Signaling Games and Forward Induction

Songzi Du

UCSD Econ 200C

March 31, 2023

Songzi Du (UCSD Econ 200C)

Signaling Game

- Two players, sender (player 1) and receiver (player 2)
- Nature picks $t \in T$ type of sender. p(t) is probability that type is t.
- Sender observes t, selects signal $s \in S$.

Signaling Game

- Two players, sender (player 1) and receiver (player 2)
- Nature picks $t \in T$ type of sender. p(t) is probability that type is t.
- Sender observes t, selects signal $s \in S$.
- Receiver observes s (but not t), selects action a.
- $U_i(a, t, s)$ payoff function.

Labor market signaling (Spence)

- S is worker, $t \in \mathbb{R}_+$ is ability, $s \in \mathbb{R}_+$ is education
- *R* is market, $a \in \mathbb{R}_+$ is market wage
- S preferences: $U_1(a, t, s) = a c(s, t)$

Labor market signaling (Spence)

- S is worker, $t \in \mathbb{R}_+$ is ability, $s \in \mathbb{R}_+$ is education
- *R* is market, $a \in \mathbb{R}_+$ is market wage
- S preferences: $U_1(a, t, s) = a c(s, t)$
- R preferences: $U_2(a, t, s) = -(a t)^2$ \longrightarrow h = (f (f (s)))
 - R should be thought of as firms who are competing (in a Bertrand fashion) to hire the worker.
 - Each firm gets a payoff t a if it hires the worker at wage a.

Other signaling models

- Verifiable information: $S = \mathcal{P}(T)$, $U_1(a, t, s) = -\infty$ if $t \notin s$.
- 2 Cheap-talk: U_i independent of s.

Perfect Bayesian Equilibrium (for finite signaling game)

- Sender's strategy: $\sigma: T \to \Delta(S)$. behavival strategy
- Receiver's strategy: $\alpha : S \to \Delta(A)$
- Receiver's belief (assessment): $\mu(\cdot | s) \in \Delta(T)$, $\forall s \in S$.

Perfect Bayesian Equilibrium (for finite signaling game)

- Sender's strategy: $\sigma : T \to \Delta(S)$.
- Receiver's strategy: $\alpha : S \to \Delta(A)$.
- Receiver's belief (assessment): $\mu(\cdot \mid s) \in \Delta(T)$, $\forall s \in S$.

 $(\sigma^*, \alpha^*, \mu^*)$ is a **perfect Bayesian equilibrium** (PBE) if: • $\sigma^*(t)$ solves

$$\max_{s \in S} U_1(\alpha^*(s), t, s)$$

for all t, **2** $\alpha^*(s)$ solves $\max_{a \in A} \sum_{t \in T} \mu^*(t \mid s) U_2(a, t, s)$ for all s, $\sum_{s} \sigma^*(f)(s) = 1$ $\alpha \wedge \mathcal{H}_{i} \wedge \mathcal{G}_{s} \circ \mathcal{G}_{s}$

Songzi Du (UCSD Econ 200C)

6 / 19

Perfect Bayesian Equilibrium (based on appraisals) SC Receiver's belief (appraisal) about sender's strategy:

• Receiver's belief (appraisal) about sender's strategy: $\mathcal{M} = S$ $\mathcal{U} = \mathcal{I}$ $\tilde{\mu}(\cdot \mid s) \in \Delta(Z(s))$, where Z(s) is the set of pure strategies that $\mathcal{Z}(s)$ sends s for some type (z(t) = s for some t). $\mathcal{Z} \subseteq \mathcal{T} \longrightarrow \mathcal{S}$ Perfect Bayesian Equilibrium (based on appraisals)

- Receiver's belief (appraisal) about sender's strategy:
 μ̃(· | s) ∈ Δ(Z(s)), where Z(s) is the set of pure strategies that sends s for some type (z(t) = s for some t).
 Ω 2(f)/s) = 1
- $(\sigma^*, \alpha^*, \tilde{\mu}^*)$ is a **perfect Bayesian equilibrium** (PBE) if: $\sigma^*(t)$ solves

for all s,

Perfect Bayesian Equilibrium (based on appraisals)

- Receiver's belief (appraisal) about sender's strategy:
 μ̃(· | s) ∈ Δ(Z(s)), where Z(s) is the set of pure strategies that sends s for some type (z(t) = s for some t).
- $(\sigma^*, \alpha^*, \tilde{\mu}^*)$ is a **perfect Bayesian equilibrium** (PBE) if: • $\sigma^*(t)$ solves

 $\max_{s\in S} U_1(\alpha^*(s), t, s)$

for all t,

2 $\alpha^*(s)$ solves

$$\max_{a \in A} \sum_{z \in Z(s)} \tilde{\mu}^*(z \mid s) \frac{\sum_{t \in T} p(t) z(t)(s) U_2(a, t, s)}{\sum_{t' \in T} p(t') z(t')(s)}$$

for all s,

 $\widehat{\mu}^* \text{ derives from prior and } \sigma^* \text{ using Bayes's Rule whenever possible,} \\ \widetilde{\mu}^*(z \mid s) = \frac{\left(\prod_{t \in T} \sigma^*(t)(z(t))\right) \left(\sum_{t \in T} p(t) z(t)(s)\right)}{\sum_{t \in T} p(t) \sigma^*(t)(s) p(s)}.$

Example in Beer-Quiche game • Suppose $\sigma^*(S)(B) = 0.9$ and $\sigma^*(W)(B) = 0.3$. What is $\tilde{\mu}(\cdot \mid B)$? behavival stratesy Equivalent mixed strategy: of (BB) = 0.9.0.3=0.27 $O^{*}(BQ) = 0.9 \cdot 0.7 = 0.63$ $\sigma^{*}(QB) = 0.1 \cdot 0.3 = 0.03$ $\sigma^{+}(QQ) = 0.1 \cdot 0.7 = 0.07$ 0.27.1P(B(BB) $= \frac{0.27.1}{0.9.019+0.10.3}$ M(BB|B) =P(B) 0.27 P(BB) P(B | BB) = 0.84 + P(BQ)P(B|BQ)

 $\widehat{\mathcal{M}}(\mathbb{B}\mathbb{Q}[\mathbb{B}) = \frac{0.63 \cdot |\mathbb{P}(\mathbb{B}|\mathbb{B}\mathbb{Q})}{0.94} = \frac{0.63 \cdot 0.9}{0.84}$ $\widetilde{M}(BB|B) = \frac{0.03 \cdot 0.1}{0.94}$ $\hat{m}(aa|B) = 0$ $\tilde{m}(\cdot | B) \in A(2(B))$ $Z(B) = \int BB, BQ, QB$ $M(S|B) = \frac{0.63.0.9}{0.94} \cdot P(S|BQ,B)$ $+ \frac{0.21}{0.84} \cdot P(5|BB,B)$ 0,0 $+ \frac{0.03.0.1}{0.84} \cdot P(S|QB,B)$ $= \frac{P(S, B)}{P(B)} = \frac{0.9 \cdot 0.9}{0.84}$

Terminology

- s is on the equilibrium path if $\sigma^*(t)(s) > 0$ for some t.
- Equilibrium outcome $\pi \in \Delta(T \times S \times A)$, induced by some PBE. $T(f, S, A) = P(f) \cdot \sigma^*(f)(S) \cdot \chi^*(S)(A) = (\sigma^*, \chi^*, \mu^*)$

Terminology

- s is on the equilibrium path if $\sigma^*(t)(s) > 0$ for some t.
- Equilibrium outcome $\pi \in \Delta(T \times S \times A)$, induced by some PBE.
- Pooling equilibrium: $\sigma^*(t)$ constant in t
 - $\mu^*(\cdot | s) = p(\cdot)$ whenever s is on the equilibrium path
- Separating equilibrium: the support of $\sigma^*(t)$ does not intersect the support of $\sigma^*(t')$ if $t \neq t'$
 - $\mu^*(t \mid s) = 1$ if $\sigma^*(t)(s) > 0$
- There are also "hybrid" equilibria in which some types pool and some types separate.

Beer-quiche game

BQ is not a part of a PBE

PBE #1 in beer-quiche game $\sigma^{*} = \beta \beta$

PBE#2 in beer-quiche game $\mathcal{O}^{*} = \mathcal{Q} \mathcal{Q}$

Beer-quiche game, normal form

3 4 aa t 4 ba strictly dominates

A "no strictly dominated strategy" refinement of PBE

• For every off-equilibrium signal s, receiver's appraisal $\tilde{\mu}(\cdot | s)$ places probability 0 on strictly dominated strategies whenever possible (i.e., when there is a strategy in Z(s) that is not strictly dominated).

Every strategy in Z(s) is strictly dominated Danything goes for m(- 15)

14/20

* (QQ, FR, M*) is a PBE M(QB|B) = 0, QBis strictly dominated $\widehat{M}^{*}(BB|B) + \widehat{M}^{*}(BA|B) = 1$ M(S|B) = 0.9 M(S|B) = 1 =)M(S|B) = 0.9 => Retreat outfler observing B =) Contradicts Stype choosing Q. So (RR, FR, M*) cannot satisfy "no strictly dominated strategy" refinement.

 $IC(t_1)$ A IC(tr) 5 $\alpha(s) - c(s, t,) = constant$ $\frac{\partial A}{\partial S}(S) - \frac{\partial C}{\partial S}(S, H_1) = 0$ Example: $C(s, t) = \frac{s^2}{t}$

* Separating PBE: $O^{*}(f_{1}) = S_{1}, \quad O^{*}(f_{2}) = S_{2}$ $S_1 \neq S_2$ $HS, X^{*}(S) \in [-\delta, -\delta_{2}]$ $X^{*}(S_{1}) = t_{1}, X^{*}(S_{2}) = t_{2}$ 5, > 0, X*(Si)=t, => profitable deviation to 51=0 $\sum S_1 = 0$ $t_1 - c(0, t_1) \ge t_2 - c(s_2, t_1)$ $f_2 - c(g_1, t_2) \ge f_1 - c(0, t_2)$ $\left(\left(S_{2}, t_{1} \right) - c \left(0, t_{1} \right) + t_{2} - t_{1} \leq c \left(S_{2}, t_{1} \right) - c \left(0, t_{1} \right) \right)$

 $O^{\mathcal{X}}(\mathcal{G}_1) = O$, $O^{\mathcal{X}}(\mathcal{G}_2) = S_2$ 5 4 5 2 $X^{\#}(S) = \int t_1 \\ \xi_2$ 5 2 52 Pooling PBE $\mathcal{O}^{\mathcal{A}}(\mathcal{E}_{r}) = \mathcal{O}^{\mathcal{A}}(\mathcal{E}_{2}) = S_{0}$ $X^{+}(S_{0}) = pt_{2} + ((-p)t_{1})$ $p t_{2} + ((-p) t_{1} - c(S_{0}, t_{1})) = t_{1} - c(0, t_{1})$ $= t_{1} - c(0, t_{1})$ $= p t_{2} + ((-p) t_{1} - c(S_{0}, t_{2})) > t_{1} - c(0, t_{2})$

 $\chi^{*}(5) = \int_{-\tau_{1}}^{-\tau_{2}} f(r \cdot p) \delta_{r} \quad S = 5_{0}$ $\zeta^{*}(5) = \int_{-\tau_{1}}^{-\tau_{2}} \delta_{r} \quad S \neq 5_{0}$

 $\mathcal{X}^{\mathsf{f}}(5) = \int_{\mathsf{P}} \mathcal{T}_1 \qquad S < S_0$ $\mathsf{P}_2 \mathsf{f}(\mathsf{F}_{\mathsf{P}}) \mathcal{T}_1 \qquad S > S_0$

Forward Induction (Govindan and Wilson, 2009) NWBR

- Fix a (PBE) equilibrium outcome $\pi \in \Delta(T \times S \times A)$.
- A pure strategy $z : T \to S$ is *relevant* for π if it is a best response to α^* of a PBE $(\sigma^*, \alpha^*, \tilde{\mu}^*)$ that induces π .
- A signal $s \in S$ is *relevant* for π if z(t) = s for some relevant z and type t.

Forward Induction (Govindan and Wilson, 2009)

• Fix a (PBE) equilibrium outcome $\pi \in \Delta(T \times S \times A)$.

- A pure strategy $z : T \to S$ is *relevant* for π if it is a best response to α^* of a PBE $(\sigma^*, \alpha^*, \tilde{\mu}^*)$ that induces π .
- A signal $s \in S$ is *relevant* for π if z(t) = s for some relevant z and type t.

Definition

An equilibrium outcome π satisfies **forward induction** if it is induced by a PBE $(\sigma^*, \alpha^*, \tilde{\mu}^*)$ such that at all π -relevant signals s, $\tilde{\mu}^*(\cdot | s)$ places probability one on π -relevant strategies.

• Forward induction implies intuitive criterion, D1, D2, etc.

Intuition of forward induction An equilibrium theory of off-equilibrium signals

- At a PBE, receiver tries to rationalize an off-equilibrium s, believing that s is sender's best response to another PBE with the same outcome.
- Receiver thinks that:
 - Sender is confused about which PBE is in effect, which is understandable since the two PBE's result in the same outcome.
 - In other words, Sender is confused about receiver's off-equilibrium play.

16 / 19

Forward induction in beer-quiche game

18 / 20

 $(BB, NF, \overline{n}(BB|B) = 1, \overline{n}(BQ|Q) = 1)$ ll is n PBE. satisfies forward induction. DII satisfies forward induction (S-Q, W-Q, Q-R) does not satisfy forward induction.

Forward induction in job market signaling (two types) Pooling equilibrium outcome: $\Pi: \left(\begin{array}{c} S_{0}, S_{0} \end{array} \right) = \sigma^{*}, \quad \mathcal{A}^{*}(S_{0}) = pt_{2} + (l-p)t_{1}$

Consider 5'>So slightly Claim: S'is a TI-relevant signal, (So, S') is TI-relevant, Proof: Pick a PBE ((So, So), X*)

rfsfs' $CX'(G) = \int CX^{(G)}(G)$ t'(f s = s) $pt_{2} + ((-p)t_{1} - c(s_{0}, t_{2}) = t' - c(s', t_{2})$ $pt_2 + ((-p)t_1 - c(s_0, t_1) > t' - c(s', t_1)$ $\left(\begin{array}{c} c(s'_{1}t_{1}) - c(s_{0},t_{1}) > c(s'_{1},t_{2}) - c(s_{0},t_{2}) \\ \int_{s_{0}}^{s'} \frac{9c}{95}(s_{1},t_{1}) ds > \int_{s_{0}}^{s'} \frac{9c}{95}(s_{1},t_{2}) ds \end{array} \right)$ ICH, ICHz) $p-t_2+(1-p)t_1$ 5051 S ((So,So), X') is L PBE. (50,51) is a best response to X1. So (So, SI) is T-relevant. D

& Claim: (S', S") is not TI-relevant for any s''. Proof: Suppose (5', 5") is TI-relevant, i.e., $\exists x' \in ((S_0, S_0), x')$ is a PBE, and (5', 5") is optimal given X'. Then -C. is indifferent between So and s' Dt2 strictly prefers s' to So IC(t2) $\mathcal{K}'(\mathcal{S}')$ $p - t_2 + ((-p) - t_1)$ 51 = Contradiction of ((so, so), α) being PBE. D

Suppose TI satisfies FI, i.e., $MPBE((S_0, S_0), X^{*}, M^{*}),$ $\operatorname{cnd} \mathcal{M}^{\mathcal{H}}(S', S'') | S') = O \ \mathcal{H}S''$ $= \mathcal{M}^{\dagger}(f_2|S') = [$ $) \mathcal{A}^{\#}(\mathcal{S}^{r}) = \mathcal{L}_{2}$ $pt_2 + ((-p)t_1 - c(s_0, t_2))$ $< t_2 - c(S', t_2)$

Separating Equilibrium outcome $\mathcal{T} \circ \left(0, S_2 \right)^{-1} S_2 > 0$ $\mathcal{K}^{\mathcal{K}}(\mathcal{O}) = \mathcal{T}_{1}$ $X^{+}(S_2) = t_2$ JC(tr) $C(t_2)$ $-\mathcal{V}_{\mathsf{f}}$ 5\$ 5 5 5 5 $t_1 - c(0, t_1) = t_2 - c(5, t_1)$

* (s', s'') is not TI-relevant, #(S'', S') is TI-velevant $if 0 \notin S' \notin S^*$. * Suppose a PBE ((0,S2), X*, M*) Satisfies FI, Mt (TI-relevant | SI)=1 $= M^{*}(-t_{2}|s') = |$ $= \mathcal{N}^{\dagger}(S') = f_2$ $= \int t_2 - C(S_2, t_2) \leq t_2 - C(S', t_2)$ Dontradiction =) IT does not satisfy FI.

 $AS' \leq S, (S'', S')$ is not T-relevant, $J \leq 1$ For s'is $M^{*}((S', S')|S') = 0, HS'$ $= M^{\mathcal{X}}(\mathcal{F}_{1}|\mathcal{G}) = [.$ Fors's, anything goes for M(-(S))

A recipe for forward induction in signaling game

- For simplicity, suppose the sender is playing a pure strategy.
- Fix the equilibrium outcome π. (This tells you the sender's equilibrium strategy σ as well as the receiver's equilibrium action α(s) for s ∈ {σ(t) : t ∈ T}.)

A recipe for forward induction in signaling game

- For simplicity, suppose the sender is playing a pure strategy.
- Fix the equilibrium outcome π. (This tells you the sender's equilibrium strategy σ as well as the receiver's equilibrium action α(s) for s ∈ {σ(t) : t ∈ T}.)
- 2 For any off-equilibrium s', it suffices to consider relevant strategy z such that z(t) is either s' or $\sigma(t)$ for every t.
 - Make up α'(s') (and given α(σ(t))) so that every t weakly prefers σ(t) to s'; and if z(t) = s' then t is indifferent between σ(t) and s'.

A recipe for forward induction in signaling game

- For simplicity, suppose the sender is playing a pure strategy.
- Fix the equilibrium outcome π. (This tells you the sender's equilibrium strategy σ as well as the receiver's equilibrium action α(s) for s ∈ {σ(t) : t ∈ T}.)
- 2 For any off-equilibrium s', it suffices to consider relevant strategy z such that z(t) is either s' or $\sigma(t)$ for every t.
 - Make up α'(s') (and given α(σ(t))) so that every t weakly prefers σ(t) to s'; and if z(t) = s' then t is indifferent between σ(t) and s'.
- 3 $\tilde{\mu}(\cdot | s')$ puts probability 1 on the relevant z from (2), choose $\alpha(s')$ to best respond to $\tilde{\mu}(\cdot | s')$.
 - Make sure every t prefers $\sigma(t)$ to s'.