
Economics 172A: Introduction to Operations Research                             Winter 2008 
Problem set 1 Answers    Due Thursday, January 31 at start of class (no late papers)  

Instructions 
 

Unless otherwise noted on homework assignments and on examinations, you are 
required to supply complete answers and explain how you got them. Simply stating a 
numerical answer is insufficient. 

For this assignment, attach printouts of Excel spreadsheets when requested and 
indicate where to find the answers for each question the spreadsheet covers. This 
assignment asks you to solve many linear programming problems, but most are variations 
on the same basic problem. Set up one template for the Excel computations and then 
make changes to get the answers for variations of the problem. You need not include a 
separate printout for every simplex computation as long as you provide a clear 
description of how you got the answers. You are responsible for using the notes on Excel 
on the website to figure out how to get Excel answers yourself (I won’t lecture on it). 

For this assignment there is no need to provide answer reports and sensitivity 
reports, but please do indicate which cells on your spreadsheet have the solution. For 
graphs, clearly label the graph and show where the objective function is and how you 
identified a solution. If I ask you to solve a problem, please give both the solution (the 
optimal x) and the value (the objective function value for the optimal x). 
 
1. Consider the linear programming problem: 
 
Choose x1,x2 ≥ 0 to solve max y subject to -x1 + 2x2 ≤ 5  
       3x1 + x2 ≤ 3, 
where the objective function y is a function of x1 and x2 to be specified. 
 
(a) Graph the feasible region. Put x1 on the vertical axis and x2 on the horizontal axis. 
[When x1 is on the vertical axis and x2 is on the horizontal axis, the feasible region is 
a quadrilateral with the west and south edges going along the x1 and x2 axes, and 
with a point sticking out to the east at (x1,x2 ) = (1/7, 18/7). It’s the intersection of the 
nonnegative quadrant (x1,x2 ≥ 0), the area northwest of the line from (x1,x2) = (-5,0) 
to (0,5/2), and the area southwest of the line from (x1,x2) = (1,0) to (0,3). The corners, 
starting from the southwest and going clockwise, are (0,0), (1,0), (1/7,18/7), (0,5/2).] 

 

 
(not drawn to scale) 

 
 



(b) Solve the problem graphically when: 
(i) y = x2. 

[The solution when y = x2 is at the point in the feasible region farthest to the east: 
the intersection of the two lines -x1 + 2x2 = 5 and 3x1 + x2 = 3, easily found by algebra 
to be (x1,x2 ) = (1/7, 18/7).] 

 
(ii) y = x1 + x2. 

[The solution when y = x1 + x2 is at the point in the feasible region farthest to the 
northeast (because the slope of the objective function contour, -1, is between the 
slopes of the constraints at this corner): again the intersection of the two lines at 
(x1,x2) = (1/7, 18/7).] 

 
(iii) y = x1 - x2. 

[The solution when y = x1 - x2 is at the point in the feasible region farthest to the 
northwest (because the slope of the objective function contour, 1, is between the 
slopes of the constraints at this corner): (x1,x2) = (1,0).] 

 
(c) Identify the corners of the feasible region. For each corner, give an example of a 
linear objective function y (a linear function of x1 and x2) such that the solution of the 
problem occurs at (and only at) that corner. 
[(x1,x2) = (0, 0), for which the objective function y = -x1 - x2 will work. (x 1,x2) = (0, 
5/2), for which the objective function y = -x1 + x2 will work. (x 1,x2) = (1/7, 18/7), for 
which the objective function y = x1 + x2 will work. (x 1,x2) = (1, 0), for which the 
objective function y = x1 will work.] 
 
(d) Now solve each of the problems in part (b) using Excel. Compare your answers to the 
graphical solutions. Are there any differences? Explain. 
[The answers are the same, except that if there were multiple solutions (which there 
aren’t here) Excel would not give you all of them: the particular solution the Excel 
finds will depend on how you entered the data.] 
 
(e) Now multiply each of the objective functions in part (b) by 3. Solve the new problem 
(graphically or using Excel, whichever you prefer). How do the optimal x’s and values 
change? 
[The optimal x’s don’t change because the only way to max 3f(x) subject to x in S is 
to max f(x) subject to x in S. The optimal values are multiplied by 3.] 
 
(Note that parts (e), (f), and (g) are independent. For example, when you do part (f) 
do not multiply the objective functions by 3: leave them as they were originally. Thinking 
should allow you to do (e)-(h) with little computation. But even if you don’t see why, you 
should be able to do these parts and use them to understand the ideas they get at. Please 
be sure to compare the answers and comment on the changes as requested.) 
 



(f) Now multiply the second constraint of the problem by 12 (so that it becomes 36x1 + 
12x2 ≤ 36). With the new constraint, solve each of the problems in part (b) again 
(graphically or using Excel). How do the optimal x’s and values change? 
[The constraint hasn’t really changed, so the optimal x’s and values don’t change.] 
 
(g) Now multiply the coefficient of x1 in each constraint of the problem (except the 
nonnegativity constraints) and in each of the objective functions in part (b) by 12. With 
these changes, solve each of the problems in part (b) again (graphically or using Excel). 
How do the optimal x’s and values change? 
[The “real” optimal x 1 won’t change, but the “nominal” solution for x1 will be 
multiplied by 1/12. The real and nominal solutions for x2 and the value don’t change. 
Multiplying the coefficient of x1 by 12 in each constraint and in the objective 
function—everywhere in the problem—is just like measuring x1 in feet rather than 
inches. (Not inches rather than feet! Make sure you understand why: because “12 
inches” turns into “1 foot”.) Because x1 is now expressed in feet rather than inches, 
the constraints and the objective function trade-off between x1 and x2 haven’t really 
changed, but the nominal solution for x1 must be translated into the new language. 
Given the translation, the value doesn’t change.] 
 
(h) Now repeat part (f), except this time multiply as in (f) but by -12 instead of 12. 
[This doesn’t change the location of the second constraint’s boundary line, but it 
flips which side of it you are allowed to be on. The new feasible region is the 
intersection of the nonnegative quadrant (x1,x2 ≥ 0), the area northwest of the line 
from (x1,x2) = (-5,0) to (0,5/2), and the area northeast of the line from (x1,x2) = (1,0) to 
(0,3). 

 
(not drawn to scale) 

 
This is unbounded to the north, so the problem might not have a solution for some 
objective functions (but might have a solution for others). You can check, 
graphically or using Excel, that when y = x2 or y = x1 + x2, there is no solution, 
because the feasible region allows anything to the northwest of the line -x1 + 2x2 = 5; 
and when y = x1 - x2 there is again no solution, because the region allows any x1 as 
long as x2 is not too high.] 
 



2. Reconsider the formulation example discussed in class: A UCSD degree … and your 
own MS-burger (pronounced “Messburger”) franchise! You have three “profit centers”: 
 
● the MS-Burger (“a quarter of a quarter of a pound of USDA choice beef on a fresh-
baked bun”) 
● the Beefburger (“for the total carnivore, a USDA choice beef pattie on a ‘bun’ also 
made entirely of beef”), and 
● the Breadburger (“a fresh-baked bun in … what else? ... another fresh-baked bun”) 
 
Producing x1 MS-burgers, x2 Beefburgers, and x3 Breadburgers yields total profit (taking 
costs into account) of 60x1 + 50x2 + 10x3. 
 
MS-burger CEO Joel Watson sends you b1 > 0 quarter-of-a-quarter-of-a-pound units of 
beef and b2 > 0 buns every month; it takes one unit of beef and one bun to make an MS-
burger, two units of beef (and no buns) to make a Beefburger, and two buns (and no beef) 
to make a Breadburger. 
 
(a) Formulate the linear programming problem that determines the profit-maximizing use 
of your monthly supply of beef and buns, assuming that the xi must be nonnegative, but 
ignoring integer restrictions. Do not assume that all the beef or all the buns must be used. 
[Choose x1,x2,x3 ≥ 0 to solve max 60x1 + 50x2 + 10x3     subject to  x1 + 2x2 + 0x3  ≤ b1 

x1 + 0x2 + 2x3 ≤ b2] 
 
(b) Write the dual of the problem. 
[Choose z1,z2 ≥ 0 to solve  min  b1z1+ b2z2       subject to  z1 + z2   ≥ 60 

2z1         ≥ 50 

      2z2   ≥ 10] 
(c) Interpret the dual. 
[The dual variables are the prices of inputs. For example, z1, the dual variable 
associated with beef, is the value, measured in the units of the objective function, of 
an additional unit of beef. The constraints of the dual guarantee that it is at least as 
profitable to sell the inputs at their dual prices as to use them in the franchise. Each 
control variable in the dual is associated with a corresponding constraint in the 
primal, and each control variable in the primal is associated with a corresponding 
constraint in the dual: z1 goes with the b1 constraint, and x1 with the “60”  

constraint.]  
 
(d) Setting b1 = 20 and b2 = 30, solve the primal and the dual using Excel. 
[Solution of primal (via Excel): x1 = 20, x2 = 0, x3 = 5, 60x1 + 50x2 + 10x3 = 1250.  
Solution of dual (via Excel): z1 = 55, z2 = 5, 20z1+ 30z2 = 1250.] 
 



(e) Compare your answers for the primal and the dual and confirm the conclusion of the 
duality theorem of linear programming and all complementary slackness conditions. 
[You can check on your spreadsheet that:  
(i) The values of the primal and dual are the same. 
(ii) If a primal variable is positive, the associated dual constraint must bind (hold 
with equality). 
(iii) If a primal constraint is not binding, the associated dual variable must be zero. 
(iv) If a dual variable is positive, the associated primal constraint must bind. 
(v) If a dual constraint is not binding, the associated primal variable must be zero.] 
 



3. You must assign three people, A, B, and C, to fill five jobs, 1, 2, 3, 4, and 5. Each 
person must be given either one or two jobs, but you are otherwise free to make the 
assignment in any way you like. The costs are given in the following table; if a person is 
assigned to two jobs, the total cost of that part of the assignment is computed by adding 
the costs for the two jobs. cij is the cost of having worker i assigned to job j. 
 

 1 2 3 4 5 

A 4 9 3 5 3 

B 3 6 2 6 1 

C 1 7 7 3 4 

 
(a) Show how to formulate this problem as a linear programming problem. (Hint: I found 
it helpful to create two mathematical duplicates of each worker (A1 and A2, and so on) 
and to use the variable xij to represent whether worker i is assigned to job j), with xij = 1 
meaning that worker i is assigned to job j and xij = 0 meaning worker i is not assigned to 
job j.) Your formulation must include a definition of the variables and a clear statement 
(in both algebra and words) of the objective function and all relevant constraints.  
[Choose the xij to solve Min Σcijxij where the summation is over all workers i and 
jobs j, subject to Σxij ≥ 1 for all j (so that at least one worker is assigned to each job) 
and Σxij ≤ 1 for all i (so that no worker is assigned more than one job, bearing in 
mind that duplicate workers are treated as different workers). The problem will 
necessarily leave exactly one worker-duplicate unemployed, and give jobs to both 
duplicates of two workers and one of the third. This satisfies the constraints.] 
  
(b) Is a linear programming formulation fully appropriate? Comment on whether there 
are any important assumptions made in the formulating the problem as a linear program. 
[No, in that the linear program allows xij to take values other than 0 or 1, which is 
not really feasible. But it turns out, as I’ll explain later in the class, that that kind of 
potential infeasibility doesn’t really matter for this kind of problem.] 
 
(c) Use Excel to solve the problem. 
[See the spreadsheet: A fills job 3, B fills jobs 2 and 5, C fills jobs 1 and 4; cost 14. 
The xij all come out (to a close approximation) 0 or 1, not a coincidence, as we’ll see.] 
 
(d) Now suppose that job 5 has been eliminated, but the rest of the problem is unchanged. 
Can this problem still be formulated as a linear programming problem? Explain why, or 
why not. 
[It cannot validly be formulated as a linear programming problem. The problem is 
that now it’s possible that the linear program will want to fill all four jobs with only 
two of the three workers, leaving the third with no job. This violates the constraint 
that each person must be given either one or two jobs. If you try it (the easiest way is 
by making all the costs of job 5 really big and then resolving the problem), you will 
find that the linear program assigns A only to job 5, violating the constraint that 
each person has at least one job. The actual solution must be feasible. What it is 
must be determined some way other than linear programming.] 


