Economics 142: Behavioral Game Theory Winter 2008
Vincent Crawford

Many strategic situations in business, internatioglations, politics, or war are well
approximated by games.game is a multi-person decision situation, defined tig\str ucture:
the players, its “rules” (the order of players’ @daans, their feasible decisions at each point,
and the information they have when making themyy ptayers’ decisions determine the
outcome; and players’ preferences over outcomes.

Behavioral game theory is a blend of traditionahgaheory and empirical knowledge whose
goal is the understanding of strategic behaviodeddor applications.

Such understanding includes topics from behavaealsion theory plus two topics that are
specific to multi-person settings: (1) preferentteridependence (such as altruism, envy, spite,
or reciprocity); and (2) players’ models of othéyers.

Here | narrow the focus to (2), assuming that befas (mostly) rational in the decision-
theoretic sense and self-interested. | further isuthel (2) into: (2a) how players model others’
decisions in initial responses to games with nargeecedents; and (2b) how players learn to
predict others’ decisions in repeated play of agals games.

We’'ll start with a Game Survey designed to highligbme of the issues studied in behavioral
game theory. The results will be anonymously taledl@and used as empirical support for some
of the ideas developed below.



As just noted, analyses of behavior in games nwstrant all the issues that arise with
individual decisions, plus one that is unique tmga:

Because the outcome is influenced by others’ dmtssas well as your own, to do well in
a game you need to predict others’ decisions, ¢gliair incentives into account. This
may require a mental model of other players (inclgé model of their models of you!).

Game theory has a standard model of how peoplel@&dnat to do in games, which rests on
the assumption that people can perfectly predierst decisions:

Nash equilibrium (often shortened tequilibrium) in which each player chooses a decision
that is best for himself, given correct expectatiabout others’ decisions

Equilibrium makes clear predictions of game outcemenich are often accurate when players
have learned to predict others’ decisions from agpee with analogous games (for example,
Walker and Wooders, “Minimax Play at Wimbledon,'02AER).

But in novel situations there may be no analog@meas, and equilibrium must then come
from sophisticated strategic thinking rather thearhing from direct experience.

This makes equilibrium a less plausible assumpaod, equilibrium predictions are often
much less reliable for initial responses to garhas tvhen learning is possible.



In these notes | will briefly discuss the stratag&ues addressed by game theory and how the
standard theory addresses them, using equilibrinohre@lated notions.

| then outline a behavioral game theory synthelsmarlels of thinking and learning.

| then compare equilibrium predictions in some gargituations with history, experimental
data, or intuitions regarding initial responsegames, highlighting situations where there are
systematic deviations from equilibrium predictions.

| then describe a structural but non-equilibriumdesoof initial responses to games that has
emerged from recent experimental work, based oreduny called “levek” thinking, and
compare its predictions with intuition and expemtas data.

In simple games a lev&lmodel’s predictions tend to coincide with equilifon, so
equilibrium predictions rest on a broader and npbaeisible set of behavioral assumptions,
and are correspondingly more reliable.

In more complex games a levemodel’s predictions can deviate systematicallynfro
equilibrium, but in predictable ways. These dewiasi often bring the model’s predictions
closer to evidence and intuition, resolving puzidisopen by equilibrium analysis.

| conclude with a brief introduction to learninggames.



ldeas and Issues

Something isnutual knowledge if all players know it; andommon knowledge if all know it, all
know that all know it, and so on. | focus on playgroblem of predicting others’ decisions by
assuming that they have common knowledge of thetsire of the game. This allows game
outcomes to be uncertain if their distributions @exmon knowledge. The theory does not
require common knowledge of the structure, buaseax to explain with it.

Rationality and dominance

L R Confess Don't
2 1 -5 -10
T 5 5 Confess 5 1
2 1 , -1 -2
B 1 1 Don’t 10 2

Crusoe vs Crusoe Prisoner’s Dilemma

Crusoe vs. Crusoe is just two decision problena/éling together,” not really a game; each
player has a best decision independent of the 'stf@dominant decision or strategy; the
dominant decisionlominates (strictly, in this case) the other decision).

In Prisoner’s Dilemma, players’ decisions affeatleather’s payoffs but each player still has
a dominant decision. The game is interesting becauasvidually optimal decisions yield a
Pareto-inefficient outcome, highlighting an impotttdistinction between individual and
group rationality when there are payoff interacsioeven when there are no interactions
between players’ choices.



lterated knowledge of rationality and iterated domnance

Push Walit
1 5
Push|5 3
-1 0)
Wait |9 0)

Pigs in a Box

In Pigs in a Box, think of Row (R) as a big pig &olumn (C) as a little pig. (The box is a
Skinner box, named for the famous behavioral psggfist B.F. Skinner.)

Pushing a lever at one end yields 10 units of guaithe other. Pushing “costs” either pig the
equivalent of 2 units of grain. (That is, a pigtgity is his grain consumption, minus 2 if he
pushed the lever and minus 0 otherwise.)

If R pushes while C waits, C can eat 5 units beRrmens down and shoves C aside.

If C pushes while R waits, C cannot shove R asdd} gets all but one unit of grain.

If both push and then arrive at the grain toget@agets 3 units and R gets 7. If both wait, both
get O units of grain.



Push(5 3

Wait |9 0
Pigs in a Box

In experiments with real pigs playing the game @t over, if a stable behavior pattern
emerges it tends to be at (R Push, C Wait), thdilequm outcome.

Like some things in game theory, this is surprisligcause C gets a better outcome even
though R can do anything C can do, and more.

It happens here because C's weakness means @jeéd mo reward from Push, so Wait
dominates Push for C. But when C plays Wait, R d@a® an incentive to Push.

If the pigs were rational and had studied gamerthdbey wouldn’t have to wait for a stable
pattern to emerge: C could figure out that it sddaMait no matter what R does; and R could
figure out that a rational C will Wait and that Rnaiself should therefore Push.

As this example suggests, strategic thinking teadseld the same outcome as learning in the
long run. (How does learning work in this example?)



Iterated or common knowledge of rationality and ratonalizability

L C R
| 2 S 3
Mis I, ’ls ’
Blo lo °l; ’

Dominance-solvable game

Now consider Game Survey question liadyated (strict) dominance yields a unique
prediction (which is why the game is called domueeusolvable):

R is strictly dominated by C for Column.

When R is eliminated then B is strictly dominatgd\b for Row.

When R and B are eliminated then L is strictly doated by C for Column.
When R, B, and L are eliminated then T is strickbhminated by M for Row.

So (M, C) is the only outcome that survives itedag@mination of strictly dominated
strategies. A game with a unique outcome that ttuess callecdominance-solvable. The set
of strategies that survive iterated strict domimaisandependent of the order in which
dominance is performed. (However, the set of gjratethat survive iteratageak dominance
IS not independent of the order; and some other resattsraethods don’'t work for iterated
weak dominance. In these notes | will focus orcsttominance.)



To see more clearly how outcomes relate to behavamsumptions, assume that players are
rational in the sense that they maximize their expected fimgorenbeliefs about other
players’ strategies that are not logically incot@ns with anything they know.

Define arationalizable strategy as one that survives iterated eliminatfostrategies that are
never weak best responses in that there are no beliefs that make them ortbeplayer’s best
responses.
Push Walit

1 5
Push|5 3
-1 0
Wait |9 0

Pigs in a Box

In Pigs in a Box, for example, Push is a best nespdor R (strict and so also weak) to any
beliefs that assign high enough probability to &/pig Wait.

But Push is never even a weak best response fec@ube no beliefs about R’s strategy can
make it yield as high an expected payoff as Wantweler once Push is eliminated for C,
Wait is never a weak best response for R.

Thus the only rationalizable strategies in Piga Box are Push for R and Wait for C. (R
Push, C Wait) is also, not coincidentally (why®g game’s unique equilibrium.



More generally, in a two-person game a playeratsgies that are never weak best responses
are the same as those that are strictly dominatetthét player. Thus the strategies that
survive iterated elimination of never weak bespogsesare the same as those that survive
iterated elimination of strictly dominated straesgji(However, in three- or more-person games
the two ideas are not quite the same. In theses motdl focus on two-person games and use
the simpler notion of iterated dominance.)

In the dominance-solvable game from Survey questan
R is strictly dominated by C for Column.
When R is eliminated then B is strictly dominatgod\b for Row.
When R and B are eliminated then L is strictly doated by C for Column.
When R, B, and L are eliminated then T is strickbyminated by M for Row.

Thus the only rationalizable strategies are thbaegdurvive iterated elimination of strictly
dominated strategies: M for Row and C for Colunih, C) is also the game’s unigque
equilibrium.

L C R
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Dominance-solvable game



Theorem: If players’ rationality is common knowledge, egithyer must choose a
rationalizable strategy. Conversely, any profilgaifonalizable strategies is consistent with
common knowledge of rationality.

Proof: Consider thdirst part in the dominance-solvable game. R igtbgrdominated by C

for Column, so a rational Column will never choéséNhen R is eliminated then B is strictly
dominated by M for Row, so a rational Row who kndiat Column is rational will never
choose B. When R and B are eliminated then L istgtidominated by C for Column, so a
rational Column who knows that Row knows that Catusrational will never choose L.
When R, B, and L are eliminated then T is strickbhminated by M for Row, so a rational Row
who knows that Column knows that Row knows thatw@wl is rational will never choose T.
(Thus the number of levels of iterated knowledgeatibnality needed is just the number of
rounds of iterated dominance, here four; you reeeamon knowledge only for indefinitely
“large” games.)

L C R
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Dominance-solvable game
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The second part of the proof followyg building a “tower” of beliefs in the game fromir8ey

qguestion 2ab, in which there is no strict dominaswany strategy for either player is
rationalizable, to support any rationalizable oateo Assume common knowledge of

rationality and consider (T, L) for example:

Row will play T if he thinks it sufficiently likelythat Column will play L.

Row will think it sufficiently likely that Column vl play L if Row thinks Column thinks

it likely that Row will play B.

Row will think it sufficiently likely that Columnhtinks it likely that Row will play B if
Row thinks Column thinks Row thinks it likely th@blumn will play R.

And so on.
L C R
T7 OO 5O 7
MS O2 25 ’
BO 7O 57 °

Unique Equilibrium without Dominance

It is easy to check that such a tower can be farikhny outcome in this game, which
corresponds to the fact that all outcomes suntamied elimination of strategies that are
never weak best responses or, equivalently, staictiminated strategies.
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Rationality, the same beliefs, and Nash equilibrium

The game from Survey question 2ab is typical oheaaically interesting games in that not
only is the game not dominance-solvable, ratioaaliry implies few (here, no) restrictions
on behavior. In such games useful predictions d&pammore than rationality or even
common knowledge of rationality.

] c R
| o S 7
Mls o s )
Blo lo ik ’

Unique Equilibrium without Dominance

Note that most of the towers used in the secondgbdine proof have players believing
inconsistent things. For example, in the tower(1grL) Row plays T because he thinks
Column will probably play L, but a rational Colummuld not play L if he expected Row to
play T. The only outcome whose tower has both pkapelievingconsistent things is (M, C):
A rational Row will play M if he thinks Column wifprobably play C, a rational Column will
play C if he thinks Row will probably play M, and en.
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Traditional game theory gets specific predictiansuch games by adding an ingredient: the
assumption that players have the same beliefs dlmouthe game will be played.

This leads to the idea dfash equilibrium or equilibrium, defined as a combination of
strategies such that each player’s strategy isfoekim, given the other’s strategy.

If rational players expect a given equilibrium,riitbeir best responses are to play their
equilibrium strategies. In the game from questiah the unique equilibrium is (M, C),
supported by beliefs in which Row expects Columpl&ay C and therefore plays M, Column
expects Row to play M and therefore plays C, andrsa@t all levels.

Theorem: If players are rational and have the same bedibtsit how the game will be

played, then their beliefs and (if they are unran@ed, orpure) their strategies must be in
Nash equilibrium.

13



Theorem: If players are rational and have the same bedibtsit how the game will be played,
then their beliefs and (if they apere) their strategies must be in Nash equilibrium,

This theorem leads to the question: Why shouldgsy-even rational players—have the same
beliefs about how a game will be played?

Traditional game theory offers two complementargvears:

Thinking: If players have perfect models of eadieos decisions, strategic thinking can
lead them to have the same beliefs, and so plagaiiibrium, even in their initial
responses to a game.

Learning: If players don’t have perfect models teyteatedly play analogous games, direct
experience can eventually allow them to predicehdecisions, and so play an
equilibrium in the limit.

Behavioral game theory qualifies these answersuegtipning whether people have perfect
models of others’ decisions and studying the moaktthers that appear to determine their
decisions empirically—mostly experimentally.

Behavioral game theory also studies the interadigtaveen peoples’ models of others, how

people learn from experience with analogous gaarmshow their initial responses and learning
interact to determine the dynamics and limitingcoate of their strategy choices.

14



Mixed-strategy equilibrium and equilibrium in beliefs

In Matching Pennies, two players, Row and Colunmoose simultaneously between two
actions, Heads and Tails; Column wins if they mateti Row wins if they mismatch.

Assume players choose their actions to win, whieldg apayoff of 1, while losing yields
-1. Further assume that these payoffs are von Nemtiborgenstern utilities, so that we can
describe players’ choices under uncertainty as mizxig theirexpected payoffs.

Heads Talils
-1 1
1 -1

Heads

1 -1
-1 1
Matching Pennies

Tails

Any strategy in Matching Pennies is rationalizablewe need more than rationality.

But if players choose only between fhee (unrandomized) strategies Heads and Tails,
Matching Pennies has no equilibrium; any stratemylmnation is not best for one player.

15



But in Matching Pennies it is important to be umlceable, so it is natural to interpret

“choice” to includemixed (randomized) strategies as well as pure strategesk of

choosing a mixed strategy as choosingpitadabilities p andqg of Heads and Tails.
Heads (q) Talils

-1 1
H
eads ) 1 1
1 -1
-1 1

- Matching_Pennies

Tails

With mixed strategies Matching Pennies has an ibguiin, in which each player plays each
pure strategy with probability Y.

If players choose their strategies with probalkesip = q = %2 and a player correctly anticipates
the other’s probability, then Heads and Tails yial the same expected payoffp-il(1-p)
=1p-1(1p¢) and I —1(19) = —1g +1(1-9). (p makes Column indifferent between Heads and
Tails, andg makes Row indifferent.)

No strategy (pure or mixed) has higher expectedfbagndp or q = 2 are among players’
best choices; so these mixed strategies are iti@gun.

p=q=1/2is the only equilibrium in Matching Pennidsa player could predict a choice
probability different than 1/2 for the other playren one of his pure strategies would yield a
higher expected payoff; but Matching Pennies hasquolibrium in pure actions.

16



The equilibrium in Matching Pennies is best thougfirds arequilibriumin beliefs, in which
each player’s mixed strategy represents the olageps beliefs about the first player’s
realized pure strategy (that is, how the coin [ands

Equilibrium in beliefs is a kind of “rational expgations” equilibrium, in which players form
correct expectations about each other’s realizee gwategy (not about a market aggregate, as
in the notion of rational expectations used in maconomics).

The player himself need not be uncertain aboutdabzed pure strategy: It could be
nonrandom, for example based on private discussutthssubordinates. His realized pure
strategy only needs to be unpredictable to therqifager.

Further, players’ realized pure strategies needaah equilibrium—even if players’ mixed
strategies are in equilibrium, they could both apglaying Heads. Only players’ beliefs must
be in equilibrium, as implied by the last theorem:

Theorem: If players are rational and have the same bedib&it how the game will be
played, then their beliefs and (if they gxee) their strategies must be in Nash equilibrium.

17



Now consider the Perturbed Matching Pennies gaam 8urvey Question 7ab.

Heads (q) Tails
-2 1
2 -1
1 -1
-1 1
Perturbed Matching Pennies

Heads ()

Tails

Compare Perturbed Matching Pennies with Matchingnies and record your intuitions about
how to play (pure or mixed strategy, as you predsrRow or Column.

18



Once again there’s a unique equilibrium, in mixegdtegies. The equilibriunmp andq solve:

—2p +1(1-p) = 1p — 1(1-p), which yieldsp = 2/5 and
29 —-1(1-¢) = —1g +1(1-9)), which yieldsg = 2/5.

The relationship between these mixed-strategy fmbbeas and those for the original,
symmetric version of Matching Pennies probably imescyour intuition (at least qualitatively)
for Column because its better-on-average actioils, Traas probability 3/5 > %%. But the
relationship probably goes against your intuitionRRow because its better-on-average action,
Heads, has probability 2/5 < Y.

(“Intuition” here comes from decision theory, whanereasing the possible reward to a
decision would never make a rational person chadsss often.)

The equilibrium must be counterintuitive becaudeofv tried to exploit the high payoff of
Heads too much, and this was predictable, Colunuidageutralize it by setting = 0). With
the predictability that equilibrium assumes, Row eaploit the high payoff of Heads only by
settingp < 2. The equilibriunp of 2/5 yields Row payoff 1/5, greater than its iéquum
payoff of O in Matching Pennies.

This principle is general (see Crawford and Smabeiydheory and Decision 1984) but it
seems too subtle to be identified in bridge or pagrtbooks or in other informal writing on
strategy (it is mentioned in von Neumann and Mostgm’sTheory of Games and Economic
Behavior).
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More issues and ideas: Coordination and multiple agjlibria

So far | have focused on games with unique ratipalalle outcomes or at least unique equilibria.
Yet many economically interesting games have nlel@guilibria. Here | discuss only
coordination games, which are particularly impariareconomics. If economics is “about”
coordination, we should study coordination in garast just the coordination that happens
(magically) in competitive markets.

Go Wait Fights Ballet
0 1 : 1 0
Go 0 1 Fights 5 0
: 1 0 0 2
Wait 1 0 Ballet 0 1
Alphonse and Gaston Battle of the Sexes

In Alphonse and Gaston and Battle of the Sexesg thie two pure-strategy equilibria (and
one mixed-strategy equilibrium), reflecting ttwe ways to solve the coordination problem.
Each of the two ways requires them to behave @iffdy when there may be no cues to break
the symmetry. Battle of the Sexes complicates tbblpm with different preferences about
how to coordinate.

How would you play as Alphonse? As Gaston? As Ro@aumn in Battle of the Sexes?

20



(Why “Alphonse and Gaston”? In the early 1900s Erat B. Opper created ti#phonse

and Gaston comic strip, with two excessively polite fellonaysng “after you, my dear
Gaston” or “...Alphonse” and never getting througl tloorway. The characters are mostly
forgotten, but we still have Alphonse-Gaston gamebke dual-control “three-way” lighting
circuits in our homes.)

B
:

VA Gus—
[ ' — 1 , '

A NI EEE

ROy er light | | . !
sOLUrCe | I~ |
L ; Lo J

J-weay J-weay

sywvitch switch

Alphonse and Gaston Alphonse and Gaston in yolnome
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Other Player All Other Players

Not
Stag Rabbit All-Stag  All-Stag
2 1
Stag 5 0 Stag 2 o)
Rabbit |, °l, 1 Rabbit| 1 1
Two-Person Stag Hunt n-Person Stag Hunt

Consider the Stag Hunt game from Survey Questibn blae game models a story from
Rousseau’®iscourse on Ineguality. It's like an assembly line that won’t move fadtegin the
slowest person on the line, a meeting that caaft sitil everyone is there, or a choice
between joining a productive but fragile societg autarky, which is less rewarding but safer
because less dependent on coordination. How waudlay with one other person? With
many other people?

With two orn players, there are two symmetric pure-strategyliega, “all-Stag” and “all-
Rabbit.” (There’s also an uninteresting mixed-gggtequilibrium.) All-Stag is better for all
than all-Rabbit, which is therefore “payoff-domittarBut playing Stag is riskier in that
unless all others play Stag, a player would dcebgtiaying Rabbit, the more so the more
other players there are. All-Rabbit is therefoisKidominant” whem > 2 and borderline
risk-dominant whem = 2. In ann-person game like Stag Hunt but in which the medatner
than minimum choice determined the outcome, alif$&anuch less fragile, evennfis large,
and may then be risk-dominant as well as payoffidant.
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Behavioral game theory as a synthesis of stratedisinking and learning

As noted above, traditional game theory offers t@mplementary answers to the question Why
should players have the same beliefs about howre gall be played?:

Thinking: If players have perfect models of eadieos decisions, strategic thinking can
lead them to have the same beliefs, and so plagaiiibrium, even in their initial
responses to a game.

Learning: If players don’t have perfect models tayteatedly play analogous games, direct
experience can eventually allow them to predicehdecisions, and so to play an
equilibrium in the limit.

Behavioral game theory qualifies these answersugtipning whether people have perfect
models of others’ decisions and studying their ni@dmpirically—mostly experimentally.

Behavioral game theory also studies the interadigtiween peoples’ models of others, how they
learn from experience, and how initial respons&klearning interact to determine the dynamics
and limiting outcome.

| now give a concrete example of this interaction.
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Consider a “Continental Divide” coordination gamen Van Huyck, Cook, and Battalio’s
(1997JEBO) experiment.

Seven subjects choose simultaneously and anonyynaonsing “effort” levels from 1 to 14,
with each subject’s payoff determined by his owlerfand a summary statistic, the median,
of all players’ efforts, in a publicly announcedywa

The group median is then publicly announced, sibjewoose new effort levels, and the
process continues.

The relation between a subject’s payoff, his owarefand the median of all players’ efforts
was announced to the subjects by giving them & {&# the one on the next page.

In the table as shown on the next page, the pagbtisplayer’'s best response(s) to each
possible median is(are) highlighted in bold; arelphayoffs of (symmetric, pure-strategy)
equilibria “all-3” and “all-12" are highlighted ilarge bold.

(For the subjects, of course, there was no higtiighn the table.)
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Continental divide game payoffs

Median Choice

your 1 2 3 4 5 6 7 8 9 10 11 12 13 14

choice
1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142
2 48 53 58 62 65 66 61 27 -52 -67 -77 -86 -92 -98
3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58
4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22
5 35 44 52 60 69 177 83 46 32 25 19 15 12 10
6 23 33 42 52 62 72 82 62 53 47 43 41 39 38
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62
8 13 -1 11 23 37 51 69 83 81 8 80 80 81 82
9 37 24 11 3 18 35 57 8 8 91 92 94 96 98
10 -65 -51 -37 21 -4 15 40 89 94 98 101 104 107 110
11 97 82 -66 -49 -31 -9 20 85 94 100 105 110 114 119
12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123
13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123
14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120

There were ten sessions, each with its own separatg. Half the groups had an initial
median of eight or above, and half had an initiatran of seven or below. (I suspect the
experimenters cleverly chose the design to malsehidgppen, but it’'s not uncommon.)
The median-eight-or-above groups converged almas$etly to the all-12 equilibrium.

The median-seven-or-below groups converged alnmeygeqly to the all-3 equilibrium.
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As this example makes clear, it's not enough toaktitat learning will eventually yield
convergence to some equilibrium, even if we arg arierested in the final outcome.

To predict the final outcome, we need to know stmnetabout the distribution of subjects’
initial responses and the structure of their leagmules.

(Here it seems that we “only” need to know theahigroup median, but sometimes, as
illustrated below, we need to know much more thnat.}

Because subjects had no prior experience, théialinesponses are entirely the product of
strategic thinking, the main focus of this partlud class.

Learning is also important, and | will spend som®eton it at the end. But you can often
make an educated guess about the outcome of lgadypmamics by using simple graphical
techniques, which | will illustrate below.

27



Experimental studies of strategic thinking in simutaneous-move games with
unique pure-strategy equilibria

Consider subjects’ initial responses in Nagel’O8AER) “guessing games” (Survey
qguestion 3, the same for groups a and b).

15-18 subjects simultaneously guess between [0,100]

The subject whose guess is closestpd=a 1/2 or 2/3), times the group average guess
wins a prize, say $50

The structure is publicly announced

Record your intuition about what to guesp # 2. Ifp = 1/3.
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Nagel’'s games have a unique equilibrium, in whitiplayers guess 0. The games are
dominance-solvable, so the equilibrium can be fdmydepeatedly eliminating stupid
(dominated, to game theorists) guesses.

For example, ip = 1/2:

It's stupid to guess more than 50 (1/2 x ¥0R0)

Unless you think other people are stupid, it's &a&gid to guess more than 25 (1/2 x 50
< 25)

Unless you think other people think other peop&estupid, it's also stupid to guess more
than 12.5 (1/2 x 25 12.5)

And so on, down to 6.25, 3.125, and eventuallytediway 0

The rationality-based argument for this “all-0” didpunium is stronger than the arguments for
equilibrium in the other examples, because it ddpéanly” on iterated knowledge of
rationality, not on players having the same beliefs

But even people who are rational themselves adosetertain that others are rational, or that
others believe that they themselves are rationdl sa on; so they probably won'’t (and
shouldn’t) guess 0. But what do they do?
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Nagel’'s subjects played the games repeatedly, butam view their initial guesses as
responses to games played in isolation if theydcetheir influences on the future as
negligible. They never guessed 0 initially; th&sponses were heterogeneous, respecting 0 to
3 rounds of repeated dominance (first pictprel/2; second pictung = 2/3):

0.15
AL .
median 17
mean 27.05
8
&5 0.10
[ =
@
=
o
®
(T
a2
=
8T 0.05-
[F)
e
0.00 . N E
20 30 40 50 60 70 80 90O 100
Chosen Numbers
0.15
B. median 33
mean 36.73
B
‘5 0.10
=
<D
=3
[
o
Lr
Lo k]
=
T 0.05
<13
T
0.00- BE B B BB ESE  E ; i = H B i ‘R K 5 :
O 10 20 30 40 50 60 70 80 90 100

Chosen Numbers

30



Subjects’ initial responses are coherent and dfieateqgic”: they respond to the difference
betweerp = %2 andp = 2/3 in the way anyone but a traditional game tisea/ould expect
(equilibrium, and only equilibrium, predicts no pesise); and they make undominated
guesses 85-95% of the time.

But their guesses don’t come close to equilibriangven to random deviations from
equilibrium (they are systematically biased abaygilérium; and more recent research
shows that this kind of bias persists even if eguilm is not the lowest possible guess).
The data do suggest that the deviations from dxjiim have a coherent but individually
heterogeneous structure: spikes are clearly vigitsted the noise) at Bfor targetp andk =
1,2,3,.... (The spikes are like the spectrograph gp#akt suggested the existence of discrete
chemical elements.)

Similar patterns of heterogeneous but structuredawuilibrium strategic behavior have been
found in initial responses to several other kinflgaommes.

The experimental evidence suggests that althougjests respect dominance for themselves
most of the time, they are much less likely to @hydominance for others.

Further, their reliance on iterated dominance sderstop at only 1-3 rounds.

Thus equilibrium is too strong to describe behawamid even rationalizability is too strong.
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People often assume that the spikes in Nagel'satatavidence of subjects doing a finite
number of rounds of iterated deletion of dominatdtegies.

But in the most recent and most comprehensive arpats on strategic thinking, Costa-
Gomes and Crawford (206ER) showed that many subjects are following decisidas
based on “levekthinking,” that one can explain a large fractidrsobjects’ deviations from
equilibrium using a levek-model, and no other model explains a significaanttfon.

(Iterated deletion of dominated strategies is mpasated from levat-thinking in Nagel's
design, but the two notions are strongly sepanatétbsta-Gomes and Crawford’s design.)

The reason for its empirical success may be that-lethinking yields a workable model of
others’ decisions while avoiding most of the cogeicomplexity of equilibrium analysis.

As Selten (199&ER) says:

Basic concepts in game theory are often circuléinensense that they are based on
definitions by implicit properties.... Boundedly...raial strategic reasoning seems to avoid
circular concepts. It directly results in a procediy which a problem solution is found.
Each step of the procedure is simple, even if nt@se distinctions by simple criteria may
have to be made.
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Levelk models allow behavior to be heterogeneous, bytdssume that each player follows
a rule drawn from a common distribution over aipatar hierarchy of decision rules types.

TypelLk anchors its beliefs in a nonstratefiztype and adjusts them via thought-experiments
with iterated best responséd: best responds 1), thus it has a perfect model of the game
but a naive model of othels2 best responds 1al, thus it has a perfect model of the game
and a less naive models of others; and so on.

In applications the type frequencies are treatdaehsvioral parameters, estimated or
translated from previous analyses. The estimat&dldlition is fairly stable across games,

with most weight o1, L2, andL3.

Even though few subjects follow the “anchoring typ8, its specification is crucial,
representind.1’s beliefs,L2's beliefs about.1's beliefs, and so on.

In applications|.0 is often taken to be uniform random over the taasilecisions.
In Nagel's games, a uniform random (over [0, 1Q@guesses 50 on average.

L1 therefore guesses BA.2 guesses 56, and so on, just as in the spikes in Nagel's data.
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Costa-Gomes and Crawford (208ER) elicited subjects’ initial responses to a seok$6
dominance-solvable two-person guessing gamesHhix&etin Survey questions 4ab and 5ab,
which are close relatives of Nagel's guessing games

In each game, two players make simultaneous gudsael player has a lower and upper
limit, both strictly positive. Each player also rmtarget, and his payoff increases with the
closeness of his guess to his target times the’stheaess.

The targets and limits vary independently acroagesls and games, with targets either both
less than one, both greater than one, or mixed 16lgames are dominance-solvable in 3-52
rounds, with unique equilibria determined by thgéds and limits.

For example, in gamglo3, playen’s limits and target are [300, 500] and 1.5 ang@igs
are [300, 900] and 1.3. The product of targetsx1153 > 1, so players’ equilibrium guesses
are determined by their upper limits equilibrium adjusted guess equals his uppett lahi
500, but’s is below his upper limit at 650 (in the figugriesses iR(k) are eliminated in
roundk of iterated dominance).

Playeri pi=15

Eq. Gues
\%
R() | R(2) |
I I |
300 450 500
Player j p/l=13 Eqg. Guess
I R(1) R | R \ R(1)

| | | |
300 390 585 650 900
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The large strategy spaces and independent variatiamgets and limits enhance separation of
types’ implications for decisions, so many subjeytses can be clearly identified from their
guesses &, by, g, andb; are players’ lower and upper limifs,andp; are their target€)1 andD2
are “iterated dominance” typds,is a type that makes its equilibrium guess, &rsa hypothetical
“sophisticated” type that can accurately predibeo$’ responses to the games.)

Gamg & b pla b | p|L1]L2] L3 | D1 D2 E S
1 1100|900 1.5]300|500 0.7]600]525] 630 | 600] 611.2p 750 | 630
2 1300 900 1.3]300 500 1.5]520]650] 650]617.5 650 | 650| 650
3 |300 900 1.3]300 900 1.3]780]900] 900 | 838.4 900 | 900| 900
4 ]300 900 0.7]100 900 1.3]350]546|318.94451.9423.15 300 | 420
5 ]100 500 1.5/100 500 0.7]450]|315|472.94337.5341.254 500 | 375
6 |100 500 0.7/100 900 0.5]|350|105|122.4122.5 122.5| 100 | 122
7 100 500 0.7/100 500 1.5]210]|315|220.94227.5 227.5| 350 | 262
8 1300 500 0.7]100 900 1.5|3501420|367.54 420 | 420 | 500 420
9 |300 500 1.5]300 900 1.3|5001500f 500 | 500| 500| 504 500
10 |300/500 0.7]100 900 0.5|3501300] 300| 300y 300| 304 30d
11 |100/500 1.5]100 900 0.5|500]225] 375 | 262.3 262.5] 150 | 300
12 |300 900 1.3]300 900 1.3]780[1900] 900 | 838.94 900 | 900] 900
13 |100/900 1.3]300 900 0.7]780]455]|709.84604.5 604.5] 390 | 695
14 1100/ 900 0.5]300 500 0.7]200J175] 150 | 200| 150| 150 162
15 |100 900 0.5]100 500 0.7]1501175] 100 | 150 100| 104 132
16 |100 900 0.5]100 500 1.5]150]250]112.4162.5131.2§ 100 | 187
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On average 90% of subjects’ guesses respectedesdopiinance, much more than random (whic
would be approximately 60%) and typical of initiaEponses in other experiments.

All but 12 subjects respected dominance in 13 aengames, suggesting that they understood tf
games and maximized self-interested payoffs, gogdrerent beliefs.

Of the 88 subjects, 43 made guesses that complaatly (within 0.5) with one type’s guesses in
7-16 of the games (401, 1212, 3L3, and 8Equilibrium): far more than could occur by chance,
given the strong separation of types’ guesseslantatt that guesses could take from 200 to 80C
different rounded values.

But 35 of those 43 subjects conformed closely pesyother thakquilibrium: 20 toL1, 12 tol2,
and 3 toL3.

Given the type definitions, those subjects’ dewiadi from equilibrium can be confidently ascribec
to non-equilibrium beliefs rather than altruismitspconfusion, or irrationality.

The other 45 subjects’ types are less apparent tihem guesses; but econometric estimates still
turn up onlyL1, L2, L3, andEquilibrium in significant numbers.

Thus there are no iterated dominance or sophisticaiibjects in this population. Subjects seem t
find levelk thinking quite natural, and iterated dominancakimg rather awkward.
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Nagel’'s and Costa-Gomes and Crawford’s analyses imspired by the famous passage Iin
chapter 12 of Keyne$seneral Theory, in which he likened professional investment

. . . to those newspaper competitions in whichcttrapetitors have to pick out the six
prettiest faces from a hundred photographs, tlee fireing awarded to the competitor
whose choice most nearly corresponds to the avenaferences of the competitors as a
whole; so that each competitor has to pick, noseéhfaces which he himself finds
prettiest, but those which he thinks likeliest &oh the fancy of the other competitors,
all of whom are looking at the problem from the sgooint of view. . . . It is not a case of
choosing those which, to the best of one’s judgiremet really the prettiest, nor even
those which average opinion genuinely thinks tledtgst. We have reached the third
degree where we devote our intelligences to amtirig what average opinion expects
the average opinion to be. And there are somdjduae who practice the fourth, fifth

and higher degrees.

Keynes’ wording here suggests finite iteration e$tresponses, initially anchored by players
true aesthetic preferences: a different, socialecdrtdependent specification bd.
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Another intriguing quotation comes from Benjamira@am (of Graham and DoddSscurity
Analysis), in The Intelligent Investor (thanks to Steven Scroggin for the reference):

...Imagine you are partners in a private busineds avihan named Mr. Market. Each
day, he comes to your office or home and offettsuy your interest in the company or
sell you his [the choice is yours]. The catch is, Market is an emotional wreck. At
times, he suffers from excessive highs and at stiseiicidal lows. When he is on one of
his manic highs, his offering price for the buseeshigh as well.... His outlook for the
company is wonderful, so he is only willing to sghu his stake in the company at a
premium. At other times, his mood goes south ahleasees is a dismal future for the
company. In fact... he is willing to sell you his paf the company for far less than it is
worth. All the while, the underlying value of thermapany may not have changed - just
Mr. Market’s mood.

Here, Graham is suggesting a best response to Bhkeé¥] which is a simplified model of
other investors. (Although in context, his mainlgoahe passage from which this quotation
comes is to keep you from becoming too emotionalplved with your own portfolio.)

Thus Mr. Market is Grahamis0 (random, though probably not uniform). So he goaa@ting
beingLl.... But he published this, so he may actually_Be..

And if you ever find yourself in a situation whegreu need to outguess him, maybe you
should be_3...but not higher: it can be just as bad to be tquhsticated as to be too
unsophisticated.
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Level-k analyses of strategic thinking
Levelk models are a simple, tractable alternative toldggum models of initial responses.

Lk for k > 0 is rational an@-level rationalizable: Its decisions coincide wettuilibrium
decisions in games that de@lominance solvable. F&r= 2, 3, or 4 at most, which is
empirically plausible, this means levetules yield equilibrium decisions in games as s&mp
as Pigs in a Box and (fér= 3 or 4) the 3x3 dominance-solvable game in Kaenple above.

Although levelk rules’ simplified models of others sometimes yifld same decisions as
equilibrium, so equilibrium predictions can be lthsa weaker, more plausible assumptions,
In other games levédtules deviate systematically from equilibrium.

As a result, a model in which people follow a dimition of Lk rules can often predict
people’s initial responses better than equilibrium.

A level-k model usually predicts a distribution of outcomas, this uncertainty is due to the
analyst’s inability to observe players’ types, toplayers’ uncertainty about each other; thus
the resemblance to mixed equilibrium is superficial

| now consider some examples that illustrate themg@l for using levek models to understand
behavior in games.

LO must often be adapted to the setting; but defihigdk > 0, by iterating best responses
“works” in most settings.
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Fiction as data? Outguessing iMhe Far Pavilions

In M. M. Kaye’s novelThe Far Pavilions, the main male character, Ash, is trying to escape
from his Pursuers along a North-South road; botle laasinglestrategically s multaneous
choice between North and South—that is, their a®are time-sequenced, but the Pursuers
must make their choice irrevocably before theyde&sh’s choice.

If the pursuers catch Ash, they gain 2 and he l@ses

But South is warm, and North is the Himalayas withter coming, so both Ash and the
Pursuers gain an extra 1 for choosing South, whetheot Ash is caught.

Pursuers
South (q) North
3 0
South (p)
-1 1
Ash 1 >
North 0 -

Far Pavilions Escape

Record your intuitions about what to do, as AsRuorsuers.
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Far Pavilion€Escape has a unique equilibrium in mixed strategieshich $ + 1(1 —p) = Op
+2(1—p) orp=1/4,and -4 +1(1 —qg) = 0g -2(1 —q) orq = ¥a.

As in Perturbed Matching Pennies, this equilibrigsmmtuitive for the Pursuers, but not for
Ash.

But Ash overcomes his intuition and goes North. Phesuers unimaginatively go South, so
Ash escapes...and the novel can continue...romanticddly 900 more pages.

In equilibrium Ash North, Pursuers South has prdigl§l — p)g = 9/16, not a bad fit; but try
a levelk model with uniform randorO:

Types Ash Pursuers
LO uniform randon uniform randor
L1 Soutt Soutt
L2 North Soutt
L3 North North
L4 Soutt North
L5 Soutlt Soutt

Lk types’ decisions in Far Pavilions Escape

Thus the levek model correctly predicts the outcome provided #slt isL2 or L3 and the
Pursuers arel or L2.
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How do we know which type Ash is? Here fiction pals data on cognition as well: Kaye
recounts Ash’s mentor’s (Koda Dad, played by Ontar in the miniseries) advice (p. 97:
“ride hard for the north, since they will be suiywill go southward where the climate is
kinder...").

If we take the mentor’s “where” to mean “becausikén Ash id_3:

Ash thinks the Pursuers dar@, and so that the Pursuers think Ashisso that the
Pursuers think Ash thinks the Pursuersldye

Thus Ash thinks the Pursuers expect him to go S@agbause it's “kinder” and the
Pursuers are no more likely to pursue him there).

So Ash goes North.

L3 is my record-higtk for a clearly explainedk type in fiction. (I offer you a $100 reward for
the first clearly explainetl4 or higher in fiction.)

Poe’sThe Purloined Letter (http://xroads.virginia.edu/%7EHYPER/POE/purloinmBithas
anotheiL3, but Conan Doyle doesn’t even haveldh

| suspect that even postmodern fiction may havkigloerLks, because they wouldn’t be
credible.
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Outguessing in games like Perturbed Matching Pennge

Camerer reports some (informally gathered) data fgame closely related to the Perturbed
Matching Pennies game from Survey Question 7abalseeRosenthal, Shachat and Walker,
|IJGT 2003).

L(33%) R(67%)
0 1
2 0

1 0
0
B(28%)|, .

Perturbed I\/Iatc_:hing Pennies

T(72%)

The equilibrium mixed-strategy probabilities ar¢Tr= Pr{B} = 0.5 for Row and Pr{L} =
0.33 and Pr{R} = 0.67 for Column.

An L1 Row plays T and ahl Column plays L and R with equal probabilities. BhRow
plays T and ah2 Column plays R. Ah.3 Row plays B and abh3 Column plays R.

With a mixture of 50%.1s, 30%L2s, and 20%.3s in both player roles, the levielnodel’'s

predicted choice frequencies are 80% T for Row2b% L for Column: not a perfect fit, but
reasonable.

Note that the distribution of heterogeneous tygesifies” the mixed equilibrium.
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Coordination in Market Entry/Battle of the Sexes ganes

In market entry experiments, a number of subjdat®se simultaneously between entering
(“In”) and staying out (“Out”) of a market with gin capacity. In yields a given positive profit
if N0 more subjects enter than capacity allows;abgtven negative profit if too many subjects
enter. Out yields O profit, no matter what othdsjeats do.

The natural equilibrium prediction is the symmemixed-strategy equilibrium, in which each
player enters with a given probability that makksdifferent between In and Out.

This mixed-strategy equilibrium makes the expect@ahber of entrants approximately equal
market capacity, but there is a probability that teany or too few will enter.

Even so, subjects in market-entry experiments bawer ex post coordination (number of
entrants closer to market capacity) than in themsgtric equilibrium.

This led Kahneman to remark, “...to a psychologtdhoks like magic.” (But actually, no one
would be at all surprised by this unless he betlamezquilibrium, so it would only really look
like magic to a game theorist.)

Camerer, Ho, and Chong’s (2004 QJE, Section lldu@3lysis shows that Kahneman’s magic

can be explained by a levieimodel. | now do a similar levé&lanalysis in a simple two-person
market-entry game with capacity one, which is Hadtle of the Sexes.
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In

Out

Market Entry (a> 1)

The unique symmetric equilibrium is in mixed stoaés, withp = Pr{In} = a/(1+a) for both
players.

The expected coordination rate {2 —p) = 2a/(1+a)2; and players’ payoffs ag(1+a) < 1,
worse for each than his worst pure-strategy equuiim.

In the levelk model, each player follows one of four types$, L2, L3, or L4, with each player

role filled by a draw from the same distributiormdsume for simplicity that the frequency of
LO is 0, and thaltO chooses its action randomly, with Pr{In}= Pr{Out}%.
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Higher types’ best responses are easily calculattedmentally simulat&0s’ random
decisions and best respond, choosing In; simila@g,choose Out,3s choose In, and4s
choose Out.

Types L1 L2 L3 L4
L1 In, In In, Out In, In In, Out
L2 Out, In| Out, Out Out, In Out, Out
L3 In, In In, Out In, In In, Out
L4 Out, In| Out, Out Out, In Out, Out

The predicted outcome distribution is determinedh®youtcomes of the possible type
pairings and the type frequencies. If both rolesféled from the same distribution of types,
players have equal ex ante payoffs, proportioniécexpected coordination rate.

L3 behaves likd 1, andL4 like L2. LumpingL1 andL3 together and letting denote their
total probability, and lumping2 andL4 together and letting (1¥ denote their total
probability, the expected coordination ratevw§l2-v). This is maximized at = %2 where it
takes the value Y2. Thus fenear Y2, which is plausible, the coordination ratelose to %x.
(For more extreme values the rate is worse, agttalling to 0 asr — 0 or 1.)

By contrast, the mixed-strategy equilibrium cooeadion rate, a/(1 +a)2, is maximized when
a =1, where it takes the value %2. &s~» o, the mixed-strategy equilibrium coordination rate
converges to O like &/ Even for moderate values &fthe levelk coordination rate is higher
than the equilibrium rate.
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The levelk model yields a very different view of coordinatittran the traditional equilibrium
model.

Equilibrium (and equilibrium selection principlakd risk- and payoff-dominance) play no
role at all in players’ strategic thinking.

Coordination, when it occurs, is an accidentalftfostatistically predictable) by-product of
non-equilibrium decision rules.

Finally, even though decisions are simultaneoustla@ct is no possibility of observation of

the other player’s decision or communication witim nthe predictable heterogeneity of
strategic thinking allows more sophisticated playsrch as2s to mentally simulate the
decisions of less sophisticated players sudtilasand accommodate them, just as Stackelberg
followers would, with coordination benefits for.all

This mental simulation doesn’t work perfectly, sol.2 doesn’'t do as well as if he were really
a Stackelberg follower: Abh2 models his partner as ad, but his partner is alnl only some
of the time.

Neither would it work if strategic thinking were tyaredictably heterogeneous: As the table
shows, if everyone were the same type they wouldyd miscoordinate.

But that it works at all, without communicationalvservation, is very surprising.
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Coordination in Battles of the Sexes with Non-Neual Framing of Decisions

Crawford, Gneezy, and Rottenstreich (2@ER) randomly paired large subject groups to
play games whose payoff structures (except fomansgtric game) were like Battle of the
Sexes, but in which there was a commonly observabiing of decisions andY, with X
more salient thalY. (Compare Schelling’s (1960) classic “meeting MQN experiments.)

Although the salience of thelabel makes it easy and obvious in principle fdsjsats to
coordinate on the “boti* equilibrium, the game still poses a nontrivialaségic problem
because botbis one player’s favorite way to coordinate but that other’s, and its
asymmetric relation to the game’s payoffs tempaygis to respond asymmetrically.

Just as in a society of men and women playing &aftthe Sexes in which (for cultural
reasons) Ballet is more salient than Fights or wompreferences are more salient than
men’s, there is a tension between the “label sediénf X and the “payoff-salience” of a
player’s favorite way to coordinate: payoff saliemeinforces label salience for one player
role (Column players or P2s on the next page) ppbses it for players for the other (P1s).

This tension has large and surprising consequdocesordination: Since Schelling’s
experiments with symmetric games, people have assuinat slight payoff asymmetries
would not interfere with coordination. But in thessults they have a very strong effect.

The table gives the observed choice frequencisfof both player roles, with subjects in
both roles pooled in the symmetric game but nobh@other games.
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P2(76%)

X Y
X 5,5 0,0
0 ] ]
P1(76%) v 0.0 55
Symmetric
P2(28%)
X Y
X |1 551] 0,0
0 ] ]
P1(78%) Y 0,0 5.1,5
Slight Asymmetry
P2(61%)
X Y
X 5,6 0,0
0 ] ]
P1(33%) v 0.0 6.5
Moderate Asymmetry
P2(60%)
X Y
X | 510 | 0,0
0 1) 1
P1(36%) Y 0,0 10,5

Large Asymmetry

X-Y games
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The first thing to note is that even tiny payofyimsnetries cause a large drop in the expected
coordination rate, from 64% in the symmetric gam88%, 46%, and 47% in the others.

But even more surprisingly, the pattern of miscamation completely reversed as the
asymmetricX-Y games progressed from small to large payoff diffees:

With slightly asymmetric payoffs, most subjectdoth roles favored their partners’
payoff-salient decisions.

But with moderate or large asymmetries, most stbj@dooth roles switched to favoring
their own payoff-salient decisions.

Unless we can understand the reasons for the egl/pegtern of miscoordination, we won't
really understand why payoff asymmetries causege ldrop in the coordination rate.
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| now sketch a levet-model, with arn_0 that responds to payoff- and label-salience in a
particular, realistic way, that gracefully explathe patterns in the data.

Assume thak0 responds to both label and payoff salience, btit a/i‘payoffs bias” that
favors payoff over label salience, other thingsatgin symmetric gamds0 chooses with
some probability greater than 2. In any asymmegioe, whether or not label-salience
opposes payoff-saliencke) chooses its payoff-salient decision with probapit> V.

AlthoughLO’s choice probabilities are the same for P1s arg] A2y implyL1 andL2 choice
probabilities that differ across player roles doudhie asymmetric relations between label and
payoff salience for P1s and P2s.

L1's andL2's choices for P1 and P2 are completely determbygal the extent oL.0’'s payoff
bias. A levelk model can track the reversal of the pattern of austination between the
slightly asymmetric game and the games with moderyatarge payoff asymmetries if (and
only if) 0.505 (= 5.10/[5.10+5]) p < 0.545 (= 6/[6+5]), sh0 has only a modest payoff bias.

Assuming thap falls into this range and that the population freaey ofL1is 0.7, close to
most previous estimates, the model’'s predictedcehfvequencies differ from the observed
frequencies by more than 10% only in the symmeaime (where the model somewhat
overstates the homogeneity of the subject pool).
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In the symmetric game, with no payoff saliend@ favors the salience &f. L1 P1s and P2s
therefore both choose andL2 P1s and P2s follow suit. (Thus in this case theahothkes
the same prediction as equilibrium selection bagesdalience as in a Schelling focal point.)

In the slightly asymmetric game, the payoff diffezes are small enough thdt P1s choose
X, P2s’ payoff-salient decision, becaldeP1s think it is sufficiently likely thatO P2s will
chooseX that choosing yields them higher expected payotf2 P2s, who best respondli@®
P1s, thus choos¢ as well. By contrast,1 P2s choos¥, P1s’ payoff-salient decision,
becausd.1 P2s think it is sufficiently likely thatO P1s will chooseY. L2 P1s thus chooséas
well. In sum,L1 P1s choosX andL2 P1s choos¥, while L1 P2s choos& andL2 P2s choose
X. Whenq = 0.7, the model predicts that 70% of P1s willaseX but only 30% of P2s will
chooseX, coming reasonably close to the observed freqasradi 78% and 28%.

Finally, in the games with moderate or large pagsifmmetried,.0’'s payoffs bias is just as
strong. But because the payoffs bias istooistrong p < 0.545), the payoff differences are
large enough thdtl P1s and P2s now both choose their own insteaceofartners’ payoff-
salient decisionsy for P1s and for P2s. Becaude?s best respond tols in the opposite
role,L2 P1s choosX andL2 P2s choos¥. In sum,L1 P1s choos& andL2 P1s choos,

while L1 P2s choosX andL2 P2s choos&. Whenq = 0.7, the model predicts that only 30%
of P1s will choos& but 70% of P2s will choosg, again close to the observed frequencies of
33-36% and 61-60%.
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Outguessing in Hide and Seek games with non-neutr&iaming of locations

In Rubinstein and Tversky’s experimental Hide arélSgames (see Crawford and Iriberri
(2007 AER), seekers (Survey question 8a) were told thevioflg story:

You and another student are playing the followiaghg: Your opponent has hidden a
prize in one of four boxes arranged in a row. Toeds are marked as follows: A, B, A,
A. Your goal is, of course, to find the prize. Hdizal is that you will not find it. You are
allowed to open only one box. Which box are youngdb open?

Hiders (Survey guestion 8b) were told an analogborsy .

Record your intuitions about how to play as Hides.Seeker.
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The ABAA framing of locations is non-neutral in tways:

TheB location is distinguished by its label.
The twoend A locations are inherently salient.
Together these two saliencies distinguwshtral A as “the least salient location.”

The framing (order and labeling) of the four looas is a tractable abstract model of a cultural
or geographic landscape like those that play ingpantoles in real Hide and Seek games.

With a payoff of 1 for winning, RTH's Hide and Segkme translates into:

Seeker
A B A A
1 0 1 0
A 0 1 0 1
B 0 1 1 0
Hider 1 0 0 1
A 0 0 1 0
1 1 0 1
0 0 0 1
A 1 1 1 0

Hide and Seek
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Like Matching Pennies, Hide and Seek has a unigiseed-strategy equilibrium, with equal
probabilities on all four locations for both plager

Equilibrium leaves no room for the non-neutral fragnto influence people’s choices.

But in Rubinstein and Tversky’s experimergatral A was most prevalent for Hiders (37%)
and even more prevalent for Seekers (46%); asudt fesekers can expect find a Treasure
32% of the time, more than the 25% with which thwwld find it in equilibrium.

This raises three puzzles, none of which are resldby equilibrium (or noisy generalizations
of equilibrium like “quantal response equilibrium”)

If seekers are as smart as hiders on average, aviiyrdders who are tempted to hide in
central A realize that seekers will be just as tempted o& there?

Why do hiders choose actions that allow seekefiadathem more than 25% of the time,
when they could hold it down to 25% via the equilim mixed action?

Why do seekers choosentral A even more than hiders?
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These puzzles can all be gracefully resolved l®valk model in whichLO is sensitive to the
framing of locations.

Assume that with given probabilities, each playde is filled by one of five levek-types:LO,
L1, L2, L3, orlL4.

Lk, k > 0, anchors its beliefs in a nonstratddgddypeand adjusts them via thought-
experiments involving iterated best responses.

LO (for hiders and seekers) reflects the simplest thgsis a player can make about his
opponent’s instinctive response: that he will cleoasalient location, simply because it is
salient. Assume thai0 plays A, B, A, A with probabilitiep/2, g, 1p—q, p/2, wherep > 1/2
andq > ¥. (A uniform randoni.0 would make_k coincide with equilibrium.) ThukO favors
focally labeled and/or end locations, to an equter for hiders and seekers. But the model
allows the data to decide which is more salienty EBhe end locations (the ends seem to be).

Hiders’ and seekers’ strategic responses to timifigaare confined tak, k > 0, which
ignores the framing except as it influent@s choice probabilities.
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Given thisspecification oL0, it's not hard to show that:

L1 Hiders chooseentral A to avoidLO Seekers ant1 Seekers avoidentral A in
searches fokO Hiders

L2 Hiders chooseentral A with probability between 0 and 1 abh#@ Seekers choose it
with probability 1

L3 Hiders avoiccentral A andL3 Seekers choose it with probability between 0 and 1
L4 Hiders and Seekers both avamhtral A
With a plausible distribution of types estimateohfir Rubinstein and Tversky’s data (0%,
19%L1, 32%L2, 24%L3, 25%L4), the levelk model explains their results, including the

prevalence o€entral A for hiders and its greater prevalence for seekers.

The asymmetry in hiders’ and seekers’ behavioowedl naturally from their role-asymmetric
responses th0, with no asymmetry in behavioral assumptions acrokes.
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Learning Models

Learning models describe how players adjust thetrsibns over time in response to
experience with analogous games. The learning psaseusually modeled as repetition of the
same “stage game” (usually with different playerugrs), so that the analogies are perfect.

The game is played either by a small group rand@®lgcted from one or more
populations—for example, random pairing to playwa-person game, with player roles filled
either from the same or from identifiable sepapatpulations—or sometimes by the entire
population at once as in Van Huyck, Cook, and Batta'Continental Divide” game.

Players’ decisions and roles in the game are digtsmed by commonly understood labels,
which are the “language” in which they code thepearience, and in which any convention
that emerges will be expressed.

Players view their decisions in the stage gamaasbjects of choice, and the dynamics of
their decisions are modeled directly (or indireatiyerms of their beliefs, with decisions
modeled as best replies) rather than determinethl®quilibrium in the stage game or the
repeated game that describes the entire learnotggs.

Learning is “adaptive” in that strategies adjusaidirection that would increase payoffs, other
things (including others’ adjustments) equal, gittes current state of the system.
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Pugilists, Dancers, or Birds of Different Feathers

To make these ideas more concrete, imagine a jemg@lation of men and women repeatedly
and anonymously paired (with gender publicly obabl® in each pair, so they can base their

strategies on gender if they so choose) to platieBat the Sexes.
Fights Ballet

1 0
2 0)
0 2
0 1

Battle of the Sexes

Fights

Ballet

Now draw a differential equation “phase diagramthvthe population frequency of men
playing Fightsm, on the horizontal axis and the frequency of wompleging Fightsw, on the
vertical axis. We will use this diagram to analyize dynamics of simple learning rules.

\\/
N
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For men the expected payoff of Fights is highentBallet whenevew > 1/3 (2v> 1 —w).
For women the payoff of Fights is higher whenawer 2/3 (m > 2(1 —m)). There are four
regions: (n> 2/3,w > 1/3), (n> 2/3,w< 1/3), (n< 2/3,w > 1/3), (n< 2/3,w < 1/3). For
plausible learning rules, whem@ 2/3,w > 1/3),m andw rise. Whenifn > 2/3,w < 1/3),m
falls andw rises. Whenr(i < 2/3,w > 1/3),mrises andv falls. And whenih < 2/3,w < 1/3),
m andw fall. When n> 2/3,w > 1/3),m— 1 andw — 1; and whenri < 2/3,w < 1/3),m—
0 andw — 0. When (h> 2/3,w < 1/3) or (n< 2/3,w > 1/3), if (with symmetry) the initial
condition is above the diagonal+ w > 1—the system entersi¢ 2/3,w > 1/3) andn— 1
andw — 1, if it's below the diagonal, the system entens<(2/3,w < 1/3) andn— 0 andw
— 0.

In this setting the limiting outcome must be oné¢haf two pure-strategy equilibria, in each of
which all people follow a convention based on thmmonly understood Fights versus Ballet
labeling of their decisions. Which one they willléov is determined by whether the

frequencies of initially arrogant men and wimpy wamsum to more than half the population.
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Now consider a large population repeatedly and ymaonisly paired to play the same kind of
game, with two pure-strategy equilibria, one fadoog one player and the other favored by
the other; but now with no observable labeling lalyprs or decisions.

Players in this game can still use the payoffssaryuish their strategies according to which
one would yield them the more favorable outcontbeir partner coordinated with it.

| follow the evolutionary game theory literaturedalling these strategies Hawk (choose the
strategy that would yield you the more favorablecome if your partner coordinates with it,
as Fights previously did for men and Ballet didviamen) and Dove (choose the decision
that would yield your partner the more favorablécome if he coordinates with it).

With this redescription, in terms of labels thétaet the symmetry of men’s and women'’s
strategic positions, we can represent the game synually like this:

Hawk Dove
0) 1
0) 2
2 0
1 0)
Hawk-Dove Game

Hawk

Dove
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There are two equivalent ways to analyze the lagrdynamics in this game.

The first is to recycle the phase diagram usechédyae Battle of the Sexes, but to impose the
added restriction that the frequency of playergipaHawk must be equal in both player
roles. This is just as if in Battle of the Sexes firquency of men playing Fights,in my
notation, must be equal to the frequency of wonlayipg Ballet, 1 —w.

Becausean =1 — wis equivalent tan + w = 1, this restriction limits the dynamics to the
diagonal running from northwest to southeast inpirevious two-dimensional phase diagram.

As the diagram suggests, the dynamics will now eoge to the intersection of lines in the
center, which represents the mixed-strategy equihf of the game at Pr{Hawk} = 2/3.

\\/
N
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Hawk Dove
0 1
0) 2
2 0
1 0
Hawk-Dove Game

Hawk

Dove

The second, less magical way to analyze the legqualynamics is to graph the expected
payoffs of Hawk and Dove (in either player roleqegt the population frequency of Hawk.
This “builds in” the restriction that the frequenafyplayers playing for their favorite
equilibrium must be the same in both roles, anaadlus to represent the dynamics in a one-
dimensional phase diagram, with expected payoffdaafk and Dove on the vertical axis and
population frequency of Hawk on the horizontal axis

When the frequency of Hawk is low, Hawk has higbayoff than Dove, and vice versa. Thus
the dynamics follow the arrows on the horizontas agonverging to the frequency of Hawk
where the payoff lines cross, which is 2/3, repnésg the mixed-strategy equilibrium.

A 4
A

63



Minimum- and Median-Effort Coordination Games

John Van Huyck, Ray Battalio, and Richard Beil Q2&R, 1991 QE, 1993GEB; “VHBB")
studied games that are like larger versions of Siagt (seven efforts), analyzed in Crawford
(1991 GEB, 1995Econometrica) andCrawford and Broseta (19%ER).

VHBB’s 1990 and 1991 experimental designs

Repeated play of symmetric coordination games pufations of subjects, interacting all at
once (“large groups”) or in pairs drawn randomlisa(fdom pairing”).

Subjects chose simultaneously among 7 efforts, patfoffs and ex post optimal choices
determined by own efforts and an order statidhie,gopulation median or minimum effort in
large groups or the current pair’'s minimum withdam pairing.

There were five leading treatments, varying theepsdatistic (minimum in 1990, median in
1991), the size of the subject population, andotitéerns in which they interact (minimum
games were played either by the entire populatidadl6 or by random pairs, median games
were played by the entire population of 9); eaghutation was large enough to make subjects
treat their own influences on the order statistimagligible.

Explicit communication was prohibited throughotie brder statistic was publicly announced
after each play (with random pairs told only painima), and the structure was publicly
announced at the start, so subjects were unceméyrabout others’ efforts.
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FavorrF TapLe I

Median value of X chosan
7 [ 5 4 3 2 1
Your 7 1.80 1.15 .90 0.55 0.10 ={},45 =110
¢choice & 1.25 1.20 1.05 0.80 0.45 0.00 -0.55
af 5 1,50 1.15 1.10 .95 0.70 0,35 =110
X 4 .85 1.00 1405 1.00 .85 0,60 0.25
3 .80 0.75 0,00 .85 0.50 075 ., 50
2 .05 0400 .65 .80 .85 (.80 0. 65
1 -0.450 — 05 0.30 0.55 0.70 0.75 .70
PavarF TARLE A
Srmallast Valoe of X Chosan
7 & 5 4 k! 2 1
Your T 1.0 1.10 .90 0.7 .50 00,30 (.10
Chaice G - 1L.20 .04 (.80 .60 {140 .20
af 5 - - 1.10 .90 3,74 {1.50 (.30
¥ 4 - - - 1.00 0. 80 {1.60 (.40
1 - - - - 0,90 .70 (.50
2 - - - - - (.50 .64
1 - - - - - - 0.7
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Other Player All Other Players

Not
Stag Rabbit All-Stag  All-Stag
2 1
Stag 5 0 Stag 2 o)
Rabbit |, °l, 1 Rabbit| 1 1
Two-Person Stag Hunt n-Person Stag Hunt

The random-pairing and large-group minimum gamedike larger versions of the two-effort
Stag Hunt games seen eatrlier.

The stage games all have seven strict, symmeareté:ranked equilibria, with players’ best
responses an order statistic of population efforts.

The games are like a meeting that can’t start argiven quorum is achieved—2100% in the
large-group minimum game, 50% in the large-grougiaregames.

Intuitively, efficient coordination is more diffi¢t) the larger the quorum or the larger the
group, but traditional equilibrium analysis andreg§inements don't fully reflect this.
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VHBB'’s 1990 and 1991 results

The five leading treatments all evoked similariatitesponses (table in Crawford 19GEB).

TABLE 1

Minimum treatment

A (%) B (%) A’ (%) Cq (%) Ci (%)

Subject’'s 7 33 (31 76 (84) 23 (25) 11 (37) 13 (42)

initial 6 10 (9 1 (1) 1) I (3) 0 (O

effort S 34 (32) 2 (2) 2 (2) 2 (N 6 (19)

4 18 (17) S (9 7 (8) 5 (1D 2 (6)

3 5 (9 1 () 7 (8) 3 (10) 1 (3)

2 5 ) 1 (1) 17 (19) I (3) I (3)

1 2 (2) 5 (5 34 (37) 7 (23) 8 (26)

Totals 107 (101) 91 (99) 91 (100) 30 (100) 31 (99)
Median treatment

I’, I'dm (%) O (%) b (%)

Subject’'s 7 8 (15) 14 (52) 2 (D)

initial 6 4 (7) 1 4 3(H1)

effort 5§ 15 (28) 9 (33) 9 (33)

4 19 (35) 3 (1Y 11 (41)

3 8 (15 0 (0 2 (7

2 ()] 0 (0) 0 (0)

| 0 0 (O 0 (0

Totals 54 (100) 27 (100) 27 (99)
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Subjects almost always converged to some equifiiprhwit the dynamics varied with the
treatment variables (order statistic, number oy@is, interaction pattern), with large
differences in drift, history-dependence, rate@ivergence, and equilibrium selection:

In 12 out of 12 large-group median trials, therewaar-perfect “lock-in” on the initial
median (even though it varied across runs and waally inefficient)

In 9 out of 9 large-group minimum trials, there wasy strong downward drift, with
subjects always approaching the least efficientliegum

In 2 out of 2 random-pairing minimum trials, thevas very slow convergence, no
discernible drift, and moderate inefficiency

Comparing the first two reveals an “order statistic“robustness” effect, with coordination
less efficient the smaller the groups that carugiisdesirable outcomes.

Comparing the last two reveals a “group size” gffecwhich coordination is less efficient in
larger groups (holding the order statistic constar@asured from the “bottom”).
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TARLE IIT

MEDIAN CHOICE FOR THE FiraT TeEw Prriong of ALL ExperiMents

Periad
Treatment 1 2 3 4 5 G T 8 9 10
(Famma
Exp, 1 4 4 4 4 4 4 4% 4 4* 4
Exp. 2 ] 5 5 5 5 5 & b 5 o
Exp. 3 5 5 5 5 A A & i 3 5F
rammadm
Exp. 4 4 4 4 4 E: 4* 4" 4+ 4* 4*
Exp. 5 4 4 4 4" 4% 4* 4% 4* 4 4
Exp. & 5 & 5 5 A & 5 a* 5* b
Omega
Exp. 7 7 7 7 7 ™ ™ ™ 7 T* T*
Exp. 8 5 3 5 5 a* - 5* o* 5* a*
Exp. 9 T ¥ [ ™ 7 7 Fi 7 T rh
Phi
Exp. 10 & 4 4 4 4% 4* 4* 4* 4* 4%
Exp. 11 o 3 5 &= &* A= oY 5* 5" &*
Exp. 12 b & 5 5 5" 5* 5 A* 5% 5%

Matgs. Exp = experionant. © = indidates a mubosl basl pedponge saileome
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TaBLE 2~ EXPERIMENTAL RESULTS FOR TREATMENT A, Comtinued
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TABLE 5==[NSTRIAUTION OF ACTIONS FOR TREATMENT
Banpos Patpamgs

Perind

21 ¥ 21 24 25

Experitnent &
Mo, aof 7's 3 5 4 140 8
Mo, af §'s 1] 1 E| { o
Ma. af 5% 2 5 3 3 4
Mo, af 4's 3 1 1 1 1
Mo, of Vs 1 1 1 i 1]
Na. of 2's 1 1 2 2 2
Mo, af 1's 4 1 2 ] I

Experiment 7
MNa, of 7's - h 5 5
Mo of 8% - L a 1
Wa. of 5's 0 1 0
MNa, of 4's - - 3 1 4
MNa. of 3's - - P L {
Ma, of 2's - - ] LI 1
Ma. of 1's - - 3 b 1

In case you are wondering what would happen wiédirather than random pairing, here are
the results. There is clear evidence of “strategmaching,” with 12 out of 14 pairs managing to
“teach” their way to the most efficient equilibriutdost subjects seemed to understand that
strategic teaching is pointless with random pairlv@cause it's costly but others reap the
benefits. But they used it effectively with fixedipng.
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TanLr 4 — ExprrpMENTAL REstmTs For TREATMENT £
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Except for the fixed-pairing results, VHBB’s resuftan be mostly understow a simple
evolutionarybasin of attraction story proposed in Crawford (L&EB, 1995Econometrica).

Other Player All Other Players

Not
Stag Rabbit All-Stag  All-Stag
2 1
Stag 5 0 Stag 2 0
Rabbit |, °l, 1 Rabbit| 1 1

Two-Person Stag Hunt n-Person Stag Hunt

Imagine that there are only two efforts as in $agt, not seven, and graph the expected
payoffs of high (Stag) and low (Rabbit) effort agsithe population frequency of high effort
in the random pairing and large-group minimum gaaresthe large-group median game.

A
A\ 4
A\ 4
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In the large-group median game, the all-Stag aRrRatbit equilibria are both locally stable.

By symmetry, random shocks are neutral, just a&ito flip the population from all-Stag to
all-Rabbit or vice versa.

With random initial conditions, the population wdude equally likely to converge to all-Stag
or all-Rabbit. If initial conditions favor one edjorium, its limiting probability is higher.

In the seven-effort version of the game that VHBERI&d, if learning always makes subjects
adjust their efforts toward the current value & thedian, then the population converges to
the median without changing it (a general propeftgrder statistics like the median).

Even with random shocks, the median is just a$ylitaego up as it is to go down.

Either way, the learning dynamics have no up orrdoend; and (given the dampening effect
of the median on shocks) the population is verghjiko “lock in” on the initial median, as in
VHBB'’s experiments.
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In the random-pairing minimum game, the all-Stad alfrRabbit equilibria are again both
locally stable.

Random shocks are again neutral; and with randdraliconditions, the population would be
equally likely to converge to all-Stag or all-Rabbi

Crawford (1995) shows that in the seven-effort imgref this game that VHBB studied, it's
actually optimal for a (risk-neutral) player to s&t effort equal to his forecast of the median
effort in the entire population.

Thus, just as in the large-group median game gaming dynamics have no up or down trend
and the population is likely to “lock in” on thetial median.

However, with random pairing a subject samples antgynall fraction of the population effort

distribution each period (his current partner'®dffs an estimate of the population median,
but a very noisy one), so convergence will be malolver, as it was in VHBB’s experiments.
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In the large-group minimum game, the all-Rabbitiopum is locally stable but the all-Stag
equilibrium is locally unstable. Starting from &tag, any shock, however small, will make
the population converge to all-Rabbit.

This makes the strong convergence to the equiibuith lowest effort VHBB observed in
the large-group minimum game plausible, but in daise the story is more complicated.

In the seven-effort large-group minimum game, @rfeng always makes subjects adjust their
efforts toward the current value of the minimungrtithe population converges to initial
minimum without changing it. However, in VHBB’s expments the initial minimum was
above one in five out of seven sessions, but iagérconverged quickly down to one.

Crawford (1995) shows that this happens becaugeiminimum game, random shocks
(which represent subjects’ inability to perfectiggict others’ adjustments) are not neutral as
they were in the median game: Instead they temabtice the minimum go down, to an extent
that can be approximately quantified. As intuitguggests, the downward trend is stronger,
the larger the group or the closer the order sia(iselow the median) is to the minimum.
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VHBB'’s 1993 design and results

VHBB'’s 1993 design was the same as their 1991 dewigh repeated play of one of the 1991
median games, but with the right to play auctioeacdh period to the highest 9 bidders in a
population of 18 (English clock auction, same ppe&l by all winning bidders).

The market-clearing price was publicly announceedrafach period’s auction, the median was
publicly announced after each period’s play, amdstinucture was publicly announced at the
start.

The stage game has a range of symmetric equilibrighich all bid the payoff of some
equilibrium of the median game and play that efuiim, unless others bid differently.

In 8 of 8 trials, subjects quickly bid the priceadevel that could only be recouped in the most
efficient equilibrium and then converged to thatiiégrium; the results give strong, precise
selection among a range of equilibria.

Auctioning the right to play had a strong efficigrenhancing effect via focusing subjects’
beliefs on more efficient ways to coordinate—a @&l potentially important mechanism by
which competition promotes efficiency. Crawford @mbseta (199&ER) show that this
effect can be understood as following from “ordatistic,” “optimistic subjects,” and
“forward induction” intuitions: Auctioning the righo play a 9-person median game in a
group of 18 effectively turns the game into a®f®rcentile” game, with an upward trend.
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Extensive-form Games (possibly not covered in clasand optional for exam)

To really understand VHBB’s 1993 results, we nexkinow more about how to analyze
games with sequences of decisions and counteriolegj®r “extensive-form” games).

A static or simultaneous-move game has one stage, at which players make simaliane
decisions, like those discussed so far.

A dynamic or extensive-form game has some sequential decisions.
E.g. Ultimatum Contracting with two feasible comtig X and Y:

R proposes X or Y to C, who must either accepoagject (r).

If C accepts, the proposed contract is enforced.

If C rejects, the outcome is a third alternative, Z

R prefers Y to X to Z, and C prefers X to Y to Z.

R’s payoffs: u(Y) =2, u(X) =1, u(Z2) =0; C's: v 2, v(Y) =1, v(Z) = 0.
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The game actually depends on whether C can ob&svaroposal before deciding whether to
accept: With observable proposal it's dynamic; watiobservable proposal it’s static.

We can represent either game byekiensive form or game tree, which shows its sequence of
decisions, outcomes, and payoffs

The order of thelecision nodes must respect the timing of moves.

Each node belongs to anformation set (represented by circles), the nodes the player &hos
decision it is cannot distinguish (and at whichningst therefore make the same decision).

All such nodes must belong to same player and bane feasible decisions.

(A game ofperfect information is one in which a player making a decision caragbwbserve
all previous decisions, so every information seitams one decision node, as in Ultimatum
Contracting with Observable Proposal.)

For dynamic games it is important to distingusstategies from decisions or actions. A
strategy is a complete contingent plan that specifies asd@ctfor each of a player’s decision
nodes and information sets (like a chess textboatka move).

In a static game a strategy reduces diecasion or action. (These definitions apply equally
well to mixed or pure strategies. Specifying a strategy profile—onegfach player—must
determine an outcome (or probability distributiai@ooutcomes).)
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A player’s strategy (or decision) must be feasibteependent of others’ strategies.

Playersmust be thought of as choosing strategmsultaneoudy (without observing others’
strategies) at the start of play. Rational, perferdsight implies that simultaneous choice of
strategies yields the same outcome as decisionAgaki‘real time” (this is a testable
prediction, which can fail, and does for some peaiple).

We need complete contingent plans (even for nadesd out by prior decisions) to evaluate
consequences of alternative strategies, to form#te idea that the predicted strategy choice
is optimal. (O-probability events aemdogenously determined by decisions, and so cdenot
ignored here as they are in individual decisions.)

With the concept of strategy, we can also repres@ame, static or dynamic, by the
relationship between its strategy profiles and ffayaormal form, payoff function, or (if 2
people)payoff matrix.

a r a, a a, I a r,r
> 0 2 21 o] o

Xl1 0 Xl1 1 lo o
1 0 i ol 1| 0

Yo 0 Yoo lo |2 o

Ultimatum Contracting with
Unobservable Proposal

Ultimatum Contracting with
Observable Proposal
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0

0

Y

2

1

0

0

X

Y

Ultimatum Contracting with
Observable Proposal

Ultimatum Contracting with
Unobservable Proposal

In Ultimatum Contracting, whether or not C can alseeR’s proposal, R has two pure
strategies, “(propose) X” and “Y.”

If C cannot observe R’s proposal, C has two pusdesjies, “a(ccept)” and “r(eject)”.

If C can observe R’s proposal, C has four purdesgras, “a (if X proposed), a (if Y
proposed)”, “a, r’, “r, a”, and “r, r”.

C’s additional information in Ultimatum Contractimgth Observable Proposal “shows up”
only in the form of extra strategies for C. Butstiban affect the outcome.
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Ultimatum Contracting with
Unobservable Proposal

Ultimatum Contracting with
Observable Proposal

Suppose the payoffs are as above (R’s: u(Y) =2) a(1, u(Z) =0; C's: v(X) = 2, v(Y) =1,
V(Z) = 0). Then C prefers either X or Y to Z, saMll accept either X or Y whether or not C
can observe R’s proposal. R will then propose ¥ favorite contract, and C will accept.

Now suppose C’s payoffs are changed to: v(X) =(¥) « 0, v(Z) = 1, so that C now prefers
Xto Z, but not Y to Z (R’s payoffs are unchanged).

If C can observe R’s proposal, C will accept X bat Y. R will then propose X, which he
prefers to Z, and C will accept.

But if C cannot observe R’s proposal, C must acoepgject what R proposes without regard
to what it is. If C accepted, R would propose Y jahhs worse for C than Z, so C will reject
whatever R proposes.
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Key theoretical notions in extensive-form games:

Subgame-perfectness or perfection requires that players’ decisions are in equiliforinot just
in the entire game but in every subgame. Like “dyigcaconsistency” of the solution concept.

E.g. in Ultimatum Contracting with Observable Preglothe sensible “backward induction”
outcome (Y, a, a) is a subgame-perfect equilibrium,

But there are other, not so sensible equilibrie (X; a, r) or (Y; r, a), that are not subgame-
perfect. E.g. (X; a, r) is not in equilibrium inetlsubgame following a proposal of X because if
Row proposed Y, Column would want to accept it.

X

Y

Ultimatum Contracting with
Observable Proposal

Subgame-perfect equilibrium is closely related¢oated weak dominance in the normal
form.
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Forward induction requires that players draw certain inferences fpoavious decisions.

Suppose that before playing Battles of the Sekestan (but not the woman) has an outside
option (poker with the boys?) that would yield anpayoff of 1.5: He can choose the outside
option or he can choose to play the Battle of theeS game with the woman.
Fights Ballet

1 0
2 0

0 2
0 1
Battle of the Sexes

Fights

Ballet

If the man chooses to play the Battle of the Sgaese, the woman should infer that he is
expecting to get a payoff at least as high asahé,choose Fights. (This argument is related to
iterated strict dominance in the normal form. Itukbbe a dominated strategy for the man to
give up his outside option and then not choosetEijh

The subgame-perfect equilibrium in which the maasdeot exercise his option and then
chooses Fights, while the woman chooses Fightsfisatforward induction. In this
equilibrium, the outside option coordinates exp@atg even though it is not exercised.

There is another subgame-perfect equilibrium inclwithe man exercises his option and the
woman would choose Ballet if the man chose to ftayBattle of the Sexes game. This one
does not satisfy forward induction.

89



Experiments with Extensive-form Games

Beard and Beil (1991anagement Science) study Rosenthal’s (198Iburnal of Economic
Theory) game. The game tree gives player A the righitooat (L) with payoffs x for A and y
for B; or to give player B the move (R) with twoaibtes, | with payoffs O for A, O for B; or r
with payoffs z for A and w for B; z>xand w >y % or < w):

L r

L y y
X X

R

0 Z

The unique subgame-perfect equilibrium is (R,r)i@mhuniquely survives iterated weak
dominance), but A players who think B is not certai play r are tempted by L; thus the game
IS a simple test for reliance on other’s dominance.

Intuitively, A players should be more willing togyl R when:

(H1) x is lower (R is less risky)

(H2) w — v is higher (B has more incentive to cheoos or

(H3) y is lower (B is less likely to resent A’'s ¢be of R and choose |), or w and v are higher

(B is more likely to reciprocate A’s choice of R tiyoosing r)
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L y y
X X

R

0 Z

Subgame-perfect equilibrium doesn’t imply any (HEB), because the unique subgame-
perfect equilibrium is always (R, r) provided otihat z > x and w > v (y > or < w).

Beard and Beil used a series of treatments tdkd9t(H3), holding the critical probability
that B chooses r that makes A indifferent betweemdl R constant near one in most
treatments (higher than the frequency with whidhjestts respect dominance, thus making A
subjects not rely on dominance)

Treatments
PlayerA ChooseRR
Treatment PlayerA playsL PlayerB playsl (critical probability) PlayerB playsr
1 (9.75, 3.00) (3.00, 4.75) (96.4%) (10.00, 5.00)
2 (9.00, 3.00) (3.00, 4.75) (85.7%) (10.00, 5.00)
3 (7.00, 3.00) (3.00, 4.75) (57.1%) (10.00, %.00
4 (9.75, 3.00) (3.00, 3.00) (96.4%) (10.00, %.00
5 (9.75, 6.00) (3.00, 4.75) (96.4%) (10.00, %.00
6 (9.75, 5.00) (5.00, 9.75) (95.00%) (10.00,00p.
7 (58.50, 18.00) (18.00, 28.50) (96.4%) (60.0008p
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Treatments

PlayerA ChoosefR

Treatment PlayerA playsL PlayerB playsl (critical probability) PlayerB playsr
1 (9.75, 3.00) (3.00, 4.75) (96.4%) (10.00, %.00
2 (9.00, 3.00) (3.00, 4.75) (85.7%) (10.00, %.00
3 (7.00, 3.00) (3.00, 4.75) (57.1%) (10.00, %.00
4 (9.75, 3.00) (3.00, 3.00) (96.4%) (10.00, %.00
5 (9.75, 6.00) (3.00, 4.75) (96.4%) (10.00, %.00
6 (9.75, 5.00) (5.00, 9.75) (95.00%) (10.00,000.
7 (58.50, 18.00) (18.00, 28.50) (96.4%) (60.@006)

Test (H1) A players should be more willing to pRyvhen x is lower (R is less risky) by
comparing Treatments 1, 2, and 3 (x = $9.75, x 8&X = $7.00)

Test (H2) A players should be more willing to pRwhen w — v is higher (B has more

incentive to choose r) by comparing Treatmentsdl4($0.25, $2.00)

Test (H3) A players should be more willing to pRwhen y is lower (B is less likely to

resent A’s choice of R and choose ), or w andeviagher (B is more likely to reciprocate A’s

choice of R by choosing r) by comparing Treatmdrasid 5 (B's payoff from A’s secure

choice L goes from $3 to $6)
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Results

A choseR
Treatmer | # of pairt | A choseL | B chosel | B choser | % secure by |
1 35 23 2 10 65.7%
2 31 20 0 11 64.5%
3 25 5 0 20 20.0%
4 32 15 0 17 46.9%
5 21 18 0 3 85.7%
6 26 8 0 18 30.7%
7 30 20 0 10 66.7%

97.8% of B subjects made choices that their maxathimvn money earnings, suggesting that
almost all were self-interested and rational.

Despite the predictability of most subjects’ demnsi, A subjects opted out in surprisingly
large numbers.

(H1)-(H3) were all correct: The rate of opting @atied across treatments in a coherent
manner, suggesting that payoffs had a signifiagantitive effect on subjects’ willingnesses to
rely on the self-interested behavior of others.

Experience as a B player was associated with signitly greater willingness to rely on the
other’'s maximization in the role of an A player.
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