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ROBUST MECHANISMS UNDER COMMON VALUATION

SONGZI DU
Department of Economics, Simon Fraser University

I construct an informationally robust auction to sell a common-value good. I examine
the revenue guarantee of an auction over all information structures of bidders and all
equilibria. As the number of bidders gets large, the revenue guarantee of my auction
converges to the full surplus, regardless of how information changes as more bidders
are added. My auction also maximizes the revenue guarantee when there is a single
bidder.

KEYWORDS: Robust mechanism, common-value auction, full surplus extraction,
large markets.

1. INTRODUCTION

IN THIS PAPER, I CONSTRUCT an auction mechanism whose revenue guarantee over all
information structures and all equilibria converges to the full surplus as the number of
bidders gets large, regardless of how information changes as more bidders are added.
I assume all bidders have a common value for the auctioned good, so the full surplus is
simply the expected common value.

Standard auction formats, such as first or second price auction, in general do not have
such an asymptotic guarantee of full surplus extraction. Standard auctions are able to
extract the full surplus in large markets when bidders have one-dimensional signals that
are symmetrically and smoothly distributed, as shown by Wilson (1977), Milgrom (1979),
Pesendorfer and Swinkels (1997), Bali and Jackson (2002), among others. However, when
one bidder has proprietary information and is strictly more informed about the value than
all other bidders (Engelbrecht-Wiggans, Milgrom, and Weber (1983)), or when there is a
resale market that prices the value at the maximum of everyone’s signals (Bergemann,
Brooks, and Morris (2017a, 2017c)), standard auctions typically fail to extract the full sur-
plus even as the number of bidders goes to infinity. From the perspective of an auctioneer
whose platform must accommodate diverse groups of bidders, it is useful to commit to
an auction that can be used in a variety of situations, which saves the costs of having to
customize an auction design to each specific situation. Such commitment also makes the
auction design more familiar and more understandable to the bidders, potentially making
them more likely to participate.

The auction that I construct is simple to describe. Suppose there is a single unit of
good to sell and N ≥ 1 bidders with quasi-linear utility and a common value (but poten-
tially different information about the value). Let the message space for each bidder i be
the interval [0�1]. I interpret a message mi ∈ [0�1] as a demand for a fraction mi of the
good. Buyer i gets qi(mi�m−i) quantity of allocation (qi could be the literal quantity if the
good is divisible, or the probability of allocation if the good is indivisible) and pays ti(mi)
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independent of others’ messages. If m1 ≥m2 ≥ · · · ≥ mN , then (mN+1 ≡ 0):

qi(mi�m−i) =
N∑
j=i

mj −mj+1

j
� ti(mi) =X

(
exp(mi/A)− 1

)
�

and analogously for any other ordering of (m1�m2� � � � �mN). That is, the lowest bidder
gets 1/N of his demand, the second lowest bidder gets that plus 1/(N − 1) of the differ-
ence between his and the lowest demand, and so on.1 Thus, the total allocation is equal to
the highest demand.2 Moreover, each buyer’s payment depends only on his demand and
is independent of his final allocation. I call bidder i’s payment ti(mi) his bid in the auction;
in this sense, this is an all pay auction. Finally, the constants A> 0 and X > 0 in the pay-
ment rule are parameters that can be optimized for a specific distribution of values (if the
seller knows the distribution); intuitively, A and X are choices of units for the demand
and the payment, respectively. I call this mechanism the exponential price auction.

My main result is that for specific choices of parameters A and X that depend only
on the number N of bidders and the upper bound on value, the exponential price auc-
tion guarantees an expected revenue (over all information structures and all equilibria)
which converges to the full surplus as N → ∞. This equilibrium revenue is guaranteed
by the following two features of the auction. First, the exponential payment rule satis-
fies the linear relationship ti(mi) = A · t ′i(mi)−X . In any equilibrium, the marginal pay-
ment t ′i(mi), and hence the payment ti(mi) as well, is determined by the marginal surplus
E[v · ∂qi

∂mi
|mi] through the first-order condition (a bidder has no incentive to deviate locally

from mi), where E is based on the joint equilibrium distribution over v and m. Therefore,
the expected payment is determined by the expected marginal surplus E[v · ∂qi

∂mi
]. Sec-

ond, the allocation rule satisfies ∂qi
∂mi

= 1/ rank(mi;m), where rank(mi;m) is the rank of
mi among m = (m1�m2� � � � �mN). Therefore, the total expected marginal surplus satis-
fies E[v · ∑N

i=1
∂qi
∂mi

] = E[v] · ∑N

i=1 1/i, as
∑N

i=1 1/ rank(mi;m) = ∑N

i=1 1/i. Intuitively, for
an individual bidder i, the expected marginal surplus E[v · ∂qi

∂mi
] could be heavily distorted

from the expected value E[v], as v is weighted by the factor ∂qi
∂mi

. For example, there is the
winner’s curse: a low v is weighted by a high ∂qi

∂mi
= 1/ rank(mi;m) if the other bidders sub-

mit low demands m−i. However, for the expected revenue, we sum the expected marginal
surplus across all bidders, and in the summation these distortions cancel each other out.

When there is a single bidder (N = 1), the exponential price auction is an extension of
the random posted price mechanism in Carrasco, Farinha Luz, Kos, Messner, Monteiro,
and Moreira (2018). I prove that the exponential price auction gives the optimal revenue
guarantee when N = 1, which generalizes a result in Carrasco et al. (2018) from binary
value distribution to arbitrary distribution. Roesler and Szentes (2017) characterized the
optimal information structure for a buyer when the seller best responds to this informa-
tion structure with a posted price. I show that when N = 1, the revenue guarantee of the

1The allocation rule is similar to the serial-cost sharing payment rule of Moulin (1994) in a public good
provision setting, and to the side-payment rule in the knockout auctions used by a bidding cartel of stamp
dealers in the 1990s (Asker (2010)).

2The allocation is inefficient, since a positive fraction of the good (which always has a nonnegative value)
can remain unallocated. It is easy to make the auction efficient when N is large: just run the auction for the
first N − 1 bidders and give whatever that is unallocated to the last bidder for free. See Section 6 for another
tweak on the exponential price auction that yields efficient allocation.
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exponential price auction is exactly the seller’s optimal revenue at the Roesler–Szentes in-
formation structure, thus proving the optimality of the revenue guarantee.3 The Roesler–
Szentes information structure and the exponential price auction have proved to be useful
in the study of a robust dynamic pricing problem by Libgober and Mu (2017).

The setup and methodology in my paper come from Bergemann, Brooks, and Morris
(2017a), who analyzed the set of revenue and welfare outcomes in the first price auction
as one varies the information structure. Subsequent to this paper and working with the
same model, Bergemann, Brooks, and Morris (2017b) characterized an optimal mech-
anism that achieves the best possible revenue guarantee when there are two bidders
and binary common values. The optimal mechanism in Bergemann, Brooks, and Mor-
ris (2017b) shares some similar features with the exponential price auction: the bidder’s
message space is Mi = [0�1] and can be interpreted as demands for fractions of the good;
the allocation rule is piecewise linear over the messages; the payment rule is exponential
in one’s message and independent of the other’s message when m1 + m2 < 1 (i.e., when
the demands are compatible). Building on the techniques in Bergemann, Brooks, and
Morris (2017b), Brooks and Du (2018) characterized an optimal mechanism for any finite
number of bidders and an arbitrary distribution of common values. While the exponential
price auction is not exactly optimal when N > 1, it has the merit of simplicity; in partic-
ular, its payment rule is much simpler and more intuitive than that of the mechanisms in
Bergemann, Brooks, and Morris (2017b) and Brooks and Du (2018).

While this paper, along with Bergemann, Brooks, and Morris (2017a, 2017b) and
Brooks and Du (2018), is motivated by the desire to avoid mechanisms that depend on
fine details of bidders’ information structure (the Wilson (1987) doctrine), the way we
evaluate and construct mechanisms depends on the bidders having common knowledge
of this information structure and reacting optimally to their information. McLean and
Postlewaite (2018) constructed a detail-free, two-stage mechanism that fully extracts sur-
plus in large markets when bidders have both common and private values and condi-
tionally independent signals about the common value. Importantly, they did not assume
bidders have common knowledge of the information structure. On the other hand, their
revenue guarantee is weaker than mine, as it is over truthful revelation outcomes and not
over all equilibrium outcomes. This partial-implementation approach was also taken by
Chung and Ely (2007), Chen and Li (2018) and Yamashita (2017), who studied robust
mechanism with pure private value.

2. MODEL

Information

The seller has one unit of good to sell. There are N ≥ 1 bidders, who have a common
value v ∈ V = [0� v̄] for the good and have quasi-linear utility. Let p ∈ Δ(V ) be the prior

3In other words, in the case of one bidder, Roesler and Szentes (2017) characterized

min
info. structure

max
mechanism, equilibrium

Revenue�

while I characterize

max
mechanism

min
info. structure, equilibrium

Revenue�

and show it is equal to their minmax value. The exponential price auction and the Roesler–Szentes information
structure thus form a saddle point in the zero-sum game in which the seller chooses mechanism to maximize
revenue, while Nature chooses information structure to minimize revenue. Brooks and Du (2018) character-
ized this saddle point for any N > 1.
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distribution of common values. The bidders know the prior p. The seller knows v̄ but may
or may not know p.

Each bidder i may possess some information si ∈ Si about the common value in addition
to the prior, where Si is a set of signals (or types), and there is a joint distribution over
values and signals, p̃ ∈ Δ(V × ∏N

i=1 Si), which is consistent with p: p̃(B × S) = p(B) for
every measurable B ⊆ V . Bidder i thus has a posterior belief p̃(· | si) ∈ Δ(V × S−i) given
a realization of his signal si. For conciseness, I refer to an information structure (p̃� Si)
as p̃. The information structure p̃ is not known by the seller.

Mechanism

A mechanism is a set of allocation rules qi : M → [0�1] and payment/pricing rules ti :
M → R satisfying

∑N

i=1 qi(m) ≤ 1, where Mi is the message space of bidder i, and M =∏N

i=1 Mi the space of message profiles. A mechanism defines a game in which the bidders
simultaneously submit messages and have utility

Ui(v�m) = v · qi(m)− ti(m)� (1)

The allocation qi(m) is the share of the good that bidder i receives in the case of a divisible
good, and is the probability of getting the good in the case of an indivisible good.

I assume that a mechanism always has an opt-out option for each bidder i: there exists
a message mi ≡ 0 ∈ Mi such that qi(0�m−i)= ti(0�m−i)= 0 for every m−i ∈ M−i.

Equilibrium

Given a mechanism (qi� ti) and an information structure p̃, we have a game of incom-
plete information. A Bayes Nash Equilibrium (BNE) of the game is a strategy profile
σ = (σi), σi : Si → Δ(Mi), such that σi is a best response to σ−i: for any other strategy
σ ′

i , we have∫
(v�s)∈V ×S

Ui

(
v�

(
σi(si)�σ−i(s−i)

))
p̃(dv�ds)≥

∫
(v�s)∈V ×S

Ui

(
v�

(
σ ′

i (si)�σ−i(s−i)
))
p̃(dv�ds)�

where Ui(v� (σi(si)�σ−i(s−i))) is the multilinear extension of Ui in Equation (1).

Revenue Guarantee

The expected revenue at an information structure p̃ and an equilibrium σ is

R(p̃�σ)=
∫
(v�s)∈V ×S

N∑
i=1

ti
(
σi(si)�σ−i(s−i)

)
p̃(dv�ds)�

DEFINITION 1: A mechanism guarantees a revenue r if every information structure p̃
and every equilibrium σ has an expected revenue larger than or equal to r: R(p̃�σ)≥ r.

3. CLASSICAL AUCTIONS

In this section, I motivate the need for a new mechanism by arguing that the well-
known auction formats give unsatisfactory revenue guarantees: even as the market gets
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large, there is no guarantee that the expected equilibrium revenue tends to the full sur-
plus. In the auctions discussed below (with the exception of the last sentence of the final
paragraph), each bidder simultaneously submits a bid which is a single number.

First, consider a standard auction that awards the good to the highest bidder, such as
a kth price auction (1 ≤ k ≤ N , the winner pays the kth highest bid, the losers do not
pay), an all pay auction (everyone pays his own bid), or an average price auction (the win-
ner pays a (potentially weighted) average of all bids, the losers do not pay). Bergemann,
Brooks, and Morris (2017a, 2017c) showed that in a standard auction, the revenue guar-
antee is bounded away from the full surplus as N → ∞. Consider the following (“BBM”)
information structure: each bidder i receives an independent and identically distributed
(i.i.d.) signal si from the cumulative distribution function (CDF) FN(si) = p(v ≤ si)

1/N ,
and the common value is v = maxi si (so the distribution of values is the prior p inde-
pendent of N). Intuitively, in the BBM information structure with lots of bidders, most
bidders have very little private information about the value as their signals are close
to the lowest possible signal: if a signal si is not the lowest possible signal, that is, if
p(v ≤ si) > 0, then the probability that a bidder receives a signal less than or equal to
si is FN(si)= p(v ≤ si)

1/N → 1.4  Bergemann, Brooks, and Morris (2017a) showed that the
BBM information structure is the worst case information structure for the first price auc-
tion, and under this information structure the equilibrium revenue does not converge to
the full surplus as N → ∞. Bergemann, Brooks, and Morris (2017c) showed that in any
standard auction, the BBM information structure has an equilibrium in which bidders
behave as if the signals are their private values. But since all standard auctions generate
the same expected revenue in equilibrium under independent private values (the revenue
equivalence theorem), they also generate the same expected revenue in equilibrium un-
der the BBM information structure. Therefore, that the equilibrium revenue under the
BBM information structure does not tend to the full surplus for the first price auction
implies the same statement for any standard auction.

Next, suppose the highest bidder does not get all of the good: the good is divided into
kN ≤N equal parts (either probabilistically through randomization, or literally if the good
is divisible), and the top kN bidders each get a part of the good. There are two well-known
auctions in this context: the discriminatory price auction, in which each of the kN winners
pays his own bid, and the uniform price auction, in which each of the kN winners pays
the (kN + 1)th highest bid; in either auction, the losers do not pay. Jackson and Kremer
(2007) showed that the revenue guarantee of the discriminatory price auction does not
tend to the full surplus in large markets: when kN/N tends to some constant between
0 and 1, in the limit the equilibrium revenue is strictly less than the full surplus for any
conditionally independent information structure.

The situation is better with the uniform price auction. As shown by Pesendorfer and
Swinkels (1997), if kN → ∞ and N − kN → ∞ as N → ∞, then the equilibrium revenue
tends to the full surplus in uniform price auction under conditionally independent infor-
mation structure. Yet, it is easy to come up with an information structure whose equilib-
rium revenue does not converge to the full surplus in the uniform price auction: suppose
there are kN informed bidders who know the value, and the other N − kN bidders have
no information beyond the prior. Then an equilibrium in the uniform price auction is that

4This feature is reminiscent of the information structure in Engelbrecht-Wiggans, Milgrom, and Weber
(1983), in which one bidder knows the value, while the rest have no information. Engelbrecht-Wiggans, Mil-
grom, and Weber (1983) showed that, in the first price auction with this information structure, the equilibrium
revenue also fails to converges to the full surplus as N → ∞.
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each of the informed bidders truthfully bids the value, while the rest bid 0; the equilib-
rium revenue is exactly zero, and all surplus is captured by the informed bidders. Note
that the same equilibrium remains whether the uniform price auction is implemented as
a sealed-bid or an ascending-bid auction.

4. MAIN RESULT

Recall the exponential price auction: Mi = [0�1], and given demands 1 ≥ m1 ≥ m2 ≥
· · · ≥ mN ≥ 0 ≡mN+1,

qi(mi�m−i)=
N∑
j=i

mj −mj+1

j
� ti(mi)= XN

(
exp(mi/AN)− 1

)
� (2)

and analogously for any other ordering of (m1�m2� � � � �mN).

THEOREM 1: Suppose as N → ∞, AN logN → 1, XN = v̄AN

KN exp(1/AN)
, where logKN

logN → 0,
and N ·XN → 0. The revenue guarantee of the exponential price auction converges to the full
surplus

∫
v
vp(dv) as N → ∞.

The parameter XN depends on the upper bound v̄ of value; AN and XN do not depend
on any other feature of the prior distribution of values. Of course, if the seller does know
the prior distribution p, then he can optimize AN and XN with respect to p using the
explicit lower bound in Equation (13) of the proof (page 1583).

Suppose the seller has mistaken beliefs about v̄ and N ; he might believe they are ˜̄v and
Ñ when v̄ and N are the true values. If there exists a constant factor C > 0 independent of
N such that 1/C ≤ ˜̄v/v̄ ≤ C and 1/C ≤ Ñ/N ≤ C, then the auction with the misspecified
˜̄v and Ñ is still guaranteed to extract the full surplus when N is large; this is because the
parameters AÑ and XÑ defined from ˜̄v and Ñ are still within the range of parameters in
Theorem 1.

In Theorem 1, the integer5 
KN� is the equilibrium number of bidders who demand the
entire allocation (mi = 1) when there is common knowledge of the highest value (v = v̄),
since v̄/KN = XNe

1/AN /AN = t ′i(1). Thus, the condition logKN/ logN → 0 in Theorem 1
says that the prices are sufficiently high so that even under the highest value, only a small
number of bidders will demand the entire allocation: KN must grow with N more slowly
than any power function of N . On the other hand, the prices cannot be too high for
Theorem 1, which is the condition N · XN → 0. As I discuss following Equation (3), XN

is a fixed amount of information rent extracted by a bidder in equilibrium. The condition
N ·XN → 0 thus says that the sum of such rent must go to zero as N → ∞.

For some intuition about the limiting behavior in the exponential price auction and how
it is connected with the parameters, consider an information structure and equilibrium
such that the demand mi is ex ante symmetrically distributed across i.6 Suppose AN =
1/ logN . Then, Theorem 1 says that

N ·E[
ti(mi)

] = v̄

KN logN
E
[
Nmi − 1

] → E[v]� as N → ∞�

5For any real number x, 
x� is the largest integer that is smaller than or equal to x.
6I am grateful to a referee for this calculation.
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FIGURE 1.—Compare the revenue guarantees of various mechanisms for the uniform distribution on [0�1].

Since KN logN → ∞, which is the N · XN → 0 condition in Theorem 1, E[Nmi ] grows
with N at the slow rate of KN logN . In particular, by Jensen’s inequality, we have NE[mi] ≤
E[Nmi ]; thus E[mi] ≤ logKN+log logN

logN → 0, by the logKN

logN → 0 condition in Theorem 1. That is,
in a symmetric equilibrium, the demand of each individual bidder must vanish as N → ∞.

The proof of Theorem 1 shows that (cf. Equation (13)) if AN = 1/ logN and KN is a
constant, then the revenue guarantee converges to the full surplus at a rate of 1/ logN .
Brooks and Du (2018) constructed mechanisms that maximize the revenue guarantee
(maxmin mechanisms) with respect to a prior distribution of values when N > 1; they
considered two cases: the must-sell case, which optimizes the revenue guarantee subject
to the constraint that the allocation rule is efficient (the total allocation always adds up
to 1), and the can-keep case, which gives the unconstrained optimum. They showed that
in both cases, the optimal revenue guarantees converge to the full surplus at the rate of
1/

√
N . Nevertheless, when the prior is the uniform distribution on [0�1], the revenue

guarantees of the exponential price auctions are fairly close to the optimum, as shown in
Figure 1, which is taken from Brooks and Du (2018). In Figure 1, I optimize parameters
AN and XN of the exponential price auction with respect to the uniform distribution. The
full surplus in this case is 1/2. I also include the revenue guarantees of the first price
auction (Bergemann, Brooks, and Morris (2017a)), which tends to 1/4 as N → ∞, and
the optimal revenue guarantee for a posted price (a posted price of 1/4, giving a revenue
guarantee of 1/8), which is independent of N .

4.1. Example

For a given information structure (p̃� Si), the equilibrium strategy in the exponential
price auction is straightforward to characterize. Without loss of generality, let us focus
here on a pure-strategy equilibrium σ . The first-order condition, equating the marginal
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surplus with the marginal payment, is

E

[
v

rank
(
σi(si);σ(s)

) ∣∣∣ si] = t ′i
(
σi(si)

)
�

where σi(si) ∈ Mi is bidder i’s equilibrium demand given the signal si, and rank(mi;m) ∈
{1�2� � � � �N} is the rank of mi in the message profile m; for example, if mi = 0�5 and m =
(0�2�0�5�0�3), then rank(mi;m) = 1.7 Thus, if a bidder’s equilibrium demand is interior,
that is, σi(si) ∈ (0�1), then his equilibrium bid/payment is

ti
(
σi(si)

) =AN ·E
[

v

rank
(
σi(si);σ(s)

) ∣∣∣ si] −XN� (3)

since we have ti(mi) = AN · t ′i(mi) − XN . Thus, in equilibrium one’s bid is a linear func-
tion of the conditional expectation of the marginal surplus, that is, the value divided by
the rank of one’s bid. The slope AN represents the proportion of bid shading from the
marginal surplus (AN < 1 in Theorem 1), while the intercept XN is a fixed amount of in-
formation rent that a bidder keeps for himself and withholds from payment. Importantly,
a bidder accounts for the winner’s curse in the equilibrium strategy in (3): a low v is usu-
ally correlated with a high rank(σi(si);σ(s)) in the conditional expectation, as the other
bidders are likely to submit low demands in σ−i(s−i); and likewise for a high v and a low
rank(σi(si);σ(s)); thus, low v is “over-represented” and high v “under-represented” in
the conditional expectation of the marginal surplus.

The conditional expectation of the marginal surplus in Equation (3) is often very sim-
ple in large markets. For example, suppose, conditional on a realization of value v, each
bidder i receives an independent signal si from the CDF FN(· | v). Then, in a symmet-
ric monotone equilibrium, we have the following bidding strategy for a large N and an
interior demand:

ti
(
σi(si)

) ≈ AN ·
∫
v

v

N
(
1 − FN(si | v)

) p̃(dv | si)−XN�

if FN(si | v) < 1 for all v: conditional on v, since the signals are i.i.d., the rank of σi(si) is
close to N(1 − FN(si | v)) with high probability when N is large.

To illustrate the full surplus extraction, let us take the simple case of independent
signals. Consider the information structure in Bergemann, Brooks, and Morris (2017a,
2017c): the signal si ∈ Si = [0�1] is i.i.d. across the bidders, and v = maxi si. The signal si
has CDF FN(si)= p(v ≤ si)

1/N . (See the discussion in Section 3.)
It is easy to check that E[maxj sj | si] ≈ E[maxj sj] = E[v] when N is large, if FN(si) < 1.

Therefore, the equilibrium bidding strategy for a large N and an interior demand is

ti
(
σi(si)

) ≈AN · E[v]
N

(
1 − FN(si)

) −XN�

7When mi ties with other demands in m, the left and right derivatives of qi(mi�m−i) with respect to mi

are different; nevertheless, I can still write ∂qi
∂mi

= 1/ rank(mi;m) if in determining rank(mi;m) I break ties
in favor of mi for the right derivative (e.g., rank(0�3; (0�3�0�3�0�4�0�3)) = 2), and break ties against mi for
the left derivative (e.g., rank(0�3; (0�3�0�3�0�4�0�3)) = 4). Moreover, as the left and right derivatives of ti(mi)
coincide, in equilibrium there cannot be any tie in mi with positive probability when mi ∈ (0�1); for otherwise
bidder i must either have an incentive to demand a little more than mi , or to demand a little less than mi .
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if FN(si) < 1. As discussed in Section 3, when N is large, most bidders in the BBM infor-
mation structure have very little private information about the value, as their signals are
close to the lowest possible signal, so their conditional values are close to E[v]. Therefore,
not counting the payments of the bidders with FN(si) = 1, the equilibrium revenue from
the BBM information structure is close to the equilibrium revenue when all bidders are
uninformed, which is at least

N∑
i=1

(
AN · E[v]

i
−XN

)
�

If AN · E[v]
i

− XN < 0, then the ith highest bidder demands and pays 0 in equilibrium, so
the above is a lower bound on the equilibrium revenue. Suppose t ′i(1) = XNe

1/AN /AN >
E[v], so no one demands the entire allocation in equilibrium. Since

∑
j 1/j ≈ logN , taking

AN = 1/ logN and XN such that NXN → 0 and XNe
1/AN /AN = XNN logN > E[v], the

above lower bound converges to the full surplus E[v].
The BBM information structure highlights an important difference between the expo-

nential price auction and first price auction. In the first price auction with BBM informa-
tion structure, bidders bid very small amount in equilibrium because they anticipate the
winner’s curse: one wins only when he has the highest signal, that is, only when the value
is equal to his signal, which is small with an overwhelming probability. In other words, the
equilibrium bid in the first price auction is contingent on the unlikely event that one’s sig-
nal is the highest signal, which results in a pessimistic estimation of the value. In contrast,
the equilibrium bid in the exponential price auction is contingent on the high probability
event that one’s signal is ranked according to its percentile, which does not result in any
distortion in one’s estimation of the value.

4.2. Proof of Theorem 1 When KN < 1

I focus here on a simple case of Theorem 1 in which KN < 1 (no one demands the entire
allocation) and leave the general case to Section A.

Fix an information structure p̃ and an equilibrium σ . They induce a distribution ρ ∈
Δ(V ×M), which is known as a Bayes correlated equilibrium (BCE; see Bergemann and
Morris (2013, 2016)).

I have the following first-order condition (ρ-almost-surely over mi):

∫
(m−i�v)

v

rank(mi;m)
ρ(dm−i� dv |mi)

⎧⎪⎨
⎪⎩

≤ t ′i(mi)� mi = 0�
= t ′i(mi)� 0 <mi < 1�
≥ t ′i(mi)� mi = 1�

(4)

By the assumption of KN < 1, t ′i(1) = XNe
1/AN /AN = v̄/KN > v̄. That is, the marginal

surplus from a demand of 1 is strictly dominated by the marginal payment, so no bidder
will demand mi = 1 in equilibrium; that is,

ρ
(
V × [0�1)N

) = 1�

Integrating the first-order condition across mi ∈ [0�1), with respect to ρ(dmi), I get a
lower bound on the marginal payments:∫

(m�v)

t ′i(mi)ρ(dm�dv) ≥
∫
(m�v)

v

rank(mi;m)
ρ(dm�dv)�
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Since ti(mi) = AN · t ′i(mi) − XN , I can convert the above into a lower bound on the rev-
enue:

N∑
i=1

∫
(v�m)

ti(mi)ρ(dv�dm)≥
N∑
i=1

(
AN ·

∫
(v�m)

v

rank(mi;m)
ρ(dv�dm)−XN

)

≥
∫
(v�m)

(
N∑
i=1

AN

i

)
vρ(dv�dm)−N ·XN

=
∫
v

(
N∑
i=1

AN

i

)
vp(dv)−N ·XN�

where in the second line I use the fact that
∑N

i=1
1

rank(mi;m)
≥ ∑N

i=1 1/i. Finally, as
AN log(N) → 1 and N · XN → 0, the last line converges to the full surplus

∫
v
vp(dv)

as N → ∞. This concludes the proof of Theorem 1 when KN < 1.

REMARK 1: As I have only used the bidder’s first-order condition in the proof of the
revenue guarantee, the guarantee of full surplus extraction in Theorem 1 actually holds
over all local equilibria, that is, strategy profile in which there is no incentive to deviate
locally (deviations from mi to mi + ε and to mi − ε, when one’s strategy is supposed to
submit mi, where ε > 0 is small). In fact, all I need is that there is no incentive to deviate
locally upwards (deviation from mi to mi + ε); or in other words, all I have used in the
proof is the first-order condition where the derivatives are defined by the right limits.
Having a revenue guarantee over all local equilibria is nice from a robustness perspective
because the set of local equilibria is a superset of the set of equilibria, and boundedly
rational or inexperienced bidders are likely to end up at a local equilibrium as the local
deviations tend to be more salient than the nonlocal deviations.

REMARK 2: Since the exponential price auction has continuous allocation and pay-
ment rules, an equilibrium exists under quite permissive conditions on the informa-
tion structure. More specifically, an information structure (p̃� Si) is product continu-
ous if margS p̃ is absolutely continuous with respect to the independent product mea-
sure margS1

p̃ ⊗ · · · ⊗ margSN
p̃, where margS p̃ is the marginal distribution of p̃ over

S = ∏N

i=1 Si, and similarly for margSi
p̃ (cf. Milgrom and Weber (1985)). Notice that if S

is a finite or countably infinite set, or if the signals are independent according to p̃, then
the information structure is automatically product continuous. Theorem 1 of Carbonell-
Nicolau and McLean (2017) implies that under any product continuous information struc-
ture, an equilibrium exists in the exponential price auction.

5. ONE BIDDER CASE

In this section, I suppose the seller knows the prior distribution of values. I show that the
exponential price auction gives the best possible revenue guarantee when N = 1 by mak-
ing a connection to a result of Roesler and Szentes (2017). Roesler and Szentes (2017)
studied the optimal information structure for the bidder (and the worst for the seller)
when the seller best responds to the information structure with a posted price. This infor-
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mation structure has the following CDF for the signals:

GB
π(s) =

⎧⎪⎨
⎪⎩

1� s ≥ B�

1 −π/s� s ∈ [π�B)�
0� s < π�

(5)

where s is an unbiased signal of the bidder about his value (E[v | s] = s), [π�B] is the
support of the signal, π > 0, and there is an atom of size π/B at s = B. By construction,
the prior p is a mean-preserving spread of GB

π , that is, the following two conditions are
satisfied: ∫ v̄

v=0
vp(dv) =

∫ v̄

s=0
sGB

π(ds) = π +π logB −π logπ� (6)

min
s∈[π�B]

F(s�π�B)≥ 0� where
(7)

F(s�π�B)≡
∫ s

s′=0
p

(
v ≤ s′)ds′ −

∫ s

s′=0
GB

π

(
s′)ds′�

Equation (6) says that GB
π has the same mean as p; let B(π) be the unique B such that

Equation (6) holds for a given π. Equation (7) says that GB
π second-order stochastically

dominates p. Let F(s�π) ≡ F(s�π�B(π)).
If GB(π)

π is the distribution of unbiased signals for the bidder, then the seller is clearly in-
different between every posted price in [π�B] and has an expected revenue of π from an
optimal mechanism. Roesler and Szentes (2017) proved that the best information struc-
ture for the bidder (and the worst for the seller) when the seller best responds to the in-
formation structure is GB(π∗)

π∗ , where π∗ is the smallest π such that mins∈[π�B(π)] F(s�π) ≥ 0;
that is, π∗ is the smallest π such that GB(π)

π second-order stochastically dominates p.
Clearly, π∗ is an upper bound on the revenue guarantee of any mechanism. On the other
hand, the proof of Theorem 1 shows the following revenue guarantee for any information
structure p̃ and equilibrium σ (cf. Equation (13)):

R(p̃�σ)≥
∫
v

min
(
A · v−X�Xe1/A −X

)
p(dv)�

where, for notational simplicity, we drop the dependence of A and X on N = 1.

PROPOSITION 1: Suppose p(v ≤ s) > 0 for all s ∈ (0� v̄]. There exist constants A∗ > 0 and
X∗ > 0 such that

π∗ =
∫
v

min
(
A∗ · v −X∗�X∗e1/A∗ −X∗)p(dv)�

That is, when N = 1, the exponential price auction with parameters A∗ and X∗ gives the
optimal revenue guarantee.

PROOF: Let s∗ be an arbitrary selection from argmins∈[π∗�B(π∗)] F(s�π
∗). Since

mins∈[π�B(π)] F(s�π) is a continuous function of π, we must have F(s∗�π∗)= 0, that is,∫ s∗

s=0
p(v ≤ s)ds =

∫ s∗

s=0
GB(π∗)

π∗ (s)ds�
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Moreover, we have s∗ ∈ (π∗�B(π∗)], so ∂F
∂s
(s∗�π∗)= 0 from the first-order condition,8 that

is,

p
(
v ≤ s∗) =GB(π∗)

π∗
(
s∗)� (8)

Using integration by parts, these two equations imply∫ s∗

v=0
vp(dv)=

∫ s∗

s=0
sGB(π∗)

π∗ (ds)=
∫ s∗

s=π∗
sGB(π∗)

π∗ (ds)� (9)

Now consider the exponential price auction with parameters A∗ and X∗ such that

X∗/A∗ = π∗� X∗e1/A∗
/A∗ = s∗� (10)

Suppose the bidder’s information structure is GB(π∗)
π∗ . A bidder with a signal s ∈ [π∗� s∗]

optimally demands σ(s) = A∗ log(s/π∗) and pays A∗s −X∗ in the auction; a bidder with
a signal s ∈ [s∗�B(π∗)] optimally demands σ(s) = 1 and pays A∗s∗ −X∗ = X∗e1/A∗ −X∗.
The expected equilibrium revenue is thus

R
(
GB(π∗)

π∗ �σ
) =

∫ s∗

s=π∗

(
A∗s −X∗)GB(π∗)

π∗ (ds)+ (
1 −GB(π∗)

π∗
(
s∗))(X∗e1/A∗ −X∗)

=
∫ 1

v=0
min

(
A∗ · v−X∗�X∗e1/A∗ −X∗)p(dv)�

where, in the second line, the equilibrium revenue equals the revenue guarantee by Equa-
tions (8) and (9).

Finally, I show that R(GB(π∗)
π∗ �σ) = π∗; that is, the exponential price auction is an op-

timal mechanism when the seller knows the bidder has information structure GB(π∗)
π∗ .

Recall that a bidder with an unbiased signal s ≥ π∗ optimally chooses the allocation
min(A∗ log(s/π∗)�1) and pays min(A∗s − X∗�A∗s∗ − X∗) in the exponential price auc-
tion. This allocation and payment can also be obtained from the seller randomizing
over posted price P with a CDF G(P) = A∗ log(P/π∗), P ∈ [π∗� s∗], and a bidder with
an unbiased signal s accepts a posted price P if and only if P ≤ s: the equivalence
in allocation is immediate, and the equivalence in payment follows from the fact that∫ s

P=π∗ Pg(P)dP = A∗s − X∗, where g(P) is the density of the distribution G(P). When
the bidder’s information structure is GB(π∗)

π∗ , each posted price P ∈ [π∗� s∗] leads to the op-
timal revenue of π∗; thus, the randomized posted price G(P), and hence the exponential
price auction as well, is an optimal mechanism. Q.E.D.

Proposition 1 is a generalization of Proposition 5 in Carrasco et al. (2018), where they
have the result for a prior distribution with binary support (i.e., a mean constraint on
the value distribution). When N = 1, the exponential price auction is essentially the ran-
domized posted price mechanism in Proposition 5 of Carrasco et al. (2018) (cf. the last

8Since π∗ > 0, GB(π∗)
π∗ (π∗) = 0, and p(v ≤ s) > 0 for all s > 0, we have F(π∗�π∗) > 0. Thus, we must have

s∗ >π∗.
Without loss, suppose v̄ = inf{s : p(v ≤ s) = 1}, for otherwise we can replace v̄ by the actual upper bound

of the support. If B(π∗) < v̄, we must have F(B(π∗)�π∗) > 0, for otherwise we would have
∫ v̄

s=0 G
B(π∗)
π∗ (s)ds >∫ v̄

s=0 p(v ≤ s)ds, which would contradict the fact that GB(π∗)
π∗ has the same mean as p; this implies s∗ <

B(π∗), so ∂F
∂s
(s∗�π∗) = 0 because s∗ is interior. If B(π∗) = v̄, then either s∗ = v̄, in which case ∂F

∂s
(s∗�π∗) =

p(v ≤ v̄)−GB(π∗)
π∗ (v̄) = 0, where the derivative is defined by the left limit, or s∗ < v̄, in which case ∂F

∂s
(s∗�π∗) = 0

because s∗ is interior.
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paragraph in the proof of Proposition 1), with a slight difference that the price is dis-
tributed over [π∗� s∗] instead of [π∗� v̄] in their paper. When the support of the prior p is
{0� v̄}, we have s∗ = v̄. In general, we have s∗ < v̄.

Finally, when the bidder has information structure GB(π∗)
π∗ , the exponential price auction

with A∗ and X∗, while obtaining the optimal revenue, is not efficient: a positive fraction
of the good can remain unallocated. This is in contrast to a posted price of π∗, which gives
the optimal revenue as well as full efficiency. On the other hand, a posted price of π∗ does
not achieve the optimal revenue guarantee of π∗: for example, its equilibrium revenue is
strictly lower than π∗ when the bidder is perfectly informed of the value.

6. SUFFICIENT CONDITIONS FOR FULL SURPLUS EXTRACTION

In this section, I clarify the essential features of the allocation and payment rules that
make Theorem 1 work. I focus on the case of Theorem 1 in which no one demands the
entire allocation, since in this simple case, the sufficient conditions are easy to check for
a given mechanism. For clarity, I make explicit the dependence of a mechanism (qN� tN)
on the number N of bidders. Suppose qN

i : M → [0�1] and tNi : M → R are differentiable
functions, where Mi = [0�1], and qN

i (0�m−i) = tNi (0�m−i)= 0 for all m−i ∈M−i.

PROPOSITION 2: Suppose the following two conditions hold for (qN� tN):
1.

tNi (m) ≥AN · ∂t
N
i

∂mi

(m)−XN

for all m ∈ [0�1)N and all bidder i, where

1
AN

= inf
m∈[0�1)N

N∑
i=1

∂qN

∂mi

(m) > 0�9

and

N ·XN → 0� as N → ∞�

2.
∂tNi
∂mi

(1�m−i) > v̄ · ∂q
N
i

∂mi

(1�m−i)

for all m−i ∈ M−i and all bidder i.
Then the revenue guarantees of mechanisms (qN� tN) converge to the full surplus as N → ∞,
with a convergence rate of O(N ·XN).

Condition 1 ensures that one can lower bound the payment by the marginal surplus via
the first-order condition. Condition 2 says that the marginal payment at the boundary is
sufficiently high that no one will submit the boundary message in equilibrium. The proof
of the proposition follows the same steps as the proof of Theorem 1 and is hence omitted.

The assumptions of Proposition 2 are restrictive. Condition 1 implies that

tNi (m)≤XN

(
exp(mi/AN)− 1

)
(11)

9Here ∂qN

∂mi
(m) and ∂tN

∂mi
(m) refer to the right derivatives.
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for all m ∈ M ; that is, the exponential functional form is the highest payment for the
argument of Theorem 1 to work.10

To see the restriction on the allocation function, suppose maxi�m−i

∂qNi
∂mi

(1�m−i)= C for a
positive constant C independent of N . Condition 2 and Inequality (11) then imply

XNe
1/AN

AN

≥ max
i�m−i

∂tNi
∂mi

(1�m−i) > v̄ ·C�

But since we also have XN · N → 0 from Condition 1, we conclude that as N →
∞, e1/AN /AN must tend to infinity at a faster rate than N ; in particular, 1/AN =
infm∈[0�1)N

∑N

i=1
∂qNi
∂mi

(m) itself must tend to infinity.
In fact, if e1/AN /AN tends to infinity at a faster rate than N , then the revenue guarantee

of (qN� tN) converges to the full surplus at a rate of O( N

e1/AN /AN
), as one can set XN =

v̄·C+ε

e1/AN /AN
, ε > 0, and tNi (mi)= XN(exp(mi/AN)− 1) to satisfy the assumptions of Proposi-

tion 2. For example, in the exponential price auction, one has 1/AN = ∑N

i=1 1/i ≈ logN ,
so the convergence rate to the full surplus is O(1/ logN). It is an interesting open ques-
tion if one could construct an allocation rule such that 1/AN grows faster than logN and
maxi�m−i

∂qNi
∂mi

(1�m−i)= C, which would give a faster convergence rate than O(1/ logN) for
the revenue guarantees.

As an application of Proposition 2, consider the following allocation rule: suppose m1 ≥
m2 ≥ · · · ≥ mN , bidder i gets allocation

qN
i (m) = 1 −m1

N
+

N∑
j=i

mj −mj+1

j
� (12)

where mN+1 ≡ 0, and likewise for any other ordering of (m1�m2� � � � �mN). That is,
the previously unallocated fraction is uniformly distributed to the bidders, thus al-
ways resulting in an efficient allocation. The payment rule is exponential: tNi (mi) =
XN(exp(mi/AN)− 1). One sees that

N∑
i=1

∂qN
i

∂mi

(m) ≥
N∑
i=1

1
i

− 1
N

and

max
i�m−i

∂qN
i

∂mi

(1�m−i)= 1 − 1
N
�

10Define

ξi(m) ≡AN · ∂t
N
i

∂mi

(m)− tNi (m) ≤XN ;

solving tNi (m) in terms of ξi(m) (together with the initial condition that tNi (0�m−i)= 0) yields

tNi (m) = exp(mi/AN)

∫ mi

x=0

exp(−x/AN)

AN

ξi(x�m−i) dx

≤ exp(mi/AN)

∫ mi

x=0

exp(−x/AN)

AN

XN dx=XN

(
exp(mi/AN)− 1

)
�
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so one can take 1/AN = ∑N−1
i=1

1
i

and XN = v̄

e1/AN /AN
, and by Proposition 2, the revenue

guarantee of this mechanism converges to the full surplus.

7. CONCLUSION

In this paper, I construct a new auction format, the exponential price auction, and show
that for a common value good this auction can guarantee to extract the full surplus as
the number of bidders tends to infinity, regardless of how information changes as more
bidders are added.

As far as I can tell, the exponential price auction has not been used in practice. One
possible reason might be that in the case of an indivisible good, the allocation is stochastic,
so the bidders must trust that the seller is randomizing as specified in the allocation rule;
there is no way for the bidders to check the randomization. Another reason might be
that the auction is not ex post individually rational. In particular if the good is indivisible,
then for all but one bidder, they pay the price but ex post get nothing in return; such an
outcome might be embarrassing to explain to one’s boss for a bidder in the real life. These
two reasons suggest that the exponential price auction might be more practical when the
good is divisible, in which case the bidders can check if the allocation is done right, and
everyone gets some allocation. Whether/when the exponential price auction can be used
in practice seems like an interesting question that deserves further exploration with both
theory and experiments.

APPENDIX A: PROOF OF THE GENERAL CASE IN THEOREM 1

Fix an information structure p̃ and an equilibrium σ . Let ρ ∈ Δ(V × M) be the distri-
bution that p̃ and σ induce.

The first-order condition (4) implies for ρ-almost-every mi:

ti(mi)≥ min
(
AN ·

∫
(m−i�v)

v

rank(mi;m)
ρ(dm−i� dv |mi)−XN︸ ︷︷ ︸

≤AN ·t′i(mi)−XN=ti(mi) if mi < 1

� ti(1)
)
�

By Jensen’s inequality, I can move the min function inside the integral:

ti(mi) ≥
∫
(m−i�v)

min
(

AN · v
rank(mi;m)

−XN� ti(1)
)
ρ(dm−i� dv |mi)�

Integrating with respect to ρ(dmi) the above inequality across mi ∈ [0�1], and then sum-
ming across i, I get a lower bound on the revenue:

N∑
i=1

∫
(m�v)

ti(mi)ρ(dm�dv) ≥
∫
(m�v)

N∑
i=1

min
(

AN · v
rank(mi;m)

−XN� ti(1)
)
ρ(dm�dv)

≥
∫
(m�v)

N∑
i=1

min
(
AN · v

i
−XN� ti(1)

)
ρ(dm�dv)

=
∫
v

N∑
i=1

min
(
AN · v

i
−XN�XNe

1/AN −XN

)
p(dv) (13)
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=

KN �∑
k=0

∫ νk+1

v=νk

(
k
(
XNe

1/AN −XN

) +
N∑

i=k+1

(
AN · v

i
−XN

))
p(dv)

=

KN �∑
k=0

∫ νk+1

v=νk

(
v

(
N∑

i=k+1

AN

i

)
+ kXNe

1/AN −NXN

)
p(dv)�

where

νk = kXNe
1/AN /AN for k ≤ 
KN�� ν
KN �+1 = v̄�

Note that when KN < 1, this recovers the lower bound in the previous special case.
Since k ≤ KN and logKN/ logN → 0, we have

∑N

i=k+1
AN

i
→ 1 as N → ∞. Moreover,

since kXNe
1/AN ≤ v̄AN → 0 and NXN → 0, the last line of (13) converges to the full

surplus
∫
v
vp(dv). This completes the proof of Theorem 1.

REMARK 3: Define the following function on [0� v̄]:

γN(v)=
N∑

i=k+1

(
AN · v

i
−XN

)
+ k

(
XNe

1/AN −XN

)
� v ∈

[
k
XN

AN

e1/AN � (k+ 1)
XN

AN

e1/AN

]
�

The proof of Theorem 1 (Equation (13)) shows that
∫
v
γN(v)p(dv) is a revenue guarantee

for the exponential price auction. Suppose that p has full support over [0� v̄] and that the
revenue guarantee

∫
v
γN(v)p(dv) converges to the full surplus

∫
v
vp(dv) as N → ∞. For

example, one might obtain AN and XN by maximizing
∫
v
γN(v)p(dv). I claim that such

(AN�XN) must satisfy the conditions in Theorem 1: as N → ∞, AN logN → 1, XN =
v̄AN

KN exp(1/AN)
, where logKN

logN → 0 and NXN → 0. That is, Theorem 1 covers all cases of full
surplus extraction.11

I note that γN(v) is closely related to the equilibrium revenue under the common
knowledge that the value is v, which is

γ̃N(v) =
N∑

i=k+1

max
(
AN · v

i
−XN�0

)
+ k

(
XNe

1/AN −XN

)
�

v ∈
[
k
XN

AN

e1/AN � (k+ 1)
XN

AN

e1/AN

]
�

where k is the number of bidders who demand mi = 1 in equilibrium. The only difference
between γN(v) and γ̃N(v) is that for ith ranked bidder such that AN ·v

i
− XN < 0, he de-

mands and pays 0 in the equilibrium revenue γ̃N(v), but he contributes AN ·v
i

−XN < 0 to
the revenue guarantee γN(v).

11To see this claim, first suppose γN(v) pointwise converges to v as N → ∞. For every N , γN(v) is clearly a
concave function of v. Therefore, at every v, the left and right derivatives of γN(v) must converge to 1, that is,
AN logN → 1 and logKN/ logN → 0. Since γN(0) = −NXN , we also have NXN → 0.

Clearly, γN(v) ≤ γ̃N(v)≤ v for every v ∈ [0� v̄] and N . Therefore, the convergence of the revenue guarantee
to the full surplus implies that γN(v) L1 converges to v. Standard L1 convergence result implies that along a
subsequence of N , γN(v) converges to v for p-almost-every v. Thus, for every subsequence of N , there is a fur-
ther subsequence along which AN logN → 1, logKN/ logN → 0 and NXN → 0 (along this subsequence γN(v)
converges to v for p-almost-every v). Thus, we must have AN logN → 1, logKN/ logN → 0, and NXN → 0 as
N → ∞.



ROBUST MECHANISMS UNDER COMMON VALUATION 1585

Suppose XN/AN ≤ c/N for a constant c > 0, and AN → 0 as N → ∞. Then for any
v > 0,

γ̃N(v)− γN(v)≈AN

(
log Ñ(v)− logN

)
v − (

Ñ(v)−N
)
XN

≤AN

(
log Ñ(v)− logN

)
v − (

Ñ(v)−N
)
ANc/N → 0� as N → ∞�

where Ñ(v) is the equilibrium number of bidders who submit nonzero demand when
v is commonly known, and this number satisfies Ñ(v) ≥ min( v

c
N�N). Thus, for these

parameters, everyone having complete information about v is asymptotically the worst
case information structure in the exponential price auction (since its equilibrium revenue
coincides with the revenue guarantee

∫
v
γN(v)p(dv) as N → ∞).

APPENDIX B: FINITE APPROXIMATION

In this section, I show that one can approximate the infinite exponential price auction
with a sequence of finite mechanisms (qn� tn)n≥1 whose revenue guarantees (over all fi-
nite information structures and all equilibria) converge to that of the infinite mechanism.
Given a finite mechanism and a finite information structure, an equilibrium always exists.

Let us first discretize the values: suppose V n ⊂ V = [0� v̄] is a finite subset, pn ∈ Δ(V n),
and pn weakly converges to p as n → ∞, where we extend pn to a measure on V by setting
pn(B) = pn(B ∩ V n) for every measurable B ⊆ V .

Fix the number N of bidders and the parameters A and X of the exponential price
auction; here we suppress the dependence of the parameters on N . Let the message space
be Mn

i = {0�1/n�2/n� � � � �1}. The allocation function qn
i is just the restriction of qi in

Equation (2) to Mn
i . The payment function is

tni (mi)= X

((
1 + 1

A · n
)mi ·n

− 1
)
�

For a fixed mi, tni (mi) clearly converges to ti(mi) in Equation (2).
I will derive the revenue guarantee of mechanism (qn� tn) using linear programming du-

ality, which gives some alternative perspectives and has proven useful in the methodology
of Bergemann, Brooks, and Morris (2017b) and Brooks and Du (2018).

The revenue guarantee of a finite mechanism (qn� tn) is found by solving the following
linear programming problem:

min
μ∈Δ(V n×Mn)

∑
(v�m)

∑
i

tni (m)μ(v�m)

subject to∑
(v�m−i)

[
v
(
qn
i (mi�m−i)− qn

i

(
m′

i�m−i

)) − (
tni (mi�m−i)− tni

(
m′

i�m−i

))]
μ(v�m) ≥ 0�

(14)
∀i� (mi�m

′
i

) ∈ Mn
i ×Mn

i �∑
m

μ(v�m) = pn(v)� ∀v ∈ V n�

That is, one minimizes the expected revenue from the distribution μ, subject to the con-
straint that μ is a Bayes correlated equilibrium (BCE), which always exists in a finite game.
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As shown by Bergemann and Morris (2013, 2016), any information structure and equilib-
rium induce a BCE distribution over values and messages, and any BCE distribution is
induced by some information structure and equilibrium.

The dual problem (cf. Vohra (2011)) to Problem (14) is

max
(αi�γ)

∑
v

pn(v)γ(v)

subject to

γ(v)+
∑
i

∑
m′
i

[
v
(
qn
i (m)− qn

i

(
m′

i�m−i

)) − (
tni (m)− tni

(
m′

i�m−i

))]
αi

(
m′

i | mi

)
(15)

≤
∑
i

tni (m)�

∀v ∈ V n�m ∈Mn�

αi

(
m′

i |mi

) ≥ 0� ∀i� (mi�m
′
i

) ∈ Mn
i ×Mn

i �

where αi(m
′
i |mi) is the multiplier on the incentive constraint in BCE that bidder i prefers

mi over m′
i, and γ(v) is the multiplier on the consistency constraint of

∑
m μ(v�m) =

pn(v). (See the previous version of this paper for an interpretation of αi(m
′
i | mi) as the

transition rates of a Markov process.) By the strong duality theorem, Problems (14) and
(15) have the same optimal value. Therefore, the value of Problem (15) under any fea-
sible multipliers (αi�γ) is a lower bound on the optimal value of Problem (14), that is,
a revenue guarantee.

Let the multipliers for the BCE incentive constraints be

αn
i

(
m′

i |mi

) =
{
A · n� m′

i =mi + 1/n�
0� m′

i �=mi + 1/n�
(
mi�m

′
i

) ∈Mn
i ×Mn

i � (16)

The above multipliers ignore all incentive constraints except local upward incentive con-
straint. This corresponds to the proof of Theorem 1 in which I only use the bidders’ first-
order conditions where all derivatives are defined by the right limits.

By construction,

n
∑
i

(
qn
i (mi + 1/n�m−i)− qn

i (m)
)
1mi<1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N∑
j=k+1

1
j
�

∣∣{i :mi = 1}∣∣ = k�
∣∣{mi :mi < 1}∣∣ =N − k�

>

N∑
j=k+1

1
j
�

∣∣{i :mi = 1}∣∣ = k�
∣∣{mi :mi < 1}∣∣<N − k�

and

tn(mi)−An
(
tn(mi + 1/n)− tn(mi)

)
1mi<1 =

⎧⎨
⎩

−X� mi < 1�

X

((
1 + 1

A · n
)n

− 1
)
� mi = 1�

(17)
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so I can take

γn(v)= min
0≤k≤N

(
N∑

i=k+1

A · v
i

− (N − k)X + kX

((
1 + 1

An

)n

− 1
))

�

By construction, the multipliers (αn
i � γ

n) are feasible for the dual problem (15) of the
mechanism (qn� tn). Therefore, the revenue guarantee of (qn� tn) for the prior pn is at
least ∑

v∈V n

pn(v) · min
0≤k≤N

(
N∑

i=k+1

A · v
i

− (N − k)X + kX

((
1 + 1

An

)n

− 1
))

�

The above revenue guarantee clearly converges to the revenue guarantee in Equation
(13) as n → ∞.

REMARK 4: In a previous version of this paper, I show that to solve for a mechanism
that maximizes the revenue guarantee, it is sufficient to restrict to the multipliers in Equa-
tion (16). That is, it is without loss to ignore all incentive constraints except the local up-
ward incentive constraint, or equivalently, to focus on the bidders’ first-order conditions
with the right derivatives.
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