6 9 

 
Solving the relaxed problem yields B1, B2, A3, infeasible. The entire problem is a 
“remaining problem.” Branch on how to fill job 1: A 1, B1, C1, or D1. 
A1: Solving the relaxed problem yields A1, B2, A3, infeasible, cost 8. 
B1: Solving the relaxed problem yields B1, B2, A3, infeasible, cost 7. 
C1: Solving the relaxed problem yields C1, B2, A3, feasible, fathomed, incumbent 
solution with cost 13. 
D1: Solving the relaxed problem yields D1, B2, A3, feasible, fathomed, new 
incumbent solution with cost 11. 
C1 is fathomed, but A1 and B1 are not fathomed. Branch them on how to fill job 2: 
A1, B2: Solving the relaxed problem yields A1, B2, A3, infeasible, cost 8, not 
fathomed. 
A1, C2: Solving the relaxed problem yields A1, C2, A3, infeasible, cost 11 ≥ 11, 
fathomed. 
A1, D2: Solving the relaxed problem yields A1, D2, A3, infeasible, cost 15 > 11, 
fathomed. 
B1, A2: Solving the relaxed problem yields B1, A2, A3, infeasible, cost 14 > 11, 
fathomed. 
B1, C2: Solving the relaxed problem yields B1, C2, A3, feasible, cost 10 < 11, 
fathomed, new incumbent solution.  
B1, D2: Solving the relaxed problem yields B1, D2, A3, feasible, cost 14 > 10, 
fathomed. 
Now B1 and C1 are fathomed, but A1, B2 is not yet fathomed. Branch A1, B2 on 
how to fill job 3: 
A1, B2, C3: feasible, cost 11 > 10, fathomed. 
A1, B2, D3: feasible, cost 12 > 10, fathomed. 
Now everything is fathomed, so the latest incumbent solution, B1, C2, A3 with cost 
10, is optimal. This is the same solution obtained above by the Hungarian Method.  
 



5. Consider the two-person zero-sum game, with only the Row player’s payoffs shown: 
 

 L C R 
T 0 -1 2 
B 5 4 -3 

 
(a) Restricting attention to the pure (unrandomized) strategies, T and B for Row and L, C, 
and R for Column, find the Row player’s security-level-maximizing pure strategy and his 
associated security level. Find the Column player’s security-level-maximizing pure 
strategy and her associated security level. Taking into account that Column’s payoffs are 
minus Row’s payoffs, are these security levels consistent (that is, could both players 
realize them simultaneously playing the game)? 
 
(a) T for Row, with security level -1 in Row’s payoffs. R for Column, with security 
level 2 in Row’s payoffs, -2 in Column’s. They are not consistent. 
 
(b) Now consider mixed (randomized) strategies. Letting x1 and x2 denote the 
probabilities with which Row plays his strategies T and B, respectively, and letting v 
denote his resulting security level, write the linear programming problem that determines 
Row’s security-level maximizing mixed strategy.  
 
(b) Choose x1, x2 to maximize  v  subject to v – 0x1 – 5x2 ≤ 0 

v + 1x1 – 4x2  ≤ 0 
v – 2x1 + 3x2  ≤ 0 
x1 + x2 = 1 
x1, x2 ≥ 0. 

The constraints ensure that Row’s security level is at least v because any mixed 
strategy Column uses will yield Row expected payoffs that are a weighted average of 
the expected payoffs of his pure strategies, and these are constrained to be at least v. 
 



(c) Letting x2 = 1 – x1 and simplifying the constraints, solve the problem in (b) 
graphically, and identify the optimal values of x1, x2, and v. 
 
(c) The constraints become: 
v ≤ 5x2 = 5 – 5x1, v ≤ –x1 + 4x2 = 4 – 5x1, and v ≤ 2x1 – 3x2 = 5x1 – 3. With x1 on the 
horizontal axis and v on the vertical axis, these graph as: 
  

 

Not drawn to scale. 

Clearly the v ≤ 5x2 = 5 – 5x1 is redundant C (corresponding to the fact that C is 
dominated for Column), and v is maximized at the intersection of the two other 
constraints, where v = 4 – 5x1 = 5x1 – 3, so x1* = 7/10, x2* = 3/10, and v* = ½. 
 
(d) Does Column have any dominated strategies? If so, how do they show up in your 
graph from (c)? 
 
(d) Yes, L is dominated by C for Column, and it shows up in that the associated 
constraint in Row’s security-level-maximizing problem is redundant.  
 



6. Consider the problem: 
Choose x1 and x2 to solve maximize 3x1 + 15x2 subject to  x1 + 10x2  ≤ 20 

x1 ≤ 2  
         x1 ≥ 0, x2 ≥ 0 
(a) Solve the problem graphically (with x2 on the vertical axis). 

(a) x1* = 2, x2* = 1.8 (from x1 = 2 and x1 + 10x2 = 20). 

 

Not drawn to scale. 

(b) Now solve the problem graphically when x1 (but not x2) must be an integer. 

(b) Same solution as (a), because the solution with no integer restrictions has x1* = 2. 

 

(c) Now solve the problem graphically when x2 (but not x1) must be an integer. 

(c) There’s a new solution, because the solution with no integer restrictions has x2* = 

1.8. Graphically, the feasible region is like a zebra with horizontal stripes at integer 

values of x2; by inspection x2 = 2, x1 = 0 is optimal. 

 

(d) Now use the branch and bound method to solve the problem when both x1 and x2 must 

be integers. 

(d) First solve the relaxed problem without integer restrictions, as in (a). Then 

branch on the first variable (as the xi are numbered) that is restricted to be an 

integer, and isn’t an integer in the solution to the relaxed problem: x2 = 1.8. Branch 

by creating two subproblems from the original problem, one with added constraint 

(i) x2 ≤ 1 and one with added constraint (ii) x2 ≥ 2. 

Next, attempt to fathom the two branch subproblems, starting with the first, by 

solving their relaxed versions. 



Solving branch subproblem (i) yields x1 = 2, x2 = 1; this satisfies the integer 

restrictions, so this branch is fathomed, and x1 = 2, x2 = 1 becomes the incumbent 

solution, with objective function value 21, a lower bound on the optimal value. 

Branch subproblem (ii) has only one feasible point: x1 = 0, x2 = 2, which satisfies the 

integer restrictions and is therefore optimal in this branch, so this branch is 

fathomed, and x1 = 0, x2 = 2, which has objective function value 30 > 21, becomes the 

new incumbent solution. Because all branches are now fathomed, the latest 

incumbent solution is optimal. 

 


