
Economics 172A: Introduction to Operations Research                             Winter 2008 
Problem set 2                       Due Thursday, March 13 at start of class (no late papers)  

Instructions 
 
Unless otherwise noted, you are required to supply complete answers and explain how 

you got them. Simply stating a numerical answer is insufficient. For graphs, clearly label 

the graph and identify what’s on it. 

 

1. Consider the problem choose x (a scalar) to solve maximize 3x subject to  x ≤ 5 

     x ≤ b 

x ≥ 0 

where b (also a scalar) > 0. 

(a) Graphically or by educated guess, whichever you prefer, compute x*(b), the optimal 

value of x, as a function of the parameter b. Your answer must tell what the optimal value 

of x is for any value of b > 0; that is, it must be a clearly specified function of b. 

(Hint: Given that b > 0, could there ever be a solution with x* = 0? Which constraint 

would you expect to determine the solution when b < 5? When b > 5?) 

(a) Clearly x*(b) > 0 for all b > 0. For b > (<) 5, the second (first) constraint is 

redundant. One of these constraints must always be binding, so x*(b) = b if b ≤ 5, 

and x*(b) = 5 if b > (or ≥) 5. 

(b) Write the dual, using yi to represent the dual control variable that is the shadow price 

of the ith constraint in the primal. 

(b) Choose y1, y2 to solve  minimize 5y1 + by2   subject to  y1 + y2 ≥ 3  

       y1 ≥ 0 

       y2 ≥ 0. 

(c) Graphically or by educated guess, whichever you prefer, compute y1*(b) and y2*(b), 

the optimal values of y1 and y2, as functions of the parameter b. Your answer must tell 

what the optimal values of y1 and y2 are for any value of b. (When b = 5, identify all the 

possible optimal values of y1*(b) and y2*(b).) 

(c) If b < (or ≤) 5, y1*(b) = 0 and y2*(b) = 3. If b > (or ≥) 5, y1*(b) = 3 and y2*(b) = 0. 

If b = 5, any y1 and y2 with y1 + y2 = 3 and y1 ≥ 0 and y2 ≥ 0 is optimal, including but 

not limited to the values specified above.  



(d) Use the Duality Theorem to show that your solutions to the primal in (a) and the dual 

in (c) are both optimal for all values of b.  

(d) The primal objective function value is 3b if b ≤ 5 and 15 if b > 5. The dual 

objective function value is 3b if b ≤ 5 and 15 if b > 5. Since the solutions are feasible 

for the primal and the dual, and the objective function values are equal in each case, 

the Duality Theorem shows that they are both optimal in each case. 

(e) Verify directly that your solutions to the primal in (a) and the dual in (c) satisfy 

Complementary Slackness, saying clearly what Complementary Slackness requires.     

(e) Complementary Slackness requires that if a primal (dual) control variable is 

strictly positive, then the associated dual (primal) constraint must be binding; and 

that if a primal (dual) constraint is slack (non-binding), then the associated dual 

(primal) control variable must be zero. Checking: (i) y1*(b) + y2*(b) = 3 for all b, so 

CS in the dual constraint is satisfied; (ii) if b < 5, x*(b) < 5 but y1*(b) = 0, and x*(b) 

= b, so CS in the primal constraints are satisfied; and (iii) if b > 5, x*(b) = 5, and 

x*(b) < b but y2*(b) = 0, so CS in the primal constraints are again satisfied. 

(f) Compute V(b), the maximized value of the primal objective function, as a function of 

b. Graph V(b), and check that its slope = y2*(b) for almost all values of b. What happens 

to the optimal basis that makes V(b) have a kink at b = 5? What is the relationship 

between the slopes to the left and right of the kink and the possible optimal values of 

y2*(b) when b = 5? 

(f) Form (d), V(b) = 3b if b ≤ 5 and 15 if b > 5. (Easy graph, not shown.) y2*(b) = 3 

when b < 5, and 0 when b > 5, in each case y2*(b) = V’(b). V(b) has a kink at b = 5 

because the optimal basis changes there. The slopes to the left and right of the kink 

are 3 and 0, respectively. Thus the possible optimal values of y2*(b), which range 

from 0 to 3, are exactly the slopes between those to the left and right of the kink. 



2. Consider the problem: 

Choose x1 and x2 to solve maximize  x1 + 6x2  s.t. x1 ≤ 3  

         x1 + 10x2  ≤ 20 

         x1 ≥ 0, x2 ≥ 0 

(a) Solve the problem graphically (here and below, with x2 on the vertical axis) when 

there are no integer restrictions. 

(a) x1* = 3, x2* = 1.7 (from x1 = 3 and x1 + 10x2 = 20). 

 

Not drawn to scale. 

 (b) Now solve the problem graphically when x1 (but not x2) must be an integer. 

(b) Same solution as (a), because the solution with no integer restrictions has x1* = 3. 

(c) Now solve the problem graphically when x2 (but not x1) must be an integer. 

(c) There’s a new solution, because the solution with no integer restrictions has x2* = 

1.7. (Because there is only one variable with an integer restriction, it can be shown 

that the optimal x2 respecting the integer restrictions is adjacent to 1.7, either 1 or 

2.) Graphically, the feasible region is like a zebra with horizontal stripes at integer 

values of x2. It’s clear by inspection that x1 = 0, x2 = 2 is optimal. 



 

Not drawn to scale. 

(d) Now use the branch and bound method to solve the problem when both x1 and x2 must 

be integers. 

(d) Set v_ = −∞. First solve the relaxed problem without integer restrictions, as in 

(a). Then branch on the first variable (as the xi are numbered) that is restricted to 

be an integer, and isn’t an integer in the solution to the relaxed problem: x2 = 1.7. 

Branch by creating two subproblems from the original problem, one with added 

constraint (i) x2 ≤ 1 and one with added constraint (ii) x2 ≥ 2. 

Next, attempt to fathom the two branch subproblems, starting with the first, by 

solving their relaxed versions. 

Solving branch subproblem (i) yields x1 = 3, x2 = 1; this satisfies the integer 

restrictions, so this branch is fathomed. x1 = 3, x2 = 1 becomes the incumbent 

solution, with objective function value 9, a lower bound on optimal value. Set v_ = 9. 

Branch subproblem (ii) has only one feasible point: x1 = 0, x2 = 2, which satisfies the 

integer restrictions and is therefore optimal in this branch, so this branch is 

fathomed, and x1 = 0, x2 = 2, which has objective function value 12 > 9, becomes the 

new incumbent solution. Set v_ = 12. (You can also see that this solution is better 

than the previous incumbent solution by mentally shifting the objective function 

contour downward in the graph for part (c).)  

Because all branches are now fathomed, the latest incumbent solution is optimal. 



3. Reconsider the job assignment problem from Problem Set 1: You must assign three 

people, A, B, and C, to fill five jobs, 1, 2, 3, 4, and 5. Each person must be given either 

one or two jobs, but you are otherwise free to make the assignment in any way you like. 

The costs are given in the following table; if a person is assigned to two jobs, the total 

cost of that part of the assignment is computed by adding the costs for the two jobs. cij is 

the cost of having worker i assigned to job j. In the table, I have already cloned each 

worker (A becoming a and A, and so on) as needed to do the problem by linear 

programming.   

 1 2 3 4 5 

a 4 9 3 5 3 

A 4 9 3 5 3 

b 3 6 2 6 1 

B 3 6 2 6 1 

c 1 7 7 3 4 

C 1 7 7 3 4 

(a) What else do you need to do to this problem, if anything, to formulate it as an optimal 

assignment problem suitable for the Hungarian Method? Do it, and explain why your 

change yields a problem whose solution will yield the solution to the original problem. 

(a) You need to create a dummy job to make the numbers of people and jobs equal. 

As long as the cost of that job is the same for all workers, your solution to the 

problem will be a solution to the original problem, where it doesn’t matter, other 

things equal, who is not assigned. 

(b) Solve the reformulated problem by the Hungarian Method, explaining your steps. 

(b) First create the new cost matrix with the dummy job: 

 1 2 3 4 5 6 

a 4 9 3 5 3 0 

A 4 9 3 5 3 0 

b 3 6 2 6 1 0 

B 3 6 2 6 1 0 

c 1 7 7 3 4 0 

C 1 7 7 3 4 0 

 



Because there’s a 0 in every row, row reduction doesn’t change the matrix at all. 

Column reduction gives you the completed reduced cost matrix: 

 1 2 3 4 5 6 

a 3 3 1 2 2 0* 

A 3 3 1 2 2 0 

b 2 0* 0 3 0 0 

B 2 0 0* 3 0 0 

c 0* 1 5 0 3 0 

C 0 1 5 0* 3 0 

Next, find a maximal set of k independent zeros and a minimal cover of k lines, for 

example the zeros with *s in the matrix, which are all covered by a single vertical 

line in column 6 and four horizontal lines in columns b, B, c, and C. The fact that 

these five zeros can all be covered by five lines means that there cannot be more 

than five independent zeros in the matrix. 

Next, subtract the smallest cost entry that is not covered by your k lines from all 

entries not covered by a line, and add that same number to all entries covered by 

two lines. The smallest uncovered entry is one of the 1s in column 3 (doesn’t matter 

which one you choose). The result is the new cost matrix: 

 1 2 3 4 5 6 

a 2 2 0 1 1 0* 

A 2 2 0* 1 1 0 

b 2 0* 0 3 0 1 

B 2 0 0 3 0* 1 

c 0* 1 5 0 3 1 

C 0 1 5 0* 3 1 

Again, find a maximal set of k independent zeros and a minimal cover of k lines, for 

example the new set of zeros with *s in the matrix, which are all covered by either 

six horizontal or six vertical lines. That there are six independent zeros (the number 

of people and jobs) implies by Complementary Slackness that the assignment 

identified by the *s is optimal. Its total cost, from the original matrix, is 1 + 6 + 3 + 3 

+ 1 + 0 = 14. There are multiple solutions, but the *s here identify the same optimal 

assignment that Solver should have given you in your answer to Problem Set 1 #3(c).   



(c) Now suppose, as in Problem Set 1 #3(d), that job 5 has been eliminated, but the rest of 

the problem is unchanged. In this case you should have found that the problem cannot be 

formulated as a linear programming problem, because the way we did this in the first part 

(and any other way anyone has ever thought of) might assign the two dummy jobs to the 

same person, which is not really feasible (in fact this happens if you try to do it this way). 

Can you, nonetheless, do this version of the problem by the branch and bound method? If 

so, do it and illustrate at least the first couple of steps, explaining what you are doing. 

(c) Yes. Start with the original matrix, without job 5 but still cloning workers: 

 1 2 3 4 

a 4 9 3 5 

A 4 9 3 5 

b 3 6 2 6 

B 3 6 2 6 

c 1 7 7 3 

C 1 7 7 3 
Set v¯  = ∞. First, solve the relaxed version of the problem in which you can fill each 

job with whomever you wish, without regard to duplication. (You could also do this 

by assigning each worker however you wish, but doing it the way I suggest is easier 

and more natural.) This yields the assignment (for example) c1, b2, B3, C4. It’s not 

feasible because A is not assigned—recall that each person must be given either one 

or two jobs—so it yields no bound on attainable cost and nothing is yet fathomed. 

Next, branch on how to fill job 1. (Again, this is not the only way to do it, but the 

most promising.) There are only three branch subproblems, using the equivalence of 

a1 and A1 etc.: a1, b1, c1. 

 

In branch a1, solving the relaxed version of the problem in which you imagine you 

can fill each job other than job 1 with whomever you wish other than person a—

crossing out job 1 and person a but otherwise not enforcing feasibility in the rest of 

the problem—yields a1, b2, B3, c4, which is feasible, so this branch is fathomed, and 

a1, b2, B3, c4 becomes the incumbent solution, with total cost 4 + 6 + 2 + 3 = 15. Set 

v¯  = 15. 



 1 2 3 4 

a 4 9 3 5 

A 4 9 3 5 

b 3 6 2 6 

B 3 6 2 6 

c 1 7 7 3 

C 1 7 7 3 
 

In branch b1, solving the relaxed version of the problem yields b1, B2, B3, c4, which 

is infeasible and yields total cost 3 + 6 + 2 + 3 = 14 < v¯  = 15, so this branch is not yet 

fathomed.  

 

In branch c1, solving the relaxed version of the problem yields c1, B2, B3, c4, which 

is infeasible and yields total cost 1 + 6 + 2 + 3 = 12 < v¯  = 15, so this branch is not yet 

fathomed. 

 

Branch a1 is fathomed, so branch further on the next (or last-checked, whichever 

you prefer) unfathomed branch, say b1. 



 

 1 2 3 4 

a 4 9 3 5 

A 4 9 3 5 

b 3 6 2 6 

B 3 6 2 6 

c 1 7 7 3 

C 1 7 7 3 
 

Branching within b1 on how to fill job 2 yields three subbranches: b1, a2; b1, B2; 

and b1, c2.  

 

In branch b1, a2, solving the relaxed version of the problem in which you imagine 

you can fill each job other than 1 and 2 with whomever you wish other than b and 

a—crossing out jobs 1 and 2 and persons b and a but otherwise not enforcing 

feasibility—yields b1, a2, B3, c4, which is feasible, so this branch is fathomed, and 

with total cost 3 + 9 + 2 + 3 = 17 > v¯  = 15 the optimal solution cannot be in this 

branch. 

 

In branch b1, B2, solving the relaxed version of the problem yields b1, B2, a3, c4, 

which is feasible and yields total cost 3 + 6 + 3 + 3 = v¯  = 15, so this branch is 

fathomed. The objective function value is that same as for the incumbent solution 

a1, b2, B3, c4, so there is no need to replace it or to update v¯ . 

 

In branch b1, c2, solving the relaxed version of the problem yields b1, c2, B3, C4, 

which is infeasible and yields total cost 3 + 7 + 2 + 3 = v¯  = 15, so this branch is 

fathomed.  

 

[Corrected: Branch b1 is now completely fathomed, but branch c1 remains 

unfathomed. Branching within c1 on how to fill job 2 yields three subbranches: c1, 

a2; c1, B2; and c1, C2.  



 

 1 2 3 4 

a 4 9 3 5 

A 4 9 3 5 

b 3 6 2 6 

B 3 6 2 6 

c 1 7 7 3 

C 1 7 7 3 
 

In branch c1, a2, solving the relaxed version of the problem in which you imagine 

you can fill each job other than 1 and 2 with whomever you wish other than b and 

a—crossing out jobs 1 and 2 and persons c and a but otherwise not enforcing 

feasibility—yields b1, a2, B3, c4, which is feasible, so this branch is fathomed, and 

with total cost 3 + 9 + 2 + 3 = 17 > v¯  = 15 the optimal solution cannot be in this 

branch. 

 

In branch c1, B2, solving the relaxed version of the problem yields c1, B2, b3, C4, 

which is infeasible and yields (hypothetical) total cost 1 + 6 + 2 + 3 = 12 < v¯  = 15, so 

this branch is not yet fathomed. 

 

In branch c1, C2, solving the relaxed version of the problem yields c1, C2, b3, a4, 

which is feasible and yields total cost 1 + 7 + 2 + 5 = 15 = v¯  = 15, so this branch is 

fathomed, and no need to update v¯  or the incumbent solution. 

 

The only remaining unfathomed problem is branch c1, B2. Branching within c1, B2 

on how to fill job 3 yields three subbranches: c1, B2, a3; c1, B2, b3; and c1, B2, c3. 



 

 1 2 3 4 

a 4 9 3 5 

A 4 9 3 5 

b 3 6 2 6 

B 3 6 2 6 

c 1 7 7 3 

C 1 7 7 3 
 

In branch c1, B2, a3, solving the relaxed problem yields c1, B2, a3, C4, which is 

feasible and yields total cost 1 + 6 + 3 + 3 = 13 < v¯  = 15, so this branch is fathomed, 

and c1, B2, a3, C4 with total cost 13 becomes the new incumbent solution. Reset v¯  = 

13. 

 

In branch c1, B2, b3, solving the relaxed problem yields c1, B2, b3, C4, which is 

infeasible and yields (hypothetical) total cost 1 + 6 + 2 + 3 = 12 < v¯  = 13, so this 

branch is not yet fathomed. 

 

In branch c1, B2, c3, solving the relaxed problem yields c1, B2, c3, a4, which is 

feasible and yields total cost 1 + 6 + 7 + 5 = 19 > v¯ , so this branch is fathomed.  

 

The only remaining unfathomed branch is c1, B2, b3. Further subdividing yields 

two subbranches, c1, B2, b3, a4 and c1, B2, b3, c4. c1, B2, b3, a4 is feasible and 

yields 1 + 6 + 2 + 5 = 14 > 13, so this branch is fathomed.  c1, B2, b3, c4 is infeasible, 

so this branch is fathomed because it contains no feasible assignments.  

 

Because all branches have now been fathomed, the latest (and only) incumbent 

solution c1, B2, a3, C4 with total cost 13 is optimal.] 



4. Consider Matching Pennies with the payoff to R (and from C) for matching on Heads 

raised from 1 to 2 (where the Column player’s payoffs are minus the Row player’s): 

  H T 

H 2 -1 

T -1 1 

(a) Write the linear programming problem that determines the Row player’s maximin 

(security level maximizing) mixed strategy, letting v be the Row player’s security level, 

p1 = Pr{Row plays H}, and p2 = Pr{Row plays T}. Explain why your problem’s 

constraints ensure that the Row player’s security level is at least v, no matter what pure or 

mixed strategy the Column player uses.   

(a) Choose p1, p2 to maximize  v  subject to  v - 2p1 + 1p2 ≤ 0 

v + 1p1 - 1p2  ≤ 0 

p1 + p2 = 1 

p1, p2 ≥ 0. 

The constraints ensure that Row’s security level is at least v because any mixed 

strategy Column uses will yield Row expected payoffs that are a weighted average of 

the expected payoffs of his pure strategies, and these are constrained to be at least v. 

(b) Solve the problem in (a) graphically, and identify the optimal values of p1 and p2. 

(b) With p 2 = 1 – p1, the constraints reduce to v ≤ 2p1 – p2 = 3p1 – 1 and v ≤ –p1 + p2 = 

1 - 2p1. With p1 on the horizontal axis, and v on the vertical axis, these graph as: 

 

Not drawn to scale. 

Clearly v is maximized at the intersection of the two constraints, where v = 3p1 – 1 = 

1 - 2p1, so p1* = 2/5 and v* = 1/5.  



(c) Use the analogous method (without showing details, unless you want to) to determine 

the Column player’s optimal choice of q1 = Pr{Column plays H}, and q2 = Pr{Column 

plays T} and the resulting security level. 

(c) The analogous graph shows that the optimal q1 and q2 equalize 2q1 – q2 = 3q1 – 1 

and – 1q1 + q2 = 1 – 2q1, so q1* = 2/5 and q2* = 3/5. 

(d) Comparing your solutions in (b) and (c) with the optimal mixed strategies in the 

standard, symmetric version of matching pennies (like this one, but with the payoff 2 

changed to a 1), is Row’s response to the increased payoff from matching on H intuitive? 

Is Column’s response to Row’s increased payoff from matching on Heads (and so 

Column’s decreased payoff) intuitive? Why can’t Row take advantage of the increased 

payoff by putting more rather then less probability on H? Why does he get a higher 

expected payoff, even though he puts less probability on H? 

(d) Row’s increased payoff from matching on H makes H a better strategy for him, 

other things equal, so Row’s response is counterintuitive, while Column’s is 

intuitive. If Row tried too hard for the higher payoff, and Column anticipated this, 

then Column could completely neutralize the benefits by setting q1= 0. Only by 

setting p1 predictably and sufficiently less than ½ can Row give Column an incentive 

to set q1> 0, and only then can Row benefit from the higher payoff, obtaining a value 

1/5 > his zero value in the symmetric version of the game.   

(e) Now write the payoff matrix when R [I wrongly said C on the first version of this 

problem set] must choose between Heads and Tails first, and C can observe R’s choice of 

pure strategy before making his own choice. Clearly identify players’ pure strategies and 

explain your notation.  

(e) R still has the same two pure strategies, H and T. C now has four pure strategies, 

(H if H, H if T) call it HH; (H if H, T if T) call it HT; TH; and TT. Deriving the new 

payoff matrix from the rules of the game: 

     HH HT TH TT 

H 2 2 -1 -1 

T -1 1 -1 1 
 



(f) As you did in (b), and using the same notation (v, p1, and p2), find R’s security-level-

maximizing strategy or strategies and his maximized security level, either graphically or 

by reasoning about the payoff matrix, or both. Find C’s security-level-maximizing 

strategy or strategies and his maximized security level. 

(f) You could draw a graph as for (b), with four lines, three of which would be redundant. 

Equivalently and more easily, you could just note that TH is a weakly dominant strategy 

for C, yielding at least as high a payoff as any other pure strategy and never a lower 

payoff. Thus whatever R does, it cannot raise his security level above -1, and any 

strategy, pure or mixed, is optimal for him. Similarly, C’s security-level-maximizing 

strategy is TH and his maximized security level is 1. 


