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Economics 142: Behavioral Game Theory                                        Winter 2008 
Vincent Crawford 
 
Many strategic situations in business, international relations, politics, or war are well 
approximated by games. A game is a multi-person decision situation, defined by its structure: 
the players, its “rules” (the order of players’ decisions, their feasible decisions at each point, 
and the information they have when making them); how players’ decisions determine the 
outcome; and players’ preferences over outcomes. 
 
Behavioral game theory is a blend of traditional game theory and empirical knowledge whose 
goal is the understanding of strategic behavior needed for applications. 
 
Such understanding includes topics from behavioral decision theory plus two topics that are 
specific to multi-person settings: (1) preference interdependence (such as altruism, envy, spite, 
or reciprocity); and (2) players’ models of other players. 
 
Here I narrow the focus to (2), assuming that behavior is (mostly) rational in the decision-
theoretic sense and self-interested. I further subdivide (2) into: (2a) how players model others’ 
decisions in initial responses to games with no clear precedents; and (2b) how players learn to 
predict others’ decisions in repeated play of analogous games. 
 
We’ll start with a Game Survey designed to highlight some of the issues studied in behavioral 
game theory. The results will be anonymously tabulated and used as empirical support for some 
of the ideas developed below. 
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As just noted, analyses of behavior in games must confront all the issues that arise with 
individual decisions, plus one that is unique to games: 
 

Because the outcome is influenced by others’ decisions as well as your own, to do well in 
a game you need to predict others’ decisions, taking their incentives into account. This 
may require a mental model of other players (including a model of their models of you!). 

 
Game theory has a standard model of how people decide what to do in games, which rests on 
the assumption that people can perfectly predict others’ decisions: 
 

Nash equilibrium (often shortened to equilibrium) in which each player chooses a decision 
that is best for himself, given correct expectations about others’ decisions 

 
Equilibrium makes clear predictions of game outcomes, which are often accurate when players 
have learned to predict others’ decisions from experience with analogous games (for example, 
Walker and Wooders, “Minimax Play at Wimbledon,” 2001 AER). 
 
But in novel situations there may be no analogous games, and equilibrium must then come 
from sophisticated strategic thinking rather than learning from direct experience. 
 
This makes equilibrium a less plausible assumption, and equilibrium predictions are often 
much less reliable for initial responses to games than when learning is possible. 
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In these notes I will briefly discuss the strategic issues addressed by game theory and how the 
standard theory addresses them, using equilibrium and related notions. 
 
I then outline a behavioral game theory synthesis of models of thinking and learning.  
 
I then compare equilibrium predictions in some simple situations with history, experimental 
data, or intuitions regarding initial responses to games, highlighting situations where there are 
systematic deviations from equilibrium predictions. 
 
I then describe a structural but non-equilibrium model of initial responses to games that has 
emerged from recent experimental work, based on something called “level-k” thinking, and 
compare its predictions with intuition and experimental data.  
 
In simple games a level-k model’s predictions tend to coincide with equilibrium, so 
equilibrium predictions rest on a broader and more plausible set of behavioral assumptions, 
and are correspondingly more reliable. 
 
In more complex games a level-k model’s predictions can deviate systematically from 
equilibrium, but in predictable ways. These deviations often bring the model’s predictions 
closer to evidence and intuition, resolving puzzles left open by equilibrium analysis. 
 
I conclude with a brief introduction to learning in games. 
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Ideas and Issues 
Something is mutual knowledge if all players know it; and common knowledge if all know it, all 
know that all know it, and so on. I focus on players’ problem of predicting others’ decisions by 
assuming that they have common knowledge of the structure of the game. This allows game 
outcomes to be uncertain if their distributions are common knowledge. The theory does not 
require common knowledge of the structure, but is easier to explain with it. 
 

Rationality and dominance 
 L R   Confess Don’t 

T 2 
2 

1 
2 

 Confess -5 
-5 

-10 
-1 

B 2 
1 

1 
1 

 Don’t  -1 
-10 

-2 
-2 

 Crusoe vs Crusoe   Prisoner’s Dilemma 
 
Crusoe vs. Crusoe is just two decision problems “traveling together,” not really a game; each 
player has a best decision independent of the other’s (a dominant decision or strategy; the 
dominant decision dominates (strictly, in this case) the other decision). 
 
In Prisoner’s Dilemma, players’ decisions affect each other’s payoffs but each player still has 
a dominant decision. The game is interesting because individually optimal decisions yield a 
Pareto-inefficient outcome, highlighting an important distinction between individual and 
group rationality when there are payoff interactions, even when there are no interactions 
between players’ choices. 
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Iterated knowledge of rationality and iterated dominance 
 

 Push Wait 
 

Push 
1 

5 
5 

3 
 

Wait  
-1 

9 
0 

0 
 Pigs in a Box 

 
In Pigs in a Box, think of Row (R) as a big pig and Column (C) as a little pig. (The box is a 
Skinner box, named for the famous behavioral psychologist B.F. Skinner.) 
 
Pushing a lever at one end yields 10 units of grain at the other. Pushing “costs” either pig the 
equivalent of 2 units of grain. (That is, a pig’s utility is his grain consumption, minus 2 if he 
pushed the lever and minus 0 otherwise.) 
 
If R pushes while C waits, C can eat 5 units before R runs down and shoves C aside. 
 
If C pushes while R waits, C cannot shove R aside, so R gets all but one unit of grain. 
 
If both push and then arrive at the grain together, C gets 3 units and R gets 7. If both wait, both 
get 0 units of grain. 
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 Push Wait 

 
Push 

1 
5 

5 
3 

 
Wait  

-1 
9 

0 
0 

 Pigs in a Box 
 
In experiments with real pigs playing the game over and over, if a stable behavior pattern 
emerges it tends to be at (R Push, C Wait), the equilibrium outcome. 
 
Like some things in game theory, this is surprising, because C gets a better outcome even 
though R can do anything C can do, and more. 
 
It happens here because C’s weakness means that it gets no reward from Push, so Wait 
dominates Push for C. But when C plays Wait, R does have an incentive to Push.   
 
If the pigs were rational and had studied game theory, they wouldn’t have to wait for a stable 
pattern to emerge: C could figure out that it should Wait no matter what R does; and R could 
figure out that a rational C will Wait and that R himself should therefore Push. 
 
As this example suggests, strategic thinking tends to yield the same outcome as learning in the 
long run. (How does learning work in this example?) 
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Iterated or common knowledge of rationality and rationalizability 
 

 L C R 

T 0  
7 

5 
0 

3 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

3  
7 

 Dominance-solvable game 
 
Now consider Game Survey question 1ab. Iterated (strict) dominance yields a unique 
prediction (which is why the game is called dominance-solvable): 

R is strictly dominated by C for Column. 
When R is eliminated then B is strictly dominated by M for Row. 
When R and B are eliminated then L is strictly dominated by C for Column. 
When R, B, and L are eliminated then T is strictly dominated by M for Row. 

So (M, C) is the only outcome that survives iterated elimination of strictly dominated 
strategies. A game with a unique outcome that does this is called dominance-solvable. The set 
of strategies that survive iterated strict dominance is independent of the order in which 
dominance is performed. (However, the set of strategies that survive iterated weak dominance 
is not independent of the order; and some other results and methods don’t work for iterated 
weak dominance. In these notes I will focus on strict dominance.)  
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To see more clearly how outcomes relate to behavioral assumptions, assume that players are 
rational in the sense that they maximize their expected payoffs given beliefs about other 
players’ strategies that are not logically inconsistent with anything they know.  
 
Define a rationalizable strategy as one that survives iterated elimination of strategies that are 
never weak best responses in that there are no beliefs that make them one of the player’s best 
responses.  

 Push Wait 
 

Push 
1 

5 
5 

3 
 

Wait  
-1 

9 
0 

0 
 Pigs in a Box 

 
In Pigs in a Box, for example, Push is a best response for R (strict and so also weak) to any 
beliefs that assign high enough probability to C playing Wait. 
 
But Push is never even a weak best response for C because no beliefs about R’s strategy can 
make it yield as high an expected payoff as Wait. However once Push is eliminated for C, 
Wait is never a weak best response for R. 

Thus the only rationalizable strategies in Pigs in a Box are Push for R and Wait for C. (R 
Push, C Wait) is also, not coincidentally (why?), the game’s unique equilibrium.  



 9 

More generally, in a two-person game a player’s strategies that are never weak best responses 
are the same as those that are strictly dominated for that player. Thus the strategies that 
survive iterated elimination of never weak best responses are the same as those that survive 
iterated elimination of strictly dominated strategies. (However, in three- or more-person games 
the two ideas are not quite the same. In these notes I will focus on two-person games and use 
the simpler notion of iterated dominance.) 

In the dominance-solvable game from Survey question 1ab: 
R is strictly dominated by C for Column. 
When R is eliminated then B is strictly dominated by M for Row. 
When R and B are eliminated then L is strictly dominated by C for Column. 
When R, B, and L are eliminated then T is strictly dominated by M for Row. 

 
Thus the only rationalizable strategies are those that survive iterated elimination of strictly 
dominated strategies: M for Row and C for Column. (M, C) is also the game’s unique 
equilibrium. 

 L C R 

T 0  
7 

5 
0 

3 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

3  
7 

 Dominance-solvable game 
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Theorem: If players’ rationality is common knowledge, each player must choose a 
rationalizable strategy. Conversely, any profile of rationalizable strategies is consistent with 
common knowledge of rationality.  
 
Proof: Consider the first part in the dominance-solvable game. R is strictly dominated by C 
for Column, so a rational Column will never choose R. When R is eliminated then B is strictly 
dominated by M for Row, so a rational Row who knows that Column is rational will never 
choose B. When R and B are eliminated then L is strictly dominated by C for Column, so a 
rational Column who knows that Row knows that Column is rational will never choose L. 
When R, B, and L are eliminated then T is strictly dominated by M for Row, so a rational Row 
who knows that Column knows that Row knows that Column is rational will never choose T. 
(Thus the number of levels of iterated knowledge of rationality needed is just the number of 
rounds of iterated dominance, here four; you need common knowledge only for indefinitely 
“large” games.) 
 

 L C R 

T 0  
7 

5 
0 

3 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

3  
7 

 Dominance-solvable game 
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The second part of the proof follows by building a “tower” of beliefs in the game from Survey 
question 2ab, in which there is no strict dominance so any strategy for either player is 
rationalizable, to support any rationalizable outcome. Assume common knowledge of 
rationality and consider (T, L) for example: 
 

Row will play T if he thinks it sufficiently likely that Column will play L. 
Row will think it sufficiently likely that Column will play L if Row thinks Column thinks 
it likely that Row will play B. 
Row will think it sufficiently likely that Column thinks it likely that Row will play B if 
Row thinks Column thinks Row thinks it likely that Column will play R. 
And so on.   
 

 L C R 

T 0  
7 

5 
0 

7 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

0  
7 

 Unique Equilibrium without Dominance 
 

It is easy to check that such a tower can be built for any outcome in this game, which 
corresponds to the fact that all outcomes survive iterated elimination of strategies that are 
never weak best responses or, equivalently, strictly dominated strategies. 
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Rationality, the same beliefs, and Nash equilibrium 
 
The game from Survey question 2ab is typical of economically interesting games in that not 
only is the game not dominance-solvable, rationalizability implies few (here, no) restrictions 
on behavior. In such games useful predictions depend on more than rationality or even 
common knowledge of rationality. 
 

 L C R 

T 0  
7 

5 
0 

7 
0 

M 0 
5 

2 
2 

0 
5 

B 7 
0 

5 
0 

0  
7 

 Unique Equilibrium without Dominance 
 
Note that most of the towers used in the second part of the proof have players believing 
inconsistent things. For example, in the tower for (T, L) Row plays T because he thinks 
Column will probably play L, but a rational Column would not play L if he expected Row to 
play T. The only outcome whose tower has both players believing consistent things is (M, C): 
A rational Row will play M if he thinks Column will probably play C, a rational Column will 
play C if he thinks Row will probably play M, and so on. 
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Traditional game theory gets specific predictions in such games by adding an ingredient: the 
assumption that players have the same beliefs about how the game will be played. 
 
This leads to the idea of Nash equilibrium or equilibrium, defined as a combination of 
strategies such that each player’s strategy is best for him, given the other’s strategy. 
 
If rational players expect a given equilibrium, then their best responses are to play their 
equilibrium strategies. In the game from question 2ab the unique equilibrium is (M, C), 
supported by beliefs in which Row expects Column to play C and therefore plays M, Column 
expects Row to play M and therefore plays C, and so on, at all levels.  
 
Theorem: If players are rational and have the same beliefs about how the game will be 
played, then their beliefs and (if they are unrandomized, or pure) their strategies must be in 
Nash equilibrium.  
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Theorem: If players are rational and have the same beliefs about how the game will be played, 
then their beliefs and (if they are pure) their strategies must be in Nash equilibrium. 
 
This theorem leads to the question: Why should players—even rational players—have the same 
beliefs about how a game will be played? 
 
Traditional game theory offers two complementary answers: 
 

Thinking: If players have perfect models of each other’s decisions, strategic thinking can 
lead them to have the same beliefs, and so play an equilibrium, even in their initial 
responses to a game. 
 
Learning: If players don’t have perfect models but repeatedly play analogous games, direct 
experience can eventually allow them to predict others’ decisions, and so play an 
equilibrium in the limit. 

 
Behavioral game theory qualifies these answers by questioning whether people have perfect 
models of others’ decisions and studying the models of others that appear to determine their 
decisions empirically—mostly experimentally. 
 
Behavioral game theory also studies the interaction between peoples’ models of others, how 
people learn from experience with analogous games, and how their initial responses and learning 
interact to determine the dynamics and limiting outcome of their strategy choices.     
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Mixed-strategy equilibrium and equilibrium in belie fs  
 
In Matching Pennies, two players, Row and Column, choose simultaneously between two 
actions, Heads and Tails; Column wins if they match and Row wins if they mismatch. 
 
Assume players choose their actions to win, which yields a payoff of 1, while losing yields 
-1. Further assume that these payoffs are von Neumann-Morgenstern utilities, so that we can 
describe players’ choices under uncertainty as maximizing their expected payoffs. 
 

 Heads Tails 

Heads -1 
1 

1 
-1 

Tails 1 
-1 

-1 
1 

 Matching Pennies 
 
Any strategy in Matching Pennies is rationalizable, so we need more than rationality. 
 
But if players choose only between the pure (unrandomized) strategies Heads and Tails, 
Matching Pennies has no equilibrium; any strategy combination is not best for one player.  
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But in Matching Pennies it is important to be unpredictable, so it is natural to interpret 
“choice” to include mixed (randomized) strategies as well as pure strategies. Think of 
choosing a mixed strategy as choosing the probabilities p and q of Heads and Tails. 

 Heads (q) Tails 

Heads (p) -1 
1 

1 
-1 

Tails 1 
-1 

-1 
1 

 Matching Pennies 
 
With mixed strategies Matching Pennies has an equilibrium, in which each player plays each 
pure strategy with probability ½. 
 
If players choose their strategies with probabilities p = q = ½ and a player correctly anticipates 
the other’s probability, then Heads and Tails yield him the same expected payoff: –1p +1(1–p) 
= 1p – 1(1–p) and 1q –1(1–q) = –1q +1(1–q). (p makes Column indifferent between Heads and 
Tails, and q makes Row indifferent.)   
 
No strategy (pure or mixed) has higher expected payoff, and p or q = ½ are among players’ 
best choices; so these mixed strategies are in equilibrium.   
 
p = q = 1/2 is the only equilibrium in Matching Pennies: If a player could predict a choice 
probability different than 1/2 for the other player, then one of his pure strategies would yield a 
higher expected payoff; but Matching Pennies has no equilibrium in pure actions. 
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The equilibrium in Matching Pennies is best thought of as an equilibrium in beliefs, in which 
each player’s mixed strategy represents the other player’s beliefs about the first player’s 
realized pure strategy (that is, how the coin lands). 
 
Equilibrium in beliefs is a kind of “rational expectations” equilibrium, in which players form 
correct expectations about each other’s realized pure strategy (not about a market aggregate, as 
in the notion of rational expectations used in macroeconomics). 
 
The player himself need not be uncertain about his realized pure strategy: It could be 
nonrandom, for example based on private discussions with subordinates. His realized pure 
strategy only needs to be unpredictable to the other player.   
 
Further, players’ realized pure strategies need not be in equilibrium—even if players’ mixed 
strategies are in equilibrium, they could both end up playing Heads. Only players’ beliefs must 
be in equilibrium, as implied by the last theorem: 
 
Theorem: If players are rational and have the same beliefs about how the game will be 
played, then their beliefs and (if they are pure) their strategies must be in Nash equilibrium.  
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Now consider the Perturbed Matching Pennies game from Survey Question 7ab.  
 

 Heads (q) Tails 

Heads (p) -2 
2 

1 
-1 

Tails 1 
-1 

-1 
1 

 Perturbed Matching Pennies 
 
Compare Perturbed Matching Pennies with Matching Pennies and record your intuitions about 
how to play (pure or mixed strategy, as you prefer) as Row or Column.  
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Once again there’s a unique equilibrium, in mixed strategies. The equilibrium p and q solve: 
 

–2p +1(1–p) = 1p – 1(1–p), which yields p = 2/5 and 
2q –1(1–q) = –1q +1(1–q)), which yields q = 2/5. 

 
The relationship between these mixed-strategy probabilities and those for the original, 
symmetric version of Matching Pennies probably matches your intuition (at least qualitatively) 
for Column because its better-on-average action, Tails, has probability 3/5 > ½. But the 
relationship probably goes against your intuition for Row because its better-on-average action, 
Heads, has probability 2/5 < ½. 
 
(“Intuition” here comes from decision theory, where increasing the possible reward to a 
decision would never make a rational person choose it less often.)  
    
The equilibrium must be counterintuitive because if Row tried to exploit the high payoff of 
Heads too much, and this was predictable, Column could neutralize it by setting q = 0). With 
the predictability that equilibrium assumes, Row can exploit the high payoff of Heads only by 
setting p < ½. The equilibrium p of 2/5 yields Row payoff 1/5, greater than its equilibrium 
payoff of 0 in Matching Pennies. 
 
This principle is general (see Crawford and Smallwood, Theory and Decision 1984) but it  
seems too subtle to be identified in bridge or poker textbooks or in other informal writing on 
strategy (it is mentioned in von Neumann and Morgenstern’s Theory of Games and Economic 
Behavior). 



 20

More issues and ideas: Coordination and multiple equilibria 
 
So far I have focused on games with unique rationalizable outcomes or at least unique equilibria. 
Yet many economically interesting games have multiple equilibria. Here I discuss only 
coordination games, which are particularly important in economics. If economics is “about” 
coordination, we should study coordination in games—not just the coordination that happens 
(magically) in competitive markets. 
 

 Go Wait   Fights Ballet 

Go 0 
0 

1 
1 

 Fights 1 
2 

0 
0 

Wait  1 
1 

0 
0 

 Ballet 0 
0 

2 
1 

 Alphonse and Gaston   Battle of the Sexes 
 
In Alphonse and Gaston and Battle of the Sexes, there are two pure-strategy equilibria (and 
one mixed-strategy equilibrium), reflecting the two ways to solve the coordination problem. 
Each of the two ways requires them to behave differently when there may be no cues to break 
the symmetry. Battle of the Sexes complicates the problem with different preferences about 
how to coordinate. 
 
How would you play as Alphonse? As Gaston? As Row or Column in Battle of the Sexes?  
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(Why “Alphonse and Gaston”? In the early 1900s Frederick B. Opper created the Alphonse 
and Gaston comic strip, with two excessively polite fellows saying “after you, my dear 
Gaston” or “…Alphonse” and never getting through the doorway. The characters are mostly 
forgotten, but we still have Alphonse-Gaston games in the dual-control “three-way” lighting 
circuits in our homes.) 

 
Alphonse and Gaston    Alphonse and Gaston in your home 
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 Other Player   All Other Players 
  

Stag 
 

Rabbit 
   

All-Stag 
Not 

All-Stag 

Stag 2 
2 

1 
0 

 Stag 2 0 

Rabbit 0 
1 

1 
1 

 
Rabbit 1 1 

 Two-Person Stag Hunt   n-Person Stag Hunt 
Consider the Stag Hunt game from Survey Question 6ab. The game models a story from 
Rousseau’s Discourse on Inequality. It’s like an assembly line that won’t move faster than the 
slowest person on the line, a meeting that can’t start until everyone is there, or a choice 
between joining  a productive but fragile society and autarky, which is less rewarding but safer 
because less dependent on coordination. How would you play with one other person? With 
many other people? 
 
With two or n players, there are two symmetric pure-strategy equilibria, “all-Stag” and “all-
Rabbit.” (There’s also an uninteresting mixed-strategy equilibrium.) All-Stag is better for all 
than all-Rabbit, which is therefore “payoff-dominant”. But playing Stag is riskier in that 
unless all others play Stag, a player would do better playing Rabbit, the more so the more 
other players there are. All-Rabbit is therefore “risk-dominant” when n > 2 and borderline 
risk-dominant when n = 2. In an n-person game like Stag Hunt but in which the median rather 
than minimum choice determined the outcome, all-Stag is much less fragile, even if n is large, 
and may then be risk-dominant as well as payoff-dominant. 
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Behavioral game theory as a synthesis of strategic thinking and learning 
 
As noted above, traditional game theory offers two complementary answers to the question Why 
should players have the same beliefs about how a game will be played?: 
 

Thinking: If players have perfect models of each other’s decisions, strategic thinking can 
lead them to have the same beliefs, and so play an equilibrium, even in their initial 
responses to a game. 
 
Learning: If players don’t have perfect models but repeatedly play analogous games, direct 
experience can eventually allow them to predict others’ decisions, and so to play an 
equilibrium in the limit. 

 
Behavioral game theory qualifies these answers by questioning whether people have perfect 
models of others’ decisions and studying their models empirically—mostly experimentally. 
 
Behavioral game theory also studies the interaction between peoples’ models of others, how they 
learn from experience, and how initial responses and learning interact to determine the dynamics 
and limiting outcome.     
 
I now give a concrete example of this interaction. 
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Consider a “Continental Divide” coordination game from Van Huyck, Cook, and Battalio’s 
(1997 JEBO) experiment. 
 
Seven subjects choose simultaneously and anonymously among “effort” levels from 1 to 14, 
with each subject’s payoff determined by his own effort and a summary statistic, the median, 
of all players’ efforts, in a publicly announced way. 
 
The group median is then publicly announced, subjects choose new effort levels, and the 
process continues.  
 
The relation between a subject’s payoff, his own effort, and the median of all players’ efforts 
was announced to the subjects by giving them a table like the one on the next page. 
 
In the table as shown on the next page, the payoffs of a player’s best response(s) to each 
possible median is(are) highlighted in bold; and the payoffs of (symmetric, pure-strategy) 
equilibria “all–3” and “all–12” are highlighted in large bold.  
 
(For the subjects, of course, there was no highlighting in the table.) 
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There were ten sessions, each with its own separate group. Half the groups had an initial 
median of eight or above, and half had an initial median of seven or below. (I suspect the 
experimenters cleverly chose the design to make this happen, but it’s not uncommon.) 
 
The median-eight-or-above groups converged almost perfectly to the all–12 equilibrium. 
 
The median-seven-or-below groups converged almost perfectly to the all–3 equilibrium.   

 

Continental divide game payoffs 

Median Choice 
your 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
choice

1 45 49 52 55 56 55 46 -59 -88 -105 -117 -127 -135 -142
2 48 53 58 62 65 66 61 -27 -52 -67 -77 -86 -92 -98 

3 48 54 60 66 70 74 72 1 -20 -32 -41 -48 -53 -58 

4 43 51 58 65 71 77 80 26 8 -2 -9 -14 -19 -22 

5 35 44 52 60 69 77 83 46 32 25 19 15 12 10 

6 23 33 42 52 62 72 82 62 53 47 43 41 39 38 
7 7 18 28 40 51 64 78 75 69 66 64 63 62 62 
8 -13 -1 11 23 37 51 69 83 81 80 80 80 81 82 
9 -37 -24 -11 3 18 35 57 88 89 91 92 94 96 98 
10 -65 -51 -37 -21 -4 15 40 89 94 98 101 104 107 110

11 -97 -82 -66 -49 -31 -9 20 85 94 100 105 110 114 119

12 -133 -117 -100 -82 -61 -37 -5 78 91 99 106 112 118 123

13 -173 -156 -137 -118 -96 -69 -33 67 83 94 103 110 117 123

14 -217 -198 -179 -158 -134 -105 -65 52 72 85 95 104 112 120
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As this example makes clear, it’s not enough to know that learning will eventually yield 
convergence to some equilibrium, even if we are only interested in the final outcome. 
 
To predict the final outcome, we need to know something about the distribution of subjects’ 
initial responses and the structure of their learning rules. 
 
(Here it seems that we “only” need to know the initial group median, but sometimes, as 
illustrated below, we need to know much more than that.) 
 
Because subjects had no prior experience, their initial responses are entirely the product of 
strategic thinking, the main focus of this part of the class. 
 
Learning is also important, and I will spend some time on it at the end. But you can often 
make an educated guess about the outcome of learning dynamics by using simple graphical 
techniques, which I will illustrate below.       
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Experimental studies of strategic thinking in simultaneous-move games with 
unique pure-strategy equilibria 

 
Consider subjects’ initial responses in Nagel’s (1995 AER) “guessing games” (Survey 
question 3, the same for groups a and b). 
 

15-18 subjects simultaneously guess between [0,100] 
 
The subject whose guess is closest to a p (= 1/2 or 2/3), times the group average guess 
wins a prize, say $50 
 
The structure is publicly announced 

 

Record your intuition about what to guess if p = ½. If p = 1/3. 
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Nagel’s games have a unique equilibrium, in which all players guess 0. The games are 
dominance-solvable, so the equilibrium can be found by repeatedly eliminating stupid 
(dominated, to game theorists) guesses. 
 
For example, if p = 1/2: 
 

It’s stupid to guess more than 50 (1/2 × 100 ≤ 50)  

Unless you think other people are stupid, it’s also stupid to guess more than 25 (1/2 × 50 

≤ 25) 

Unless you think other people think other people are stupid, it’s also stupid to guess more 

than 12.5 (1/2 × 25 ≤ 12.5) 

And so on, down to 6.25, 3.125, and eventually all the way 0 

The rationality-based argument for this “all–0” equilibrium is stronger than the arguments for 
equilibrium in the other examples, because it depends “only” on iterated knowledge of 
rationality, not on players having the same beliefs.   
 
But even people who are rational themselves are seldom certain that others are rational, or that 
others believe that they themselves are rational, and so on; so they probably won’t (and 
shouldn’t) guess 0. But what do they do?   
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Nagel’s subjects played the games repeatedly, but we can view their initial guesses as 
responses to games played in isolation if they treated their influences on the future as 
negligible. They never guessed 0 initially; their responses were heterogeneous, respecting 0 to 
3 rounds of repeated dominance (first picture p = 1/2; second picture p = 2/3): 
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Subjects’ initial responses are coherent and often “strategic”: they respond to the difference 
between p = ½ and p = 2/3 in the way anyone but a traditional game theorist would expect 
(equilibrium, and only equilibrium, predicts no response); and they make undominated 
guesses 85-95% of the time. 
 
But their guesses don’t come close to equilibrium, or even to random deviations from 
equilibrium (they are systematically biased above equilibrium; and more recent research 
shows that this kind of bias persists even if equilibrium is not the lowest possible guess). 
 
The data do suggest that the deviations from equilibrium have a coherent but individually 
heterogeneous structure: spikes are clearly visible (amid the noise) at 50pk for target p and k = 
1,2,3,…. (The spikes are like the spectrograph peaks that suggested the existence of discrete 
chemical elements.) 
 
Similar patterns of heterogeneous but structured non-equilibrium strategic behavior have been 
found in initial responses to several other kinds of games. 
 
The experimental evidence suggests that although subjects respect dominance for themselves 
most of the time, they are much less likely to rely on dominance for others. 
 
Further, their reliance on iterated dominance seems to stop at only 1-3 rounds. 
 
Thus equilibrium is too strong to describe behavior, and even rationalizability is too strong. 
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People often assume that the spikes in Nagel’s data are evidence of subjects doing a finite 
number of rounds of iterated deletion of dominated strategies. 
 
But in the most recent and most comprehensive experiments on strategic thinking, Costa-
Gomes and Crawford (2006 AER) showed that many subjects are following decision rules 
based on “level-k thinking,” that one can explain a large fraction of subjects’ deviations from 
equilibrium using a level-k model, and no other model explains a significant fraction. 
 
(Iterated deletion of dominated strategies is not separated from level-k thinking in Nagel’s 
design, but the two notions are strongly separated in Costa-Gomes and Crawford’s design.) 
 
The reason for its empirical success may be that level-k thinking yields a workable model of 
others’ decisions while avoiding most of the cognitive complexity of equilibrium analysis. 
 
As Selten (1998 EER) says: 

 
Basic concepts in game theory are often circular in the sense that they are based on 
definitions by implicit properties…. Boundedly…rational strategic reasoning seems to avoid 
circular concepts. It directly results in a procedure by which a problem solution is found. 
Each step of the procedure is simple, even if many case distinctions by simple criteria may 
have to be made. 
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Level-k models allow behavior to be heterogeneous, but they assume that each player follows 
a rule drawn from a common distribution over a particular hierarchy of decision rules or types. 
 
Type Lk anchors its beliefs in a nonstrategic L0 type and adjusts them via thought-experiments 
with iterated best responses: L1 best responds to L0, thus it has a perfect model of the game 
but a naïve model of others; L2 best responds to L1, thus it has a perfect model of the game 
and a less naïve models of others; and so on. 
 
In applications the type frequencies are treated as behavioral parameters, estimated or 
translated from previous analyses. The estimated distribution is fairly stable across games, 
with most weight on L1, L2, and L3. 
 
Even though few subjects follow the “anchoring type” L0, its specification is crucial, 
representing L1’s beliefs, L2’s beliefs about L1’s beliefs, and so on. 
 
In applications, L0 is often taken to be uniform random over the feasible decisions. 
 
In Nagel’s games, a uniform random (over [0, 100]) L0 guesses 50 on average.  
 
L1 therefore guesses 50p, L2 guesses 50p2, and so on, just as in the spikes in Nagel’s data.  
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Costa-Gomes and Crawford (2006 AER)  elicited subjects’ initial responses to a series of 16 
dominance-solvable two-person guessing games like those in Survey questions 4ab and 5ab, 
which are close relatives of Nagel’s guessing games.  
 
In each game, two players make simultaneous guesses. Each player has a lower and upper 
limit, both strictly positive. Each player also has a target, and his payoff increases with the 
closeness of his guess to his target times the other’s guess. 
 
The targets and limits vary independently across players and games, with targets either both 
less than one, both greater than one, or mixed. The 16 games are dominance-solvable in 3-52 
rounds, with unique equilibria determined by the targets and limits.  
 
For example, in game γ4δ3, player i’s limits and target are [300, 500] and 1.5 and player j’s 
are [300, 900] and 1.3. The product of targets 1.5 × 1.3 > 1, so players’ equilibrium guesses 
are determined by their upper limits; i’s equilibrium adjusted guess equals his upper limit of 
500, but j’s is below his upper limit at 650 (in the figure, guesses in R(k) are eliminated in 
round k of iterated dominance). 

 
 
 
 
 

 

 

300 450 500

300 390 585 650 900

R (1)

R (1) R (1)

R (2)

R (2) R (3)

Eq. Guess

Eq. GuessPlayer i

Player j

p i = 1.5

p j = 1.3
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The large strategy spaces and independent variation of targets and limits enhance separation of 
types’ implications for decisions, so many subjects’ types can be clearly identified from their 
guesses. (ai, bi, aj, and bj are players’ lower and upper limits, pi and pj are their targets, D1 and D2 
are “iterated dominance” types, E is a type that makes its equilibrium guess, and S is a hypothetical 
“sophisticated” type that can accurately predict others’ responses to the games.) 
 

Game ai bi pi aj bj pj L1 L2 L3 D1 D2 E S 
1 100 900 1.5 300 500 0.7 600 525 630 600 611.25 750 630 
2 300 900 1.3 300 500 1.5 520 650 650 617.5 650 650 650 
3 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
4 300 900 0.7 100 900 1.3 350 546 318.5 451.5 423.15 300 420 
5 100 500 1.5 100 500 0.7 450 315 472.5 337.5 341.25 500 375 
6 100 500 0.7 100 900 0.5 350 105 122.5 122.5 122.5 100 122 
7 100 500 0.7 100 500 1.5 210 315 220.5 227.5 227.5 350 262 
8 300 500 0.7 100 900 1.5 350 420 367.5 420 420 500 420 
9 300 500 1.5 300 900 1.3 500 500 500 500 500 500 500 
10 300 500 0.7 100 900 0.5 350 300 300 300 300 300 300 
11 100 500 1.5 100 900 0.5 500 225 375 262.5 262.5 150 300 
12 300 900 1.3 300 900 1.3 780 900 900 838.5 900 900 900 
13 100 900 1.3 300 900 0.7 780 455 709.8 604.5 604.5 390 695 
14 100 900 0.5 300 500 0.7 200 175 150 200 150 150 162 
15 100 900 0.5 100 500 0.7 150 175 100 150 100 100 132 
16 100 900 0.5 100 500 1.5 150 250 112.5 162.5 131.25 100 187 



 36

On average 90% of subjects’ guesses respected simple dominance, much more than random (which 
would be approximately 60%) and typical of initial responses in other experiments. 
 

All but 12 subjects respected dominance in 13 or more games, suggesting that they understood the 
games and maximized self-interested payoffs, given coherent beliefs. 
 
Of the 88 subjects, 43 made guesses that complied exactly (within 0.5) with one type’s guesses in 
7-16 of the games (20 L1, 12 L2, 3 L3, and 8 Equilibrium): far more than could occur by chance, 
given the strong separation of types’ guesses and the fact that guesses could take from 200 to 800 
different rounded values. 
 
But 35 of those 43 subjects conformed closely to types other than Equilibrium: 20 to L1, 12 to L2, 
and 3 to L3. 
 
Given the type definitions, those subjects’ deviations from equilibrium can be confidently ascribed 
to non-equilibrium beliefs rather than altruism, spite, confusion, or irrationality. 
 
The other 45 subjects’ types are less apparent from their guesses; but econometric estimates still 
turn up only L1, L2, L3, and Equilibrium in significant numbers. 

 
Thus there are no iterated dominance or sophisticated subjects in this population. Subjects seem to 
find level-k thinking quite natural, and iterated dominance thinking rather awkward. 
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Nagel’s and Costa-Gomes and Crawford’s analyses were inspired by the famous passage in 
chapter 12 of Keynes’ General Theory, in which he likened professional investment 

. . . to those newspaper competitions in which the competitors have to pick out the six 
prettiest faces from a hundred photographs, the prize being awarded to the competitor 
whose choice most nearly corresponds to the average preferences of the competitors as a 
whole; so that each competitor has to pick, not those faces which he himself finds 
prettiest, but those which he thinks likeliest to catch the fancy of the other competitors, 
all of whom are looking at the problem from the same point of view. . . . It is not a case of 
choosing those which, to the best of one’s judgment, are really the prettiest, nor even 
those which average opinion genuinely thinks the prettiest. We have reached the third 
degree where we devote our intelligences to anticipating what average opinion expects 
the average opinion to be. And there are some, I believe, who practice the fourth, fifth 
and higher degrees. 

Keynes’ wording here suggests finite iteration of best responses, initially anchored by players’ 
true aesthetic preferences: a different, social context-dependent specification of L0. 



 38

Another intriguing quotation comes from Benjamin Graham (of Graham and Dodd’s Security 
Analysis), in The Intelligent Investor (thanks to Steven Scroggin for the reference): 

 
…imagine you are partners in a private business with a man named Mr. Market. Each 
day, he comes to your office or home and offers to buy your interest in the company or 
sell you his [the choice is yours]. The catch is, Mr. Market is an emotional wreck. At 
times, he suffers from excessive highs and at others, suicidal lows. When he is on one of 
his manic highs, his offering price for the business is high as well…. His outlook for the 
company is wonderful, so he is only willing to sell you his stake in the company at a 
premium. At other times, his mood goes south and all he sees is a dismal future for the 
company. In fact… he is willing to sell you his part of the company for far less than it is 
worth. All the while, the underlying value of the company may not have changed - just 
Mr. Market’s mood. 

 
Here, Graham is suggesting a best response to Mr. Market, which is a simplified model of 
other investors. (Although in context, his main goal in the passage from which this quotation 
comes is to keep you from becoming too emotionally involved with your own portfolio.) 
 
Thus Mr. Market is Graham’s L0 (random, though probably not uniform). So he is advocating 
being L1…. But he published this, so he may actually be L2…. 
 
And if you ever find yourself in a situation where you need to outguess him, maybe you 
should be L3…but not higher: it can be just as bad to be too sophisticated as to be too 
unsophisticated. 
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Level-k analyses of strategic thinking 
Level-k models are a simple, tractable alternative to equilibrium models of initial responses.  
 
Lk for k > 0 is rational and k-level rationalizable: Its decisions coincide with equilibrium 
decisions in games that are k-dominance solvable. For k = 2, 3, or 4 at most, which is 
empirically plausible, this means level-k rules yield equilibrium decisions in games as simple 
as Pigs in a Box and (for k = 3 or 4) the 3×3 dominance-solvable game in the example above.  
 
Although level-k rules’ simplified models of others sometimes yield the same decisions as 
equilibrium, so equilibrium predictions can be based on weaker, more plausible assumptions, 
in other games level-k rules deviate systematically from equilibrium. 
 
As a result, a model in which people follow a distribution of Lk rules can often predict 
people’s initial responses better than equilibrium. 
 
A level-k model usually predicts a distribution of outcomes, but this uncertainty is due to the 
analyst’s inability to observe players’ types, not to players’ uncertainty about each other; thus 
the resemblance to mixed equilibrium is superficial. 
 
I now consider some examples that illustrate the potential for using level-k models to understand 
behavior in games. 
 
L0 must often be adapted to the setting; but defining Lk, k > 0, by iterating best responses 
“works” in most settings. 
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Fiction as data? Outguessing in The Far Pavilions 
 
In M. M. Kaye’s novel The Far Pavilions, the main male character, Ash, is trying to escape 
from his Pursuers along a North-South road; both have a single, strategically simultaneous 
choice between North and South—that is, their choices are time-sequenced, but the Pursuers 
must make their choice irrevocably before they learn Ash’s choice. 

 
If the pursuers catch Ash, they gain 2 and he loses 2. 
 
But South is warm, and North is the Himalayas with winter coming, so both Ash and the 
Pursuers gain an extra 1 for choosing South, whether or not Ash is caught. 

 
  Pursuers 
  South (q) North 

South (p) 3 
-1 

0 
1 Ash 

North 1 
0 

2 
-2 

  Far Pavilions Escape 
 
Record your intuitions about what to do, as Ash or Pursuers.   
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Far Pavilions Escape has a unique equilibrium in mixed strategies, in which 3p + 1(1 – p) = 0p 
+ 2(1 – p) or p = 1/4, and –1q +1(1 – q) = 0q –2(1 – q) or q = ¾. 
 
As in Perturbed Matching Pennies, this equilibrium is intuitive for the Pursuers, but not for 
Ash. 
 
But Ash overcomes his intuition and goes North. The Pursuers unimaginatively go South, so 
Ash escapes…and the novel can continue…romantically…for 900 more pages. 
 
In equilibrium Ash North, Pursuers South has probability (1 – p)q = 9/16, not a bad fit; but try 
a level-k model with uniform random L0:  

 Types Ash Pursuers 
L0 uniform random uniform random 
L1 South South 
L2 North South 
L3 North North 
L4 South North 
L5 South South 

Lk types’ decisions in Far Pavilions Escape 
 
Thus the level-k model correctly predicts the outcome provided that Ash is L2 or L3 and the 
Pursuers are L1 or L2.  
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How do we know which type Ash is? Here fiction provides data on cognition as well: Kaye 
recounts Ash’s mentor’s (Koda Dad, played by Omar Sharif in the miniseries) advice (p. 97: 
“ride hard for the north, since they will be sure you will go southward where the climate is 
kinder…”). 
 
If we take the mentor’s “where” to mean “because”, then Ash is L3: 
 

Ash thinks the Pursuers are L2, and so that the Pursuers think Ash is L1, so that the 
Pursuers think Ash thinks the Pursuers are L0. 
 
Thus Ash thinks the Pursuers expect him to go South (because it’s “kinder” and the 
Pursuers are no more likely to pursue him there). 
 
So Ash goes North. 

  
L3 is my record-high k for a clearly explained Lk type in fiction. (I offer you a $100 reward for 
the first clearly explained L4 or higher in fiction.) 
 
Poe’s The Purloined Letter (http://xroads.virginia.edu/%7EHYPER/POE/purloine.html) has 
another L3, but Conan Doyle doesn’t even have an L1! 
 
I suspect that even postmodern fiction may have no higher Lks, because they wouldn’t be 
credible. 
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Outguessing in games like Perturbed Matching Pennies 

Camerer reports some (informally gathered) data for a game closely related to the Perturbed 
Matching Pennies game from Survey Question 7ab (see also Rosenthal, Shachat and Walker, 
IJGT 2003). 
 

 L(33%) R(67%) 

T(72%) 0 
2 

1 
0 

B(28%) 1 
0 

0 
1 

 Perturbed Matching Pennies 
 
The equilibrium mixed-strategy probabilities are Pr{T} = Pr{B} = 0.5 for Row and Pr{L} = 
0.33 and Pr{R} = 0.67 for Column. 
 
An L1 Row plays T and an L1 Column plays L and R with equal probabilities. An L2 Row 
plays T and an L2 Column plays R. An L3 Row plays B and an L3 Column plays R. 
 
With a mixture of 50% L1s, 30% L2s, and 20% L3s in both player roles, the level-k model’s 
predicted choice frequencies are 80% T for Row and 25% L for Column: not a perfect fit, but 
reasonable. 
 
Note that the distribution of heterogeneous types “purifies” the mixed equilibrium.     
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Coordination in Market Entry/Battle of the Sexes games 

In market entry experiments, a number of subjects choose simultaneously between entering 
(“In”) and staying out (“Out”) of a market with given capacity. In yields a given positive profit 
if no more subjects enter than capacity allows; but a given negative profit if too many subjects 
enter. Out yields 0 profit, no matter what other subjects do. 
 
The natural equilibrium prediction is the symmetric mixed-strategy equilibrium, in which each 
player enters with a given probability that makes all indifferent between In and Out. 
 
This mixed-strategy equilibrium makes the expected number of entrants approximately equal 
market capacity, but there is a probability that too many or too few will enter.         
 
Even so, subjects in market-entry experiments have better ex post coordination (number of 
entrants closer to market capacity) than in the symmetric equilibrium. 
 
This led Kahneman to remark, “…to a psychologist, it looks like magic.” (But actually, no one 
would be at all surprised by this unless he believed in equilibrium, so it would only really look 
like magic to a game theorist.)  
 
Camerer, Ho, and Chong’s (2004 QJE, Section III.C) analysis shows that Kahneman’s magic 
can be explained by a level-k model. I now do a similar level-k analysis in a simple two-person 
market-entry game with capacity one, which is like Battle of the Sexes. 
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 In Out 

In  0 
0 

1 
a 

Out a 
1 

0 
0 

 Market Entry ( a > 1) 
 

The unique symmetric equilibrium is in mixed strategies, with p ≡ Pr{In} = a/(1+a) for both 
players. 
 
The expected coordination rate is 2p(1 – p) = 2a/(1+a)2; and players’ payoffs are a/(1+a) < 1, 
worse for each than his worst pure-strategy equilibrium. 
 
In the level-k model, each player follows one of four types, L1, L2, L3, or L4, with each player 
role filled by a draw from the same distribution. I assume for simplicity that the frequency of 
L0 is 0, and that L0 chooses its action randomly, with Pr{In}= Pr{Out}= ½. 
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Higher types’ best responses are easily calculated: L1s mentally simulate L0s’ random 
decisions and best respond, choosing In; similarly, L2s choose Out, L3s choose In, and L4s 
choose Out.  

Types L1 L2 L3 L4 
L1 In, In In, Out In, In In, Out 
L2 Out, In Out, Out Out, In Out, Out 
L3 In, In In, Out In, In In, Out 
L4 Out, In Out, Out Out, In Out, Out 

 
The predicted outcome distribution is determined by the outcomes of the possible type 
pairings and the type frequencies. If both roles are filled from the same distribution of types, 
players have equal ex ante payoffs, proportional to the expected coordination rate.  
 
L3 behaves like L1, and L4 like L2. Lumping L1 and L3 together and letting v denote their 
total probability, and lumping L2 and L4 together and letting (1 – v) denote their total 
probability, the expected coordination rate is 2v(1 – v). This is maximized at v = ½ where it 
takes the value ½. Thus for v near ½, which is plausible, the coordination rate is close to ½. 
(For more extreme values the rate is worse, actually falling to 0 as v → 0 or 1.) 
 
By contrast, the mixed-strategy equilibrium coordination rate, 2a/(1 + a)2, is maximized when 
a = 1, where it takes the value ½. As a → ∞, the mixed-strategy equilibrium coordination rate 
converges to 0 like 1/a. Even for moderate values of a, the level-k coordination rate is higher 
than the equilibrium rate. 
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The level-k model yields a very different view of coordination than the traditional equilibrium 
model. 
 
Equilibrium (and equilibrium selection principles like risk- and payoff-dominance) play no 
role at all in players’ strategic thinking. 
 
Coordination, when it occurs, is an accidental (though statistically predictable) by-product of 
non-equilibrium decision rules.  
 
Finally, even though decisions are simultaneous and there is no possibility of observation of 
the other player’s decision or communication with him, the predictable heterogeneity of 
strategic thinking allows more sophisticated players such as L2s to mentally simulate the 
decisions of less sophisticated players such as L1s and accommodate them, just as Stackelberg 
followers would, with coordination benefits for all. 
 
This mental simulation doesn’t work perfectly, so an L2 doesn’t do as well as if he were really 
a Stackelberg follower: An L2 models his partner as an L1, but his partner is an L1 only some 
of the time. 
 
Neither would it work if strategic thinking were not predictably heterogeneous: As the table 
shows, if everyone were the same type they would always miscoordinate. 
 
But that it works at all, without communication or observation, is very surprising. 
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Coordination in Battles of the Sexes with Non-Neutral Framing of Decisions 
 
Crawford, Gneezy, and Rottenstreich (2008 AER) randomly paired large subject groups to 
play games whose payoff structures (except for a symmetric game) were like Battle of the 
Sexes, but in which there was a commonly observable labeling of decisions, X and Y, with X 
more salient than Y. (Compare Schelling’s (1960) classic “meeting in NYC” experiments.) 
 
Although the salience of the X label makes it easy and obvious in principle for subjects to 
coordinate on the “both-X” equilibrium, the game still poses a nontrivial strategic problem 
because both-X is one player’s favorite way to coordinate but not the other’s, and its 
asymmetric relation to the game’s payoffs tempts players to respond asymmetrically.  
 
Just as in a society of men and women playing Battle of the Sexes in which (for cultural 
reasons) Ballet is more salient than Fights or women’s preferences are more salient than 
men’s, there is a tension between the “label salience” of X and the “payoff-salience” of a 
player’s favorite way to coordinate: payoff salience reinforces label salience for one player 
role (Column players or P2s on the next page) but opposes it for players for the other (P1s). 
 
This tension has large and surprising consequences for coordination: Since Schelling’s 
experiments with symmetric games, people have assumed that slight payoff asymmetries 
would not interfere with coordination. But in these results they have a very strong effect.  
 
The table gives the observed choice frequencies of X for both player roles, with subjects in 
both roles pooled in the symmetric game but not in the other games.  
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  P2(76%) 
  X Y 

X 5,5 0,0 
P1(76%) 

Y 0,0 5,5 
Symmetric 

    
  P2(28%) 
  X Y 

X 5,5.1 0,0 
P1(78%) 

Y 0,0 5.1,5 
Slight Asymmetry 

    
  P2(61%) 
  X Y 

X 5,6 0,0 
P1(33%) 

Y 0,0 6,5 
Moderate Asymmetry 
    
  P2(60%) 
  X Y 

X 5,10 0,0 
P1(36%) 

Y 0,0 10,5 
Large Asymmetry 

X-Y games 
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The first thing to note is that even tiny payoff asymmetries cause a large drop in the expected 
coordination rate, from 64% in the symmetric game to 38%, 46%, and 47% in the others.     
 
But even more surprisingly, the pattern of miscoordination completely reversed as the 
asymmetric X-Y games progressed from small to large payoff differences: 
 

With slightly asymmetric payoffs, most subjects in both roles favored their partners’ 
payoff-salient decisions. 
 
But with moderate or large asymmetries, most subjects in both roles switched to favoring 
their own payoff-salient decisions. 

 
Unless we can understand the reasons for the reversed pattern of miscoordination, we won’t 
really understand why payoff asymmetries cause a large drop in the coordination rate.  
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I now sketch a level-k model, with an L0 that responds to payoff- and label-salience in a 
particular, realistic way, that gracefully explains the patterns in the data. 
 
Assume that L0 responds to both label and payoff salience, but with a “payoffs bias” that 
favors payoff over label salience, other things equal. In symmetric games L0 chooses X with 
some probability greater than ½. In any asymmetric game, whether or not label-salience 
opposes payoff-salience, L0 chooses its payoff-salient decision with probability p > ½. 
 
Although L0’s choice probabilities are the same for P1s and P2s, they imply L1 and L2 choice 
probabilities that differ across player roles due to the asymmetric relations between label and 
payoff salience for P1s and P2s. 
 
L1’s and L2’s choices for P1 and P2 are completely determined by p, the extent of L0’s payoff 
bias. A level-k model can track the reversal of the pattern of miscoordination between the 
slightly asymmetric game and the games with moderate or large payoff asymmetries if (and 
only if) 0.505 (= 5.10/[5.10+5]) < p < 0.545 (= 6/[6+5]), so L0 has only a modest payoff bias. 
 
Assuming that p falls into this range and that the population frequency of L1 is 0.7, close to 
most previous estimates, the model’s predicted choice frequencies differ from the observed 
frequencies by more than 10% only in the symmetric game (where the model somewhat 
overstates the homogeneity of the subject pool). 
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In the symmetric game, with no payoff salience, L0 favors the salience of X. L1 P1s and P2s 
therefore both choose X, and L2 P1s and P2s follow suit. (Thus in this case the model makes 
the same prediction as equilibrium selection based on salience as in a Schelling focal point.) 
 
In the slightly asymmetric game, the payoff differences are small enough that L1 P1s choose 
X, P2s’ payoff-salient decision, because L1 P1s think it is sufficiently likely that L0 P2s will 
choose X that choosing X yields them higher expected payoffs. L2 P2s, who best respond to L1 
P1s, thus choose X as well. By contrast, L1 P2s choose Y, P1s’ payoff-salient decision, 
because L1 P2s think it is sufficiently likely that L0 P1s will choose Y. L2 P1s thus choose Y as 
well. In sum, L1 P1s choose X and L2 P1s choose Y, while L1 P2s choose Y and L2 P2s choose 
X. When q = 0.7, the model predicts that 70% of P1s will choose X but only 30% of P2s will 
choose X, coming reasonably close to the observed frequencies of 78% and 28%. 
 
Finally, in the games with moderate or large payoff asymmetries, L0’s payoffs bias is just as 
strong. But because the payoffs bias is not too strong (p < 0.545), the payoff differences are 
large enough that L1 P1s and P2s now both choose their own instead of their partners’ payoff- 
salient decisions, Y for P1s and X for P2s. Because L2s best respond to L1s in the opposite 
role, L2 P1s choose X and L2 P2s choose Y. In sum, L1 P1s choose Y and L2 P1s choose X, 
while L1 P2s choose X and L2 P2s choose Y. When q = 0.7, the model predicts that only 30% 
of P1s will choose X but 70% of P2s will choose X, again close to the observed frequencies of 
33-36% and 61-60%.
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Outguessing in Hide and Seek games with non-neutral framing of locations   
 
In Rubinstein and Tversky’s experimental Hide and Seek games (see Crawford and Iriberri 
(2007 AER), seekers (Survey question 8a) were told the following story: 
 

You and another student are playing the following game: Your opponent has hidden a 
prize in one of four boxes arranged in a row. The boxes are marked as follows: A, B, A, 
A. Your goal is, of course, to find the prize. His goal is that you will not find it. You are 
allowed to open only one box. Which box are you going to open? 

 
Hiders (Survey question 8b) were told an analogous story. 
 
Record your intuitions about how to play as Hider. As Seeker. 
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The ABAA framing of locations is non-neutral in two ways: 
 

The B location is distinguished by its label. 

The two end A locations are inherently salient. 

Together these two saliencies distinguish central A as “the least salient location.” 

 
The framing (order and labeling) of the four locations is a tractable abstract model of a cultural 
or geographic landscape like those that play important roles in real Hide and Seek games.  
 
With a payoff of 1 for winning, RTH's Hide and Seek game translates into: 

 
                          Seeker 

  A B A A 

A 1 
0 

0 
1 

1 
0 

0 
1 

B 0 
1 

1 
0 

1 
0 

0 
1 

A 0 
1 

0 
1 

1 
0 

0 
1 

Hider 

A 0 
1 

0 
1 

0 
1 

1 
0 

                            Hide and Seek 
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Like Matching Pennies, Hide and Seek has a unique, mixed-strategy equilibrium, with equal 
probabilities on all four locations for both players. 
 
Equilibrium leaves no room for the non-neutral framing to influence people’s choices. 
 
But in Rubinstein and Tversky’s experiments, central A was most prevalent for Hiders (37%) 
and even more prevalent for Seekers (46%); as a result Seekers can expect find a Treasure 
32% of the time, more than the 25% with which they would find it in equilibrium. 
 
This raises three puzzles, none of which are resolved by equilibrium (or noisy generalizations 
of equilibrium like “quantal response equilibrium”): 
 

If seekers are as smart as hiders on average, why don’t hiders who are tempted to hide in 
central A realize that seekers will be just as tempted to look there?  
 
Why do hiders choose actions that allow seekers to find them more than 25% of the time, 
when they could hold it down to 25% via the equilibrium mixed action? 
 
Why do seekers choose central A even more than hiders? 
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These puzzles can all be gracefully resolved by a level-k model in which L0 is sensitive to the 
framing of locations. 
 
Assume that with given probabilities, each player role is filled by one of five level-k types: L0, 
L1, L2, L3, or L4. 

 
Lk, k > 0, anchors its beliefs in a nonstrategic L0 type and adjusts them via thought-
experiments involving iterated best responses. 
 
L0 (for hiders and seekers) reflects the simplest hypothesis a player can make about his 
opponent’s instinctive response: that he will choose a salient location, simply because it is 
salient. Assume that L0 plays A, B, A, A with probabilities p/2, q, 1–p –q, p/2, where p > 1/2 
and q > ¼. (A uniform random L0 would make Lk coincide with equilibrium.) Thus L0 favors 
focally labeled and/or end locations, to an equal extent for hiders and seekers. But the model 
allows the data to decide which is more salient, B or the end locations (the ends seem to be).  
 
Hiders’ and seekers’ strategic responses to the framing are confined to Lk, k > 0, which 
ignores the framing except as it influences L0’s choice probabilities. 
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Given this specification of L0, it’s not hard to show that: 
 

L1 Hiders choose central A to avoid L0 Seekers and L1 Seekers avoid central A in 
searches for L0 Hiders 
 
L2 Hiders choose central A with probability between 0 and 1 and L2 Seekers choose it 
with probability 1 
 
L3 Hiders avoid central A and L3 Seekers choose it with probability between 0 and 1 
 
L4 Hiders and Seekers both avoid central A 

 
With a plausible distribution of types estimated from Rubinstein and Tversky’s data (0% L0, 
19% L1, 32% L2, 24% L3, 25% L4), the level-k model explains their results, including the 
prevalence of central A for hiders and its greater prevalence for seekers. 
 
The asymmetry in hiders’ and seekers’ behavior follows naturally from their role-asymmetric 
responses to L0, with no asymmetry in behavioral assumptions across roles. 
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Learning Models 
 
Learning models describe how players adjust their decisions over time in response to 
experience with analogous games. The learning process is usually modeled as repetition of the 
same “stage game” (usually with different player groups), so that the analogies are perfect. 
 
The game is played either by a small group randomly selected from one or more 
populations—for example, random pairing to play a two-person game, with player roles filled 
either from the same or from identifiable separate populations—or sometimes by the entire 
population at once as in Van Huyck, Cook, and Battalio’s “Continental Divide” game.  
 
Players’ decisions and roles in the game are distinguished by commonly understood labels, 
which are the “language” in which they code their experience, and in which any convention 
that emerges will be expressed. 
 
Players view their decisions in the stage game as the objects of choice, and the dynamics of 
their decisions are modeled directly (or indirectly in terms of their beliefs, with decisions 
modeled as best replies) rather than determined by an equilibrium in the stage game or the 
repeated game that describes the entire learning process. 
 
Learning is “adaptive” in that strategies adjust in a direction that would increase payoffs, other 
things (including others’ adjustments) equal, given the current state of the system. 
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Pugilists, Dancers, or Birds of Different Feathers 
 
To make these ideas more concrete, imagine a large population of men and women repeatedly 
and anonymously paired (with gender publicly observable in each pair, so they can base their 
strategies on gender if they so choose) to play Battle of the Sexes. 

 Fights Ballet 

Fights 1 
2 

0 
0 

Ballet 0 
0 

2 
1 

 Battle of the Sexes 
 
Now draw a differential equation “phase diagram” with the population frequency of men 
playing Fights, m, on the horizontal axis and the frequency of women playing Fights, w, on the 
vertical axis. We will use this diagram to analyze the dynamics of simple learning rules. 
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For men the expected payoff of Fights is higher than Ballet whenever w > 1/3 (2w > 1 – w). 
For women the payoff of Fights is higher whenever m > 2/3 (m > 2(1 –  m)). There are four 
regions: (m > 2/3, w > 1/3), (m > 2/3, w < 1/3), (m < 2/3, w > 1/3), (m < 2/3, w < 1/3). For 
plausible learning rules, when (m > 2/3, w > 1/3), m and w rise. When (m > 2/3, w < 1/3), m 
falls and w rises. When (m < 2/3, w > 1/3), m rises and w falls. And when (m < 2/3, w < 1/3), 
m and w fall. When (m > 2/3, w > 1/3), m → 1 and w → 1; and when (m < 2/3, w < 1/3), m → 
0 and w → 0. When (m > 2/3, w < 1/3) or (m < 2/3, w > 1/3), if (with symmetry) the initial 
condition is above the diagonal—m + w > 1—the system enters (m > 2/3, w > 1/3) and m → 1 
and w → 1; if it’s below the diagonal, the system enters (m < 2/3, w < 1/3) and m → 0 and w 
→ 0. 
 
In this setting the limiting outcome must be one of the two pure-strategy equilibria, in each of 
which all people follow a convention based on the commonly understood Fights versus Ballet 
labeling of their decisions. Which one they will follow is determined by whether the 
frequencies of initially arrogant men and wimpy women sum to more than half the population. 
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Now consider a large population repeatedly and anonymously paired to play the same kind of 
game, with two pure-strategy equilibria, one favored by one player and the other favored by 
the other; but now with no observable labeling of players or decisions.  
 
Players in this game can still use the payoffs to distinguish their strategies according to which 
one would yield them the more favorable outcome if their partner coordinated with it. 
 
I follow the evolutionary game theory literature in calling these strategies Hawk (choose the 
strategy that would yield you the more favorable outcome if your partner coordinates with it, 
as Fights previously did for men and Ballet did for women) and Dove (choose the decision 
that would yield your partner the more favorable outcome if he coordinates with it). 
 
With this redescription, in terms of labels that reflect the symmetry of men’s and women’s 
strategic positions, we can represent the game symmetrically like this: 
 

 Hawk Dove 

Hawk 0 
0 

1 
2 

Dove 2 
1 

0 
0 

 Hawk-Dove Game 
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There are two equivalent ways to analyze the learning dynamics in this game. 
 
The first is to recycle the phase diagram used to analyze Battle of the Sexes, but to impose the 
added restriction that the frequency of players playing Hawk must be equal in both player 
roles. This is just as if in Battle of the Sexes the frequency of men playing Fights, m in my 
notation, must be equal to the frequency of women playing Ballet, 1 –  w. 
 
Because m = 1 –  w is equivalent to m + w = 1, this restriction limits the dynamics to the 
diagonal running from northwest to southeast in the previous two-dimensional phase diagram. 
 
As the diagram suggests, the dynamics will now converge to the intersection of lines in the 
center, which represents the mixed-strategy equilibrium of the game at Pr{Hawk} = 2/3.  
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 Hawk Dove 

Hawk 0 
0 

1 
2 

Dove 2 
1 

0 
0 

 Hawk-Dove Game 
 
The second, less magical way to analyze the learning dynamics is to graph the expected 
payoffs of Hawk and Dove (in either player role) against the population frequency of Hawk. 
This “builds in” the restriction that the frequency of players playing for their favorite 
equilibrium must be the same in both roles, and allows us to represent the dynamics in a one-
dimensional phase diagram, with expected payoffs of Hawk and Dove on the vertical axis and 
population frequency of Hawk on the horizontal axis. 
 
When the frequency of Hawk is low, Hawk has higher payoff than Dove, and vice versa. Thus 
the dynamics follow the arrows on the horizontal axis, converging to the frequency of Hawk 
where the payoff lines cross, which is 2/3, representing the mixed-strategy equilibrium. 
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Minimum- and Median-Effort Coordination Games 
John Van Huyck, Ray Battalio, and Richard Beil (1990 AER, 1991 QJE, 1993 GEB; “VHBB”) 
studied games that are like larger versions of Stag Hunt (seven efforts), analyzed in Crawford 
(1991 GEB, 1995 Econometrica) and Crawford and Broseta (1998 AER). 
 
VHBB’s 1990 and 1991 experimental designs 
 
Repeated play of symmetric coordination games in populations of subjects, interacting all at 
once (“large groups”) or in pairs drawn randomly (“random pairing”). 
 
Subjects chose simultaneously among 7 efforts, with payoffs and ex post optimal choices 
determined by own efforts and an order statistic, the population median or minimum effort in 
large groups or the current pair’s minimum with random pairing. 
 
There were five leading treatments, varying the order statistic (minimum in 1990, median in 
1991), the size of the subject population, and the patterns in which they interact (minimum 
games were played either by the entire population of 14-16 or by random pairs, median games 
were played by the entire population of 9); each population was large enough to make subjects 
treat their own influences on the order statistic as negligible. 
 
Explicit communication was prohibited throughout, the order statistic was publicly announced 
after each play (with random pairs told only pair minima), and the structure was publicly 
announced at the start, so subjects were uncertain only about others’ efforts. 
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 Other Player   All Other Players 
  

Stag 
 

Rabbit 
   

All-Stag 
Not 

All-Stag 

Stag 2 
2 

1 
0 

 Stag 2 0 

Rabbit 0 
1 

1 
1 

 
Rabbit 1 1 

 Two-Person Stag Hunt   n-Person Stag Hunt 
 
The random-pairing and large-group minimum games are like larger versions of the two-effort 
Stag Hunt games seen earlier.  
 
The stage games all have seven strict, symmetric, Pareto-ranked equilibria, with players’ best 
responses an order statistic of population efforts. 
 
The games are like a meeting that can’t start until a given quorum is achieved—100% in the 
large-group minimum game, 50% in the large-group median games. 
 
Intuitively, efficient coordination is more difficult, the larger the quorum or the larger the 
group, but traditional equilibrium analysis and its refinements don’t fully reflect this.  
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VHBB’s 1990 and 1991 results 
 
The five leading treatments all evoked similar initial responses (table in Crawford 1991 GEB). 
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Subjects almost always converged to some equilibrium, but the dynamics varied with the 
treatment variables (order statistic, number of players, interaction pattern), with large 
differences in drift, history-dependence, rate of convergence, and equilibrium selection: 
 

In 12 out of 12 large-group median trials, there was near-perfect “lock-in” on the initial 
median (even though it varied across runs and was usually inefficient) 

 
In 9 out of 9 large-group minimum trials, there was very strong downward drift, with 
subjects always approaching the least efficient equilibrium 

 
In 2 out of 2 random-pairing minimum trials, there was very slow convergence, no 
discernible drift, and moderate inefficiency 

 
Comparing the first two reveals an “order statistic” or “robustness” effect, with coordination 
less efficient the smaller the groups that can disrupt desirable outcomes. 
 
Comparing the last two reveals a “group size” effect, in which coordination is less efficient in 
larger groups (holding the order statistic constant, measured from the “bottom”). 
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In case you are wondering what would happen with fixed rather than random pairing, here are 
the results. There is clear evidence of “strategic teaching,” with 12 out of 14 pairs managing to 
“teach” their way to the most efficient equilibrium. Most subjects seemed to understand that 
strategic teaching is pointless with random pairing, because it’s costly but others reap the 
benefits. But they used it effectively with fixed pairing.    
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Except for the fixed-pairing results, VHBB’s results can be mostly understood via a simple 
evolutionary basin of attraction story proposed in Crawford (1991 GEB, 1995 Econometrica). 
 

 Other Player   All Other Players 
  

Stag 
 

Rabbit 
   

All-Stag 
Not 

All-Stag 

Stag 2 
2 

1 
0 

 Stag 2 0 

Rabbit 0 
1 

1 
1 

 
Rabbit 1 1 

 Two-Person Stag Hunt   n-Person Stag Hunt 
 
Imagine that there are only two efforts as in Stag Hunt, not seven, and graph the expected 
payoffs of high (Stag) and low (Rabbit) effort against the population frequency of high effort 
in the random pairing and large-group minimum games and the large-group median game. 
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In the large-group median game, the all-Stag and all-Rabbit equilibria are both locally stable. 
 
By symmetry, random shocks are neutral, just as likely to flip the population from all-Stag to 
all-Rabbit or vice versa. 
 
With random initial conditions, the population would be equally likely to converge to all-Stag 
or all-Rabbit. If initial conditions favor one equilibrium, its limiting probability is higher. 
 
In the seven-effort version of the game that VHBB studied, if learning always makes subjects 
adjust their efforts toward the current value of the median, then the population converges to 
the median without changing it (a general property of order statistics like the median). 
 
Even with random shocks, the median is just as likely to go up as it is to go down. 
 
Either way, the learning dynamics have no up or down trend; and (given the dampening effect 
of the median on shocks) the population is very likely to “lock in” on the initial median, as in 
VHBB’s experiments. 
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In the random-pairing minimum game, the all-Stag and all-Rabbit equilibria are again both 
locally stable. 
 
Random shocks are again neutral; and with random initial conditions, the population would be 
equally likely to converge to all-Stag or all-Rabbit. 
 
Crawford (1995) shows that in the seven-effort version of this game that VHBB studied, it’s 
actually optimal for a (risk-neutral) player to set his effort equal to his forecast of the median 
effort in the entire population.  
 
Thus, just as in the large-group median game, the learning dynamics have no up or down trend 
and the population is likely to “lock in” on the initial median. 
 
However, with random pairing a subject samples only a small fraction of the population effort 
distribution each period (his current partner’s effort is an estimate of the population median, 
but a very noisy one), so convergence will be much slower, as it was in VHBB’s experiments. 
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In the large-group minimum game, the all-Rabbit equilibrium is locally stable but the all-Stag 
equilibrium is locally unstable. Starting from all-Stag, any shock, however small, will make 
the population converge to all-Rabbit.  
 
This makes the strong convergence to the equilibrium with lowest effort VHBB observed in 
the large-group minimum game plausible, but in this case the story is more complicated. 
 
In the seven-effort large-group minimum game, if learning always makes subjects adjust their 
efforts toward the current value of the minimum, then the population converges to initial 
minimum without changing it. However, in VHBB’s experiments the initial minimum was 
above one in five out of seven sessions, but it always converged quickly down to one. 
 
Crawford (1995) shows that this happens because in the minimum game, random shocks 
(which represent subjects’ inability to perfectly predict others’ adjustments) are not neutral as 
they were in the median game: Instead they tend to make the minimum go down, to an extent 
that can be approximately quantified. As intuition suggests, the downward trend is stronger, 
the larger the group or the closer the order statistic (below the median) is to the minimum.    
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VHBB’s 1993 design and results 
 
VHBB’s 1993 design was the same as their 1991 design, with repeated play of one of the 1991 
median games, but with the right to play auctioned each period to the highest 9 bidders in a 
population of 18 (English clock auction, same price paid by all winning bidders). 
 
The market-clearing price was publicly announced after each period’s auction, the median was 
publicly announced after each period’s play, and the structure was publicly announced at the 
start. 
 
The stage game has a range of symmetric equilibria, in which all bid the payoff of some 
equilibrium of the median game and play that equilibrium, unless others bid differently. 
 
In 8 of 8 trials, subjects quickly bid the price to a level that could only be recouped in the most 
efficient equilibrium and then converged to that equilibrium; the results give strong, precise 
selection among a range of equilibria. 
 
Auctioning the right to play had a strong efficiency-enhancing effect via focusing subjects’ 
beliefs on more efficient ways to coordinate—a new and potentially important mechanism by 
which competition promotes efficiency. Crawford and Broseta (1998 AER) show that this 
effect can be understood as following from “order statistic,” “optimistic subjects,” and 
“forward induction” intuitions: Auctioning the right to play a 9-person median game in a 
group of 18 effectively turns the game into a “75th percentile” game, with an upward trend. 
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Extensive-form Games (possibly not covered in class, and optional for exam) 
 
To really understand VHBB’s 1993 results, we need to know more about how to analyze 
games with sequences of decisions and counter-decisions, or “extensive-form” games). 
 
A static or simultaneous-move game has one stage, at which players make simultaneous 
decisions, like those discussed so far. 
 
A dynamic or extensive-form game has some sequential decisions. 
 
E.g. Ultimatum Contracting with two feasible contracts, X and Y: 
 
R proposes X or Y to C, who must either accept (a) or reject (r). 
 
If C accepts, the proposed contract is enforced. 
 
If C rejects, the outcome is a third alternative, Z. 
 
R prefers Y to X to Z, and C prefers X to Y to Z. 
 
R’s payoffs: u(Y) = 2, u(X) = 1, u(Z) = 0; C’s: v(X) = 2, v(Y) = 1, v(Z) = 0. 
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The game actually depends on whether C can observe R’s proposal before deciding whether to 
accept: With observable proposal it’s dynamic; with unobservable proposal it’s static. 
 
We can represent either game by its extensive form or game tree, which shows its sequence of 
decisions, outcomes, and payoffs. 
 
The order of the decision nodes must respect the timing of moves. 
 
Each node belongs to an information set (represented by circles), the nodes the player whose 
decision it is cannot distinguish (and at which he must therefore make the same decision). 
 
All such nodes must belong to same player and have same feasible decisions. 
 
(A game of perfect information is one in which a player making a decision can always observe 
all previous decisions, so every information set contains one decision node, as in Ultimatum 
Contracting with Observable Proposal.)  
 
For dynamic games it is important to distinguish strategies from decisions or actions. A 
strategy is a complete contingent plan that specifies a decision for each of a player’s decision 
nodes and information sets (like a chess textbook, not a move). 
 
In a static game a strategy reduces to a decision or action. (These definitions apply equally 
well to mixed or pure strategies. Specifying a strategy profile—one for each player—must 
determine an outcome (or probability distribution over outcomes).) 
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A player’s strategy (or decision) must be feasible independent of others’ strategies. 
 
Players must be thought of as choosing strategies simultaneously (without observing others’ 
strategies) at the start of play. Rational, perfect foresight implies that simultaneous choice of 
strategies yields the same outcome as decision-making in “real time” (this is a testable 
prediction, which can fail, and does for some real people).  
 
We need complete contingent plans (even for nodes ruled out by prior decisions) to evaluate 
consequences of alternative strategies, to formalize the idea that the predicted strategy choice 
is optimal. (0-probability events are endogenously determined by decisions, and so cannot be 
ignored here as they are in individual decisions.) 

 
With the concept of strategy, we can also represent a game, static or dynamic, by the 
relationship between its strategy profiles and payoffs: normal form, payoff function, or (if 2 
people) payoff matrix. 
 

 a r  a, a a, r r, a r, r 

X 2 
1 

0 
0 X 2 

1 
2 

1 
0 

0 
0 

0 

Y 1 
2 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

Ultimatum Contracting with 
Unobservable Proposal 

Ultimatum Contracting with  
Observable Proposal 
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 a r  a, a a, r r, a r, r 

X 2 
1 

0 
0 X 2 

1 
2 

1 
0 

0 
0 

0 

Y 1 
2 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

Ultimatum Contracting with 
Unobservable Proposal 

Ultimatum Contracting with  
Observable Proposal 

 
In Ultimatum Contracting, whether or not C can observe R’s proposal, R has two pure 
strategies, “(propose) X” and “Y.” 
 
If C cannot observe R’s proposal, C has two pure strategies, “a(ccept)” and “r(eject)”. 
 
If C can observe R’s proposal, C has four pure strategies, “a (if X proposed), a (if Y 
proposed)”, “a, r”, “r, a”, and “r, r”. 
 
C’s additional information in Ultimatum Contracting with Observable Proposal “shows up” 
only in the form of extra strategies for C. But this can affect the outcome. 
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 a r  a, a a, r r, a r, r 

X 2 
1 

0 
0 X 2 

1 
2 

1 
0 

0 
0 

0 

Y 1 
2 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

Ultimatum Contracting with 
Unobservable Proposal 

Ultimatum Contracting with  
Observable Proposal 

 
Suppose the payoffs are as above (R’s: u(Y) = 2, u(X) = 1, u(Z) = 0; C’s: v(X) = 2, v(Y) = 1, 
v(Z) = 0). Then C prefers either X or Y to Z, so C will accept either X or Y whether or not C 
can observe R’s proposal. R will then propose Y, his favorite contract, and C will accept. 
 
Now suppose C’s payoffs are changed to: v(X) = 2, v(Y) = 0, v(Z) = 1, so that C now prefers 
X to Z, but not Y to Z (R’s payoffs are unchanged). 
 
If C can observe R’s proposal, C will accept X but not Y. R will then propose X, which he 
prefers to Z, and C will accept. 
 
But if C cannot observe R’s proposal, C must accept or reject what R proposes without regard 
to what it is. If C accepted, R would propose Y, which is worse for C than Z, so C will reject 
whatever R proposes. 
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Key theoretical notions in extensive-form games:  
 
Subgame-perfectness or perfection requires that players’ decisions are in equilibrium not just 
in the entire game but in every subgame. Like “dynamic consistency” of the solution concept.  
 
E.g. in Ultimatum Contracting with Observable Proposal, the sensible “backward induction” 
outcome (Y; a, a) is a subgame-perfect equilibrium, 
 
But there are other, not so sensible equilibria, like (X; a, r) or (Y; r, a), that are not subgame-
perfect. E.g. (X; a, r) is not in equilibrium in the subgame following a proposal of X because if 
Row proposed Y, Column would want to accept it. 
 

 a, a a, r r, a r, r 

X 2 
1 

2 
1 

0 
0 

0 
0 

Y 1 
2 

0 
0 

1 
2 

0 
0 

Ultimatum Contracting with  
Observable Proposal 

 
Subgame-perfect equilibrium is closely related to iterated weak dominance in the normal 
form. 
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Forward induction requires that players draw certain inferences from previous decisions.  
 
Suppose that before playing Battles of the Sexes, the man (but not the woman) has an outside 
option (poker with the boys?) that would yield him a payoff of 1.5: He can choose the outside 
option or he can choose to play the Battle of the Sexes game with the woman. 

 Fights Ballet 

Fights 1 
2 

0 
0 

Ballet 0 
0 

2 
1 

 Battle of the Sexes 
 
If the man chooses to play the Battle of the Sexes game, the woman should infer that he is 
expecting to get a payoff at least as high as 1.5, and choose Fights. (This argument is related to 
iterated strict dominance in the normal form. It would be a dominated strategy for the man to 
give up his outside option and then not choose Fights.) 
 
The subgame-perfect equilibrium in which the man does not exercise his option and then 
chooses Fights, while the woman chooses Fights, satisfies forward induction. In this 
equilibrium, the outside option coordinates expectations even though it is not exercised. 
 
There is another subgame-perfect equilibrium in which the man exercises his option and the 
woman would choose Ballet if the man chose to play the Battle of the Sexes game. This one 
does not satisfy forward induction.  
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Experiments with Extensive-form Games 
Beard and Beil (1994 Management Science) study Rosenthal’s (1981 Journal of Economic 
Theory) game. The game tree gives player A the right to opt out (L) with payoffs x for A and y 
for B; or to give player B the move (R) with two choices, l with payoffs 0 for A, 0 for B; or r 
with payoffs z for A and w for B; z > x and w > v (y > or < w): 
 

   L r 

L  y 
x 

y 
x 

R v 

0 

w 
z 

 
The unique subgame-perfect equilibrium is (R,r) (which uniquely survives iterated weak 
dominance), but A players who think B is not certain to play r are tempted by L; thus the game 
is a simple test for reliance on other’s dominance. 
 
Intuitively, A players should be more willing to play R when: 
 
(H1) x is lower (R is less risky) 
 
(H2) w – v is higher (B has more incentive to choose r), or 
 
(H3) y is lower (B is less likely to resent A’s choice of R and choose l), or w and v are higher 
(B is more likely to reciprocate A’s choice of R by choosing r) 
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   l r 

L  y 
x 

y 
x 

R v 

0 

w 
z 

 
Subgame-perfect equilibrium doesn’t imply any (H1)-(H3), because the unique subgame-
perfect equilibrium is always (R, r) provided only that z > x and w > v (y > or < w).  
 
Beard and Beil used a series of treatments to test (H1)-(H3), holding the critical probability 
that B chooses r that makes A indifferent between L and R constant near one in most 
treatments (higher than the frequency with which subjects respect dominance, thus making A 
subjects not rely on dominance)  

Treatments 
  Player A Chooses R 
Treatment Player A plays L Player B plays l (critical probability)  Player B plays r 

1 (9.75, 3.00) (3.00,  4.75) (96.4%) (10.00,  5.00) 
2 (9.00, 3.00) (3.00,  4.75) (85.7%) (10.00,  5.00) 
3 (7.00,  3.00) (3.00,  4.75) (57.1%) (10.00,  5.00) 
4 (9.75,  3.00) (3.00,  3.00) (96.4%) (10.00,  5.00) 
5 (9.75,  6.00) (3.00,  4.75) (96.4%) (10.00,  5.00) 
6 (9.75,  5.00) (5.00,  9.75) (95.00%) (10.00,  10.00) 
7 (58.50, 18.00) (18.00,  28.50) (96.4%) (60.00, 30.00) 
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Treatments 
  Player A Chooses R 
Treatment Player A plays L Player B plays l (critical probability)  Player B plays r 

1 (9.75,  3.00) (3.00,  4.75) (96.4%) (10.00,  5.00) 
2 (9.00,  3.00) (3.00,  4.75) (85.7%) (10.00,  5.00) 
3 (7.00,  3.00) (3.00,  4.75) (57.1%) (10.00,  5.00) 
4 (9.75,  3.00) (3.00,  3.00) (96.4%) (10.00,  5.00) 
5 (9.75,  6.00) (3.00,  4.75) (96.4%) (10.00,  5.00) 
6 (9.75,  5.00) (5.00,  9.75) (95.00%) (10.00,  10.00) 
7 (58.50,  18.00) (18.00,  28.50) (96.4%) (60.00, 30.00) 

 

Test (H1) A players should be more willing to play R when x is lower (R is less risky) by 
comparing Treatments 1, 2, and 3 (x = $9.75, x = $9.00, x = $7.00) 
 
Test (H2) A players should be more willing to play R when w – v is higher (B has more 
incentive to choose r) by comparing Treatments 1 and 4 ($0.25, $2.00) 
 
Test (H3) A players should be more willing to play R when y is lower (B is less likely to 
resent A’s choice of R and choose l), or w and v are higher (B is more likely to reciprocate A’s 
choice of R by choosing r) by comparing Treatments 1 and 5 (B’s payoff from A’s secure 
choice L goes from $3 to $6) 
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Results 

   A chose R  
Treatment # of pairs A chose L B chose l B chose r % secure by A 

1 35 23 2 10 65.7% 
2 31 20 0 11 64.5% 
3 25 5 0 20 20.0% 
4 32 15 0 17 46.9% 
5 21 18 0 3 85.7% 
6 26 8 0 18 30.7% 
7 30 20 0 10 66.7% 

 

97.8% of B subjects made choices that their maximized own money earnings, suggesting that 
almost all were self-interested and rational. 
 
Despite the predictability of most subjects’ decisions, A subjects opted out in surprisingly 
large numbers. 
 
(H1)-(H3) were all correct: The rate of opting out varied across treatments in a coherent 
manner, suggesting that payoffs had a significant, intuitive effect on subjects’ willingnesses to 
rely on the self-interested behavior of others.  
 

Experience as a B player was associated with significantly greater willingness to rely on the 
other’s maximization in the role of an A player. 


