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Abstract

We study a refinement of correlated equilibrium in which players’ actions are driven

by their beliefs and higher order beliefs about the play of the game (beliefs over what

other players will do, over what other players believe others will do, etc.). For any

finite, complete-information game, we characterize the behavioral implications of this

refinement with and without a common prior, and up to any a priori fixed depth

of reasoning. In every finite game “most” correlated equilibrium distributions are

consistent with this refinement; as a consequence, this refinement gives a classification

of “most” correlated equilibrium distributions based on the maximum order of beliefs

used by players in the equilibrium. On the other hand, in a generic two-player game any

non-degenerate mixed-strategy Nash equilibrium is not consistent with this refinement.
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1 Introduction

There are two views on correlation in non-cooperative game theory. The classical view

introduced by Aumann (1974) relies on external, payoff-irrelevant signals: players display

correlated behavior because they condition their actions on correlated signals.

Recently, Brandenburger and Friedenberg (2008) have introduced an intrinsic view of

correlation. According to this view, the correlation in players’ actions only comes from

correlation in their beliefs and higher order beliefs about the play of the game. This view of

correlation is intrinsic, because the correlation in actions does not come from outside signals,

but instead from players’ beliefs inside the game.

Motivated by this intrinsic approach to correlation, we study the behavioral implications

of equilibrium under intrinsic correlation; that is, we ask: which predictions of conventional,

extrinsic correlated equilibria can be replicated by intrinsic correlated equilibria?

More precisely, for an arbitrary complete-information game, we work with a correlating

device that consists of individual states and beliefs over the states. A strategy maps individ-

ual states to actions. We assume that players are rational, so we study equilibrium strategy

which prescribes an optimal action given the belief about others’ actions at an individual

state. We further assume that players’ actions are driven by their beliefs and higher order

beliefs about the play of the game; formally, we restrict an equilibrium strategy to take

the same action on individual states that generate the same hierarchy of beliefs about play.

Our main results characterize the set of actions that can be played in equilibrium given this

restriction.

Higher order beliefs about play have the interpretation as beliefs about players’ moti-

vations. A player’s first order belief about play is a belief on other players’ actions, i.e., a

theory on their behaviors. His second order belief about play is a joint belief on other players’

actions and on their first order beliefs about play. Thus, the second order belief posits a con-

nection between other players’ first order beliefs and their actions, which is a theory on their

motivations: why do they take a particular course of action? Intrinsic correlation requires

beliefs about motivations (as understood in this way) to determine the actions. Since it is

natural for players to strategize based on these beliefs, we are led to analyze an equilibrium

solution concept under the assumption of intrinsic correlation.

There is another reason to study intrinsic correlation. The conventional view of correlated

equilibrium relies on the incompleteness in the model of a game, as the equilibrium requires

signals which are not a part of the game’s basic description (players, actions, and payoffs).

Therefore, it would seem that once the game is fully specified there would be no room for
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correlated equilibrium. The study of intrinsic correlation clarifies that this is not the case:

some correlated equilibria (the intrinsic ones) do not need to appeal to any incompleteness

of the basic description. Even if there is nothing beyond the basic description, players’

beliefs and higher order beliefs about each other’s actions can serve as correlating devices

for intrinsic correlated equilibrium. First order beliefs about actions are fundamental to a

game, because they are needed for players to play optimal actions. And once the first order

beliefs about actions are admitted in the game, it is natural to admit second and higher

order beliefs about actions, since typically an action can be rationalized or motivated by

multiple first order beliefs.

Our main finding is an iterative procedure: given any positive integer l and player i, the

procedure finds the set of actions W l
i that are rationalized by a unique l-th order belief about

play. We prove that if (and only if) in an equilibrium player i’s actions are driven by his l-th

order beliefs about play, then all actions in W l
i must have distinct first-order rationalizing

beliefs about play. This characterization is useful because the first-order rationalizing beliefs

are easy to determine, and by construction any action in any W l
i must have a unique first-

order rationalizing belief. And by letting l tend to infinity we get the behavioral implications

of equilibrium whose actions are driven by players’ hierarchies of beliefs about play, i.e.,

intrinsic correlated equilibrium.

As in Aumann (1974) we distinguish between subjective and objective correlated equilib-

rium, and variations of the previous iterative procedure work for both cases. When players’

beliefs and higher order beliefs about the current play are shaped by a previous interaction

or by a common event, these beliefs are likely to be consistent with each other (in the sense

of Feinberg (2000), that disagreeing over these beliefs cannot be common knowledge). In

this case to study intrinsic correlation, objective correlated equilibrium is the appropriate

solution concept. On the other hand, if players’ beliefs come from pure introspection, then

they need not necessarily be consistent with each other, so it is appropriate to use subjective

correlated equilibrium.

We study in detail the distribution on action profiles played by intrinsic objective corre-

lated equilibrium. Our main conclusion is that “most” correlated equilibrium distributions

are intrinsic.1 As a consequence, we get a classification of “most” correlated equilibrium

distributions based on the maximum order of beliefs used by players in the equilibrium: for

every l ≥ 1, let C l be the set of correlated equilibrium distributions in which the actions are

1As a counterpoint, we also prove that in a generic two-player game, any (non-degenerate) mixed-strategy
Nash equilibrium is not an intrinsic correlated equilibrium distribution.
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driven by players’ l-th order beliefs about play. This classification raises some new questions:

for example, for a given l (in particular, a small l), how prevalent are the correlated equi-

librium distributions in the set C l? And how would the prevalence vary as we vary l? We

believe that these questions are not merely mathematical curiosities, and answering them

will inform us of the “intrinsic” complexity of correlated equilibria. On this direction we

prove that the set C l is always convex if and only if l ≥ 2, but obviously a lot remains to be

done.

We are directly inspired by Brandenburger and Friedenberg (2008); in Section 5.1 we

carefully compare the solution concepts of the two papers. The essential methodological

difference between the two papers is that Brandenburger and Friedenberg focus on rational-

izability, while we focus on equilibrium. In terms of results, we go beyond Brandenburger and

Friedenberg (2008) in three dimensions. First, we provide a characterization of the solution

that only depends on the payoff structure of the game and that is independent of any type

structure, which provides a partial answer to an open question posed by Brandenburger and

Friedenberg (see Section 5.1). Second, we characterize the solution when players’ actions

are driven by their l-th order beliefs about play, for any l ≥ 1. And third, we examine the

implications of a common prior.

A contemporaneous and independent paper by Peysakhovich (2009) shows that actions

played under an objective correlated equilibrium must be consistent with the intrinsic correla-

tion solution of Brandenburger and Friedenberg (2008); this provides another partial answer

to Brandenburger and Friedenberg’s open question. Incidentally, Peysakhovich’s main result

has a natural interpretation in our formulation when we allow for private randomization by

players contingent on their beliefs about play; we discuss this in detail in Section 5.2.

Our paper is also related to a recent literature on redundant types and solution concepts:

Ely and Peski (2006), Dekel, Fudenberg and Morris (2007), Liu (2009), Sadzik (2009), and

Battigalli, Di Tillio, Grillo and Penta (2011). The main difference is that authors in this

literature study incomplete-information games, with type structure and redundant types on

the payoff states, while we focus on complete-information games, with type structure and

redundant types on the actions played in the game. It is an interesting future direction to

consider the implications of our results for incomplete-information games with type structure

on both actions and payoff states.

The paper proceeds as follows. In the next section we specify our formulation. Section 3

characterizes the behavioral implications of intrinsic subjective correlated equilibrium, and

Section 4.1 characterizes the behavioral implications of intrinsic objective correlated equi-
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librium. Section 4.2 shows that “most” correlated equilibrium distributions are intrinsic

while any non-degenerate mixed-strategy Nash equilibrium is not, and discusses a classifi-

cation of correlated equilibrium distributions based on the maximum order of beliefs used

by players in the equilibrium. Section 5 relates our solution concept to that in Branden-

burger and Friedenberg (2008), shows a private-randomization extension of our result based

on Peysakhovich (2009), and discusses the case of infinite games.

2 Formulation

We work with an arbitrary finite game of complete information: (N,A, u), where N is a

finite set of players (|N | ≥ 2), A =
∏

i∈N Ai a finite set of action profiles, and u = (ui)i∈N

players’ payoff functions: ui : A→ R for each i ∈ N .

A correlating device is a tuple (Ω, Pi, βi)i∈N , where Ω =
∏

i∈N Ωi is a finite or countably

infinite set of states, and Pi ∈ ∆(Ω) denotes player i’s prior belief over Ω. 2 Each Ωi

denotes the set of player i’s individual states. The private information at an individual

state ωi is summarized by βi(ωi), which is player i’s posterior belief conditional on ωi:

βi : Ωi → ∆(Ω−i). We require the posterior belief to be consistent with the prior belief, so

βi must satisfy the Bayes rule whenever possible: βi(ωi)(ω−i) = Pi(ωi, ω−i)/Pi({ωi} × Ω−i)

whenever Pi({ωi} × Ω−i) > 0.

A player chooses an action contingent on his individual state; thus, a (pure) strategy is a

function σi : Ωi → Ai.

We write β = (βi)i∈N , σ = (σi)i∈N and P = (Pi)i∈N . If Pi is the same for every player

(the case of a common prior), we abuse the notation a bit by setting P = Pi as well. Finally,

if a property of ωi holds whenever Pi({ωi}×Ω−i) > 0, we say that it holds Pi-almost surely.

Definition 1. An a posteriori equilibrium is a tuple (Ω, β, σ) such that for every player

i ∈ N and every individual state ωi ∈ Ωi, we have∑
ω−i∈Ω−i

ui(σi(ωi), σ−i(ω−i))βi(ωi)(ω−i) ≥
∑

ω−i∈Ω−i

ui(ai, σ−i(ω−i))βi(ωi)(ω−i) (1)

for all ai ∈ Ai.
An (objective) correlated equilibrium is a tuple (Ω, P, σ) where Pi is the same for all

players (= P ), for every player i βi is derived from P via Bayes rule P -almost surely, and

(1) holds P -almost surely.

2For ease of exposition, we restrict to a countable set of states to avoid invoking measure theory.
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An a posteriori equilibrium requires the optimality condition (1) to hold in the a posteriori

stage, even after a probability-zero event. Aumann’s (1974) subjective correlated equilibrium,

similar to objective correlated equilibrium, instead maintains an ex ante perspective: the

optimality condition (1) only needs to hold for ωi such that Pi({ωi} × Ω−i) > 0.

Definition 2. A type structure on actions is a tuple (Ti, λi)i∈N , where λi : Ti → ∆(T−i×A−i)
for each i ∈ N .

Fix an (a posteriori or correlated3) equilibrium (Ω, β, σ). The equilibrium-induced type

structure on actions is the tuple (Ti, λi)i∈N such that Ti = Ωi, and for every tωi
i (type in Ti

corresponding to individual state ωi ∈ Ωi) we have:

λi(t
ωi
i )(t

ω−i

−i , a−i) :=

βi(ωi)(ω−i) if a−i = σ−i(ω−i)

0 otherwise
. (2)

A type structure on actions (Ti, λi)i∈N is an implicit description of players’ beliefs and

higher order beliefs about each others’ behavior in the game. To make the description

explicit, let δi(ti) = (δ1
i (ti), δ

2
i (ti), . . .) denote player i’s hierarchy of beliefs about actions (or

play) generated at type ti ∈ Ti, where δli(ti) is player i’s l-th order belief about actions (or

play) at ti. The construction of δli is standard, and for completeness we briefly sketch one in

the next page.

In this paper we study equilibrium in which players’ actions are driven by their hierarchies

of beliefs about play. Formally, for an a posteriori or correlated equilibrium, the hierarchies

of beliefs about play are generated by the equilibrium-induced type structure.

Definition 3. An a posteriori equilibrium (Ω, β, σ) is intrinsic if the strategy function σi is

constant on individual states with the same hierarchies of beliefs about play.

A correlated equilibrium (Ω, P, σ) is intrinsic if the strategy function σi is constant on

individual states with the same hierarchies of beliefs about play, P -almost surely.

Naturally, in an intrinsic a posteriori or correlated equilibrium the players’ actions may

be driven solely by their l-th order beliefs about play:

Definition 4. In an a posteriori equilibrium (Ω, β, σ), players condition their actions on

their l-th order beliefs about play if for every player i, the strategy function σi is constant on

individual states with the same l-th order belief about play.

3In the case of correlated equilibrium, βi is derived from the common prior P via Bayes rule P -almost
surely.
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In a correlated equilibrium (Ω, P, σ), players condition their actions on their l-th order

beliefs about play if for every player i, the strategy function σi is constant on individual states

with the same l-th order belief about play, P -almost surely.

For the sake of completeness, we sketch here a brief construction of hierarchies of beliefs

about actions from a type structure on actions (Ti, λi)i∈N , where λi : Ti → ∆(T−i × A−i).
Additional details may be found in Siniscalchi (2007).

For each i ∈ N , let T 1
i := ∆(A−i) be the set of player i’s first order beliefs about actions.

Let δ1
i (ti) be player i’s first order belief about actions at type ti, i.e.,

δ1
i (ti) := margA−i

λi(ti),

where margA−i
λi(ti) is the marginal distribution of λi(ti) on the set A−i.

In general, fix an l ≥ 2 and assume the induction hypothesis that players’ (l−1)-th order

beliefs about actions, δl−1
i : Ti → T l−1

i , are previously defined. Define T li := ∆(T l−1
−i × A−i)

to be the set of player i’s l-th order beliefs about actions. Let δli(ti) be player i’s l-th order

belief about actions at type ti: δli(ti) is the image measure of λi(ti) under the mapping

(δl−1
j , idAj

)j 6=i, or in other words δli(ti) ∈ ∆(T l−1
−i × A−i), and for any measurable event

B ⊆ T l−1
−i × A−i we have:

δli(ti)(B) := λi(ti)(((δ
l−1
j , idAj

)j 6=i)
−1(B)),

where idAj
is the identity mapping on Aj.

3 Intrinsic A Posteriori Equilibrium

In this section we characterize the set of actions played by an intrinsic a posteriori equilib-

rium.

Let us first set up some notations. For a set of action profiles Q =
∏

i∈N Qi, let

BQ
i (ai) := {µ ∈ ∆(Q−i) : ai is optimal in Ai for player i under µ}, (3)

for every i ∈ N and ai ∈ Qi. For any µ in BQ
i (ai), we say that µ is a rationalizing belief of

action ai in Q−i, and that µ rationalizes ai.

Definition 5. A set of action profiles Q =
∏

i∈N Qi is a best-response set (BRS) if for every

i ∈ N and every ai ∈ Qi, there is a rationalizing belief of action ai in Q−i, i.e., BQ
i (ai) 6= ∅.
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It is well-known that a set of action profiles Q =
∏

i∈N Qi is played by an a posteriori

equilibrium (i.e., Qi = σi(Ωi) for every i ∈ N , for some a posteriori equilibrium (Ω, β, σ)) if

and only if Q is a BRS (Brandenburger and Dekel (1987)). Our objective in this section is

to characterize the refinement to BRS imposed by the intrinsicness criterion of Definition 3.

We now introduce a novel iterative construction on action sets that is intimately con-

nected with the notion of intrinsicness. Fix a BRS Q. For every i ∈ N , define

W 1
i (Q) := {ai ∈ Qi : BQ

i (ai) is a singleton}, (4)

W l
i (Q) := {ai ∈ W l−1

i (Q) : BQ
i (ai)(W

l−1
−i (Q)) = 1}, l ≥ 2,

Wi(Q) :=
⋂
l≥1

W l
i (Q),

where whenever BQ
i (ai) is a singleton (i.e., BQ

i (ai) = {µ} for some belief µ), we write BQ
i (ai)

for the element contained within, (i.e., µ).

In the first line of (4), W 1
i (Q) is the set of actions in Qi that have a unique rationaliz-

ing belief in Q−i. And inductively, W l
i (Q) is the subset of W l−1

i (Q) for which the unique

rationalizing belief has a support contained in W l−1
−i (Q), l ≥ 2.

Theorem 1-A. Given a BRS Q =
∏

i∈N Qi, Q is played by an intrinsic a posteriori equi-

librium, if and only if for every i ∈ N , for any two distinct actions ai and a′i in Wi(Q), we

have BQ
i (ai) 6= BQ

i (a′i).

Theorem 1-A says that in the context of a posteriori equilibrium, the intrinsicness assump-

tion (that players’ actions are driven by their hierarchies of beliefs about play) is character-

ized by an injectivity condition: actions in the subset Wi(Q) must have distinct rationalizing

beliefs. Moreover, if (and only if) players’ actions are driven by their l-th order beliefs,

then actions in the subset W l
i (Q) must have distinct rationalizing beliefs (see Theorem 1-B

below).

Theorem 1 is a generalization of a previous result by Brandenburger and Friedenberg

(2008, Proposition H.2), which states (in our language) that for any given BRS Q, if for

every i ∈ N we have BQ
i (ai) 6= BQ

i (a′i) for any two distinct actions ai and a′i in W 1
i (Q),

then there exists an intrinsic a posteriori equilibrium under which Q is played. In fact, we

generalize Brandenburger and Friedenberg’s result from first order belief to higher orders, in

the following sense:

Theorem 1-B. Fix an l ≥ 1 and a BRS Q =
∏

i∈N Qi. The set of action profiles Q is

played by an a posteriori equilibrium in which players condition their actions on their l-th
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order beliefs about play, if and only if for every i ∈ N , for any two distinct actions ai and

a′i in W l
i (Q), we have BQ

i (ai) 6= BQ
i (a′i).

The proof of Theorem 1 can be found in Appendix A. Here we sketch the underlying idea.

The iterative construction in equation (4) partitions an action set Qi into disjoint subsets

Qi \W 1
i (Q), W 1

i (Q) \W 2
i (Q), W 2

i (Q) \W 3
i (Q), W 3

i (Q) \W 4
i (Q), . . . , and Wi(Q).

By construction, each action in Qi \W 1
i (Q) is rationalized by an infinite number of first

order beliefs about play (since BQ
i (ai) 6= ∅ is convex, it is either a singleton or an infinite

set). Each action ai ∈ W 1
i (Q) \W 2

i (Q) is rationalized by a unique first order belief about

play (because ai ∈ W 1
i (Q)); on the other hand, due to ai 6∈ W 2

i (Q), ai is also rationalized

by an infinite number of second order beliefs about play, because its unique first-order ra-

tionalizing belief places a positive probability on another action (of, say, player j) which

can be rationalized by multiple first order beliefs of player j—mixing over these multiple

rationalizations produces an infinite number of second order beliefs rationalizing ai.

Likewise, each action in W 2
i (Q) \W 3

i (Q) is rationalized by a unique second order belief

about play and by an infinite number of third order beliefs, each action in W 3
i (Q) \W 4

i (Q)

is rationalized by a unique third order belief about play and by an infinite number of fourth

order beliefs, and so on. Since Qi is finite, we will never have any trouble finding distinct

hierarchies of beliefs about play to rationalize actions in Qi \Wi(Q).

On the other hand, by the argument above for every l ≥ 1, each action ai in Wi(Q)

is rationalized by a unique l-th order belief about play, which naturally projects down to

the first-order rationalizing belief BQ
i (ai). Therefore, the requirement that every player

conditions his actions on his hierarchies of beliefs about play, together with the rationality

condition that every player plays a best-response to his belief, translates into the requirement

that each action ai in Wi(Q) has a distinct rationalizing belief BQ
i (ai).

Example 1. Let us illustrate the characterization of intrinsic a posteriori equilibrium (The-

orem 1) in the following game:

x y z w

a 1, 1 3, 0 0, 1 0, 1

b 3, 0 1, 1 0, 1 0, 1

c 0, 0 4, 0 1, 1 1, 1

d 4, 0 0, 0 1, 1 1, 1

Note that {a, b, c, d}×{x, y, z, w} is a BRS, so all actions can be played by an a posteriori
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equilibrium. We claim that actions a and b cannot be played under any intrinsic a posteriori

equilibrium.

Set Q1 = {a, b, c, d} and Q2 = {x, y, z, w}. We have the following sets of rationalizing

beliefs:

BQ
1 (a) = {1/2x+ 1/2 y},

BQ
1 (b) = {1/2x+ 1/2 y},

BQ
2 (x) = {a},

BQ
2 (y) = {b}.

Therefore, we have W 1
1 (Q) = W1(Q) = {a, b} and W 1

2 (Q) = W2(Q) = {x, y}. Clearly,

BQ
1 is not injective on W1(Q), therefore by Theorem 1-A Q cannot be played by any intrinsic

a posteriori equilibrium.

In fact, it is easy to see that for any X = X1 ×X2 ⊆ {a, b, c, d} × {x, y, z, w}, if a ∈ X1

then for X to be a BRS we must have {a, b} ⊆ X1 and {x, y} ⊆ X2, which again implies

that X will fail the injectivity condition of Theorem 1-A. Therefore, action a is not played

in any intrinsic a posteriori equilibrium, and likewise for action b.

4 Intrinsic Correlated Equilibrium

4.1 Characterization

We now turn our attention to an important special case of a posteriori equilibrium, namely

correlated equilibrium in which players’ posterior beliefs are consistent with a common prior.

As discussed in the introduction, we can interpret the common prior as some previous in-

teraction of players which has influenced their play in the current game. We can also view

the study of intrinsic correlated equilibrium as a Bayesian exercise to understand whether

the objective randomization explicit in a correlated equilibrium can be converted to players’

beliefs and higher order beliefs about play that determine actions.

In this section we characterize the distributions of action profiles played by intrinsic

correlated equilibria, in the following sense: a probability distribution of action profiles

µ ∈ ∆(A) is played or obtained by a correlated equilibrium (Ω, P, σ) if

µ(a) = P ({ω ∈ Ω : σ(ω) = a}) (5)
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for every a ∈ A. We call such distribution µ a correlated equilibrium distribution (CED).

Clearly, µ ∈ ∆(A) is a CED if and only if for every i ∈ N and every action ai in the support

of µ (i.e., µ({ai} × A−i) > 0), ai is optimal for player i given the belief µ( · | ai).
As with a posteriori equilibrium, we start with an iterative construction. Fix a CED

µ ∈ ∆(A), and let Qi be the support of the marginal distribution margAi
µ for every i ∈ N .

For every i ∈ N , define:

Y 1
i (µ) := {ai ∈ Qi : µ( · | ai) is an extreme point of BQ

i (ai)}, (6)

Y l
i (µ) := {ai ∈ Y l−1

i (µ) : µ(Y l−1
−i (µ) | ai) = 1}, l ≥ 2,

Yi(µ) :=
⋂
l≥1

Y l
i (µ),

where an extreme point of a convex set is one that cannot be written as a strict convex

combination of other points in the set, and BQ
i (ai) is the set of beliefs that rationalize action

ai (equation (3)).

We say that a CED is intrinsic if it is obtained by an intrinsic correlated equilibrium

(via equation (5)).

Theorem 2-A. A CED µ ∈ ∆(A) is intrinsic if and only if for every i ∈ N , for any two

distinct actions ai and a′i in Yi(µ), we have µ( · | ai) 6= µ( · | a′i).

Theorem 2-A shows that intrinsic CED is characterized by the injectivity of the poste-

rior µ( · | ai) over actions in Yi(µ). Moreover, if (and only if) for an intrinsic CED µ the

players’ actions are driven by their l-th order beliefs about play, then actions in Y l
i (µ) must

have distinct posteriors (see Theorem 2-B below). Comparing with the iterated construc-

tion associated with a posteriori equilibrium, we see that the common prior assumption is

“manifested” as an extreme point requirement in first step of the iterations in (6).

The intuition for the extreme point requirement in (6) is as follows. The set Y 1
i (µ)

identifies actions (in the support of margAi
µ) that are rationalized by a unique first order

belief about play, given the common prior requirement. A posterior µ( · | ai) that is a non-

extreme point of BQ
i (ai) can be “split” into two distinct beliefs in BQ

i (ai), so action ai can

be rationalized by these two beliefs, thus such ai does not belong in Y 1
i (µ). This is analogous

to W 1
i (Q) for a posteriori equilibrium (equation (4)): when BQ

i (ai) is not a singleton, ai can

be rationalized by any two beliefs in BQ
i (ai). The difference is of course that for correlated

equilibrium beliefs must come from a common prior, so not any two beliefs in BQ
i (ai) can

rationalize ai—they must be two beliefs whose convex combination is equal to µ( · | ai).
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The rest of the iterations in (6) are identical to those in (4) for a posterior equilibrium,

and the idea underlying the injectivity condition of Theorem 2 is identical to that of Theorem

1 as well. See the discussion in page 9 for the intuition.

Theorem 2-B. Fix an l ≥ 1 and a CED µ ∈ ∆(A). The distribution µ is played by

a correlated equilibrium in which players condition their actions on their l-th order beliefs

about play, if and only if for every i ∈ N , for any two distinct actions ai and a′i in Y l
i (µ),

we have µ( · | ai) 6= µ( · | a′i).

The proof of Theorem 2 can be found in Appendix B.

Example 2 (Matching pennies).

a b

a 1, -1 -1, 1

b -1, 1 1, -1

The Nash equilibrium µ = (1/2 a + 1/2 b) × (1/2 a + 1/2 b) is not an intrinsic CED: let

Q1 = Q2 = {a, b}, then we have

BQ
1 (a) = {p a+ (1− p) b : 1/2 ≤ p ≤ 1},

BQ
1 (b) = {p a+ (1− p) b : 0 ≤ p ≤ 1/2},

BQ
2 (a) = {p a+ (1− p) b : 0 ≤ p ≤ 1/2},

BQ
2 (b) = {p a+ (1− p) b : 1/2 ≤ p ≤ 1}.

Thus, the belief 1/2 a + 1/2 b is an extreme point of both BQ
i (a) and BQ

i (b), i ∈ {1, 2}, so

we have Y 1
i (µ) = Yi(µ) = {a, b}. Clearly, we have µ( · | a) = µ( · | b).

But (1/2 a + 1/2 b) × (1/2 a + 1/2 b) is the unique CED of this game. Thus, this game

has no intrinsic correlated equilibrium.

4.2 Implications of the Characterization

In this section we use the characterization of Theorem 2 to demonstrate a dichotomy: in

every finite game, “most” correlated equilibrium distributions (CED) are intrinsic; however,

in a generic two-person game, any non-degenerate mixed-strategy Nash equilibrium is not

an intrinsic CED.

Let us begin with a natural decomposition of CED which will be useful for the study of

intrinsicness. To fix ideas, the following distribution over action profiles has three minimal
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components which are themselves distributions: (a, a); (b, b); and 1/4 (c, c) + 3/8 (c, d) +

1/8 (d, c) + 1/4 (d, d),

a b c d

a 1/4 0 0 0

b 0 1/4 0 0

c 0 0 1/8 3/16

d 0 0 1/16 1/8

Formally, for a fixed CED µ ∈ ∆(A), with support Qi = supp(margAi
µ) for i ∈ N , let

S =
⋃
i∈N Qi be the set of all actions of all players in the support of µ. Two actions a1 and

ak (of perhaps two different players i1 and ik) in S communicate if they are connected by a

sequence of intermediate actions of which µ places positive probability for every consecutive

pair: there exist am ∈ Aim , 2 ≤ m ≤ k − 1, such that im 6= im−1 ∈ N and µ(am−1, am) > 0

for each 2 ≤ m ≤ k.

It is readily checked that communication is an equivalence relation. Therefore, commu-

nication partitions S into equivalence classes: S =
⋃

1≤k≤r S
k. A minimal component of a

CED µ is simply the restriction of µ to one of the equivalence classes Sk:

µk(a) =

µ(a)/µ(
∏

i∈N S
k ∩ Ai) if ai ∈ Sk for all i ∈ N ,

0 otherwise.

It is immediate that a minimal component of a CED is itself a CED. We call a CED that

has only one minimal component minimal.

Proposition 1. A CED is intrinsic if all of its minimal components are non-extreme points

in the set of CED.

Proof. Clearly, a CED is intrinsic if and only if every one of its minimal components is

intrinsic.

Thus, without loss of generality, suppose that CED µ is minimal. Assume that µ is

non-intrinsic. Thus, we have Yi(µ) 6= ∅ for all i ∈ N . Since µ is minimal, by an “infection”

argument we must have Y 1
i (µ) = Qi, where Qi is the support of µ in Ai.

Suppose that µ1 and µ2 are two CED’s such that µ = µ1/2 + µ2/2 and suppµ1 =

suppµ2 = suppµ = Q. We will show that we must have µ1 = µ2; this implies that µ must

be an extreme point in the set of CED, which proves the proposition.

Because Y 1
i (µ) = Qi, we must have µ1( · | ai) = µ2( · | ai) = µ( · | ai) for every i ∈ N and

ai ∈ Qi.

13



Suppose that µ1 6= µ2; then there exists a ∈ Q =
∏

i∈N Qi such that µ1(a) 6= µ2(a).

Without loss of generality, suppose µ1(a) < µ2(a). Because µ1( · | ai) = µ2( · | ai) for every

i ∈ N , we have that µ1(b−i, ai) > 0⇒ µ1(b−i, ai) < µ2(b−i, ai) for every i ∈ N and b−i ∈ Q−i.
Because µ is minimal, so are µ1 and µ2; applying the reasoning in the last sentence to all

actions in the support, we have that µ1(b) > 0 ⇒ µ1(b) < µ2(b) for every b ∈ Q, which

clearly cannot be. Thus, we must have µ1 = µ2.

Proposition 1 tells us that “most” of these CED are intrinsic, in the sense that “most” of

the points in a non-degenerate convex set are not extreme points. The set of CED of a finite

game is a convex polytope, so it has a finite number of extreme points; Proposition 1 thus

says that any non-intrinsic CED has a minimal component which is one of these extreme

CED.

As discussed in the introduction, given that “most” CED are intrinsic, Theorem 2-B

provides a classification of these CED based on the maximum order of beliefs used by players

in the equilibrium. Such classification raises questions about properties (e.g., how prevalent)

of CED in each class. Here we settle their convexities:

Proposition 2. Let C l be the set of CED played by correlated equilibria in which players’

actions are driven by their l-th order beliefs about play. The set C l is always convex if and

only if l ≥ 2.

The proof of the if direction is in Appendix C. The following example shows that C1

needs not be convex.

Example 3.

c d

a 0, 1 2, 0

b 0, 2 1, 1

In Nash equilibria (a, c) and (b, c) of the game above, players condition their actions on

their first order beliefs about play. However, players cannot condition only on their first

order beliefs about play in any correlated equilibrium that obtains the convex combination

(p a + (1 − p) b, c), because in any correlated equilibrium player 1 has a unique first order

belief on the actions of player 2: c.

We now turn to an important special case of CED: Nash equilibrium, or CED obtained

by independent randomization of players.
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We say that a two-player game (N = {1, 2}, A = A1×A2, u) is generic if for any i ∈ {1, 2}
and x ∈ ∆(Ai), we have

|BRj(x)| ≤ | supp(x)|, (7)

where j 6= i, supp(x) := {ai ∈ Ai : x(ai) > 0} and BRj(x) := {aj ∈ Aj : uj(aj, x) ≥
uj(a

′
j, x) for all a′j ∈ Aj}. Von Stengel (2002), Theorem 2.10, has proved that two-player

games that fail condition (7) are of Lebesgue measure 0. The genericity class given by

condition (7) is well-known in the study of the Lemke-Howson (1964) algorithm for computing

Nash equilibrium.

Proposition 3. In a generic two-player game, any non-degenerate mixed-strategy Nash

equilibrium is non-intrinsic.

Intuitively, a Nash equilibrium does not have any variation in beliefs about the other

players’ actions (for any given player), i.e., no variation in the first order beliefs about play,

which leads to the lack of variation in any higher order beliefs about play; on the other

hand, a (non-pure) intrinsic correlated equilibrium requires variations in the hierarchies of

beliefs about play to support distinct actions (of a given player) played in the equilibrium.

Consequently, we see a conflict between intrinsicness and mixed-strategy Nash equilibrium.4

We do not know if Proposition 3 is true for n-player games, n ≥ 3. Here is an example of

a 3-player game with a unique Nash equilibrium which is in mixed strategy but nevertheless

is intrinsic; this is in contrast to the matching pennies game in Example 2. Fix a 3-player

game with rational payoffs whose unique Nash equilibrium contains irrational entries; the

first example of such game dates back to Nash’s original paper on Nash equilibrium. This

Nash equilibrium must in mixed strategy, and cannot be an extreme point in the set of

CED, because extreme points in the set of CED can be computed by linear programming,

which always returns rational outputs given rational payoff inputs. Therefore, Proposition 1

implies that this unique mixed-strategy Nash equilibrium is an intrinsic CED.

4One proves Proposition 3 by showing that for any Nash equilibrium (x1, x2), condition (7) implies that
xi must be an extreme point of BA

j (aj), for all i ∈ {1, 2}, j 6= i and aj in the support of xj . This fact will be
unsurprising to readers familiar with the Lemke-Howson algorithm, which consists of traversing the extreme
points of sets BA

1 (a1) and BA
2 (a2) until settling on a pair that forms a Nash equilibrium. We omit the detail

which can be found in a working paper version.
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5 Discussion

5.1 Relation to Brandenburger and Friedenberg (2008)

Working with complete-information games (as we do), Brandenburger and Friedenberg study

a refinement of correlated rationalizability where players’ correlated beliefs satisfy conditions

of conditional independence (CI) and sufficiency (SUFF).

Roughly, in a type structure on actions (Ti, λi)i∈N , where λi : Ti → ∆(T−i×A−i) for each

i ∈ N , a type ti satisfies conditional independence (CI) if the belief about others’ actions in

λi(ti) is independent conditional on other players’ hierarchies of beliefs about play. And a

type ti satisfies sufficiency (SUFF) if the belief in λi(ti) is such for any player j 6= i, player

j’s action is influenced only by player j’s hierarchy of beliefs about play.5

Brandenburger and Friedenberg study the set of actions that are consistent with epistemic

conditions of CI, SUFF, and rationality and common beliefs of rationality (RCBR):

Xi := {ai ∈ Ai : there exist (Tj, λj)j∈N such that at every type CI and SUFF hold,

and ti ∈ Ti such that (ai, ti) ∈ Rati(λ)},

where Rati(λ) is the set of states of player i at which RCBR hold:

Rat1
i (λ) := {(ti, ai) ∈ Ti × Ai : ai is optimal in Ai for player i under margA−i

λi(ti)},

Ratli(λ) := {(ti, ai) ∈ Ratl−1
i (λ) : λi(ti)(Ratl−1

−i (λ)) = 1}, l ≥ 2,

Rati(λ) :=
⋂
l≥1

Ratli(λ)

A precise characterization of the set X =
∏

i∈N Xi, in terms of actions and payoffs of the

game and independent of type structure, is an open question posed by Brandenburger and

Friedenberg. Our Theorem 1-A (the characterization of intrinsic a posteriori equilibrium)

provides a partial answer: the injectivity condition of Theorem 1-A is a sufficient condition

for a set of action profiles to be a subset of X. A contemporaneous and independent paper by

Peysakhovich (2009) provides another partial answer; we will discuss Peysakhovich’s result

in Section 5.2.

Let us now discuss the relationship between intrinsic a posteriori equilibrium and epis-

5Because of constraint in space we omit Brandenburger and Friedenberg’s formal definitions of CI and
SUFF, although we present an equivalent definition in the paragraphs below to illustrate the difference to
our approach.
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temic conditions of CI, SUFF and RCBR. We first argue that intrinsic a posteriori equilibrium

is characterized by RCBR plus a determinism condition on type structure (Ti, λi)i∈N , where

λi : Ti → ∆(T−i × A−i):

There exist maps σi : Ti → Ai, i ∈ N, (determinism)

measurable w.r.t. hierarchies of beliefs about play,

such that for every player i ∈ N and type ti ∈ Ti,

λi(ti)(a−i | t−i) = 1σ−i(t−i)(a−i), whenever λi(ti)(t−i) > 0.

The determinism condition says that conditional on a hierarchy of beliefs about play, a

deterministic action of the player will be played, and this is commonly believed by all players.

In particular, every strategic uncertainty in the game is traced back to players’ hierarchies of

beliefs about play — uncertainty about play is a manifestation of uncertainty about beliefs.

It is clear that determinism condition plus RCBR is equivalent to intrinsic a posteriori

equilibrium. In fact, determinism is implicit in the very idea of equilibrium; see Branden-

burger (2010) for a thoughtful discussion of this point.

For comparison, conditions CI and SUFF on all types are equivalent to the following

condition:

For every player i ∈ N and type ti ∈ Ti, (CI + SUFF)

there exist maps σj : Tj → ∆(Aj), j 6= i,

measurable w.r.t. hierarchies of beliefs about play,

such that λi(ti)(a−i | t−i) =
∏
j 6=i

σj(tj)(aj), whenever λi(ti)(t−i) > 0.

Notice that (CI + SUFF) differs are from determinism in two places, or in other words

there are two sources of indeterminism in (CI + SUFF): first, the maps σj between types

and actions (of player j) may depend on the belief λi(ti) and need not be consistent across

types and players; and second, the map σj itself may be stochastic. Thus, (CI + SUFF)

says that a player attributes other players’ actions, up to some idiosyncratic randomization,

to their hierarchies of beliefs about play, but such attribution needs not be consistent across

players or across types (i.e., states of mind) of a same player.
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If we relax determinism so that the action is stochastic conditional on a hierarchy of

beliefs about play (but still insisting that such link between actions and beliefs is consistent

across types and players), this would still have strictly more refined behavioral implications

than (CI + SUFF). The game in Example 1 is an illustration: since there are two players,

(CI + SUFF) has no bite; and recall that all actions are rationalizable. Therefore, every

action is consistent with RCBR, CI and SUFF. However, one can show that actions x and y

of player 2 cannot be played under RCBR and determinism, even if we allow σi : Ti → ∆(Ai)

in the definition of determinism.6

5.2 Private Randomization

Let us relax the restriction to pure strategies (contingent on beliefs and higher order beliefs

about play).

Consider the case of a common prior. Fix a correlating device (Ω, P ), where Ω =
∏

i∈N Ωi

and P ∈ ∆(Ω). Players are now allowed to use private randomization: σi : Ωi → ∆(Ai).

The definition of correlated equilibrium (Definition 1) still applies without change.

For every player i and individual state ωi ∈ Ωi, the first order belief about play at ωi,

δ1
i (ωi) ∈ ∆(A−i), is now as follows:

δ1
i (ωi)(a−i) =

∑
ω−i∈Ω−i

P (ω−i | ωi)
∏
j 6=i

σj(ωj)(aj),

for every a−i ∈ A−i, whenever P (ωi) > 0.

The tuple (Ω, P, σ) obtains a distribution µ ∈ ∆(A), where for every a ∈ A,

µ(a) =
∑
ω∈Ω

P (ω)
∏
i∈N

σi(ωi)(ai).

The following theorem is a reinterpretation of Peysakhovich (2009)’s main result; details

of the proof can be found in his paper.

Theorem (Peysakhovich). For any CED µ ∈ ∆(A), there exists a correlated equilibrium

(Ω, P, σ) that obtains µ such that players condition their randomized actions only on their

first order beliefs about play.

Therefore, we have a trade-off between using mixed strategies and conditioning on higher

order beliefs about play. On the one hand, every CED can be obtained from a correlated

6Details can be found in a previous working paper version.
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equilibrium in which every player plays randomized actions contingent on his first order

beliefs about play. On the other hand, “most” CED (see Proposition 1) can be obtained

from correlated equilibrium in which every player plays pure actions contingent on his higher

order beliefs about play; that is, the player does not randomize, but he might have to rely

on more refined information, i.e., his higher order beliefs.

5.3 Infinite Games

The assumption that the game is finite is crucial to our techniques in this paper. Yet we

conjecture that under some regularity conditions variants of our characterizations would

work for infinite games, for the reason that in general the set of beliefs ∆(A−i) is of strictly

higher cardinality than the action set Ai, if all Ai’s are of the same cardinality. On the other

hand, conditions such as the set of rationalizing beliefs BQ
i (ai) being a singleton set and

beliefs being extreme points of BQ
i (ai) would probably have to be refined for infinite games,

because we believe such conditions would only be necessary but not sufficient. We leave the

work on infinite games to future research.

APPENDIX

We will only write the proofs for Theorem 1-A and 2-A. Adapting the proofs to the

finite-order cases (1-B and 2-B) is immediate.

A Proof of Theorem 1-A

A.1 Only If:

Fix an intrinsic a posteriori equilibrium (Ω, β, σ). Let Qi = σi(Ωi) for each i ∈ N . We will

show that for any ai 6= a′i ∈ Wi(Q), we have BQ
i (ai) 6= BQ

i (a′i).

Let (Ti, λi)i∈N be the (Ω, β, σ)-induced type structure as in Definition 2, where Ti = Ωi,

and λi : Ti → ∆(T−i×A−i) is defined in equation (2). For simplicity, let us use ωi to denote

both an individual state in Ωi and the equivalent type in Ti. For each ωi ∈ Ωi = Ti, let

δli(ωi) denote player i’s l-th order belief about action at individual state/type ωi (see the

paragraphs following Definition 4).

The following lemma, which is essentially Proposition 11.1 in Brandenburger and Frieden-

berg (2008), demonstrates the connection between the action set W l
i (Q) and player i’s

equilibrium-induced l-th order beliefs about actions.
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Lemma 1. For any l ≥ 1, i ∈ N , and ai ∈ W l
i (Q), there is exactly one l-th order belief from

Ωi being mapped by σi to ai; that is, if σi(ωi) = σi(ω
′
i) = ai, then δli(ωi) = δli(ω

′
i).

Proof. If σi(ωi) = ai ∈ W 1
i (Q), then clearly δ1

i (ωi) = margA−i
λi(ωi) = BQ

i (ai). Thus the

lemma is true when l = 1.

Now suppose l ≥ 2, and that the lemma is true for l−1. Let σi(ωi) = σi(ω
′
i) = ai ∈ W l

i (Q).

Then, margA−i
λi(ωi) = margA−i

λi(ω
′
i) = BQ

i (ai) because we have ai ∈ W 1
i (Q). If it holds

that BQ
i (ai)(a−i) > 0, that λi(ωi)(ω−i, a−i) > 0, and that λi(ω

′
i)(ω

′
−i, a−i) > 0, then we

must have σ−i(ω−i) = σ−i(ω
′
−i) = a−i (by the construction of λi) and a−i ∈ W l−1

−i (Q) (by

the construction of W l
i (Q)); and by the induction hypothesis, δl−1

j (ωj) = δl−1
j (ω′j) for every

j 6= i. Therefore, the image measure of λi(ωi) equals the image measure of λi(ω
′
i), under the

mapping (δl−1
j , idAj

)j 6=i; in other words, we have δli(ωi) = δli(ω
′
i).

Corollary 1. For every i ∈ N and µ ∈ ∆(W−i(Q)), there can be at most one hierarchy of

beliefs from Ωi having first order belief µ; that is, if δ1
i (ωi) = µ = δ1

i (ω
′
i), then δli(ωi) = δli(ω

′
i)

for every l ≥ 1.

Proof. Suppose that µ ∈ ∆(W−i(Q)) and margA−i
λi(ωi) = µ = margA−i

λi(ω
′
i). If it holds

that µ(a−i) > 0, that λi(ωi)(ω−i, a−i) > 0, and that λi(ω
′
i)(ω

′
−i, a−i) > 0, then we must have

σ−i(ω−i) = σ−i(ω
′
−i) = a−i ∈ W−i(Q), and by the previous lemma δlj(ωj) = δlj(ω

′
j) for every

j 6= i and l ≥ 1. Thus, δli(ωi) = δli(ω
′
i) for every l ≥ 1.

Now, for any i ∈ N and ai 6= a′i ∈ Wi(Q), by the assumption of Qi = σi(Ωi), there

exist ωi, ω
′
i ∈ Ωi such that σi(ωi) = ai and σi(ω

′
i) = a′i. Individual states ωi and ω′i

must have distinct hierarchies of beliefs about play, by the intrinsicness of the equilibrium

(Ω, β, σ). Also, we have margA−i
λi(ωi) = BQ

i (ai) and margA−i
λi(ω

′
i) = BQ

i (a′i); and clearly

BQ
i (ai)(W−i(Q)) = BQ

i (a′i)(W−i(Q)) = 1. Then we must have BQ
i (ai) 6= BQ

i (a′i), for other-

wise the corollary above would imply that ωi and ω′i induce the same hierarchy of beliefs

about play.

A.2 If:

Fix a BRS Q =
∏

i∈N Qi such that BQ
i is injective on Wi(Q). We will construct an intrinsic

a posteriori equilibrium (Ω, β, σ) under which Q is played.

For each i ∈ N , let the set of individual states

Ωi = {ai(k) : ai ∈ Qi \Wi(Q), k ∈ {1, 2}} ∪Wi(Q),
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where ai(1) and ai(2) are two distinct “copies” of ai.

We define the strategy σi : Ωi → Ai as follows. For each i ∈ N , let σi(ai(1)) = σi(ai(2)) =

ai for every ai ∈ Qi \Wi(Q); and let σi(ai) = ai for every ai ∈ Wi.

For every i ∈ N , set ω(ai) = ai(1) if ai ∈ Qi \Wi(Q); and set ω(ai) = ai if ai ∈ Wi(Q).

The individual state ω(ai) is the “default” state associated with action ai.

With states and strategies defined, the next step is to construct the the posterior belief

function βi : Ωi → ∆(Ω−i). This is accomplished in several steps, each of which corresponds

to an iteration of W l
i (Q).

Step 1:

For each ai ∈ Qi \W 1
i (Q), fix ν(ai, 1) 6= ν(ai, 2) ∈ BQ

i (ai) \ BQ
i (W 1

i (Q)) such that they

are all distinct from each other; in other words,

|{ν(ai, k) : ai ∈ Qi \W 1
i (Q), k ∈ {1, 2}}| = 2|Qi \W 1

i (Q)|.

This is possible because Qi \W 1
i (Q) and BQ

i (W 1
i (Q)) are finite sets, but BQ

i (ai) is infinite

for any ai ∈ Qi \W 1
i (Q).

For ai ∈ Qi \W 1
i (Q) and k ∈ {1, 2}, let

βi(ai(k))(ω−i) =

ν(ai, k)(a−i) ωj = ω(aj) for every j 6= i

0 otherwise

for every ω−i ∈ Ω−i.

Clearly, each individual state ai(k), ai ∈ Qi \W 1
i (Q) and k ∈ {1, 2}, induces a distinct

first order belief about play.

Step l: (2 ≤ l ≤ L = min{l ≥ 1 : W l(Q) = W (Q)})
For each ai ∈ W l−1

i \W l
i (Q), choose a c(ai) ∈ W l−2

m \W l−1
m , m 6= i, (where W 0

m = Qm)

such that BQ
i (ai)(c(ai)) > 0; such c(ai) exists by constructions of W l

i (Q)’s, and c(ai)’s can

be chosen so that BQ
i (ai) = BQ

i (a′i) ⇒ c(ai) = c(a′i). And choose κ(ai, 1) 6= κ(ai, 2) ∈ [0, 1]

such that for any ai 6= a′i ∈ W l−1
i (Q) \W l

i (Q) with BQ
i (ai) = BQ

i (a′i), we have that κ(ai, 1),

κ(a′i, 1), κ(ai, 2) and κ(a′i, 2) are all distinct.
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For ai ∈ W l−1
i \W l

i (Q) and k ∈ {1, 2}, let

βi(ai(k))(t−i) =



BQ
i (ai)(a−i) ωj = ω(aj), j 6= i, and am 6= c(ai)

κ(ai, k)BQ
i (ai)(a−i) ωj = ω(aj), j 6∈ {i,m}, and ωm = c(ai)(1)

(1− κ(ai, k))BQ
i (ai)(a−i) ωj = ω(aj), j 6∈ {i,m}, and ωm = c(ai)(2)

0 otherwise

for every ω−i ∈ Ω−i. Essentially, what we are doing here is to introduce heterogeneity,

through κ(ai, k), in beliefs about others’ (l−1)-th order beliefs (i.e., in the l-th order beliefs)

among individual states ai(k) that have the same (l − 1)th order beliefs about play.

By induction on l, it is easy to see that each ai(k), ai ∈ W l−1
i (Q)\W l

i (Q) and k ∈ {1, 2},
induces a distinct l-th order belief about play.

Final Step:

Finally, for ai ∈ Wi(Q), let

βi(ai)(ω−i) =

B
Q
i (ai)(a−i) ωj = ω(aj) for every j 6= i

0 otherwise

for every ω−i ∈ Ω−i.

By assumption, each ai ∈ Wi(Q) has a distinct first order belief.

B Proof of Theorem 2-A

B.1 Only if

Fix a correlated equilibrium (Ω, P, σ). Let µ ∈ ∆(A) be the distribution played by the

equilibrium. Without loss suppose that P places positive probability on all elements of Ω.

And set Qi to be the support of µ in Ai. We prove the following analogue of Lemma 1. The

proof of the only if part of Theorem 2-A follows from Lemma 2 exactly as the only if part

of Theorem 1-A follows from Lemma 1.

Lemma 2. For any l ≥ 1, i ∈ N and ai ∈ Y l
i (µ), there is exactly one l-th order belief from

Ωi being mapped by σi to ai; that is, if σi(ωi) = σi(ω
′
i) = ai, then δli(ωi) = δli(ω

′
i).

Proof. Suppose l = 1. Fix i ∈ N and ai ∈ Y 1
i (µ). If there exist ωi, ω

′
i ∈ Ωi such that

δ1
i (ωi) 6= δ1

i (ω
′
i) ∈ ∆(A−i) but σi(ωi) = σi(ω

′
i) = ai (and for simplicity, assume that σ−1

i (ai) =
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{ωi, ω′i}), then because we have a common prior, the posterior µ( · | ai) must be a strict

convex combination of the first order beliefs δ1
i (ωi) and δ1

i (ω
′
i). This contradicts µ(·|ai) being

an extreme point of BQ
i (ai), because the optimality condition for correlated equilibrium

(condition (1)) implies that δ1
i (ωi) and δ1

i (ω
′
i) are in BQ

i (ai).

The inductive step is the same as that in Lemma 1 and does not use the common prior

assumption.

B.2 If

Suppose a correlated equilibrium distribution µ ∈ ∆(A) is given such that for every i ∈ N
and for any two distinct ai 6= a′i ∈ Yi(µ), we have that µ( · | ai) 6= µ( · | a′i). We will construct

an intrinsic correlated equilibrium (Ω, P, σ) that obtains µ. For each i ∈ N let Qi be the

support of margAi
µ. Our construction is to split each action ai ∈ Qi \ Yi(µ) into two copies

(and making each copy an individual state with a distinct hierarchy of beliefs about play)

repeatedly using Lemma 3, whose proof we defer until the end of this section.

Lemma 3. Fix a finite and non-empty X =
∏

i∈N Xi and a µ ∈ ∆(X) such that µ(xi) > 0 for

every i ∈ N and xi ∈ Xi. And fix (Zi)i∈N , where Zi ⊆ Xi, and {(ν(xi, 1), ν(xi, 2))}xi∈Zi,i∈N ,

where ν(xi, 1), ν(xi, 2) ∈ ∆(X−i), such that for every i ∈ N and xi ∈ Zi, we have µ( · | xi) =

κ(xi)ν(xi, 1) + (1− κ(xi))ν(xi, 2) for some κ(xi) ∈ (0, 1).

Let X̃ =
∏

i∈N X̃i, X̃i = {xi(k) : xi ∈ Zi, k ∈ {1, 2}} ∪ (Xi \ Zi) (where xi(1) and xi(2)

are two distinct copies of xi). Define fi : X̃i → Xi such that fi(xi) = xi for xi 6∈ Zi, and

fi(xi(1)) = fi(xi(2)) = xi for xi ∈ Zi; define f : X̃ → X and f−i : X̃−i → X−i in the obvious

way.

Then, there exists a µ̃ ∈ ∆(X̃) such that µ̃(f−1(x)) = µ(x) for each x ∈ X, and

µ̃(f−1
−i (x−i) | xi(k)) = ν(xi, k)(x−i) for every i ∈ N , xi ∈ Zi, k ∈ {1, 2} and x−i ∈ X−i.

Furthermore, if for every i ∈ N and xi ∈ Zi, ν(xi, 1) and ν(xi, 2) have the same support

as µ( · | xi), then for every i ∈ N , xi ∈ Zi and x−i ∈ X̃−i, µ̃(xi(1), x−i) > 0 if and only if

µ̃(xi(2), x−i) > 0 (if and only if µ(xi, f−i(x−i)) > 0).

Step 1:

For each i ∈ N and ai ∈ Qi \ Y 1
i (µ), choose ν(ai, 1) 6= ν(ai, 2) ∈ BQ

i (ai) such that

µ( · | ai) = ν(ai, 1)/2 + ν(ai, 2)/2 and that ν(ai, 1) and ν(ai, 2) have the same support as

µ( · | ai). This is possible by construction of Y 1
i (µ). Furthermore, we can choose ν(ai, k)’s
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in a way such that for every i ∈ N :

|{ν(ai, k) : ai ∈ Qi \ Y 1
i (µ), k ∈ {1, 2}}| = 2|Qi \ Y 1

i |

and

{ν(ai, k) : ai ∈ Qi \ Y 1
i (µ), k ∈ {1, 2}} ∩ {µ( · | ai) : ai ∈ Y 1

i (µ)} = ∅.

Now, apply Lemma 3 to µ, Q, (Qi \ Y 1
i (µ))i∈N and {(ν(ai, 1), ν(ai, 2))}ai∈Qi\Y 1

i (µ),i∈N to

obtain Ω1 =
∏

i∈N Ω1
i (where Ω1

i = {ai(k) : ai ∈ Qi \ Y 1
i (µ), k ∈ {1, 2}} ∪ Y 1

i ), P 1 ∈ ∆(Ω1)

and f 1
i : Ω1

i → Qi, i ∈ N, with properties stated in the lemma. These properties imply that

(Ω1, P 1, f 1) is a correlated equilibrium that obtains µ, and that each ai(j), ai ∈ Qi \ Y 1
i (µ)

and j ∈ {1, 2}, has a distinct first order belief about play.

Step l: (2 ≤ l ≤ L = min{l ≥ 1 : Y l(µ) = Y (µ)})
Suppose that Ωl−1 =

∏
i∈N Ωl−1

i (where Ωl−1
i = {ai(k) : ai ∈ Qi \ Y l−1

i (µ), k ∈ {1, 2}} ∪
Y l−1
i (µ)), P l−1 ∈ ∆(Ωl−1) and f l−1

i : Ωl−1
i → Ωl−2

i , i ∈ N , (let Ω0
i = Qi) are obtained from

Lemma 3 in the previous step.

For each i ∈ N and ai ∈ Y l−1
i (µ) \ Y l

i (µ), choose a c(ai) ∈ Y l−2
j (µ) \ Y l−1

j (µ), j 6= i, (let

Y 0
j (µ) = Qj) such that µ(c(ai) | ai) > 0; such c(ai) exists by construction of Y l

i (µ)’s, and

c(ai)’s can be chosen so that µ( · | ai) = µ(·|a′i)⇒ c(ai) = c(a′i). For each ω−(i,j) ∈ Ωl−1
−(i,j) =∏

k 6∈{i,j}Ωl−1
k , we have P l−1(ω−(i,j), c(ai)(1), ai) > 0 if and only if P l−1(ω−(i,j), c(ai)(2), ai) > 0

(by Lemma 3); and P l−1({c(ai)(1), c(ai)(2)} × {ai} × Ωl−1
−(i,j)) = µ(c(ai), ai) > 0. Let

ν(ai, 1)(ω−i) =


P l−1(ω−i | ai) P l−1(t−i | ai) = 0 or ωj 6∈ {c(ai)(1), c(ai)(2)}

P l−1(ω−(i,j), c(ai)(1) | ai)− κ(ai) P l−1(ω−i | ai) > 0 and ωj = c(ai)(1)

P l−1(ω−(i,j), c(ai)(2) | ai) + κ(ai) P l−1(ω−i | ai) > 0 and ωj = c(ai)(2)

,

and

ν(ai, 2)(ω−i) =


P l−1(ω−i | ai) P l−1(t−i | ai) = 0 or ωj 6∈ {c(ai)(1), c(ai)(2)}

P l−1(ω−(i,j), c(ai)(1) | ai) + κ(ai) P l−1(ω−i | ai) > 0 and ωj = c(ai)(1)

P l−1(ω−(i,j), c(ai)(2) | ai)− κ(ai) P l−1(ω−i | ai) > 0 and ωj = c(ai)(2)

,

for every ω−i ∈ Ωl−1
−i , where κ(ai) > 0 is sufficiently small so that ν(ai, 1) and ν(ai, 2)

has the same support as µl−1( · | ai). Notice that ν(ai, 1)/2 + ν(ai, 2)/2 = P l−1( · | ai).
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Furthermore, we can choose the κ(ai)’s so that for any ai 6= a′i ∈ Y l−1
i \ Y l

i (µ) such that

µ( · | ai) = µ(·|a′i), we have that ν(ai, 1), ν(ai, 2), ν(a′i, 1) and ν(a′i, 2) all differ from each

other in their probabilities on c(a1)(1).

Now, apply Lemma 3 to P l−1, Ωl−1, (Y l−1
i (µ)\Y l

i (µ))i∈N and {(ν(ai, 1), ν(ai, 2))}ai∈Y l−1
i (µ)\Y l

i (µ),i∈N

to obtain Ωl =
∏

i∈N Ωl
i (where Ωl

i = {ai(k) : ai ∈ Qi\Y l
i (µ), k ∈ {1, 2}}∪Y l

i (µ)), P l ∈ ∆(Ωl)

and f li : Ωl
i → Ωl−1

i , i ∈ N, with properties stated in the lemma. These properties imply

that (P l,Ωl, f 1 ◦ · · · ◦ f l) is a correlated equilibrium that obtains µ, and that each ai(k),

ai ∈ Y l−1
i (µ) \ Y l

i (µ) and k ∈ {1, 2}, induces a distinct l-th order belief about play.

Finally:

Let Ω = ΩL (Ωi = ΩL
i = {ai(k) : ai ∈ Qi \ Yi(µ), k ∈ {1, 2}} ∪ Yi(µ)), P = PL, and

σi = f 1
i ◦ . . . ◦ fLi . It is easy to see that that (Ω, P, σ) is an intrinsic correlated equilibrium

that obtains µ.

Proof of Lemma 3. Without loss of generality suppose that N = {1, . . . , n}.
Let µ1 ∈ ∆(X̃1 ×

∏
2≤i≤nXi) be such that

µ1(x1(1), x−1) = µ(x1)κ(x1)ν(x1, 1)(x−1)

and

µ1(x1(2), x−1) = µ(x1)(1− κ(x1))ν(x1, 2)(x−1),

where µ( · | x1) = κ(x1)ν(x1, 1) + (1− κ(x1))ν(x1, 2), for each x1 ∈ Z1 and x−1 ∈ X−1.

And let µ1(x1, x−1) = µ(x1, x−1) for every x1 6∈ Z1 and x−1 ∈ X−1.

In general, for 2 ≤ l ≤ n, let µl ∈ ∆(
∏

1≤j≤l X̃j ×
∏

l+1≤i≤nXi) be such that for every

xl ∈ Zl, (x1, . . . , xl−1) ∈
∏

1≤i≤l−1 X̃i and (xl+1, . . . , xn) ∈
∏

l+1≤i≤nXi:

µl(x1, . . . , xl−1, xl(1), xl+1, . . . , xn) =µ(xl)κ(xl)
µl−1(x1, . . . , xl−1, xl, . . . , xn)

µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn)

× ν(xl, 1)(f1(x1), . . . , fl−1(xl−1), xl+1, . . . , xn)

and

µl(x1, . . . , xl−1, xl(2), xl+1, . . . , xn) =µ(xl)(1− κ(xl))
µl−1(x1, . . . , xl−1, xl, . . . , xn)

µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn)

× ν(xl, 2)(f1(x1), . . . , fl−1(xl−1), xl+1, . . . , xn),
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if µ(f1(x1), . . . , fl−1(xl−1), xl, . . . , xn) > 0, and

µl(x1, . . . , xl−1, xl(1), xl+1, . . . , xn) = µl(x1, . . . , xl−1, xl(2), xl+1, . . . , xn) = 0

otherwise, where µ( · | xl) = κ(xl)ν(xl, 1) + (1− κ(xl))ν(xl, 2).

And let

µl(x1, . . . , xl−1, xl, xl+1, . . . , xn) = µl−1(x1, . . . , xl−1, xl, xl+1, . . . , xn)

for every xl 6∈ Zl, (x1, . . . , xl−1) ∈
∏

1≤i≤l−1 X̃i and (xl+1, . . . , xn) ∈
∏

l+1≤i≤nXi.

It is easy to verify that µ̃ = µn satisfies the desired properties.

C Proof of Proposition 2, if direction

Fix an l ≥ 2. Suppose that µ1, µ2 ∈ ∆(A) are CED’s such that players condition their

actions on their l-th order beliefs about play. By Theorem 2-B, this means that µk( · | ai) is

injective on Y l
i (µk), for k = 1, 2 and i ∈ N . Let γ ∈ (0, 1) and µ = γµ1 + (1− γ)µ2. We will

show that µ( · | ai) is injective on Y l
i (µ) as well.

For any i ∈ N , if µ1(ai) > 0, µ2(ai) > 0 and µ1( · | ai) 6= µ2( · | ai), then µ( · | ai) is a

strict convex combination of µ1( · | ai) and µ2( · | ai), so clearly ai 6∈ Y 1
i (µ). Therefore, if

ai ∈ Y 1
i (µ), and µ1(ai) > 0 (respectively, µ2(ai) > 0), then we have that µ( · | ai) = µ1( · | ai)

(respectively, µ( · | ai) = µ2( · | ai)).
Let Q1

i = supp(margAi
µ1) and Q2

i = supp(margAi
µ2) for every i ∈ N . By the argument

above, we have Y 1
i (µ)∩Q1

i ⊆ Y 1
i (µ1) and Y 1

i (µ)∩Q2
i ⊆ Y 1

i (µ2) for each i ∈ N . This implies

that Y l
i (µ) ∩Q1

i ⊆ Y l
i (µ1) and Y l

i (µ) ∩Q2
i ⊆ Y l

i (µ2).

If ai 6= a′i ∈ Y l
i (µ)∩Q1

i , then ai 6= a′i ∈ Y l
i (µ1), and thus µ1( · | ai) 6= µ1( · | a′i). Therefore,

we have µ( · | ai) 6= µ( · | a′i), by the reasoning in the second paragraph. And likewise for

ai 6= a′i ∈ Y l
i (µ) ∩Q2

i .

Now, suppose ai 6= a′i ∈ Y 2
i (µ) such that ai ∈ Q1

i \Q2
i , a

′
i ∈ Q2

i \Q1
i and µ( · | ai) = µ( · | a′i).

Then we have µ1( · | ai) = µ2( · | a′i). For any aj ∈ Aj, j 6= i, such that µ1(aj | ai) = µ2(aj |
a′i) > 0, we have aj ∈ Y 1

j (µ), which implies that µ( · | aj) = µ1( · | aj) = µ2( · | aj). But this

implies that µ1(ai | aj) = µ(ai | aj) = µ2(ai | aj) > 0, which contradicts ai 6∈ Q2
i . Thus, this

case is impossible, and we are done.
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