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Abstract

This paper studies the welfare consequence of increasing trading speed in financial markets.

We build and solve a dynamic trading model, in which traders receive private information

of asset value over time and trade strategically with demand schedules in a sequence of

double auctions. A stationary linear equilibrium and its efficiency properties are char-

acterized explicitly in closed form. Infrequent trading (few double auctions per unit of

time) leads to a larger market depth in each trading period, but frequent trading allows

more immediate asset re-allocation after new information arrives. Under natural condi-

tions, the socially optimal trading frequency coincides with information arrival frequency

for scheduled information releases, but can (far) exceed information arrival frequency for

stochastic information arrivals. If traders have heterogeneous trading speeds, fast traders

prefer the highest feasible trading frequency, whereas slow traders tend to prefer a strictly

lower frequency.

Keywords: trading frequency, welfare, high-frequency trading, dynamic trading, double auc-

tion
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1 Introduction

Trading in financial markets has become significantly faster over the last decade. Today, elec-

tronic transactions for equities, futures, and foreign exchange are typically conducted within

millisecond or microseconds. Electronic markets, which typically have a higher speed than

manual markets, are also increasingly adapted in the over-the-counter markets for debt secu-

rities and derivatives, such as corporate bonds, interest rates swaps, and credit default swaps.

Exchange traded funds, which trade at a high frequency like stocks, have gained significant

market shares over index mutual funds, which only allow buying and selling at the end of day.

The remarkable speedup in financial markets raises important economic questions. For

example, does a higher speed of trading necessarily lead to a higher social welfare, in terms

of more efficient allocations of assets? What is the socially optimal frequency (if one exists)

at which financial markets should operate? Moreover, given that certain investors trade at a

higher speed than others, does a higher trading frequency affect fast investors and slow ones

equally or differentially? Answers to these questions would provide valuable insights for the

ongoing academic and policy debate on market structure, especially in the context of high-speed

trading (see, for example, Securities and Exchange Commission (2010)).

In this paper, we set out to investigate the welfare consequence of speeding up trading

in financial markets. We build and solve a dynamic model with strategic trading, adverse

selection, and imperfect competition. Specifically, in our model, a finite number (n ≥ 3) of

traders trade a divisible asset in an infinite sequence of uniform-price double auctions, held

at discrete time intervals. The shorter is the time interval between auctions, the higher is

the speed of the market. At an exponentially-distributed time in the future, the asset pays

a liquidating dividend, which, until that payment time, evolves according to a jump process.

Over time, traders receive private, informative signals of common dividend shocks, as well as

idiosyncratic shocks to their private values for owning the asset. Traders’ values for the assets

are therefore interdependent, creating adverse selection in the trading process.1 Traders also

incur quadratic costs for holding inventories, which is equivalent to linearly decreasing marginal

values. A trader’s dividend signals, shocks to his private values, and his inventories are all his

private information. In each double auction, traders submit demand schedules (i.e., a set of limit

orders) and pay for their allocations at the market-clearing price. All traders take into account

the price impact of their trades and are forward-looking about future trading opportunities.

Our model incorporates many salient features of dynamic markets in practice. For example,

asymmetric and dispersed information about the common dividend creates adverse selection,

1Throughout this paper, “adverse selection” covers situations in which different traders have different pieces
of information regarding the same asset. In our context “adverse selection” may also be read as “interdependent
values.”
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whereas private-value information and convex inventory costs introduce gains from trade. These

trading motives are also time-varying as news arrives over time. Moreover, the number of

double auctions per unit of clock time is a simple yet realistic way to model trading frequency

in dynamic markets.

A dynamic equilibrium and efficiency. Our first main result is the characterization of

a linear stationary equilibrium in this dynamic market, as well as its efficiency properties.

In equilibrium, a trader’s optimal demand in each double auction is a linear function of the

price, his signal of the dividend, his most recent private value, and his private inventory. Each

coefficient is solved explicitly in closed form. Naturally, the equilibrium price in each auction

is a weighted sum of the average signal of the common dividend and the average private value,

adjusted for the marginal holding cost of the average inventory. Prices are martingales since

the innovations in common dividend and private values have zero mean.

Because there are a finite number of traders, demand schedules in this dynamic equilibrium

are not competitive. Consequently, the equilibrium allocations of assets across traders after

each auction are not fully efficient, but they converge gradually and exponentially over time to

the efficient allocation. This convergence remains slow and gradual even in the continuous-time

limit. (In reality, slow trading of this sort means splitting a large order into many smaller

pieces and executing them over time.) We show that the convergence rate per unit of clock

time increases with the number of traders, the arrival intensity of the dividend, the variance

of the private-value shocks, and the trading frequency of the market; but the convergence rate

decreases with the variance of the common-value shocks, which is a measure of adverse selection.

Welfare and optimal trading frequency. Our modeling framework proves to be an effec-

tive tool in answering welfare questions. Characterizing welfare and optimal trading frequency

in this dynamic market is the second primary contribution of our paper.

We ask two related questions regarding trading frequency. First, what is the socially optimal

trading frequency if all traders have equal speed? Second, if certain traders are faster than

others, what are the trading frequencies that are optimal for fast and slow traders respectively?

Homogeneous speed. The first question on homogenous speed can be readily analyzed in our

benchmark model, in which all traders participate in all double auctions. We emphasize that

a change of trading frequency in our model does not change the fundamental properties of the

asset, such as the timing and magnitude of the dividend shocks.

Increasing trading frequency involves the following important tradeoff. On the one hand, a

higher trading frequency allows traders to react more quickly to new information and to trade

sooner toward the efficient allocation. This effect favors a faster market. On the other hand, a
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lower trading frequency serves as a commitment device that induces more aggressive demand

schedules (i.e., buy and sell orders are less sensitive to prices), which leads to more efficient

allocations in early rounds of trading. This effect favors a slower market. Analytically, the

allocative inefficiency in this dynamic market relative to the first best can be decomposed into

two components: one part due to strategic behavior and the other due to the delayed responses

to new information. The optimal trading frequency should strike the best balance between

maximizing the aggressiveness of demand schedules and minimizing delays in reacting to new

information.

We show that depending on the nature of information arrivals, this tradeoff leads to differ-

ent optimal trading frequencies. If new information of dividend and private values arrives at

scheduled time intervals, the optimal trading frequency cannot be higher than the frequency

of new information. In the natural case that all traders are ex-ante identical, the optimal

trading frequency coincides with the information arrival frequency. Intuitively, if information

arrival times are known in advance, aligning trading times with information arrival times would

reap all the benefit of immediate response to new information, while maximizing the average

aggressiveness of demand schedules.

By contrast, if new information arrives at Poisson times, which are unpredictable, it is

important to keep the market open more often to prevent excessive delays in responding to new

information. Indeed, we show that with ex-ante identical traders and under Poisson information

arrivals, the optimal trading frequency is always higher than two thirds of the information arrival

frequency. Moreover, we show explicit conditions under which the optimal trading frequency is

bounded below by a constant multiple of the information arrival frequency. This lower-bound

multiple is larger if adverse selection is less of a concern. In the special case without adverse

selection, the optimal trading frequency is at least n/2 times the information arrival frequency.

In the limit, as the number of traders n becomes large or as the arrival rate of information

goes to infinity, continuous trading becomes optimal.2 These results suggest that the optimal

trading frequency for a particular asset should roughly increase in the “liquidity” of the asset.

Heterogeneous speeds. To answer the second question of welfare, we extend the model to

allow heterogeneous trading speeds. In this extension, fast traders access the market whenever

it is open, but slow traders only access the market periodically with a delay. This implies

that fast traders participate in all double auctions, but each slow trader only participates in

a fraction of the auctions. Different from recent studies of high-frequency trading (see the

literature section), fast traders have no information advantage over slow ones.

We find that fast and slow traders generally prefer different frequencies at which the market

2To clarify, continuous trading in our model means continuous double auctions, not a continuous limit order
book. The latter is effectively a discriminatory-price auction, not a uniform-price auction.
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operates. By staying in the market all the time, fast traders in our model play the endoge-

nous role of market-makers: intermediating trades among slow traders who arrive sequentially.

Through intermediation fast traders extract rents. A higher trading frequency reduces the

number of slow traders in each double auction, making the market “thinner” and fast traders’

rents higher. We show that fast traders prefer the highest trading frequency (i.e. the thinnest

market) that is feasible. By contrast, slow traders typically prefer a strictly lower trading fre-

quency (and a thicker market) because they benefit from pooling trading interests over time

and providing liquidity to each other, even though a lower trading frequency implies a higher

average delay cost for them. A broad implication from this analysis is that who designs the

market matters a great deal for everyone.

Another direct observation from the heterogeneous-speed model is that, due to imperfect

competition and market power, a higher trading frequency creates larger and more abrupt price

reactions to supply and demand shocks (i.e. “price overshooting”), as well as subsequent rever-

sals. These price paths exhibit high short-term volatility and resemble (mini) “flash crashes”

and “flash rallies” observed in electronic markets.

Relation to the literature. The paper closest to ours is Vayanos (1999), who studies a

dynamic market in which the asset fundamental value (dividend) is public information, but

agents receive periodic private inventory shocks. Traders in his model also face imperfect

competition and strategically avoid price impact. Vayanos (1999) shows that, if inventory

shocks are small, then a lower trading frequency is better for welfare by encouraging traders

to submit more aggressive demand schedules.3 We make two main contributions relative to

Vayanos (1999). First, our model allows interdependent values and adverse selection. Adverse

selection makes trading less aggressive and reduces the optimal trading frequency. Second,

our model identifies two channels of welfare losses: One channel, strategic behavior, agrees

with Vayanos (1999), whereas the other, delayed responses to news, complements Vayanos

(1999). The latter channel is absent in Vayanos (1999) because inventory shocks and trading

times always coincide in his model. We show that the latter channel can lead to an optimal

trading frequency that is much faster than information arrival frequency if information arrival

is stochastic. Our result also generates useful predictions regarding how the optimal trading

frequency varies with asset characteristics.

In another related paper, Rostek and Weretka (2015) study dynamic trading with multi-

ple dividend payments. In their model, traders have symmetric information about the asset’s

3Vayanos (1999) also shows that if inventory information is common knowledge, there is a continuum of
equilibria. Under one of these equilibria, selected by a trembling hand refinement, welfare is increasing in
trading frequency. Because our model has private information of inventories, the private-information equilibrium
of Vayanos (1999) is a more appropriate benchmark for comparison.
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fundamental value, and between consecutive dividend payments there is no news and no dis-

counting. In this setting, they show that a higher trading frequency is better for welfare. Our

contribution relative to Rostek and Weretka (2015) is similar to that relative to Vayanos (1999).

First, our model applies to markets with adverse selection. Second, we show that the optimal

trading frequency can be slow or fast, depending on the tradeoff between strategic behaviors

and delayed responses to news.

Among recent models that study dynamic trading with adverse selection, the closest one

to ours is Kyle, Obizhaeva, and Wang (2014). They study a continuous-time trading model in

which agents have pure common values but “agree to disagree” on the precision of their signals.

Although the disagreement component in their model and the private-value component in ours

appear equivalent, they are in fact very different. As highlighted by Kyle, Obizhaeva, and Wang

(2014), in a disagreement model the traders disagree not only about their values today, but

also about how the values evolve over time; this behavior does not show up in a private-value

model. Therefore, their model and ours answer very different economic questions: Their model

generates “beauty contest” and non-martingale price dynamics, whereas our model is useful for

characterizing the optimal trading frequency.

The last part of our paper on heterogeneous trading speed is most related to the model

by Duffie (2010), who proposes an inattention-based model to explain asset price behaviors

around large supply or demand shocks. The inattentive and attentive investors in his model

correspond to the slow and fast traders in our model. Going beyond Duffie (2010), our model

has imperfect competition, so price reactions to supply and demand shocks reflect market power

and are hence more volatile. Moreover, from a welfare viewpoint, we find that fast traders in

fact prefer the most volatile, highest-frequency market, because that is where they make the

highest intermediation profits.

Our heterogeneous-speed results are complementary to existing studies on the welfare con-

sequences of high-frequency trading (HFT). First, the existing theoretical literature on HFT

typically assumes that fast traders also possess superior information about the value of the

asset at the time of trading (see Biais, Foucault, and Moinas (2015), Budish, Cramton, and

Shim (2015), Hoffmann (2014), Jovanovic and Menkveld (2012), and Cespa and Vives (2013)).

By contrast, the fast trader in our model are not more informed speculators but act as rent-

extracting intermediaries. Second, the most commonly raised welfare question in the existing

HFT literature is whether investment in high-speed trading technology is socially wasteful (see

Biais, Foucault, and Moinas (2015), Pagnotta and Philippon (2013), Budish, Cramton, and

Shim (2015), and Hoffmann (2014)). By contrast, our welfare question focuses on how trading

frequency interacts with imperfect competition and the efficient allocations of assets, which is

orthogonal to investments in speed technology.
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2 Dynamic Trading in Sequential Double Auctions

This section presents the dynamic trading model and characterizes the equilibrium and its

properties. Main model parameters are tabulated in Appendix A for ease of reference.

2.1 Model

Timing and the double auctions mechanism. Time is continuous, τ ∈ [0,∞). There

are n ≥ 3 risk-neutral traders in the market trading a divisible asset. Trading is organized as

a sequence of uniform-price divisible double auctions, held at clock times {0,∆, 2∆, 3∆, . . .},
where ∆ > 0 is the length of clock time between consecutive auctions. The trading frequency

of this market is therefore the number of double auctions per unit of clock time, i.e., 1/∆. The

smaller is ∆, the higher is the trading frequency. We will refer to the time interval [t∆, (t+1)∆)

as “period t,” for t ∈ {0, 1, 2, . . .}. Thus, the period-t double auction occurs at the clock time

t∆. The top plot of Figure 1 illustrates the timing of the double auctions.

Figure 1: Model time lines. The top plot shows times of double auctions, and the bottom plot
shows the news times (dividend shocks, signals of dividend shocks, and private value shocks).
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We denote by zi,t∆ the inventory held by trader i immediately before the period-t double

auction. The ex-ante inventories zi,0 are given exogenously. The total ex-ante inventory, Z ≡∑
i zi,0, is common knowledge, and we assume that Z does not change over time. (In securities

markets, Z can be interpreted as the total asset supply. In derivatives markets, Z is by definition

zero.) As shown later, while the equilibrium characterization works for any ex-ante inventory

profile {zi,0}ni=1, in the analysis of trading frequency we will pay particular attention to the

special case in which all traders are ex-ante identical (i.e. zi,0 = Z/n).

A double auction is essentially a demand-schedule-submission game. In period t each trader

submits a demand schedule xi,t∆(p) : R → R. The market-clearing price in period t, p∗t∆,

satisfies
n∑
i=1

xi,t∆(p∗t∆) = 0. (1)
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In the eventual equilibrium we characterize, the demand schedules are strictly downward-sloping

in p and hence the solution p∗t∆ exists and is unique. The evolution of inventory is given by

zi,(t+1)∆ = zi,t∆ + xi,t∆(p∗t∆). (2)

After the period-t double auction, each trader i receives xi,t∆(p∗t∆) units of the assets at the

price of p∗t∆ per unit. Of course, a negative xi,t∆(p∗t∆) is a sale.

The asset. Each unit of the asset pays a single liquidating dividend D at a random future

time T , where T follows an exponential distribution with parameter r > 0, or mean 1/r. The

random dividend time T is independent of all else in the model.

Before being paid, the dividend D is unobservable and evolves as follows. At time T0 = 0,

D = D0 is drawn from the normal distribution N (0, σ2
D). Strictly after time 0 but conditional

on the dividend time T having not arrived, the dividend D is shocked at each of the clock times

T1, T2, T3, . . . . The shock times {Tk}k≥1 can be deterministic or stochastic. The dividend shocks

at each Tk, for k ≥ 1, are also i.i.d. normal with mean 0 and variance σ2
D:

DTk −DTk−1
∼ N (0, σ2

D). (3)

We will also refer to {Tk}k≥0 as “news times.” Thus, before the dividend is paid, the unobserv-

able dividend {Dτ}τ≥0 follows a jump process:

Dτ = DTk , if Tk ≤ τ < Tk+1. (4)

Therefore, at the dividend payment time T , the realized dividend is DT .

Since the expected dividend payment time is finite (1/r), for simplicity we normalize the

discount rate to be zero (i.e., there is no time discounting). Allowing a positive time discounting

does not change our qualitative results. Moreover, in the supplemental material to this paper,

we provide an extension in which infinitely many dividends are paid sequentially and there is

a time discount. The main results of this paper are robust to this extension.

Information and preference. At news time Tk, k ∈ {0, 1, 2, · · · }, each trader i receives a

private signal Si,Tk about the dividend shock:

Si,Tk = DTk −DTk−1
+ εi,Tk , where εi,Tk ∼ N (0, σ2

ε ) are i.i.d., (5)

and where DT−1 ≡ 0. The private signals of trader i are never disclosed to anyone else. If

signals about dividend shocks were perfect, i.e. σ2
ε = 0, the information structure of our model
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would be similar to that of Vayanos (1999).

In addition, each trader i has a private value wi,T for receiving the dividend, which can

reflect tax or risk-management considerations. Formally, upon receiving the dividend DT ,

trader i derives an additional benefit wi,T per unit of the asset beyond the common dividend

DT . The private values are also shocked at the news times {Tk}k≥0, and each private-value

shock is i.i.d. normal random variables with mean zero and variance σ2
w:

wi,Tk − wi,Tk−1
∼ N (0, σ2

w), (6)

where wi,T−1 ≡ 0. Written in continuous time, trader i’s private-value process wi,τ is a jump

process:

wi,τ = wi,Tk , if Tk ≤ τ < Tk+1. (7)

The private values to trader i are observed by himself and are never disclosed to anyone else.

Therefore, if the dividend is paid at time τ , trader i receives

vi,τ ≡ Dτ + wi,τ (8)

per unit of asset held.4

The bottom plot of Figure 1 illustrates the news times {Tk}k≥0, when dividend shocks, the

signals of dividend shocks, and the private-value shocks all arrive. The two plots of Figure 1

make it clear that, in our model, the fundamental properties of the asset are separate from the

trading frequency of the market.

Moreover, in an interval [t∆, (t+ 1)∆) but before the dividend D is paid, trader i incurs a

“flow cost” that is equal to 0.5λz2
i,(t+1)∆ per unit of clock time, where λ > 0 is a commonly known

constant. The quadratic flow cost is essentially a dynamic version of the quadratic cost used

in the static models of Vives (2011) and Rostek and Weretka (2012). We can also interpret

this flow cost as an inventory cost, which can come from regulatory capital requirements,

collateral requirement, or risk-management considerations. (This inventory cost is not strictly

risk aversion, however.) Once the dividend is paid, the flow cost no longer applies. Thus,

conditional on the dividend having not been paid by time t∆, each trader suffers the flow cost

for a duration of min(∆, T − t∆) within period t, with the expectation

E[min(∆, T − t∆) | T > t∆] =

∫ ∞
0

re−rτ min(τ,∆)dτ =
1− e−r∆

r
, (9)

4As in Wang (1994), the unconditional mean of the dividend here is zero, but one could add a positive
constant to D so that the probability of D < 0 or v < 0 is arbitrarily small. Moreover, in the markets for many
financial and commodity derivatives—including forwards, futures and swaps—cash flows can become arbitrarily
negative as market conditions change over time.
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where we have used the fact that, given the memoryless property of exponential distribution,

T − t∆ is exponentially distributed with mean 1/r conditional on T > t∆.

Value function and equilibrium definition. For conciseness of expressions, we let Hi,τ be

the “history” (information set) of trader i at time τ :

Hi,τ =
{
{(Si,Tl , wi,Tl)}Tl≤τ , {zt′∆}t′∆≤τ , {xi,t′∆(p)}t′∆<τ

}
. (10)

That is, Hi,τ contains trader i’s asset value-relevant information received up to time τ , trader

i’s path of inventories up to time τ , and trader i’s demand schedules in double auctions before

time τ . Notice that by the identity zi,(t′+1)∆ − zi,t′∆ = xi,t′∆(p∗t′∆), a trader can infer from Hi,τ

the price in any past period t′. Notice also that Hi,t∆ does not include the outcome of the

period-t double auction.

Let Vi,t∆ be trader i’s period-t continuation value immediately before the double auction at

time t∆. By the definition of Hi,τ , trader i’s information set right before the period-t double

auction is Hi,t∆. We can write Vi,t∆ recursively as:

Vi,t∆ = E

[
− x∗i,t∆p∗t∆ + (1− e−r∆)(zi,t∆ + x∗i,t∆)vi,t∆ + e−r∆Vi,(t+1)∆

− 1− e−r∆

r
· λ

2
(zi,t∆ + x∗i,t∆)2

∣∣∣∣∣Hi,t∆

]
, (11)

where x∗i,t∆ is a shorthand for xi,t∆(p∗t∆). The first term −x∗i,t∆p∗t∆ is trader i’s net cash flow

for buying x∗i,t∆ units at p∗t∆ each. The second term (1 − e−r∆)(zi,t∆ + x∗i,t∆)vi,t∆ says that if

the dividend is paid during period t, which happens with probability 1 − e−r∆, then trader i

receives (zi,t∆ + x∗i,t∆)vi,t∆ in expectation. (Since shocks to the common dividend and private

values have mean zero, trader i’s expected value is still vi,t∆ even if more news arrives during

period t.) The third term e−r∆Vi,(t+1)∆ says that if the dividend is not paid during period

t, which happens with probability e−r∆, trader i receives the next-period continuation value

Vi,(t+1)∆. Finally, the last term −1−e−r∆
r
· λ

2
(zi,t∆ + x∗i,t∆)2 is the expected quadratic inventory

cost incurred during period t for holding zi,t∆ + x∗i,t∆ units of the asset (see Equation (9)).
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We can expand the recursive definition of Vi,t∆ explicitly:

Vi,t∆ = E

[
−
∞∑
t′=t

e−r(t
′−t)∆x∗i,t′∆p

∗
t′∆ +

∞∑
t′=t

e−r(t
′−t)∆(1− e−r∆)vi,t′∆(zi,t′∆ + x∗i,t′∆)

− 1− e−r∆

r

∞∑
t′=t

e−r(t
′−t)∆λ

2
(zi,t′∆ + x∗i,t′∆)2

∣∣∣∣∣Hi,t∆

]
. (12)

While trader i’s continuation value Vi,t∆ in principle can depend on anything in his informa-

tion set Hi,t∆, in the eventual equilibrium we characterize, it will depend on trader i’s current

pre-auction inventory zi,t∆, his current private value wi,t∆, and the sum of his private signals∑
l:Tl≤t∆ Si,Tl about the dividend.

Definition 1 (Perfect Bayesian Equilibrium). A perfect Bayesian equilibrium is a strategy

profile {xj,t∆}1≤j≤n,t≥0, where each xi,t∆ depends only on Hi,t∆, such that for every trader i and

at every path of his information set Hi,t∆, trader i has no incentive to deviate from {xi,t′∆}t′≥t.
That is, for every alternative strategy {x̃i,t′∆}t′≥t, we have:

Vi,t∆({xi,t′∆}t′≥t, {xj,t′∆}j 6=i,t′≥t) ≥ Vi,t∆({x̃i,t′∆}t′≥t, {xj,t′∆}j 6=i,t′≥t). (13)

2.2 The competitive benchmark equilibrium

Before solving this model with imperfect competition and strategic trading, we first solve a

competitive benchmark in which all traders take prices as given. In doing so, we will also solve

the traders’ inference of the dividend D from equilibrium prices. The solution to this inference

problem in the competitive equilibrium will be used directly in solving the strategic equilibrium

later.

For clarity, we use the superscript “c” to label the strategies, allocations, and prices in the

competitive equilibrium. In each period t each trader i maximizes his continuation value Vi,t∆,

defined in Equation (12), by choosing the optimal demand schedule xci,t∆(pct∆), taking as given

the period-t price and the strategies of his own and other traders in subsequent periods.

We start by conjecturing that the competitive demand schedule xci,t∆(pct∆) in period t is such

that trader i’s expected marginal value for holding zci,t∆ + xci,t∆(pct∆) units of the asset for the

indefinite future is equal to the price pct∆, for each pct∆. That is, we conjecture that

E [vi,t∆ | Hi,t∆, p
c
t∆]− λ

r
(zci,t∆ + xci,t∆(pct∆)) = pct∆. (14)

where the term λ/r takes into account that the marginal holding cost is incurred for an expected
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duration of time 1/r. This conjecture can be rewritten as:

xci,t∆(pct∆) =− zci,t∆ +
r

λ
(E [vi,t∆ | Hi,t∆, p

c
t∆]− pct∆) . (15)

The bulk of the remaining derivation involves finding an explicit expression for E[vi,t∆ |
Hi,t∆, p

c
t∆]. After that the optimal strategy is derived and verified.

Without loss of generality, let us focus on the period-t double auction and suppose that the

latest dividend shock is the k-th. Conditional on the unbiased signals {Sj,Tl}0≤l≤k of dividend

shocks, trader j’s expected value of the dividend Dt∆ is a multiple of
∑k

l=0 Sj,Tl . Moreover, his

private value, wj,Tk , is perfectly observable to him. We thus conjecture that each trader j uses

the following symmetric linear strategy:

xcj,t∆(p) = A1

k∑
l=0

Sj,Tl + A2wj,Tk −
r

λ
p− zcj,t∆ + fZ, (16)

where A1, A2, and f are constants and where we have plugged in the coefficients of p and

zj,t∆ from Equation (15). In particular, trader j puts a weight of A1 on his common-value

information and a weight of A2 on his private value.

By market clearing and the fact that
∑

j zj,t∆ = Z is common knowledge, each trader i is

able to infer ∑
j 6=i

(
A1

k∑
l=0

Sj,Tk + A2wj,Tk

)
(17)

from the equilibrium price pct∆. Thus, each trader i infers his value vi,Tk ≡ DTk +wi,Tk by taking

the conditional expectation:

E

[
vi,Tk

∣∣∣∣∣Hi,Tk ,
∑
j 6=i

(
A1

k∑
l=0

Sj,Tl + A2wj,Tk

)]

=wi,Tk + E

[
DTk

∣∣∣∣∣
k∑
l=0

Si,Tl ,
∑
j 6=i

(
A1

k∑
l=0

Sj,Tl + A2wj,Tk

)]

=wi,Tk +B1

k∑
l=0

Si,Tl +B2

∑
j 6=i

(
A1

k∑
l=0

Sj,Tl + A2wj,Tk

)
︸ ︷︷ ︸

Inferred from pct∆

, (18)

where we have used the projection theorem for normal distributions and where the constants

B1 and B2 are functions of A1, A2, and other primitive parameters. In particular, trader i’s

conditional expected value has a weight of B1 on his common-value information
∑k

l=0 Si,Tl and

11



a weight of 1 on his private value wi,Tk . The third term is inferred from the price.

Because trader i’s competitive strategy xci,t∆ is linear in E[vi,Tk | p∗t∆, Hi,Tk ], trader i’s weight

on his common-value information and his weight on the private value have a ratio of B1. But

by symmetric strategies, this ratio must be consistent with the conjectured strategy to start

with, i.e., B1 = A1/A2. In Appendix C.1, we explicitly calculate that this symmetry pins down

the ratio to be B1 = A1/A2 ≡ χ, where χ ∈ (0, 1) is the unique solution to5

1/(χ2σ2
ε )

1/(χ2σ2
D) + 1/(χ2σ2

ε ) + (n− 1)/(χ2σ2
ε + σ2

w)
= χ. (19)

On the left-hand side of Equation (19), we apply the projection theorem to Equation (18) to

derive the weight B1 as a function of A1/A2 ≡ χ. The projection theorem weighs the precision

of the noise χεi,Tk in trader i’s dividend signal, against the precision of the dividend shock

χ(DTk−DTk−1
) and the precision of others’ dividend noise and private value

∑
j 6=i(χεj,Tk+wj,Tk).

We define the “total signal” si,t∆ by

si,Tk ≡
χ

α

k∑
l=0

Si,Tl +
1

α
wi,Tk , (20)

si,τ = si,Tk , for τ ∈ [Tk, Tk+1),

where the scaling factor α is defined to be

α ≡ χ2σ2
ε + σ2

w

nχ2σ2
ε + σ2

w

>
1

n
. (21)

Trader i’s total signal incorporates the two-dimensional information (
∑k

l=0 Si,Tl , wi,Tk) in a linear

combination with weights χ/α and 1/α.

This construction of total signals leads to a very intuitive expression of the conditional

expected value vi,Tk . Direct calculation implies that (see details in Appendix C.1, Lemma 3)

E
[
vi,Tk

∣∣∣Hi,Tk ,
∑

j 6=i
sj,Tk

]
= αsi,Tk +

1− α
n− 1

∑
j 6=i

sj,Tk︸ ︷︷ ︸
Inferred from pct∆

. (22)

Equation (22) says that conditional on his own information and
∑

j 6=i sj,Tk (inferred from the

equilibrium price), trader i’s expected value of the asset is a weighted average of the total signals,

with a weight of α > 1/n on his own total signal si,Tk and a weight of (1 − α)/(n − 1) < 1/n

5The left-hand side of Equation (19) is decreasing in χ. It is 1/(1 + σ2
ε /σ

2
D) > 0 if χ = 0 and is 1/(1 +

σ2
ε /σ

2
D+(n−1)/(1+σ2

w/σ
2
ε )) < 1 if χ = 1. Hence, Equation (19) has a unique solution χ ∈ R, and such solution

satisfies χ ∈ (0, 1).

12



on each of the other traders’ total signal sj,Tk . The weights differ because other traders’ total

signals include both common dividend information and their private values, and others’ private

values are essentially “noise” to trader i (hence under-weighting).

Substituting Equation (22) into Equation (15), we have

xci,t∆(pct∆) =− zci,t∆ +
r

λ

(
αsi,t∆ +

1− α
n− 1

∑
j 6=i

sj,t∆

)
− r

λ
pct∆, (23)

By market clearing,
∑

i x
c
i,t∆(pct∆) = 0, we solve

pct∆ =
1

n

n∑
j=1

sj,t∆ −
λ

rn
Z. (24)

The first term of pct∆ is the average total signal, and the second term is the marginal cost of

holding the average inventory Z/n for an expected duration of time 1/r.

Substituting Equation (24) back to the expressions of xci,t∆(pct∆) in Equation (23), we obtain

explicitly the competitive demand schedule:

xci,t∆(p) =
r(nα− 1)

λ(n− 1)

(
si,t∆ − p−

λ(n− 1)

r(nα− 1)
zci,t∆ +

λ(1− α)

r(nα− 1)
Z

)
. (25)

Appendix C.2 verifies that under this strategy the first-order condition of trader i’s value

function (12) can indeed be written in the form of Equation (15). The second-order condition

is satisfied as nα > 1 by the definition of α.

The post-trading allocation in the competitive equilibrium in period t is:

zci,(t+1)∆ = zci,t∆ + xci,t∆(pct∆) =
r(nα− 1)

λ(n− 1)

(
si,t∆ −

1

n

n∑
j=1

sj,t∆

)
+

1

n
Z. (26)

That is, after each double auction, each trader is allocated the average inventory plus a constant

multiple of how far his total signal deviates from the average total signal. We also see that

the competitive inventories are martingales since total signals are martingales. We refer to this

allocation as the “competitive allocation.”

The following proposition summarizes the competitive equilibrium.

Proposition 1. In the competitive equilibrium, the strategies are given by Equation (25), the

price by Equation (24), and the allocations by Equation (26).
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2.3 Characterizing the strategic equilibrium

Having solved a competitive benchmark, we now turn to the equilibrium with imperfect com-

petition and strategic behavior, i.e., traders take into account the impact of their trades on

prices. The equilibrium is stated in the following proposition.

Proposition 2. Suppose that nα > 2, which is equivalent to

1

n/2 + σ2
ε/σ

2
D

<

√
n− 2

n

σw
σε
. (27)

With strategic bidding, there exists a perfect Bayesian equilibrium in which every trader i submits

the demand schedule

xi,t∆(p; si,t∆, zi,t∆) = b

(
si,t∆ − p−

λ(n− 1)

r(nα− 1)
zi,t∆ +

λ(1− α)

r(nα− 1)
Z

)
, (28)

where

b =
(nα− 1)r

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
> 0.

(29)

The period-t equilibrium price is

p∗t∆ =
1

n

n∑
i=1

si,t∆ −
λ

rn
Z. (30)

The derivation of the strategic equilibrium follows similar steps to that of the competitive

equilibrium derived in Section 2.2. The details of equilibrium construction are delegated to

Appendix C.3. Below, we discuss key intuition of the strategic equilibrium by comparing it

with the competitive one.

Let us start with common properties shared between the strategic equilibrium and the

competitive one. For example, the equilibrium prices are equal under competitive and strategic

bidding. Equal price implies equal information inference from the price in both equilibria,

hence equal construction of the total signal {si,t∆} that consolidates traders’ information about

the common dividend and private values. The price aggregates the most recent total signals

{si,t∆}, which has a flavor of rational expectations equilibrium. Since the total signals are

martingales, the price is also a martingale. The second term −λZ/(nr) in p∗t∆ and pct∆ is the

expected marginal cost of holding the average inventory Z/n until the dividend is paid, i.e., for

an expected duration of time 1/r. Although each trader learns from p∗t∆ the average total signal∑
i si,t∆/n in period t, he does not learn the total signal or inventory of any other individual
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trader. Nor does a trader perfectly distinguish the common-value component and the private-

value component of the price. Thus, private information is not fully revealed after each round

of trading. Finally, the equilibrium strategies in Equations (28) and (25) are stationary: a

trader’s strategy only depends on his most recent total signal si,t∆ and his current inventory

zi,t∆, but does not depend explicitly on t.6

There are two important differences between the strategic equilibrium of Proposition 2 and

the competitive benchmark in Section 2.2. First, in the strategic equilibrium, rather than

take the price as given, each trader in each period effectively selects a price-quantity pair from

the residual demand schedule of all other traders. To mitigate price impact, they trade less

aggressively in the strategic equilibrium than in the competitive equilibrium. Formally, the

endogenous coefficient b in Equation (28) is strictly smaller than r(nα−1)
λ(n−1)

in Equation (25):

b
r(nα−1)
λ(n−1)

= 1 +
(nα− 1)(1− e−r∆)−

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

2e−r∆
< 1. (31)

This feature is the familiar “bid shading” or “demand reduction” in models of divisible auctions

(see Ausubel, Cramton, Pycia, Rostek, and Weretka 2014). The coefficient b captures how much

additional quantity of the asset a trader is willing to buy if the price drops by one unit per

period. Thus, a smaller b corresponds to a less aggressive demand schedule. As the number n

of traders tends to infinity, the ratio in Equation (31) tends to 1, so the strategic equilibrium

converges to the competitive equilibrium.

Intimately related to the aggressiveness of demand schedules is the extent to which a trader

“liquidates” his inventory in each trading round. In the competitive equilibrium strategy xci,t∆,

the coefficient in front of zci,t∆ is −1, meaning that each trader liquidates his inventory entirely.

By contrast, under the strategy xi,t∆ of Proposition 2, the coefficient in front of zi,t∆ is

d ≡ −b λ(n− 1)

r(nα− 1)
= −1 +

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆ − (nα− 1)(1− e−r∆)

2e−r∆
, (32)

which, under the condition nα > 2, is strictly between −1 and 0. Thus, each trader only

6Some readers may wonder why our model does not have the infinite-regress problem of beliefs about beliefs,
beliefs about beliefs about beliefs, etc. The reason is that the equilibrium price reveals the average total signal
in each period; thus, a trader’s belief about the common dividend, as well as his potential high-order beliefs, is
actually spanned by this trader’s own private information and the equilibrium price. This logic was previously
used by He and Wang (1995) and Foster and Viswanathan (1996) to show that the potential infinite-regress
problem is resolved in their dynamic models with heterogenous information. Our assumption that the common
dividend and private values evolve as random walks implies that only the current price has the most updated
information and hence allows us to characterize a stationary equilibrium. Without the random walk assumption,
traders may potentially need to use all past prices to form inference, and the analysis will become much more
complicated.
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liquidates a fraction |d| < 1 of his inventory, leaving a fraction 1+d ∈ (0, 1). Partial liquidation

of inventory implies that the strategy in period t has an impact on strategies in all future periods,

and that an inefficient allocation in one period affects the inefficiency in all future periods. The

next subsection investigates in details how the quantity 1 + d determines allocative inefficiency,

which is ultimately related to the optimal trading frequency that we study in Section 3.

Relative to the competitive benchmark, the second important difference of the strategic

equilibrium is that its existence requires nα > 2, which, as we show in the proof, is equivalent to

the condition (27). If and only if nα > 2 is the coefficient b positive, i.e. demand is decreasing in

price. Condition (27) essentially requires that adverse selection regarding the common dividend

is not “too large” relative to the gains from trade over private values. All else equal, condition

(27) holds if n is sufficiently large, if signals of dividend shocks are sufficiently precise (i.e. σ2
ε is

small enough), if new information on the common dividend is not too volatile (i.e. σ2
D is small

enough), or if shocks to private values are sufficiently volatile (i.e. σ2
w is large enough).7 All

these conditions reduce adverse selection. The intuition is that if a trader observes a higher

equilibrium price, he infers that other traders have either higher private values or more favorable

information about the common dividend. If the trader attributes too much of the higher price

to a higher dividend, he may end up buying more conditional on a higher price, which leads

to a negative b and violates the second order condition. Learning from prices does not cause

such a problem in the competitive equilibrium because a higher price there also reflects traders’

disregard of price impact. Thus, conditional on the same price, traders do not learn as much

about the dividend in the competitive equilibrium as in the strategic one.

The condition nα > 2 means that a trader’s expected asset value has a weight of at least

2/n on his own total signal and a weight of at most (1−2/n)/(n−1) = (n−2)/[n(n−1)] < 1/n

on each of other traders’ total signals.8 The condition nα > 2 is trivially satisfied if α = 1,

which applies if dividend information is public (σ2
ε = 0 and σ2

w > 0) or if traders have pure

private values (σ2
D = 0 and σ2

w > 0).

We close this subsection with a brief discussion of equilibrium uniqueness. Since news times

and trading times are separate in our model, it could happen that no new information arrives

during one or more periods. For example, if no new information arrives in the time interval

((t− 1)∆, t∆], then the period-t double auction will have the same price as the period-(t− 1)

double auction, i.e., the period-t double auction looks like a public-information game. Vayanos

7As a special case, if σ2
ε = 0 and σ2

w > 0, we have public information about the dividends, which implies
χ = 1 and α = 1 from Equation (19). If σ2

D = 0 and σ2
w > 0, we have the pure private value case, which implies

χ = 0 and α = 1. Each trader i’s equilibrium strategy in the pure private value case and in the public dividend
information case have the same coefficients on si,t∆, p, zi,t∆, and Z.

8The existence condition for our equilibrium is analogous to Kyle, Obizhaeva, and Wang (2014)’s equilibrium
existence condition that each trader believes that his signal about the asset value is roughly twice as precise as
others traders believe it to be.
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(1999) shows that public-information games admit a continuum of equilibria, and he uses a

trembling-hand argument to select one of them.

Our approach to equilibrium selection is to impose stationarity, i.e., the coefficients in the

linear strategy are the same across all periods. Going back to the example, if no new information

arrives in ((t − 1)∆, t∆], the stationarity-selected equilibrium in the period-t double auction

will be identical to one in which fresh news does arrive in ((t − 1)∆, t∆] but the realizations

of the dividend shock, the n signals of dividend shocks, and the n private-value shocks all turn

out to be zero. The following proposition shows that the equilibrium of Proposition 2 is unique

if strategies are restricted to be linear and stationary.

Proposition 3. The equilibrium from Proposition 2 is the unique perfect Bayesian equilibrium

in the following class of strategies:

xi,t∆(p) =
∑
Tl≤t∆

alSi,Tl + awwi,t∆ − bp+ dzi,t∆ + f, (33)

where {al}l≥0, aw, b, d and f are constants.

As the proof of Proposition 2 makes clear, each trader’s optimal strategy belongs to class

(33) if other traders also use strategies of the class (33). Therefore, Equation (33) is not a

restriction on the traders’ strategy space, but rather a restriction on the domain of equilibrium

uniqueness. (We have not ruled out the existence of non-linear equilibrium.)

2.4 Efficiency and comparative statics

We now study the allocative efficiency (or inefficiency) in the equilibrium of Proposition 2. The

results of this section lay the foundation for the study of optimal trading frequency in the next

section.

Let us denote by {z∗i,t∆} the path of inventories obtained by the equilibrium strategy xi,t∆

of Proposition 2. By the definition of d in Equation (32), z∗i,t∆ evolves according to:

z∗i,(t+1)∆ = z∗i,t∆ + xi,t∆(p∗t∆; si,t∆, z
∗
i,t∆)

= (1 + d)z∗i,t∆ + b

(
si,t∆ −

1

n

∑
j

sj,t∆ +
λ(n− 1)

r(nα− 1)

Z

n

)

= b

(
si,t∆ −

1

n

∑
j

sj,t∆

)
+

1

n
Z + (1 + d)

(
z∗i,t∆ −

1

n
Z

)
(34)

= (1 + d)z∗i,t∆ − dzci,(t+1)∆,
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where in the second line we have substituted in the equilibrium strategy x∗i,t∆ and the equilibrium

price p∗t∆, and in the last line we have substituted in Equation (26).

Comparing Equation (34) to Equation (26), we can see two differences. First, the post-

trading allocation in the strategic equilibrium has an extra term (1 + d)(z∗i,t∆ − Z/n). Since

1+d ∈ (0, 1), any inventory imbalance at the beginning of period t partly carries over to the next

period. As discussed in the previous subsection, this is a direct consequence of demand reduction

caused by strategic bidding. Second, because inventories cannot be liquidated quickly due to

strategic bidding, traders are more reluctant to acquire inventory. Therefore, the coefficient in

front of si,t∆−
∑

j sj,t∆/n in the strategic allocation (34) is smaller than that in the competitive

allocation (26). That is, strategic bidding makes post-trading asset allocations less sensitive to

the dispersion of information (as measured by the total signals).

The above derivation directly leads to the exponential convergence to the competitive allo-

cation over time, shown in the next proposition.

Proposition 4. Given any 0 ≤ t ≤ t, if si,t∆ = si,t∆ for every i and every t ∈ {t, t+ 1, . . . , t},
then the equilibrium inventories z∗i,t∆ satisfy: for every i,

z∗i,(t+1)∆ − zci,(t+1)∆ = (1 + d)t+1−t(z∗i,t∆ − zci,(t+1)∆), ∀t ∈ {t, t+ 1, . . . , t}, (35)

where d ∈ (−1, 0) is given by Equation (32).

Moreover, 1 + d is decreasing in n, r, σ2
w, and ∆ but increasing in σ2

D. And (1 + d)1/∆ is

increasing in ∆.

The convergence result of Proposition 4 is intuitive. If no new information arrives between

period t and t, then the competitive allocation remains unchanged, and Equation (35) follows

from Equation (34) by induction.

Proposition 4 reveals that the strategic equilibrium is inefficient in allocating assets, al-

though the allocative inefficiency converges to zero exponentially over time (as long as no

new information arrives). After new dividend shocks and private-value shocks, the competi-

tive allocation changes accordingly, and the strategic allocation starts to converge toward the

new competitive allocation exponentially. Exponential convergence of this kind is previously

obtained in the dynamic model of Vayanos (1999) under the assumption that common-value

information is public.

The comparative statics of Proposition 4 are also intuitive, as illustrated by Figure 2. A

smaller 1+d means faster convergence to efficiency. A larger n makes traders more competitive,

and a larger r makes them more impatient. Both effects encourage aggressive bidding and speed

up convergence. A large σ2
D implies a large uncertainty of a trader about the common asset value

and a severe adverse selection; hence, in equilibrium the trader reduces his demand or supply
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Figure 2: Comparative statics of 1 + d. A smaller 1 + d means faster convergence to the
competitive allocation. Baseline parameters: n = 10, r = 1/22, λ = 1/1000, σ2

D = 1, σ2
e =

1, σ2
w = 1/10, and ∆ = 1/2.
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relative to the fully competitive market. Therefore, a higher σ2
D implies less aggressive bidding

and slower convergence to the competitive allocation. The effect of σ2
w is the opposite: a higher

σ2
w implies a larger gain from trade, and hence more aggressive bidding and faster convergence

to the competitive allocation. The effects of n, σ2
D and σ2

w on bidding aggressiveness are present

in earlier static models of Vives (2011) and Rostek and Weretka (2012). The effect of σ2
D in

reducing the convergence speed to efficiency is also confirmed by Sannikov and Skrzypacz (2014)

in a continuous-time trading model.

More novelly, 1 + d is smaller if ∆ is larger, that is, convergence per period is faster if

trading frequency is lower. Intuitively, if traders have to wait for a long time before the next

opportunity to trade, they have a strong incentive to trade aggressively in the current period.

In this sense, a low-frequency market is a commitment device that counterbalances the strategic
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demand reduction. However, a higher trading frequency increases the convergence speed per

unit of clock time (a lower (1+d)1/∆). This is because a higher number of trading opportunities

more than offsets the lower aggressiveness per period. We caution that convergence speed is

not the same as welfare, and the welfare implication of trading frequency is much subtler and

richer, as we show in Section 3.

Finally, the comparative static of the speed of convergence with respect to σ2
ε is ambiguous.

It can be shown that the endogenous parameters α and χ, and hence the speed of convergence,

depend on the “normalized variances” σ2
D/σ

2
ε and σ2

w/σ
2
ε . As σ2

ε increases, σ2
D/σ

2
ε and σ2

w/σ
2
ε

both decrease. A decrease in σ2
D/σ

2
ε increases the speed of convergence, while a decrease in

σ2
w/σ

2
ε decreases the speed of convergence. The net effect is ambiguous.

3 Welfare and Optimal Trading Frequency under Homo-

geneous Trading Speed

In this section and the next, we use the model framework developed in Section 2 to analyze

the welfare implications of trading frequency. In this section we study the effect of trading

frequency on welfare and characterize the optimal trading frequency if all traders participate

in all double auctions, i.e., if traders have homogeneous trading speed. In the next section we

study the case of heterogeneous trading speeds in the sense that fast traders participate in all

double auctions but slow traders only participate periodically.

Throughout this section we conduct the analysis based on the perfect Bayesian equilibrium

of Proposition 2, which requires the parameter condition nα > 2. Recall that {z∗i,t∆}, defined

by Equation (34), is the inventory path in the equilibrium of Proposition 2. We define the

equilibrium welfare as the sum of the ex-ante expected utilities over all traders:

W (∆) = E

[
n∑
i=1

(1− e−r∆)
∞∑
t=0

e−rt∆
(
vi,t∆z

∗
i,(t+1)∆ −

λ

2r
(z∗i,(t+1)∆)2

)]
. (36)

We denote the ∆ that maximizes W (∆) as ∆∗. As usual, the price terms are canceled out as

they are transfers. Note also that if all traders are ex-ante identical, with zi,0 = Z/n, then

each trader’s ex-ante expected utility is simply W (∆)/n. Thus, the welfare criterion based on

W (∆) is equivalent to Parento dominance: If W (∆1) > W (∆2) for ∆1 6= ∆2, then each trader

i’s ex-ante expected utility is higher under ∆1 than that under ∆2.
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Figure 3: Illustration of z∗i,τ , z
c
i,τ , and zei,τ
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Analogously, we can define the welfare in the competitive equilibrium of Section 2.2 as:

W c(∆) = E

[
n∑
i=1

(1− e−r∆)
∞∑
t=0

e−rt∆
(
vi,t∆z

c
i,(t+1)∆ −

λ

2r
(zci,(t+1)∆)2

)]
. (37)

Although the competitive equilibrium is more efficient than the strategic one, it is still not

fully efficient because new information may arrive between two double auctions. To explicitly

take into account possible information arrivals, we define the continuous-time efficient allocation

to be:

zei,τ =
r(nα− 1)

λ(n− 1)

(
si,τ −

1

n

n∑
j=1

sj,τ

)
+

1

n
Z, for every τ ≥ 0. (38)

The allocation zei,τ is obtained in an idealized world in which a competitive double auction is

held immediately after each news arrival. In constrast, at time τ ∈ (t∆, (t+ 1)∆], the strategic

and competitive equilibrium allocations are, respectively, z∗i,τ = z∗i,(t+1)∆ and zci,τ = zci,(t+1)∆.

While zei,τ and zci,(t+1)∆ (defined in Equation (26)) have the same functional form (in partic-

ular, we have zei,t∆ = zci,(t+1)∆), the difference is that {zei,τ} changes at news time, whereas {zci,τ}
changes at trading time. Figure 3 provides an illustration. In this example information arrives

strictly between period-(t − 1) and period-t double auctions. We see that z∗i,τ and zci,τ only

change at trading times, but zei,τ changes immediately after news arrivals. The gap between

z∗i,τ and zci,τ represents the inefficiency caused by strategic behavior, and the gap between zci,τ

and zei,τ represents the inefficiency caused by the misalignment between trading times and news

times.
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The ex-ante welfare under the efficient allocation is:

W e = E

[
n∑
i=1

∫ ∞
τ=0

re−rτ
(
vi,τz

e
i,τ −

λ

2r
(zei,τ )

2

)
dτ

]
, (39)

which is independent of ∆.

With these primitives, the allocative inefficiency of the competitive equilibrium of Section 2.2

can be written as:

X(∆) ≡ W e −W (∆) = [W c(∆)−W (∆)]︸ ︷︷ ︸
X1(∆), welfare cost of strategic behavior

+ [W e −W c(∆)].︸ ︷︷ ︸
X2(∆), welfare cost of trading delay

(40)

The above equation decomposes the allocative inefficiency of the strategic equilibrium into two

parts. The first part, call it X1(∆), is due to strategic behavior and demand reduction. The

second part, call it X2(∆), is due to the potential misalignment between trading times and

news times.

This decomposition highlights the important tradeoff in increasing trading frequency:

• A smaller ∆ allows investors to react quickly to new information, reducing X2(∆).

• A smaller ∆ also reduces the aggressiveness of demand schedules in each double auction,

increasing X1(∆). This channel is a consequence of the fact that (1 + d) decreases in ∆

(see Proposition 4).

We show in the two subsections that this tradeoff, and hence the optimal trading frequency,

depend critically on the nature of new information (i.e., the shocks to dividends and private

values). If new information arrives at deterministic and scheduled intervals, then trading times

can be arranged such that X2(∆) = 0, and we show that the optimal trading frequency cannot

be higher than the information arrival frequency. In the most natural case where all traders are

ex-ante identical, the optimal trading frequency is equal to the information arrival frequency.

By contrast, if new information arrives stochastically according to a Poisson process, then

both X1(∆) and X2(∆) are generally positive, and this tradeoff leads to an interior optimal

∆∗. We show that the optimal trading frequency 1/∆∗ is always higher than two-thirds of

the information arrival frequency, and we provide conditions on nα under which 1/∆∗ can

be arbitrarily larger than the information arrival frequency. We further provide comparative

statics of ∆∗ with respect to the asset characteristics.
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3.1 Scheduled Arrivals of New Information

We first consider scheduled information arrivals. In particular, we suppose that shocks to the

common dividend and shocks to private values occur at regularly spaced clock times Tk = kγ

for a positive constant γ, where k ≥ 0 are integers. Examples of scheduled information arrivals

include macroeconomic data releases and corporate earnings announcements.

Proposition 5. Suppose Tk = kγ for a positive constant γ. Then W (∆) < W (γ) for any

∆ < γ. That is, ∆∗ ≥ γ.

Proposition 5 shows that if new information repeatedly arrives at scheduled times, then the

optimal trading frequency cannot be higher than the frequency of information arrivals.

For ease of exposition, we discuss here the intuition and the proof for the special case

that γ/∆ is a positive integer. In this case, whenever scheduled information arrives, there is

a double auction immediately following it. Since news times are entirely covered by trading

times, the X2(∆) term in the decomposition (40) is zero. Thus, allocative inefficiency is entirely

determined by welfare loss caused by strategic behavior, i.e. X1(∆). Below, we outline the

main steps of proving that X1(∆) is decreasing in ∆ if γ/∆ is a positive integer. Lemma 1 and

Lemma 2 that we use below, however, hold for any information arrival process.

The following lemma relates the welfare loss of an allocation to the square distance between

that allocation and the competitive allocation.

Lemma 1. For any profile of inventories (z1, z2, . . . , zn) satisfying
∑n

i=1 zi = Z and any profile

of total signals (s1,t∆, s2,t∆, . . . , sn,t∆), we have:

n∑
i=1

((
αsi,t∆ +

1− α
n− 1

∑
j 6=i

sj,t∆

)
zci,(t+1)∆ −

λ

2r
(zci,(t+1)∆)2

)

−
n∑
i=1

((
αsi,t∆ +

1− α
n− 1

∑
j 6=i

sj,t∆

)
zi −

λ

2r
(zi)

2

)

=
λ

2r

n∑
i=1

(zci,(t+1)∆ − zi)2. (41)

Lemma 1 follows from the fact that each trader i’s expected marginal value given the

competitive allocation zci,(t+1)∆ is exactly the competitive equilibrium price pct∆ (see Appendix

C.6 for details). Applied to the equilibrium allocations x∗i,t∆, Lemma 1 implies that:

X1(∆) = (1− e−r∆) · λ
2r

n∑
i=1

∞∑
t=0

e−rt∆E[(z∗i,(t+1)∆ − zci,(t+1)∆)2]. (42)
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An inspection of Equation (42) reveals that the effect of ∆ on X1(∆) is not obvious. Propo-

sition 4 shows that 1+d is decreasing in ∆, but (1+d)1/∆ is increasing in ∆. Thus, for each news

arrival time kγ and each trading time t∆ ∈ [kγ, (k+1)γ), as ∆ increases, E[(z∗i,(t+1)∆−zci,(t+1)∆)2]

becomes smaller for a small t∆− kγ but larger for a large t∆− kγ. This means that a higher

trading frequency (a smaller ∆) makes allocations less efficient in the early periods after a news

arrival but more efficient in the later periods. Intuitively, a large ∆ commits traders to submit-

ting aggressive demand schedules whenever they can trade, leading to an immediate inventory

reallocation early on. But a smaller ∆ allows more “smoothing” of trades that eventually makes

allocation more efficient if trading continues for a sufficiently long time. Adding to this tradeoff

is the “discount factor” e−rt∆, which gives more weight to relative allocative efficiency in early

periods than in later periods in the assessment of welfare. Overall, the effect of ∆ on X1(∆)

seems ambiguous ex-ante. Showing the economic intuition of Proposition 5, therefore, boils

down to showing why the (weighted) allocative efficiency in early periods dominates that in

late periods.

This intricate tradeoff is illustrated in the left-hand panel of Figure 4, where we consider the

special case of γ = ∞ (i.e., information arrives only once, at time 0) and plot the distance to

efficient allocation, |z∗i,(t+1)∆ − zci,(t+1)∆|, for two extreme trading frequencies: ∆ = ∞ (trading

only once, at time 0) and ∆ = 0 (continuous trading). We can see that slower trading (∆ =∞)

leads to more efficient allocations in early periods, but faster trading (∆ = 0) leads to more

efficient allocations in late periods.

To proceed with the proof, we further simplify the square difference between the strategic

and competitive equilibrium allocation, for t ≥ 1:

E[(z∗i,(t+1)∆ − zci,(t+1)∆)2] = (1 + d)2E[(z∗i,t∆ − zci,(t+1)∆)2]

= (1 + d)2E[(z∗i,t∆ − zci,t∆)2] + (1 + d)2E[(zci,(t+1)∆ − zci,t∆)2], (43)

where the first equality follows from Proposition 4, and the second equality follows from the

fact that z∗i,t∆ and zci,t∆ are measurable with respect to the information in period t − 1, and

that {zci,t∆}t≥0 is a martingale, so E[(z∗i,t∆ − zci,t∆)(zci,(t+1)∆ − zci,t∆)] = 0 by the law of iterated

expectations. Then by induction, we have:

E[(z∗i,(t+1)∆− zci,(t+1)∆)2] = (1 + d)2(t+1)E[(zi,0− zci,∆)2] +
t∑

t′=1

(1 + d)2(t−t′+1)E[(zci,(t′+1)∆− zci,t′∆)2].

(44)

The above equation says that after auction t, allocative inefficiency is a linear combination of

the inefficiency in initial allocations and the time variations in the competitive allocation up to

time t∆. Substituting Equation (44) into the expression of X1 in Equation (42), we get (see
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Appendix C.6 for details):

Lemma 2.

X1(∆) =
λ(1 + d)

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zci,∆)2] +
∞∑
t=1

e−rt∆
n∑
i=1

E[(zci,(t+1)∆ − zci,t∆)2]

)
. (45)

The expression of X1(∆) in Equation (45) has an intuitive explanation. The first term in the

big bracket,
∑n

i=1 E[(zi,0− zci,∆)2], measures the inefficiency of the initial allocation after time-0

information arrival. In the summation, each term e−rt∆
∑n

i=1 E[(zci,(t+1)∆ − zci,t∆)2] measures

how much the competitive allocation changes at each trading time, weighted by the probability

that the dividend is not yet paid. Together, the terms in the big bracket represent the amount

of allocative inefficiency measured at trading times that can potentially be eliminated. The

leading multiplier, λ(1+d)
2r(nα−1)

, says that because of strategic behavior, a fraction of the allocative

inefficiency remains in the market. This fraction is lower if per-round convergence is faster, i.e.,

if 1 + d is smaller.

To be even more explicit, let us now return to the special case that γ/∆ is a positive integer.

In this case, news times are entirely covered by trading times, and

zci,(t+1)∆ − zci,t∆

 6= 0, if t∆ is a multiple of γ

= 0, otherwise
,

where we have used the fact that the competitive allocations do not change without news

arrivals. Dropping the zero terms, we can thus write the second term on the right-hand side of

Equation (45) in terms of news time {kγ}:

n∑
i=1

∞∑
k=1

e−rkγE[(zci,(k+1)γ − zci,kγ)2],

where we have substituted in zci,kγ+∆ = zci,(k+1)γ. Thus, the second term on the right-hand side

of Equation (45) is purely a function of the news arrival process, and not a function of ∆. The

first term on the right-hand side of Equation (45) is purely a function of the news arriving at

time 0, again not a function of ∆. Because 1 + d is decreasing with ∆ (Proposition 4), X1(∆)

is decreasing in ∆, which proves Proposition 5 for the cases that γ/∆ is a positive integer.

The right-hand panel of Figure 4 illustrates this net effect by plotting W (∆) against ∆, for

the special case that γ =∞. We can see that in this case W (∆) increases in ∆.

The same logic above applies to a general ∆ ≤ γ, with some adjustment to the details. The

proof of the general case of Proposition 5 is delegated to Appendix C.6.1.
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Figure 4: Trading frequency and welfare when information arrives only at time 0
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Proposition 5 establishes that the optimal trading frequency cannot be strictly higher than

information frequency. Next, we ask if ∆∗ can be strictly higher than γ. As ∆ increases

beyond γ, X2(∆) is generally positive. Thus, traders face the basic tradeoff we discussed at the

beginning of this section: a large ∆ > γ induces more aggressive trading per period, but incurs

the cost that traders cannot react quickly to new information.

To further evaluate this tradeoff, we must first define some parameters that quantify the

magnitude of the new information given by the dividend shocks. We define:

σ2
z ≡

n∑
i=1

E[(zei,Tk − z
e
i,Tk−1

)2] =

(
r(nα− 1)

λ(n− 1)

)2
(n− 1)(χ2(σ2

D + σ2
ε ) + σ2

w)

α2
> 0, (46)

σ2
0 ≡

n∑
i=1

E[(zi,0 − zei,0)2] =
n∑
i=1

E[(zi,0 − zci,∆)2]. (47)

The first variance σ2
z describes the extent to which each arrival of new information changes

the efficient inventories among traders. The second variance σ2
0 describes the distance between

the ex-ante inventory and the efficient inventory given the new information that arrives at time

0. If zi,0 = Z/n for every trader i (all traders are ex-ante identical), then σ2
0 = σ2

z .
9 One may

naturally view “time 0” as a reduced-form representation of a steady state, in which case σ2
0 and

σ2
z should be equal. In the results below we will keep σ2

0 as a generic parameter but highlight

results for the most natural case of σ2
0 = σ2

z .

9To see this, note that Z/n is the efficient allocation to each trader if the initial total signals of all traders
are zero. For each trader i, the total signal si,0 received at time 0 has the same distribution as the innovation
si,Tk

− si,Tk−1
. Thus, zei,0 − Z/n has the same distribution as zei,Tk

− zei,Tk−1
for any k ≥ 1. Thus, σ2

0 = σ2
z if

zi,0 = Z/n for all i.
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The welfare W (∆) is hard to analyze if ∆/γ is not an integer. For analytical tractability

but at no cost of economic intuition, for the case of ∆ > γ we restrict attention to ∆ = lγ for

a positive integer l. Let l∗ ∈ argmaxl∈Z+
W (lγ).

Proposition 6. Suppose that Tk = kγ for a positive constant γ. The following results hold.

1. If zi,0 = Z/n for every trader i (i.e., σ2
0 = σ2

z), then l∗ = 1.

2. If σ2
0/σ

2
z remains bounded as n→∞, then l∗ = 1 as n→∞.

Part 1 of Proposition 6 states a sharp result: for the steady-state specification σ2
0 = σ2

z , the

optimal trading frequency is equal to the information frequency. To see the intuition, consider,

for instance, slowing down trading from ∆ = γ to ∆ = 2γ. Reducing the trading frequency by

a half will make demand schedules more aggressive at time 0, 2γ, 4γ, . . . , at the cost of entirely

disabling reaction to new information at times γ, 3γ, 5γ, . . . . But because new information

at each arrival time is equally informative and in expectation shocks the efficient allocation by

the same magnitude, there is no reason to let traders trade very aggressively over half of the

news but shut down trading for the other half. Instead, it is better to allow equal opportunities

respond to all information arrivals. That is, l∗ = 1. This intuition applies to any generic ∆ = lγ

for an integer l > 1. The proof of Proposition 6 makes this intuitive argument formal.

Part 2 of Proposition 6 allows the time-0 information to be different from information

arriving later. A sufficient condition for σ2
0/σ

2
z remaining bounded as n→∞ is E[

∑n
i=1(zi,0 −

Z/n)2] = O(n). If σ2
0 > σ2

z , for instance, it is possible that the optimal l∗ > 1 so that eliminating

the time-0 allocative inefficiency is more important than allowing immediate reaction to less

important news later. That said, in a large market it is still asymptotically optimal to align

trading times with information arrival time. The intuition is that as n increases sufficiently,

the market becomes almost competitive, and the inefficiency associated with strategic demand

reduction diminishes. In the limit n→∞, X1(∆)→ 0, and the allocation efficiency is entirely

determined by how fast traders can react to new information. Thus, the optimal l∗ = 1.

3.2 Stochastic Arrivals of New Information

We now turn to stochastic arrivals of information. Examples of stochastic news include un-

expected corporate announcements (e.g. mergers and acquisitions), regulatory actions, and

geopolitical events. There are many possible specifications for stochastic information arrivals,

and it is technically hard to calculate the optimal trading frequency for all of them. Instead,

we analyze the simple yet natural case of a Poisson process for news arrivals. We expect the

economic intuition of the results to apply to more general signal structures.
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Suppose that the timing of the news shocks {Tk}k≥1 follows a homogeneous Poisson process

with intensity µ > 0. (The first shock still arrives at time T0 = 0.) Since the time interval

between two consecutive news shocks has the expectation 1/µ, µ is analogous to 1/γ from

Section 3.1. There are in expectation ∆µ arrivals of new information during an interval of

length ∆, and each arrival of information shocks the squared difference in efficient allocation

by σ2
z (see Equation (46)). Thus,

n∑
i=1

E[(zei,(t+1)∆ − zei,t∆)2] = ∆µσ2
z , (48)

n∑
i=1

E[(zei,τ − zei,t∆)2] = (τ − t∆)µσ2
z , τ ∈ [t∆, (t+ 1)∆). (49)

To gain further intuition, we now focus on the natural case that all traders are ex-ante

identical (i.e. σ2
0 = σ2

z) and explicitly spell out X1(∆) and X2(∆) from the decomposition (40):

X1(∆) =
λ(1 + d)

2r(nα− 1)

(
1 +

∆e−r∆

1− e−r∆
µ

)
σ2
z , (50)

X2(∆) =
λ

2r
E
[∫ ∞

τ=0

re−rτ (zci,τ − zei,τ )2 dτ

]
=

λ

2r

(
1

r
− ∆e−r∆

1− e−r∆

)
µσ2

z . (51)

Here, the expression X1(∆) is obtained by substituting Equation (48) into Equation (45) from

Lemma 2 (which applies to any information arrival process). We have also applied Lemma 1 to

write X2(∆) as the expected square difference between zci,τ and zei,τ . In fact, the final expression

of X2(∆) can be rewritten as the more intuitive form:

X2(∆) =
λ

2
·

(∫ ∞
0

e−rτdτ −
∞∑
t=1

e−rt∆∆

)
︸ ︷︷ ︸

Misalignment of information arrival times and trading times

· µσ
2
z

r
.

The first term λ/2 is the multiplier of quadratic holding cost. The middle term in the bracket

represents the misalignment of information arrival times and trading times, for it is the difference

between an integral and its ∆-discrete counterpart, a summation. The third term is the expected

variance of the change in the efficient allocations per unit of time, µσ2
z , multiplied by the

expected waiting time until the dividend is paid, 1/r. Note that the misalignment term only

involves the Poisson information arrivals after time 0, since the first information arrival time

coincides with the first trading time, time 0. The misalignment term and hence X2(∆) vanish

as ∆→ 0, i.e., there is zero welfare cost from trading delay if trading is continuous.
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The total inefficiency of the strategic equilibrium is

X(∆) ≡ X1(∆) +X2(∆) =
λ

2r
σ2
z

[
µ

r
+ 1−

(
1− 1 + d

nα− 1

)(
1 +

∆e−r∆

1− e−r∆
µ

)]
. (52)

We see that under Poisson news arrivals both terms X1(∆) and X2(∆) are generally positive.

We thus expect an interior optimal ∆∗.

The following proposition, also the main result of this subsection, characterizes the optimal

trading frequency in the case of ex-ante identical traders.

Proposition 7. Suppose that {Tk}k≥1 is a Poisson process with intensity µ, and zi,0 = Z/n for

every trader i (i.e., σ2
0 = σ2

z). Then the following hold.

1. For any l ≥ 2/3, we have ∆∗ < 1/(lµ) if nα > 2l + 2/3. In particular, we always have

∆∗ < 1.5/µ since nα > 2 by assumption.

2. ∆∗ strictly decreases in µ, n and σ2
w, and strictly increases in σ2

D.

Part 1 of Proposition 7 establishes a sufficient condition under which the optimal trading

frequency 1/∆∗ is more than l times as high as the information frequency µ. For reasonable l,

the condition nα > 2l+2/3 is not stringent. For “liquid” assets, namely those with wide investor

participation (large n), low information asymmetry (low σ2
D), and high liquidity-driven trading

motives (high σ2
w), we expect α to be much closer to 1 than to 2/n. As extreme examples,

α = 1 if σ2
D = 0 (pure private value) or if σ2

ε = 0 (public information of common value). These

liquid assets include major equity indices, government securities, and foreign currencies, as well

as the corresponding futures contracts. As a concrete example, Joint Staff Report (2015) finds

that about 80 bank-dealers and principal trading firms actively participate in the cash U.S.

Treasury markets. An nα of 80 means that the optimal trading frequency in U.S. Treasury

market should be at least 40 times as high as the information arrival frequency.

To get an intuitive sense of how the lower bound in Proposition 7 is derived, we provide a

heuristic proof when nα is close to 2. As nα → 2, bid shading is the most severe, and traders

benefit the most from a large ∆ to increase the market depth in each period. We now show

that even in this case the optimal ∆∗ < 1.5/µ, corresponding to l = 2/3.

From Equation (52), we see that minimizing X(∆) over ∆ is equivalent to maximizing

(
1− 1 + d

nα− 1

)(
1 +

µ∆e−r∆

1− e−r∆

)
=

(
1−

√
(1− e−r∆)2 + 4e−r∆y − (1− e−r∆)

2e−r∆

)(
1 +

µ∆e−r∆

1− e−r∆

)
(53)
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where y ≡ 1
(nα−1)2 and we have used the expression of d in Equation (32). As y → 1 from below

(since nα→ 2 from above), by Taylor’s theorem Equation (53) becomes:

1

1 + e−r∆

(
1 +

µ∆e−r∆

1− e−r∆

)
·O(1− y). (54)

We have:

∂

∂∆

(
1

1 + e−r∆

(
1 +

µ∆e−r∆

1− e−r∆

))
=
µ(er∆ − e−r∆)− r(µ∆− 1)(er∆ + e−r∆)− 2r

(er∆ − e−r∆)2
≡ f(∆)

(er∆ − e−r∆)2
.

(55)

Clearly, f ′(∆) < 0 if ∆ > 1/µ. Moreover, by applying the hyperbolic inequality

sinh(x)

x
<

2

3
+

1

3
cosh(x), x > 0, (56)

it is straightforward to show that f(1.5/µ) < 0. Thus, the ∆∗ that maximizes Equation (54) is

strictly less than 1.5/µ for any µ > 0 and r > 0.

A comparison between Part 1 of Proposition 7 and Proposition 5 reveals the major differ-

ence between scheduled and stochastic information arrivals. Take the case of ex-ante identical

traders. Under scheduled information arrivals, the optimal trading frequency is equal to the

information arrival frequency. Under stochastic information arrival, the optimal trading fre-

quency can be much higher than the information arrival frequency.

Part 2 of Proposition 7 can be proven by applying the monotone comparative statics of

Milgrom and Shannon (1994) and Zandt (2002). For example, by direct calculation one can

show that
∂2X(∆)

∂∆∂µ
= − ∂

∂∆

[(
1− 1 + d

nα− 1

)
∆e−r∆

1− e−r∆

]
> 0. (57)

Thus, ∆∗ is strictly decreasing in µ. Intuitively, if information arrives more frequently, the

optimal trading frequency should also increase in order to allow traders faster response to new

information.

By the same method, we can show that the optimal ∆∗ is strictly decreasing in nα. Since α

is the weight on one’s own total signal, α is strictly increasing in the variance of private-value

shocks, σ2
w, and is strictly decreasing in the variance of common-value shocks, σ2

D. Hence, ∆∗

is also strictly decreasing in σ2
w and is strictly increasing in σ2

D. The intuition is that if trading

is motivated less by informed speculation and more by private values, then traders will submit

more aggressive demand schedules anyway; in those situations a higher-frequency market is

better because it reduces delays in responding to new information. Moreover, we can show that

nα is strictly increasing in n (even though α itself decreases with n), so ∆∗ is strictly decreasing

in n.
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Figure 5: Comparative statics for ∆∗ when all traders are ex-ante identical (i.e. σ2
0 = σ2

z). The
solid lines plot the optimal ∆∗, and the dashed lines plot the mean waiting time for Poisson
information 1/µ. Baseline parameters: n = 10, r = 1/22, µ = 1, λ = 1/1000, σ2

D = 1, σ2
ε = 1,

and σ2
w = 1/10.
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Figure 5 plots the optimal ∆∗ for a variety of model parameters and illustrates the com-

parative statics. From the top-right subplot we also see that the bound ∆∗ < 1.5/µ is actually

fairly tight: while µ is kept at one, ∆∗ is just below 1.5 when n = 6. In general, ∆∗ can be

substantially lower than 1/µ.

Overall, Proposition 7 predicts that the optimal trading frequency of an asset should in-

creases in its “liquidity,” measured as a higher participation of investors, a higher private-value

(e.g. hedging) motive for trades, and a lower adverse selection. For relatively liquid assets like

stock indices, large stocks, government securities, foreign exchange, and futures contracts, the

optimal trading frequency could be substantially higher than the arrival frequency of informa-

tion that affects these assets. For relatively illiquid assets like small stocks, corporate bonds,

municipal bonds, and nonstandard over-the-counter derivatives, the optimal trading frequency

can be lower, but only moderately lower, than the arrival frequency of relevant information.

We close this section with the following proposition on comparative statics when σ2
0 and σ2

z

are potentially different.

Proposition 8. Suppose that {Tk}k≥1 is a Poisson process with intensity µ. The following

comparative statics hold:
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1. If σ2
0 > 0, then ∆∗ strictly decreases in µ from ∞ (as µ→ 0) to 0 (as µ→∞).

2. If σ2
0/σ

2
z remains bounded as n→∞, then ∆∗ → 0 as n→∞.

The intuition for Proposition 8 is similar to that of Proposition 7. In particular, continuous

trading becomes optimal in the limit as the market becomes large or as the arrival rate of new

information increases without bound.

4 Heterogeneous Trading Speeds

In this section we extend the model to study trading strategies and welfare if traders have

heterogeneous speeds. In this extension, speed is defined by how frequently a trader participates

in the market. The main result of this section is that traders who can access the market all

the time, such as high-frequency traders or financial intermediaries, prefer the highest trading

frequency, but traders who access the market infrequently, such as retail and institutional

investors, typically prefer a strictly lower trading frequency. These results reveal that a market

speed-up has differential effects on heterogeneous groups of market participants. To highlight

this new insight and for tractability, we shall simplify other aspects of the model to its minimum.

4.1 Model setup

As before, trading happens in the form of double auctions at times {0,∆, 2∆, . . .}. There are

nF ≥ 1 ex-ante identical fast traders who trade in every period t ≥ 0. There are M ex-ante

identical slow traders who can also trade in the market repeatedly, but each access to market

comes with a deterministic delay of clock time Γ > 0. We interpret Γ as the fundamental

delay of slow investors that is not affected by the market frequency 1/∆. For simplicity, at

time 0, the arrival sequence of the M slow traders are drawn at random, and their first arrival

times are Γ/M , 2Γ/M , 3Γ/M , . . . , Γ. By the deterministic nature of delays between market

accesses,10 the j-th slow trader comes to the market at clock times j
M

Γ, j
M

Γ + Γ, j
M

Γ + 2Γ, ...,

where j ∈ {1, 2, ...,M}. For instance, many retail and institutional investors rebalance their

portfolios infrequently, and their rebalancing delay Γ is insensitive to the trading delay ∆ in

the market.

We assume that the slow traders cannot coordinate their trading times,11 so each slow

10We could also use a random delay, but this alternative arrangement would not change our results.
11In many markets, this assumption is not restrictive. For example, in the U.S. equity markets, when retail or

institutional investors send orders to their brokers, the brokers’ best-execution responsibility is to get the best
price in the market. Delays could be beneficial, but the executing brokers would incur the risk that the stock
prices move in the adverse direction while waiting. The resulting adverse price movement, or “implementation
shortfall,” would count against the brokers. Therefore, if a broker receives a marketable order that creates little
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Figure 6: Time line of heterogeneous-speed market. In this illustration, each round of double
auction involves two fast traders (red diamonds) who are always present and two slow traders
(blue circles) who return to the market periodically.
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trader trades in the immediate next double auction after his arrival or return to the market.

Let K = Γ/∆, that is, it takes K double auctions to make sure that each slow trader has one

chance to trade. For simplicity, we will consider values of ∆ such that K is a positive integer.

The M slow traders are naturally separated into K “cohorts,” and each cohort has nS ≡M/K

slow traders. The k-th cohort of nS slow traders trade with the nF fast traders at times k∆,

(K + k)∆, (2K + k)∆, etc. Because each slow traders participates only in 1/K of all double

auctions and fast traders participate in all auctions, we can say that a fast trader is K times

as fast as a slow trader. When K = 1, we get the homogeneous speed model in Section 2.

Figure 6 illustrates the time line of the heterogeneous-speed market with two fast traders

(red diamonds) and two slow traders per period (blue circles).

In this market, a higher trading frequency, or a lower ∆, creates the following tradeoff for

the slow traders. On the one hand, a lower ∆ reduces the average waiting time of each cohort

of slow traders. Specifically, within each cohort, the first trader’s waiting time before trading

is nS−1
nS

∆, and the last trader’s waiting time is zero. The average waiting time per slow trader

is thus nS−1
2nS

∆. If ∆ is reduced by, say, a half, then the average waiting time is also reduced to
nS/2−1
2×nS/2

∆
2

= nS/2−1
2nS

∆. A shorter waiting time is therefore a benefit of a higher trading frequency.

On the other hand, a higher trading frequency also reduces the number of slow traders nS

in each double auction, since nS = M∆/Γ. (This claim relies on the assumption that slow

price impact, sending it immediately to the market minimizes such risk. The qualitative nature of our results
still applies as long as slow traders cannot perfectly coordinate their trading times. If the slow traders were
able to coordinate their trading times perfectly, they effectively dictate the trading frequency of the market and
implement their preferred frequency 1/∆∗S that we characterize shortly.
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traders cannot perfectly coordinate their trading times.) This implies that slow traders and

fast traders in each auction tend to be less aggressive, resulting in slower convergence to the

efficient allocation. We see that this fundamental tradeoff is very similar to that in Section 3.

As before, a divisible asset pays a liquidating dividend D at an exponentially-distributed

future time with mean 1/r. To isolate the main insight of this section about heterogeneous

speeds, we use a much simpler information structure. Specifically, fast and slow traders receive

no signals about the dividend D; thus, they all value the dividend at E[D], which is normalized

to zero. Besides tractability, symmetric information regarding the asset fundamental value sets

our model of this section orthogonal to recent models of high-frequency trading in which fast

traders also have information advantage (see, for example, Biais, Foucault, and Moinas (2015),

Jovanovic and Menkveld (2012), and Hoffmann (2014)).

We now describe the inventory evolution of the traders. We refer to a generic fast trader as

i, and a generic slow trader as j. Each fast trader starts with an initial inventory of zi,0 = 0.

A fast trader’s inventory at time τ is:

zi,τ = zi,t∆ + x∗i,t∆, τ ∈ (t∆, (t+ 1)∆], (58)

where xi,t∆ is the fast trader’s demand schedule in period t, p∗t∆ is the market-clearing price in

period t, and x∗i,t∆ = xi,t∆(p∗t∆). Since at time 0 no slow trader has arrived and all fast traders

have the same inventory, x∗i,0 = 0 in the time-0 double auction.

Without loss of generality, we consider a specific slow trader j who belongs to cohort k.

Let Tj,l ∈ ((lK + (k − 1))∆, (lK + k)∆] be the l-th arrival time when the slow trader j comes

to the market. When arriving for the first time, trader j starts with an inventory zj,Tj,0 that

is independently drawn from some mean-0 distribution. Subsequently, upon his l-th return,

trader j receives an inventory shock εj,Tj,l , again independently drawn from another mean-0

distribution. The repeated inventory shocks make sure that inventory information is never

common knowledge. Thus, slow trader j’s inventory evolves according to:

zj,τ =



0 τ ∈ [0, Tj,0)

zj,Tj,0 τ ∈ [Tj,0, k∆]

zj,((l−1)K+k)∆ + x∗j,((l−1)K+k)∆ τ ∈ (((l − 1)K + k)∆, Tj,l), l ≥ 1

zj,((l−1)K+k)∆ + x∗j,((l−1)K+k)∆ + εj,Tj,l , τ ∈ [Tj,l, (lK + k)∆], l ≥ 1

. (59)

Note that slow trader j only participates in double auctions held in period (l − 1)K + k, for

l ≥ 1.

As before, before the asset payoff is realized, traders incur flow cost that is quadratic in
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inventories. Instead of having the same coefficient λ, fast traders and slow traders have po-

tentially different coefficients λF and λS, respectively. Inventory costs associated with uneven

inventories are the source of gains from trade in this extension.

The expected utilities of fast trader i and slow trader j are, respectively:

Ui = E

[
−
∫ ∞
τ=0

re−rτ
λF
2r
z2
i,τ dτ −

∞∑
t=0

e−rt∆x∗i,t∆p
∗
t∆

]
, (60)

Uj = E

[
−
∫ ∞
τ=0

re−rτ
λS
2r
z2
j,τ dτ −

∞∑
l=0

e−r(lK+k)∆x∗j,(lK+k)∆ · p∗(lK+k)∆

]
. (61)

In these expressions we have used the normalization that the expected asset value E[D] = 0.

Each fast trader i selects the optimal strategy profile {xi,t∆} to maximize Ui, and each slow

trader j selects the optimal strategy profile {xj,(lK+k)∆} to maximize Uj. The solution concept

is still Perfect Bayesian Equilibrium from Definition 1.

4.2 Equilibrium construction

Let C(t∆) be the cohort of slow traders who trade at period t. Let

ZF,t∆ ≡
nF∑
i=1

(zi,t∆ + xi,t∆(p∗t∆)) , (62)

and

ZS,t∆ ≡
∑

j∈C(t∆)

(zj,t∆ + xj,t∆(p∗t∆)) , (63)

be the total inventories of the fast traders and cohort-t∆ slow traders, respectively, after trading

in period t. In period t, only one cohort of slow traders are present, and the total inventories

of the other K − 1 cohorts are ZS,(t−1)∆, ZS,(t−2)∆, ..., ZS,(t−K+1)∆. For simplicity, we suppose

that traders hold zero inventory before time 0, that is, ZF,0 = 0 and ZS,(1−k)∆ = 0 for k ∈
{1, 2, . . . , K − 1}. (We could also set the before-time-0 inventories to any vector of constants,

but the analysis would not change in any substantial way.)
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We look for linear strategies of the form:

xi,t∆(p) = −bFp+ dF zi,t∆ + eFZF,(t−1)∆ +
K−1∑
k=1

fF,kZS,(t−k)∆, (64)

xj,t∆(p) = −bSp+ dSzj,t∆ + eSZF,(t−1)∆ +
K−1∑
k=1

fS,kZS,(t−k)∆. (65)

That is, at period t, each trader’s demand is linear in price, his own inventory, the fast traders’

total inventory in period t−1, and the total inventory of each cohort of the slow traders except

the current cohort. The equilibrium price in period t is

p∗t∆ =
1

nF bF + nSbS

(dF + nF eF + nSeS)ZF,(t−1)∆ + dS
∑

j∈C(t∆)

zj,t∆ +
K−1∑
k=1

(nFfF,k + nSfS,k)ZS,(t−k)∆

 .

(66)

A desirable property of strategies (64) and (65) is that the equilibrium path of prices {p∗t∆}
reveal {(ZF,t∆, ZS,t∆)}t≥0.12

This equilibrium conjecture has one difficulty with off-equilibrium behavior. If a slow trader

made a single deviation from strategy (65) in period t, p∗t∆ would not reveal the true inventory

of the cohort of slow traders present in period t. But the period-t cohort does not participate

in the market in the next K − 1 periods, so prices p∗(t+1)∆, p∗(t+2)∆, ..., p∗(t+K−1)∆ cannot provide

any more information about the true inventory of the period-t cohort. Therefore, cohorts of

slow traders in periods t+ 1, t+ 2, ..., t+K − 1 cannot learn the true inventory of the period-t

cohort through prices; they must form beliefs. From that point on, there could be an explosion

in the number of state variables, including different traders’ expectations of total inventories,

their expectations of expectations, and so on.13

To avoid this intractable problem, we assume that all true total inventories are publicly and

truthfully disclosed with a lag of ∆. That is, at time t∆, ZF,(t−1)∆ and ZS,(t−k)∆ become common

knowledge. Such public disclosure means that beliefs about the total inventory of fast traders

or any cohort of slow traders are pin down by the true inventories regardless of the deviation

by any single trader. Although this is a technical assumption, it can be motivated from post-

12To see this, consider the following inductive argument. At t = 1, ZF,0 = 0 and ZS,(1−k)∆ = 0 for k =
1, 2, . . . ,K− 1. The period-1 double auction price would then reveal

∑
j∈C(∆) zj,∆, from which we can calculate

ZF,∆ and ZS,∆. In period t > 1, given that ZF,(t−1)∆ and {ZS,(t−k)}K−1
k=1 are known, p∗t∆ reveals the current

cohort of slow traders’ total inventory
∑
j∈C(t∆) zj,t∆. Then given p∗t∆, the fast and slow traders’ new total

inventory ZF,t∆ and ZS,t∆ can be calculated.
13In the homogeneous-speed model of Section 2 and Section 3, this problem does not arise because, after a

trader’s single deviation from the equilibrium strategy, the same trader still participates in subsequent double
auctions. All other traders who did not deviate will infer the correct sum of total signals from prices and need
not to form beliefs about it.
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trade transparency regulation observed in reality. For example, during various time periods,

stock exchanges including Euronext Paris, the Tokyo Stock Exchange, the Korean Exchange,

the Australian Securities Exchange, and the Helsinki Stock Exchange require that broker IDs

be displayed together with their limit orders (see Comerton-Forde, Frino, and Mollica (2005),

Foucault, Moinas, and Theissen (2007), Comerton-Forde and Tang (2009), and Linnainmaa

and Saar (2012)).

Once the off-equilibrium-belief problem is circumvented this way, the equilibrium can be

constructed by considering a single deviation of a trader and taking the first-order condition,

just like in Section 2. Details of equilibrium construction are delegated to Appendix D.

4.3 Preferred trading frequencies by fast traders and slow traders

The equilibrium is analytically intractable, but it can be solved numerically. Using the first-

order conditions shown in Appendix D and matching coefficients, we can numerically solve the

coefficients in Equations (64) and (65). From these strategies, we can subsequently evaluate

the welfare of fast traders and slow traders.

Since the traders are heterogeneous, we ask what respective trading frequencies fast traders

and slow traders prefer ex-ante. In other words, if fast traders dictate market design, what ∆

would they choose ex-ante? The fast traders’ optimal frequency is therefore defined by:

∆∗F ∈ arg max
∆

nF∑
i=1

Ui. (67)

Similarly, if slow traders dictate market design, they would choose their own optimal frequency,

defined by:

∆∗S ∈ arg max
∆

M∑
j=1

Uj. (68)

Note that summing over individual traders’ ex-ante welfare in the respective two groups is a

valid welfare criterion, since traders in each group are ex-ante identical.

We numerically evaluate the ex-ante expected welfare of fast traders and slow traders for

various levels of K, with the associated ∆ = Γ/K. A higher K is is equivalent to a higher

trading frequency 1/∆, which is equivalent to a lower number of slow traders per double auction.

At the trading frequency ∆ = Γ/M , there is only one slow trader per double auction, and the

market is the thinnest. If ∆ were to get any smaller, say, Γ/(2M), there would be periods in

which only fast traders participate in the double auctions. But because fast traders are identical

in our model, on equilibrium path they have identical inventories period by period and will not

trade any positive quantity with each other. In other words, setting a lower bound of ∆ at
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Γ/M is without loss of generality.

Figure 7 plots the fast traders’ welfare, in red, and slow traders’ welfare, in blue, as functions

of K ∈ {1, 2, 4, 8, 16, 32}. We take the following baseline parameters: λF = λS = 1, r = 1,

Γ = 1, M = 32 and nF = 2. The corresponding ∆ is in the finite set {Γ, Γ
2
, Γ

4
, Γ

8
, Γ

16
, Γ

32
}.

The inventory shocks {εj,Tj,l} are set to zeros to speed up numerical calculations. The initial

inventories of the slow traders upon the first arrivals are normally distributed with mean zero

and variance one. We also consider different levels of imminence of payoff-relevant news (r = 1.5

and r = 0.5) and different populations of slow traders (M = 64 and M = 128). The optimal

K is indicated by a black dot.

The most salient result from Figure 7 is that the fast traders always prefer the highest

K, or the highest possible trading frequency, at which only one slow trader participates in

each double auction. Because it is already a corner solution, this result is not driven by our

restricted attention to a discrete grid of K. Instead, the fast trader’ preference for the highest

trading frequency comes from the rents they extract by intermediating trades among slow

traders, or market-making. Intuitively, the fewer slow traders per double auction, the higher

rents extracted by fast traders because of imperfect competition. A higher trading frequency

also reduces fast traders’ inventory costs whenever their inventories are nonzero, since they can

more quickly offload their inventories to the next cohort of slow traders. We emphasize that

this result is not about superior information advantage of fast traders.

If there is only one fast trader (nF = 1), we also find through numerical calculations that

the fast trader’s optimal trading frequency is such that there are two slow traders per period,

which is also the highest feasible trading frequency.14 The results for nF = 1 are not reported

to preserve space.

The result that fast traders prefer the highest possible trading frequency, or the thinnest

market, is more robust than suggested by the numerical calculations. In the supplemental

materials to this paper, we analytically solve a limiting case of our model, in which: (i) there

is only one fast trader, and (ii) M → ∞, Γ → ∞, and M/Γ converges to a positive constant.

(In this limiting case, each slow trader trades only once.) We prove, analytically, that in this

limiting case the fast trader always strictly prefers the highest feasible trading frequency of two

slow traders per period.

Now turning to the slow traders, we observe that they typically prefer an intermediate

trading frequency.15 Too low a trading frequency incurs too much waiting cost, whereas too

14A linear equilibrium does not exist if there are only two traders (one fast and one slow) in each period. This
is consistent with the existing literature such as Kyle (1989), Vives (2011), and Rostek and Weretka (2012).

15Because the optimal K for slow traders is intermediate, their optimal trading frequency is subject to the
technical caveat that the welfare is calculated only for K’s such that the number of slow traders per double
auction is an integer. It is possible to calculate everything for a general K, but there is little gain in the economic
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Figure 7: Fast and slow traders’ welfare as functions of K; the optimal K is marked by a black
point. Baseline parameters: λF = λS = 1, r = 1, Γ = 1, M = 32 and nF = 2. The inventory
shocks εj,Tj,l are all set to zero. The initial inventories of the slow traders upon the first arrivals
are normally distributed with mean zero and variance one.
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high a trading frequency makes each double auction too uncompetitive. The internal solution

for ∆∗S is obtained as a result of the tradeoff between shorter delays in offloading inventory

shocks and a thicker, more competitive market. As the arrival rate r of asset payoffs becomes

smaller, slow traders are less eager to offload their inventories; thus, they prefer a thicker and

slower market, i.e., a smaller K and larger ∆. As the population of slow traders becomes larger,

each double auction becomes thicker automatically; consequently, slow traders prefer a faster

market, i.e. a higher K or smaller ∆, to minimize delay costs. These comparative statics are

natural. The case with nF = 1 yields qualitatively similar results for the slow traders.

An important implication from the heterogeneous-speed model is that when market par-

ticipants are heterogeneous, who designs the market matters a great deal for the welfare of

intuition.
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everyone. Mapping our fast and slow traders to their likely counterparts in reality, we see that

financial intermediaries and high-frequency traders, likely the fast, benefit most from speeding

up the market as much as possible, where retail and institutional investors, likely the slow,

initially benefit from market speedup but eventually suffer from it. For more liquid securities,

corresponding to a higher M , the fast traders’ interest and the slow traders’ interest are better

aligned in speeding up the market. These implications are unique to the heterogeneous-speed

model.

4.4 Trading frequency, price discovery, and excess volatility

We close this section with a simple observation implied by the model: under heterogeneous

speeds, a higher-frequency market tends to create faster price discovery but higher short-term

volatility. Intuitively, a higher trading frequency allows more immediate market reaction to

supply or demand shocks, but due to market thinness and market power, the short-term price

reaction “overshoots” the long-term price reaction.

Figure 8 illustrates this idea in an simple example, in which there are nF = 2 fast traders

and M = 32 slow traders, and all slow traders but one arrive with zero inventory. The 10th

slow trader arrives with a large positive inventory of 20 units. Other parameters are the same as

the baseline parameters used in Figure 7. For each K ∈ {1, 4, 32}, the prices are calculated in

the linear equilibrium characterized above, and the price paths are plotted as step functions in

order to make clear the times of price changes. This exercise is obviously subject to the caveat

that slow traders cannot coordinate their trading times. But again, as long as slow traders

cannot perfectly coordinate trading times, the intuition would not change qualitatively.

At the slowest-market extreme of K = 1, all 32 slow traders and two fast traders participate

in the double auctions together. The 10th trader’s supply shock is shared with the other 33

traders, so the price decline is mild but comes with a delay, at clock time 1.

At the fastest-market extreme of K = 32, each double auction has only one slow trader

and two fast traders. The 10th slow trader’s large inventory creates a large price drop in the

immediate next double auction. Price discovery is fast in that the price reflects the excess

supply almost immediately. But the extent of price drop is much larger because (i) there

are only two fast traders to share the inventory shock, and (ii) these two fast traders exercise

market power. As soon as the 10th slow trader finishes the first round of trading, price rebounds

sharply, and then gradually, as the two fast traders offload their newly acquired inventory to

other slow traders in later periods. Because the 10th slow trader retains part of his original

inventory, the price periodically drops and recovers as the 10th slow trader returns to the market
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Figure 8: Price responses to supply or demand shocks under various trading frequency. In
this example, M = 32, the 10th slow trader arrives with a positive inventory of 20 units, and
other slow traders arrive with zero inventory. Other parameters are the same as the baseline
parameters in Figure 7.
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repeatedly.16 As time goes by, the price swing becomes smaller and smaller, and eventually the

price converges to that under K = 1. For K = 4, the price exhibits the same drop-and-recover

patterns but is less volatile.

These price patterns of Figure 8 nicely mirror the price patterns obtained in the model

of Duffie (2010) based on investor inattention. Both models produce sharp price responses to

supply or demand shocks and subsequent reversals, as well as later repercussions with smaller

magnitudes. Beyond Duffie’s model, our model features imperfect competition, so price reac-

tions are more pronounced.

Overall, this simple application of our heterogeneous-speed model suggests that under im-

perfect competition, a higher market speed may lead to more frequent occurrence of (mini)

“flash crashes” and “flash rallies” in electronic markets—sharp price drop and rebound that

last for a short period of time, or vice versa. CFTC and SEC (2010), Kirilenko, Kyle, Samadi,

and Tuzun (2015), Menkveld and Yueshen (2015), and Joint Staff Report (2015) provide in-

depth analysis of such events in markets for equities, futures, U.S. Treasuries, and foreign

exchange.

16The deterministic time intervals between price drops come from the assumed deterministic trading delays.
The model of Duffie (2010) has the same feature. Stochastic time intervals between price drops may be obtained
by considering an alternative model in which each slow trader revisits the market according to a stochastic
process, say a Poisson process. That alternative model does not offer new economic intuition beyond our
current model, and is technically messier because the number of trader per double auction would be a random
variable.
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5 Conclusion

In this paper, we study a dynamic model in which a finite number of traders receive private

information over time and trade strategically with demand schedules in a sequence of double

auctions. We characterize a stationary linear equilibrium in closed form. The equilibrium price

aggregates a weighted sum of the common value information and private values information,

but the two components cannot be separated from the price. Due to imperfect competition,

the equilibrium allocation is not fully efficient, but it converges to the efficient allocation expo-

nentially over time. The presence of adverse selection—asymmetric information regarding the

common-value component of the asset—slows down this convergence speed.

We use this modeling framework to study the optimal trading frequency that maximizes

welfare. Trading frequency is measured as the number of double auctions per unit of clock time.

A higher trading frequency reduces the aggressiveness of demand schedules, but allows more

immediate reactions to new information. The allocative inefficiency in this dynamic market can

be decomposed into two parts: one part due to strategic behavior and the other due to delayed

responses to new information. The optimal tradeoff between these two effects depends on the

nature of information. If new information arrives at scheduled intervals, the optimal trading

frequency is never higher than the information frequency, and these two frequencies coincide if

traders are ex-ante identical. By contrast, if new information arrives as a Poisson process, the

optimal trading frequency can be (much) higher than the information arrival frequency, unless

adverse selection is very severe or if the number of traders is very low.

We extend the model to study how market frequency interacts with heterogeneous trading

speeds. Fast traders access the market whenever it is open, but slow traders can only trade

periodically with a delay. Fast trader extract rents by intermediating trades among slow traders

across time. As a result, fast traders prefer the highest feasible trading frequency, whereas slow

traders tend to prefer a strictly lower frequency. Under heterogeneous speeds and market power,

a higher trading frequency speeds up price discovery, but may create higher short-term volatility

and price patterns that resemble “flash crashes” and “flash rallies.”
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A List of Model Variables

Variable Explanation

Sections 2–3, Exogenous Variables

t Discrete trading period , t ∈ {0, 1, 2, 3, . . . }
τ Continuous clock time, τ ∈ [0,∞)
∆ Length of each trading period
T , r The clock time T of dividend payment has an exponential distribution with

intensity r > 0.
{Tk}k∈{0,1,2,... } Times of shocks to the common dividend and private values

DTk The common dividend value immediately after the k-th shock
σ2
D Each dividend shock DTk −DTk−1

has the distribution N (0, σ2
D).

Si,Tk Trader i’s signal of the k-th dividend shock
σ2
ε The noise in trader i’s dividend signal regarding the k-th dividend shock,

Si,Tk − (DTk −DTk−1
), has the distribution N (0, σ2

ε ).
wi,Tk Trader i’s private value for the asset immediately after the k-th shock
σ2
w Shocks to each trader i’s private value, wi,Tk −wi,Tk−1

, has the distribution
N (0, σ2

w).
vi,τ DTk + wi,Tk if Tk is the last shock before τ
λ Before the dividend is paid, the flow cost for holding asset position q is

0.5λq2 per unit of clock time for each trader.
Z The total inventory held by all traders, Z ≡

∑
1≤j≤n zj,0

γ Time interval of scheduled information arrivals
µ Intensity of stochastic information arrivals

Sections 2–3, Endogenous Variables

zi,t∆ Trader i’s inventory level right before the period-t double auction
xi,t∆(p) Trader i’s demand schedule in the period-t double auction
p∗t∆ The equilibrium price in period-t double auction
Hi,t∆ Trader i’s history (information set) up to time t∆ but before the period-t

double auction, defined in Equation (10)
si,Tk Trader i’s total signal right after the k-th shock, defined in Equation (20)
Vi,t∆ The expected utility of trader i in period t, conditional on Hi,t∆

χ, α Constants defined in Section 2.2
zci,t∆ The competitive allocation immediately before trading in period-t auction

zei,τ The continuous-time version of competitive allocation

σ2
z , σ

2
0 Constants defined in Equations (46) and (47)

W (∆) Welfare under homogeneous speed and trading interval ∆

Section 4
nF , M The number of fast traders and slow traders, respectively

Γ Clock time delay of slow traders in repeated participation in the market
K Number of cohort of slow traders, K = Γ/∆
nS The number of slow traders in each cohort, nS = M/K

WF (∆), WS(∆) The fast and slow traders’ welfare, respectively
∆∗F , ∆∗S The fast and slow traders’ preferred trading frequencies, respectively
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B Additional Results

B.1 The Continuous-Time Limit of Proposition 2

In this appendix we examine the limit of the equilibrium in Proposition 2 as ∆ → 0 (i.e. as trading
becomes continuous in clock time) and its efficiency properties.

Proposition 9. As ∆→ 0, the equilibrium of Proposition 2 converges to the following perfect Bayesian
equilibrium:

1. Trader i’s equilibrium strategy is represented by a process {x∞i,τ}τ≥0. At the clock time τ , x∞i,τ
specifies trader i’s rate of order submission and is defined by

x∞i,τ (p; si,τ , zi,τ ) = b∞
(
si,τ − p−

λ(n− 1)

r(nα− 1)
zi,τ +

λ(1− α)

r(nα− 1)
Z

)
, (69)

where

b∞ =
r2(nα− 1)(nα− 2)

2λ(n− 1)
. (70)

Given a clock time τ > 0, in equilibrium the total amount of trading by trader i in the clock-time
interval [0, τ ] is

z∗i,τ − zi,0 =

∫ τ

τ ′=0
x∞i,τ ′(p

∗
τ ′ ; si,τ ′ , z

∗
i,τ ′) dτ

′. (71)

2. The equilibrium price at any clock time τ is

p∗τ =
1

n

n∑
i=1

si,τ −
λ

nr
Z. (72)

3. Given any 0 ≤ τ < τ , if si,τ = si,τ for all i and all τ ∈ [τ , τ ], then the equilibrium inventories
z∗i,τ in this interval satisfy:

z∗i,τ − zei,τ = e−
1
2
r(nα−2)(τ−τ)

(
z∗i,τ − zei,τ

)
, (73)

where

zei,τ ≡
r(nα− 1)

λ(n− 1)

si,τ − 1

n

n∑
j=1

sj,τ

+
1

n
Z (74)

is the efficient allocation at clock time τ (cf. Equation (26)).

Proof. The proof follows by directly calculating the limit of Proposition 2 as ∆→ 0 using L’Hopitâl’s
rule.

Proposition 9 reveals that even if trading occurs continuously, in equilibrium the competitive allo-
cation is not reached instantaneously. The delay comes from traders’ price impact and the associated
demand reduction. This feature is also obtained by Vayanos (1999). Although submitting aggressive
orders allows a trader to achieve his desired allocation sooner, aggressive bidding also moves the price
against the trader and increases his trading cost. Facing this tradeoff, each trader uses a finite rate
of order submission in the limit. As in Proposition 4, the rate of convergence to the competitive
allocation in Proposition 9, r(nα − 2)/2, is increasing in n, r, and σ2

w but decreasing in σ2
D. (The

proof of Proposition 4 shows that ∂(nα)/∂σ2
w > 0, ∂(nα)/∂σ2

D < 0, and ∂(nα)/∂n > 0.)
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B.2 Convergence rate to efficiency in large markets

To further explore the effect of adverse selection for allocative efficiency, and to compare with the
literature (in particular with Vayanos (1999)), we consider the rate at which inefficiency vanishes as
the number of traders becomes large, with and without adverse selection. Adverse selection exists if
σ2
D > 0 and σ2

ε > 0. For fixed σ2
ε > 0 and σ2

w > 0, we compare the convergence rate in the case of a
fixed σ2

D > 0 to that in the case of σ2
D = 0.

We consider the inefficiency caused by strategic behavior, that is, the difference between the
total ex-ante utility in the strategic equilibrium of Proposition 2 and the total ex-ante utility in the
competitive equilibrium:

X1(∆) ≡ E

[ ∞∑
t=0

(e−rt∆ − e−r(t+1)∆)

n∑
i=1

((
vi,t∆z

∗
i,(t+1)∆ −

λ

2r
(z∗i,(t+1)∆)2

)
(75)

−
(
vi,t∆z

c
i,(t+1)∆ −

λ

2r
(zci,(t+1)∆)2

))]
,

where {z∗i,(t+1)∆} is strategic allocation given by Equation (34), and zci,(t+1)∆ is the competitive allo-

cation given by Equation (26). This X1(∆) is the same as that defined in Section 3. As usual, prices
do not enter the welfare criterion as they are transfers.

Proposition 10. Suppose that the news times {Tk}k≥1 either satisfy Tk = kγ for a constant γ > 0 or
are given by a homogeneous Poisson process. Suppose also that σ2

ε > 0, σ2
w > 0, and 1

n

∑n
i=1 E[(zi,0 −

zei,0)2] is bounded as n becomes large. Then, the following convergence results hold:

1. If σ2
D > 0, then as n→∞:

X1(∆)

n
converges to zero at the rate n−4/3 for any ∆ > 0,

lim
∆→0

X1(∆)

n
converges to zero at the rate n−2/3.

2. If σ2
D = 0, then as n→∞:

X1(∆)

n
converges to zero at the rate n−2 for any ∆ > 0,

lim
∆→0

X1(∆)

n
converges to zero at the rate n−1.

The convergence rates under σ2
D = 0 (i.e. pure private values) are also obtained in the model of

Vayanos (1999), who is the first to show that convergence rates differ between discrete-time trading
and continuous-time trading. Relative to the results of Vayanos (1999), Proposition 10 reveals that
the rate of convergence is slower if traders are subject to adverse selection. For any fixed ∆ > 0 and
as n → ∞, the inefficiency X1(∆)/n vanishes at the rate of n−4/3 if σ2

D > 0, but the corresponding
rate is n−2 if σ2

D = 0. If one first takes the limit of ∆ → 0, then the convergence rates as n becomes
large are n−2/3 and n−1 with and without adverse selection, respectively. (The limiting behavior of
the strategic equilibrium as ∆→ 0 is stated in Appendix B.1.) Interestingly, the asymptotic rates do
not depend on the size of σ2

D but only depend on whether σ2
D is positive or not.
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C Proofs

C.1 Construction of total signals

In this appendix we show details of the construction of the total signals in Equation (20). The
total signals are subsequently used in the strategies of the competitive benchmark and the strategic
equilibrium.

Lemma 3. For any constant x, we have:

E
[
vi,Tk

∣∣∣∣Hi,Tk ∪
{∑

j 6=i

(
x
∑k

l=0
Sj,Tl + wj,Tk

)}]
(76)

=wi,Tk +
1/(x2σ2

ε )

1/(x2σ2
D) + 1/(x2σ2

ε ) + (n− 1)/(x2σ2
ε + σ2

w)

k∑
l=0

Si,Tl

+
1/(x2σ2

ε + σ2
w)

1/(x2σ2
D) + 1/(x2σ2

ε ) + (n− 1)/(x2σ2
ε + σ2

w)
· 1

x

∑
j 6=i

(
x

k∑
l=0

Sj,Tl + wj,Tk

) .

Proof. Define
S̃i,Tl ≡ xSi,Tl + wi,Tl − wi,Tl−1

. (77)

By the projection theorem for multivariate normal distribution:

E
[
DTl −DTl−1

| Si,Tl ,
∑

j 6=i
S̃j,Tl

]
(78)

= (xσ2
D, (n− 1)xσ2

D) ·
(
x2(σ2

D + σ2
ε ) (n− 1)x2σ2

D

(n− 1)x2σ2
D (n− 1)(x2(σ2

D + σ2
ε ) + σ2

w) + (n− 1)(n− 2)x2σ2
D

)−1

·
(
xSi,Tl ,

∑
j 6=i

S̃j,Tl

)′
.

We compute:(
x2(σ2

D + σ2
ε ) (n− 1)x2σ2

D

(n− 1)x2σ2
D (n− 1)(x2(σ2

D + σ2
ε ) + σ2

w) + (n− 1)(n− 2)x2σ2
D

)−1

=

(
(n− 1)(x2σ2

ε + σ2
w) + (n− 1)2x2σ2

D −(n− 1)x2σ2
D

−(n− 1)x2σ2
D x2(σ2

D + σ2
ε )

)
· 1

(n− 1)x2(x2σ2
ε + σ2

w)(σ2
D + σ2

ε ) + (n− 1)2x4σ2
Dσ

2
ε

,

and

E
[
DTl −DTl−1

| Si,Tl ,
∑

j 6=i
S̃j,Tl

]
=

(n− 1)x2σ2
D(x2σ2

ε + σ2
w)Si,Tl + (n− 1)x3σ2

Dσ
2
ε

∑
j 6=i S̃j,Tl

(n− 1)x2(x2σ2
ε + σ2

w)(σ2
D + σ2

ε ) + (n− 1)2x4σ2
Dσ

2
ε

=
(1/x2σ2

ε )Si,Tl + (1/(x2σ2
ε + σ2

w)) 1
x

∑
j 6=i S̃j,Tl

1/(x2σ2
ε ) + 1/(x2σ2

D) + (n− 1)/(x2σ2
ε + σ2

w)
.

Summing the above equation across l ∈ {0, 1, . . . , k} and adding wi,Tk gives Equation (76).
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By Equation (76), we have

E
[
vi,Tk

∣∣∣∣Hi,Tk ∪
{∑

j 6=i

(
χ
∑k

l=0
Sj,Tl + wj,Tk

)}]

=wi,Tk + χ

k∑
l=0

Si,Tl +
1/(χ2σ2

ε + σ2
w)

1/(χ2σ2
D) + 1/(χ2σ2

ε ) + (n− 1)/(χ2σ2
ε + σ2

w)
· 1

χ

∑
j 6=i

(
χ

k∑
l=0

Sj,Tl + wj,Tk

)
=αsi,Tk +

1− α
n− 1

∑
j 6=i

sj,Tk ,

where in the second line we used the definition of χ in Equation (19), and in the third line we used
the definition of si,Tk in Equation (20), and the definition of α:

α ≡ 1

1 + (n−1)/(χ2σ2
ε+σ2

w)
1/(χ2σ2

D)+1/(χ2σ2
ε )+(n−1)/(χ2σ2

ε+σ2
w)
· 1
χ

=
χ2σ2

ε + σ2
w

nχ2σ2
ε + σ2

w

. (79)

C.2 Verification of the competitive equilibrium strategy

The value function of trader i, rewritten from Equation (12), is:

max
{xi,t′∆}t′≥t

∞∑
t′=t

e−r(t
′−t)∆E

[
(1− e−r∆)

(
vi,t′∆(zci,t′∆ + xi,t′∆(pct′∆))− λ

2r
(zci,t′∆ + xi,t′∆(pct′∆))2

)

− pct′∆ · xi,t′∆(pct′∆)

∣∣∣∣ Hi,t′∆, p
c
t′∆

]
. (80)

The first-order condition of (80) with respect to xi,t∆ at the competitive equilibrium {xci,t′∆}t′≥t is

E

[ ∞∑
t′=t

e−r(t
′−t)∆

(
(1− e−r∆)

(
vi,t′∆ −

λ

r
(zci,t′∆ + xci,t′∆(pct′∆))

)
∂(zci,t′∆ + xci,t′∆(pct′∆))

∂xci,t∆(pct∆)

− pct′∆
∂xci,t′∆(pct′∆)

∂xci,t∆(pct∆)

) ∣∣∣∣ Hi,t∆, p
c
t∆

]
= 0. (81)

Under the derived strategy xci,t∆,

∂xci,t′∆(pct′∆)

∂xci,t∆(pct∆)
=

{
−1, if t′ = t+ 1

0, if t′ > t+ 1
, (82)

and
∂(zci,t′∆ + xci,t′∆(pct′∆))

∂xci,t∆(pct∆)
= 0, t′ > t. (83)

So the first-order condition reduces to

E
[
(1− e−r∆)

(
vi,t∆ −

λ

r
(zci,t∆ + xci,t∆(pct∆))

)
− pct∆ + (1− e−r∆)pc(t+1)∆

∣∣∣Hi,t∆, p
c
t∆

]
= 0. (84)
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Because the price is a martingale, i.e. E
[
pc(t+1)∆ | Hi,t∆, p

c
t∆

]
= pct∆, the above equation reduces to

the conjecture (15).

C.3 Proof of Proposition 2

We conjecture that traders use the following linear, symmetric and stationary strategy:

xj,t∆(p; sj,t∆, zj,t∆) = asj,t∆ − bp+ dzj,t∆ + fZ. (85)

This conjecture implies the market-clearing prices of

p∗t∆ =
a

nb

n∑
j=1

sj,t∆ +
d+ nf

nb
Z. (86)

Fix a history Hi,t∆ and a realization of
∑

j 6=i sj,t∆. We use the single-deviation principle to con-
struct an equilibrium strategy (85): under the conjecture that other traders j 6= i use strategy (85)
in every period t′ ≥ t, and that trader i returns to strategy (85) in period t′ ≥ t + 1, we verify that
trader i has no incentive to deviate from strategy (85) in period t.17

If trader i uses an alternative demand schedule in period t, he faces the residual demand−
∑

j 6=i xj,t∆(pt∆)
and is effectively choosing a price pt∆ and getting xi,t∆(pt∆) = −

∑
j 6=i xj,t∆(pt∆). Therefore, by dif-

ferentiating trader i’s expected utility in period t with respect to pt∆ and evaluating it at pt∆ = p∗t∆
in Equation (86), we obtain the following first order condition in period t of trader i:

E

[
(n− 1)b ·

(
(1− e−r∆)

∞∑
k=0

e−rk∆
∂(zi,(t+k)∆ + x∗i,(t+k)∆)

∂x∗i,t∆

(
vi,(t+k)∆ −

λ

r
(zi,(t+k)∆ + x∗i,(t+k)∆)

)

−
∞∑
k=0

e−rk∆
∂x∗i,(t+k)∆

∂x∗i,t∆
p∗(t+k)∆

)
−
∞∑
k=0

e−rk∆ x∗i,(t+k)∆

∂p∗(t+k)∆

∂pt∆

∣∣∣∣∣ Hi,t∆ ∪
{∑

j 6=i
sj,t∆

}]
= 0,

(87)

where we write x∗i,(t+k)∆ = xi,(t+k)∆(p∗(t+k)∆; si,(t+k)∆, zi,(t+k)∆) for the strategy xi,(t+k)∆( · ) defined in

Equation (85), and by definition zi,(t+k+1)∆ = zi,(t+k)∆ + x∗i,(t+k)∆.

Since all traders follow the conjectured strategy in Equation (85) from period t+ 1 and onwards,
we have the following evolution of inventories: for any k ≥ 1,

zi,(t+k)∆ + x∗i,(t+k)∆ =asi,(t+k)∆ − bp∗(t+k)∆ + fZ + (1 + d)zi,(t+k)∆ (88)

=(asi,(t+k)∆ − bp∗(t+k)∆ + fZ) + (1 + d)(asi,(t+k−1)∆ − bp∗(t+k−1)∆ + fZ)

+ · · ·+ (1 + d)k−1(asi,(t+1)∆ − bp∗(t+1)∆ + fZ) + (1 + d)k(xi,t∆ + zi,t∆).

The evolution of prices and inventories, given by Equations (86) and (88), reveals that by changing
the demand or price in period t, trader i has the following effects on inventories and prices in period

17For a description of the single-deviation principle, also called “one-stage deviation principle”, see Theorem
4.1 and 4.2 of Fudenberg and Tirole (1991). We can apply their Theorem 4.2 because the payoff function in our
model, which takes the form of a “discounted” sum of period-by-period payoffs, satisfies the required “continuity
at infinity” condition.
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t+ k, k ≥ 1:

∂(zi,(t+k)∆ + x∗i,(t+k)∆)

∂x∗i,t∆
= (1 + d)k, (89)

∂x∗i,(t+k)∆

∂x∗i,t∆
= (1 + d)k−1d, (90)

∂p∗(t+k)∆

∂pt∆
=
∂p∗(t+k)∆

∂x∗i,t∆
= 0. (91)

As we verify later, the equilibrium value of d satisfies −1 < d < 0, so the partial derivatives (89) and
(90) converge.

The first order condition (87) simplifies to:

E

[
(n− 1)b

(
(1− e−r∆)

∞∑
k=0

e−rk∆(1 + d)k
(
vi,(t+k)∆ −

λ

r
(zi,(t+k)∆ + x∗i,(t+k)∆)

)

− p∗t∆ −
∞∑
k=1

e−rk∆(1 + d)k−1d p∗(t+k)∆

)
− x∗i,t∆

∣∣∣∣∣ Hi,t∆ ∪
{∑

j 6=i
sj,t∆

}]
= 0, (92)

where we have (cf. Lemma 3, Equations (86) and (88)):

E[p∗i,(t+k)∆ | Hi,t∆ ∪ {sj,τ}j 6=i,0≤τ≤t∆] = p∗t∆, (93)

E[vi,(t+k)∆ | Hi,t∆ ∪ {sj,τ}j 6=i,0≤τ≤t∆] = E
[
vi,t∆ | Hi,t∆ ∪

{∑
j 6=i

sj,t∆

}]
= αsi,t∆ +

1− α
n− 1

∑
j 6=i

sj,t∆, (94)

E[zi,(t+k)∆ + x∗i,(t+k)∆ | Hi,t∆ ∪ {sj,τ}j 6=i,0≤τ≤t∆]

= (asi,t∆ − bp∗t∆ + fZ)

(
1

−d
− (1 + d)k

−d

)
+ (1 + d)k(x∗i,t∆ + zi,t∆). (95)

Substituting Equations (86), (93), (94) and (95) into the first-order condition (92) and using the
notation s̄t∆ =

∑
1≤j≤n sj,t∆/n, we get:

(n− 1)b(1− e−r∆)

[
1

1− e−r∆(1 + d)

αsi,t∆ +
1− α
n− 1

∑
j 6=i

sj,t∆ −
(
a

b
s̄t∆ +

d+ nf

nb
Z

)
−
∞∑
k=0

λ

r
e−rk∆(1 + d)k

(
1

−d
− (1 + d)k

−d

)(
asi,t∆ − b

(
a

b
s̄t∆ +

d+ nf

nb
Z

)
+ fZ

)

− λ

(1− e−r∆(1 + d)2)r
(x∗i,t∆ + zi,t∆)

]
− x∗i,t∆ = 0. (96)
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Rearranging the terms gives:(
1 +

(n− 1)b(1− e−r∆)λ

(1− e−r∆(1 + d)2)r

)
x∗i,t∆ (97)

= (n− 1)b(1− e−r∆)

[
1

1− e−r∆(1 + d)

(
nα− 1

n− 1
si,t∆ +

n− nα
n− 1

s̄t∆ −
a

b
s̄t∆

)
− λe−r∆(1 + d)

r(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)
a(si,t∆ − s̄t∆)

− λ

(1− e−r∆(1 + d)2)r
zi,t∆

−
(

1

1− e−r∆(1 + d)

(
d+ nf

nb
+

λ

rn

)
− λ

(1− (1 + d)2e−r∆)nr

)
Z

]
.

On the other hand, substituting Equation (86) into the conjectured strategy (85) gives:

x∗i,t∆ = a(si,0 − s̄0) + dzi,0 −
d

n
Z. (98)

We match the coefficients in Equation (98) with those in Equation (97). First of all, we clearly have

a = b. (99)

We also obtain two equations for b and d:(
1 +

(n− 1)b(1− e−r∆)λ

(1− e−r∆(1 + d)2)r

)
=

(1− e−r∆)(nα− 1)

1− e−r∆(1 + d)
− (n− 1)b(1− e−r∆)e−r∆(1 + d)λ

(1− (1 + d)e−r∆)(1− (1 + d)2e−r∆)r
,(

1 +
(n− 1)b(1− e−r∆)λ

(1− e−r∆(1 + d)2)r

)
d = −(n− 1)b(1− e−r∆)λ

(1− e−r∆(1 + d)2)r
. (100)

There are two solutions to the above system of equations. One of them leads to unbounded inventories,
so we drop it.18 The other solution leads to converging inventories and is given by

b =
(nα− 1)r

2(n− 1)e−r∆λ

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
, (101)

d = − 1

2e−r∆

(
(nα− 1)(1− e−r∆) + 2e−r∆ −

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

)
. (102)

Lastly, matching the coefficient of Z gives:

f = −d
n
− bλ

nr
. (103)

Under the condition nα > 2, we can show that b > 0 and −1 < d < 0, that is, the demand schedule
is downward-sloping in price and the inventories evolutions (89)–(90) converge.

18This dropped solution to Equation (100) has the property of (1+d)e−r∆ < −1, which leads to an unbounded
path of inventories (cf. Equation (88)) and utilities.
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By Equation (19), the condition nα > 2 is equivalent to the condition

χ2 <
(n− 2)σ2

w

nσ2
ε

(104)

which is equivalent to the following condition on the fundamentals:

1

n/2 + σ2
ε /σ

2
D

<

√
n− 2

n

σw
σε
. (105)

Finally, we verify the second-order condition. Under the linear strategy in Equation (85) with
b > 0, differentiating the first-order condition (87) with respect to p0 gives

(n− 1)b(1− e−r∆)

(
−λ
r

(n− 1)b
∞∑
k=0

e−rk∆(1 + d)2k − 1

)
− (n− 1)b < 0. (106)

This completes the construction of a perfect Bayesian equilibrium.

C.4 Proof of Proposition 3

Suppose that every trader i use the strategy:

xi,t∆(p) =
∑
Tl≤t∆

alSi,Tl + awwi,t∆ − bp+ dzi,t∆ + f, (107)

where {al}l≥0, aw, b, d and f are constants. We show that for everyone using strategy (107) to be a
perfect Bayesian equilibrium (PBE), the constants must be the ones given by Proposition 2. We divide
our arguments into two steps.

Step 1. Define xl ≡ al/aw. 19 As a first step, we show that if strategy (107) is a symmetric PBE,
then we must have xl = χ for every l, where χ is defined in Equation (19).

Suppose that (t− 1)∆ ∈ [Tk′ , Tk′+1) and t∆ ∈ [Tk, Tk+1), so there are k − k′ ≥ 1 dividend shocks
between time (t − 1)∆ and time t∆. 20 Without loss of generality, assume k′ = 0. Since all other
traders j 6= i are using strategy (107), by computing the difference p∗t∆ − p∗(t−1)∆, trader i can infer
from the period-t price the value of

∑
j 6=i

k∑
l=1

xlSj,Tl + wj,Tl − wj,Tl−1
.

By the projection theorem for normal distribution, we have

E
[
DTk −DT0 | Hi,t∆ ∪

{∑
j 6=i

∑
Tl≤t∆

xlSj,Tl + wj,Tl − wj,Tl−1

}]
(108)

=E
[
DTk −DT0 | {Si,Tl}

k
l=1 ∪

{∑
j 6=i

∑k

l=1
xlSj,Tl + wj,Tl − wj,Tl−1

}]
= u Σ−1 ·

(
Si,T1 , . . . , Si,Tk ,

∑
j 6=i

∑k

l=1
xlSj,Tl + wj,Tl − wj,Tl−1

)′
,

19Clearly, we cannot have aw = 0, since players use their private values in any equilibrium.
20In period t = 0, we take DT−1

= wi,T−1
= 0.
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where Σ is the covariance matrix of
(
Si,T1 , . . . , Si,Tk ,

∑
j 6=i
∑k

l=1 xlSj,Tl + wj,Tl − wj,Tl−1

)
: for 1 ≤ l ≤

k + 1 and 1 ≤ m ≤ k + 1,

Σl,m =



σ2
D + σ2

ε 1 ≤ l = m ≤ k
0 1 ≤ l 6= m ≤ k
(n− 1)(

∑k
l′=1 x

2
l′)(σ

2
D + σ2

ε ) + (n− 1)kσ2
w l = m = k + 1

+(n− 1)(n− 2)
∑k

l′=1 x
2
l′σ

2
D

(n− 1)xlσ
2
D 1 ≤ l ≤ k,m = k + 1

, (109)

and Σk+1,l = Σl,k+1. And u is a row vector of covariances between(
Si,T1 , . . . , Si,Tk ,

∑
j 6=i
∑k

l=1 xlSj,Tl + wj,Tl − wj,Tl−1

)
and DTk −DT0 :

u = (σ2
D, . . . , σ

2
D, (n− 1)

∑k

l=1
xlσ

2
D). (110)

Therefore, we have

E
[
vi,t∆ | Hi,t∆ ∪

{∑
j 6=i

∑
Tl≤t∆

xlSj,Tl + wj,Tl − wj,Tl−1

}]
(111)

=wi,Tk + E[DT0 | {Si,T0} ∪
{∑

j 6=i
x0Sj,T0 + wj,0

}
]

+ u Σ−1 ·
(
Si,T1 , . . . , Si,Tk ,

∑
j 6=i

∑k

l=1
xlSj,Tl + wj,Tl − wj,Tl−1

)′
.

Since we look for a symmetric equilibrium in which everyone plays strategy (107), trader i’s
conditional value in Equation (111) must place a weight of xl on Si,Tl , 1 ≤ l ≤ k, which implies that

u Σ−1 = x, (112)

where x = (x1, . . . , xk, y) and y is an arbitrary number. Clearly, Equation (112) is equivalent to

u = x Σ,

which implies (from the first k entries of the row vector)

σ2
D = xl(σ

2
D + σ2

ε ) + y(n− 1)xlσ
2
D, 1 ≤ l ≤ k,

i.e.,

x1 = · · · = xk =
σ2
D

σ2
D + σ2

ε + y(n− 1)σ2
D

.

Now define x ≡ x1 = · · · = xk. Applying Lemma 3 to the conditional value in Equation (111)
implies that for the conditional value in Equation (111) to place a weight of x on Si,Tl , 1 ≤ l ≤ k, we
must have x = χ.

Step 2. Given Step 1, we can rewrite the strategy (107) as

xi,t∆(p) = aw · α si,t∆ − bp+ dzi,t∆ + f, (113)

where si,t∆ is the total signal defined in Equation (20) and α is defined in Equation (21). The
equilibrium construction in Appendix C.3 then uniquely determines the values of aw, b, d and f . This
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concludes the proof of Proposition 3.

C.5 Proof of Proposition 4

The exponential convergence to efficient allocation follows directly from Equation (34).
Now we prove the comparative statics. We write

η ≡ nα− 1. (114)

and recall that

1 + d =
1

2e−r∆

(√
(nα− 1)2(1− e−r∆)2 + 4e−r∆ − (nα− 1)(1− e−r∆)

)
,

=
2√

(nα− 1)2(1− e−r∆)2 + 4e−r∆ + (nα− 1)(1− e−r∆)
. (115)

We first note that ∂(1+d)
∂η < 0.

1. The comparative statics with respect to r follow by straightforward calculations showing that
∂(1+d)
∂r < 0.

2. As σ2
D increases, the left-hand side of Equation (19) increases, and hence the solution χ to

Equation (19) increases, which means that nα decreases because according to Equation (21) nα

is a decreasing function of χ2. Thus, ∂η
∂σ2
D
< 0, and ∂(1+d)

∂σ2
D

> 0.

3. As σ2
w increases, the left-hand side of Equation (19) increases, and hence the solution χ to

Equation (19) increases; by Equation (19) this means that σ2
w/χ

2 must increase as well. Thus,
nα increases because according to Equation (21) nα is an increasing function of σ2

w/χ
2. Hence,

∂η
∂σ2
w
> 0 and ∂(1+d)

∂σ2
w

< 0.

4. We can rewrite Equation (19) as
1

1
α + σ2

ε

σ2
D

= χ, (116)

and Equation (21) as

χ =

√
1− α
nα− 1

σw
σε
, (117)

and hence
1

n
η+1 + σ2

ε

σ2
D

=

√
n− η − 1

nη

σw
σε
. (118)

From Equation (118) is it straightforward to show that η must increase with n. Thus, 1 + d
decreases in n.

5. For the comparative statics with respect to ∆, direction calculation shows that ∂(1+d)/∂∆ < 0.
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And

∂(log(1 + d)/∆)

∂∆
= − 1

∆2

(
r∆

η
√
η2(er∆ − 1)2 + 4er∆ − η2(er∆ − 1)− 2√

η2(1− e−r∆)2 + 4e−r∆
(√

η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)
)

+ log

(
1

2

(√
η2(er∆ − 1)2 + 4er∆ − η(er∆ − 1)

)))
> 0.

C.6 Proofs of Propositions 5, 6, 7, 8 and 10

We first establish some general properties of the equilibrium welfare, before specializing to the optimal
trading frequency given scheduled (Appendices C.6.1 and C.6.2) and stochastic (Appendix C.6.3)
arrivals of new information, as well as to the rate that inefficiency vanishes as n → ∞ (Appendix
C.6.4).

Proof of Lemma 1. Since (zi)
2 = (zci,(t+1)∆)2 + 2zci,(t+1)∆(zi − zci,(t+1)∆) + (zi − zci,(t+1)∆)2, we have:

n∑
i=1

αsi,t∆ +
1− α
n− 1

∑
j 6=i

sj,t∆

 zi −
λ

2r
(zi)

2


=

n∑
i=1

αsi,t∆ +
1− α
n− 1

∑
j 6=i

sj,t∆

 zci,(t+1)∆ −
λ

2r
(zci,(t+1)∆)2


+

n∑
i=1

αsi,t∆ +
1− α
n− 1

∑
j 6=i

sj,t∆

− λ

r
zci,(t+1)∆

 (zi − zci,(t+1)∆) (119)

− λ

2r

n∑
i=1

(zi − zci,(t+1)∆)2.

The middle term in Equation (119) is zero becauseαsi,t∆ +
1− α
n− 1

∑
j 6=i

sj,t∆

− λ

r
zci,(t+1)∆ = pct∆ (120)

for the competitive equilibrium price pct∆ (cf. Equations (15) and (23)), and
∑n

i=1 p
c
t∆(zi − zci,(t+1)) =

pct∆(Z − Z) = 0.
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Proof of Lemma 2. By Equations (42) and (44), we have

X1(∆)

=
λ(1− e−r∆)

2r

n∑
i=1

∞∑
t=0

e−rt∆

(
(1 + d)2(t+1)E[(zi,0 − zci,∆)2] +

t∑
t′=1

(1 + d)2(t−t′+1)E[(zci,(t′+1)∆ − z
c
i,t′∆)2]

)

=
λ

2r

(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆

n∑
i=1

E[(zi,0 − zci,∆)2]

+
1− e−r∆

r

λ

2

n∑
i=1

∞∑
t′=1

E[(zci,(t′+1)∆ − z
c
i,t′∆)2]

∞∑
t=t′

e−rt∆(1 + d)2(t−t′+1)

=
λ

2r

(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆

n∑
i=1

E[(zi,0 − zci,∆)2]

+
λ

2r

(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆

n∑
i=1

∞∑
t′=1

E[(zci,(t′+1)∆ − z
c
i,t′∆)2]e−rt

′∆. (121)

We can simplify the constant in the above equations by a direct calculation:

e−r∆(1 + d)2 (122)

=
2(nα− 1)2(1− e−r∆)2 + 4e−r∆ − 2(nα− 1)(1− e−r∆)

√
(nα− 1)2(1− e−r∆)2 + 4e−r∆

4e−r∆

= 1− (nα− 1)(1− e−r∆)(1 + d),

which implies:
(1− e−r∆)(1 + d)2

1− (1 + d)2e−r∆
=

1 + d

nα− 1
. (123)

C.6.1 Proof of Proposition 5

For any τ > 0, we let t(τ) = min{t ≥ 0 : t ∈ Z, t∆ ≥ τ}. That is, if new signals arrive at the clock
time τ , then t(τ)∆ is the clock time of the next trading period (including time τ).

For any ∆ ≤ γ, by the assumption of Proposition 5 there is at most one new signal profile arrival
in each interval [t∆, (t + 1)∆). Thus, we only need to count the changes in competitive allocation
between period t((k − 1)γ) and t(kγ), for k ∈ Z+. Using this fact, we can rewrite X1(∆) and X2(∆)
as:

X1(∆) =
λ(1 + d)

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +

n∑
i=1

∞∑
k=1

e−rt(kγ)∆E[(zei,kγ − zei,(k−1)γ)2]

)

=
λ(1 + d)

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +

n∑
i=1

∞∑
k=1

e−rkγE[(zei,kγ − zei,(k−1)γ)2]

)

− λ(1 + d)

2r(nα− 1)

n∑
i=1

∞∑
k=1

(e−rkγ − e−rt(kγ)∆)E[(zei,kγ − zei,(k−1)γ)2]. (124)
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and

X2(∆) =
λ

2r

n∑
i=1

∞∑
t=0

∫ (t+1)∆

τ=t∆
re−rτE[(zei,t∆ − zei,τ )2] dτ (125)

=
λ

2r

n∑
i=1

∞∑
k=1

(e−rkγ − e−rt(kγ)∆)E[(zei,kγ − zei,(k−1)γ)2].

Note that all the expectations in the expressions of X1(∆) and X2(∆) do not depend on ∆. To
make clear the dependence of d on ∆, we now write d = d(∆). Since (1 + d(∆))/(nα − 1) < 1, we
have for any ∆ < γ:

X(∆) = X1(∆) +X2(∆) (126)

>
λ(1 + d(∆))

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +

n∑
i=1

∞∑
k=1

e−rkγE[(zei,kγ − zei,(k−1)γ)2]

)

>
λ(1 + d(γ))

2r(nα− 1)

(
n∑
i=1

E[(zi,0 − zei,0)2] +

n∑
i=1

∞∑
k=1

e−rkγE[(zei,kγ − zei,(k−1)γ)2]

)
= X(γ),

where the last inequality holds because d(∆) decreases with ∆ (which can be verified by taking
derivative the d′(∆)) and where the last equality holds because t(kγ)∆ = kγ if γ = ∆. Therefore, we
have W (∆) < W (γ) for any ∆ < γ. This proves Proposition 5.

Notice that for this lower bound of ∆∗ ≥ γ we make no use of the assumption that E[(zei,kγ −
zei,(k−1)γ)2] is a constant independent of k. Thus ∆∗ ≥ γ also holds if traders have no common value
but have private value shocks wi,kγ − wi,(k−1)γ that are non-stationary in k.

C.6.2 Proof of Proposition 6

If ∆ = lγ, where l ≥ 1 is an integer, we have:

X1(lγ) =
λ(1 + d(lγ))

2r(nα− 1)

(
σ2

0 +

∞∑
t=0

e−r(t+1)lγlσ2
z

)
=
λ(1 + d(lγ))

2r(nα− 1)

(
σ2

0 +
e−rlγ

1− e−rlγ
lσ2
z

)
, (127)

X2(lγ) =
λ

2r

1

1− e−rlγ
(

(e−γr − e−2γr) + 2(e−2γr − e−3γr) + · · ·+ (l − 1)(e−(l−1)γr − e−lγr)
)
σ2
z

=
λ

2r

1

1− e−rlγ
(
e−γr + e−2γr + e−3γr + · · ·+ e−(l−1)γr − (l − 1)e−lγr

)
σ2
z

=
λ

2r

1

1− e−rlγ

(
1− e−rlγ

1− e−γr
− 1− (l − 1)e−rlγ

)
σ2
z

=
λ

2r

(
1

1− e−γr
− 1− l e−rlγ

1− e−rlγ

)
σ2
z . (128)

Hence, if ∆ = lγ, l ∈ Z+, we have:

X(lγ) =
λ(1 + d(lγ))

2r(nα− 1)
σ2

0 −
λ

2r

(
1− 1 + d(lγ)

nα− 1

)
le−rlγ

1− e−rlγ
σ2
z +

λe−γr

2r(1− e−γr)
σ2
z . (129)
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By taking derivative, we can show that the function (involved in the first term in Equation (129))

1 + d(∆)

nα− 1
=

1

2e−r∆

(√
(1− e−r∆)2 +

4e−r∆

(nα− 1)2
− (1− e−r∆)

)

is strictly decreasing in ∆, while (
1− 1 + d(∆)

nα− 1

)
∆e−r∆

1− e−r∆

involved in the second term in Equation (129) is also strictly decreasing in ∆.
We first prove part 2 of Proposition 6. As n tends to infinity, the proof of Proposition 10 implies

that nα tends to infinity as well. As nα → ∞, (1 + d(lγ))/(nα − 1) → 0 for every l ∈ Z+, and
by assumption σ2

0/σ
2
z remains bounded, so the second term in Equation (129) dominates, and hence

X(lγ) is minimized at l∗ = 1.
For part 1 of Proposition 6, suppose zi,0 = Z/n for every i, so we have σ2

0 = σ2
z . Minimizing X(lγ)

over positive integers l is equivalent to maximizing W̃ (lγ) over l:

W̃ (lγ) ≡ log

(
1− 1 + d(lγ)

nα− 1

)
+ log

(
1 +

le−rlγ

1− e−rlγ

)
. (130)

We have:

W̃ = log
(

1 + δ −
√

(1− δ)2 + 4δy
)
− log(2δ) + log

(
1− log(δ)δ

rγ(1− δ)

)
, (131)

where

δ ≡ e−rlγ , y ≡ 1

(nα− 1)2
. (132)

We calculate:

dW̃

dδ
=

1− δ −
√

1 + δ(−2 + 4y + δ)

2δ
√

1 + δ(−2 + 4y + δ)
+

δ − 1− log(δ)

(1− δ)(rγ(1− δ)− δ log(δ))
. (133)

Clearly,
1−δ−
√

1+δ(−2+4y+δ)

2δ
√

1+δ(−2+4y+δ)
is decreasing in y, and y ∈ (0, 1), so

1− δ −
√

1 + δ(−2 + 4y + δ)

2δ
√

1 + δ(−2 + 4y + δ)
> − 1

1 + δ
, (134)

where the right-hand side is obtained from substituting y = 1 to the left-hand side.
In the proof of Proposition 7 (Appendix C.6.3) we have shown that

dW̃

dδ
> − 1

1 + δ
+

δ − 1− log(δ)

(1− δ)(rγ(1− δ)− δ log(δ))
> 0 (135)

whenever 0 ≤ δ ≤ e−1.5rγ . This proves that the l∗ that maximizes W̃ (and hence minimizes X) satisfies
l∗ ≤ 2.
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To show that l∗ = 1, we calculate that:∫ e−rγ

e−2rγ

dW̃

dδ
dδ >

∫ e−rγ

e−2rγ

− 1

1 + δ
+

δ − 1− log(δ)

(1− δ)(rγ(1− δ)− δ log(δ))
dδ = log

(
rγ(δ − 1) + δ log(δ)

1− δ2

)∣∣∣∣e−rγ
e−2rγ

= 0.

(136)

C.6.3 Proofs of Proposition 7 and Proposition 8

We have:

X1(∆) =
λ(1 + d)

2r(nα− 1)

(
σ2

0 +

∞∑
t=0

e−r(t+1)∆∆µσ2
z

)
(137)

=
λ(1 + d)

2r(nα− 1)

(
σ2

0 +
∆e−r∆

1− e−r∆
µσ2

z

)
and

X2(∆) =
λ

2r

∞∑
t=0

e−rt∆
∫ ∆

τ=0
re−rττµσ2

z dτ = − λ

2r

∆e−r∆

1− e−r∆
µσ2

z +
λ

2r2
µσ2

z . (138)

Therefore,

X(∆) =
λ(1 + d)

2r(nα− 1)
σ2

0 −
λ

2r

(
1− 1 + d

nα− 1

)
∆e−r∆

1− e−r∆
µσ2

z +
λ

2r2
µσ2

z . (139)

We note that the above is the same expression as Equation (129) in the proof of Proposition 6, replacing
µ with 1/γ and ignoring the last term which is independent of ∆. The result (Part 2 of Proposition 8)
for n → ∞ has the same proof as that in Proposition 6. Part 1 of Proposition 8 is established by
Equation (57) in the main text.

For the proof of Proposition 7, suppose that zi,0 = Z/n for every trader i. Then we have σ2
0 = σ2

z .
Minimizing X(∆) over ∆ is equivalent to maximizing W̃ (∆) over ∆, where:

W̃ (∆) ≡ log

(
1− 1 + d(∆)

nα− 1

)
+ log

(
1 +

µ∆e−r∆

1− e−r∆

)
. (140)

We have:

W̃ = log
(

1 + δ −
√

(1− δ)2 + 4δy
)
− log(2δ) + log

(
1− µ log(δ)δ

r(1− δ)

)
, (141)

where

δ ≡ e−r∆, y ≡ 1

(nα− 1)2
. (142)

We calculate:

dW̃

dδ
=

1− δ −
√

1 + δ(−2 + 4y + δ)

2δ
√

1 + δ(−2 + 4y + δ)
+

δ − 1− log(δ)

(1− δ)((1− δ)r/µ− δ log(δ))
, (143)

We note that the first term in the righthand side of Equation (143) is negative, while the second term
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is positive. Moreover,

−
1− δ −

√
1 + δ(−2 + 4y + δ)

2δ
√

1 + δ(−2 + 4y + δ)

/
δ − 1− log(δ)

(1− δ)((1− δ)r/µ− δ log(δ))

is increasing in δ, tends to 0 as δ → 0, and tends to 1 + r/µ as δ → 1. Therefore, there exists a unique

δ∗ at which dW̃
dδ = 0.

Equation (143) implies that

d2 W̃

dδ dy
= − (1− δ)

(1 + δ(4y + δ − 2))3/2
< 0 (144)

for every δ ∈ (0, 1) and y ∈ (0, 1). Therefore, the optimal δ∗ that maximizes W̃ is strictly decreasing
with y, i.e., the optimal ∆∗ that maximizes W̃ is strictly decreasing with nα. We have previously
established that α is increasing with σ2

w and is decreasing with σ2
D, and nα is increasing with n. This

concludes the proof of Part 2 for Proposition 7.

From Equation (143), we have dW̃
dδ > 0 if

y <
(1− δ)2

4δ

((
(1− δ)((1− δ)r/µ− δ log(δ))

(1− δ)2r/µ+ 2δ(1− δ) + (δ2 + δ) log(δ)

)2

− 1

)
. (145)

After substituting δ = e−r/(lµ), the righthand side of the above equation is increasing in r/µ if l ≥ 2/3.
As r/µ→ 0, the righthand side tends to 9/(6l − 1)2. This proves Part 1 of Proposition 7.

C.6.4 Proofs of Proposition 10

Suppose that T0 = 0 and {Tk}k≥1 is a homogeneous Poisson process with intensity µ > 0. (The proof
for scheduled information arrivals Tk = kγ is analogous and omitted.)

Lemma 2 then implies that

X1(∆)

n
=
λ(1 + d(∆))

2r(nα− 1)
·

(∑n
i=1 E[(zi,0 − zei,0)2]

n
+
e−r∆µ∆

1− e−r∆

∑n
i=1 E[(zei,Tk − z

e
i,Tk−1

)2]

n

)
, (146)

where for any k ≥ 1,∑n
i=1 E[(zei,Tk − z

e
i,Tk−1

)2]

n
=

(
r(nα− 1)

λ(n− 1)

)2 (n− 1)(χ2(σ2
D + σ2

ε ) + σ2
w)

nα2
, (147)

by Equation (46).

Equation (147) tends to a positive constant as n→∞ (since χ→ 0 as n→∞), and lim∆→0
e−r∆µ∆
1−e−r∆ =

µ
r . By assumption,

∑n
i=1 E[(zi,0−zei,0)2]/n is bounded as n→∞. Thus, for limn→∞X1(∆)/n it suffices

to analyze

1 + d(∆)

nα− 1
=

1

2e−r∆

(√
(1− e−r∆)2 +

4e−r∆

(nα− 1)2
− (1− e−r∆)

)
. (148)

Suppose σ2
D > 0. Equation (118) (where η ≡ nα − 1) implies that nα is of order n2/3 as n → ∞.

To see this, first note that η → ∞ and η/n → 0 as n → ∞, for otherwise the left-hand side and
right-hand side of Equation (118) cannot match. Suppose that as n becomes large, η is of order ny
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for some y < 1. The left-hand side of Equation (118) is of order ny−1, and the right-hand side is of
order n−y/2. Thus, y = 2/3.

For any fixed ∆ > 0, it is straightforward to use Taylor expansion to calculate that, as n becomes
large,

1 + d(∆)

nα− 1
=

1

1− e−r∆
(nα− 1)−2 +O((nα− 1)−4).

Therefore, (1 + d(∆))/(nα− 1) and hence X1(∆)/n are of order n−4/3.
But if we first take the limit ∆→ 0, we clearly have

lim
∆→0

1 + d(∆)

nα− 1
=

1

nα− 1
,

so lim∆→0(1 + d(∆))/(nα− 1) and hence lim∆→0X1(∆)/n are of order n−2/3.
If σ2

D = 0, then nα = n. The same calculation as above shows that X1(∆)/n is of order n−2 for a
fixed ∆ > 0 but is of order n−1 if we first take the limit ∆→ 0.

D Details of Equilibrium Construction in Section 4

We fix an arbitrary period t̄ and consider a single deviation at that period.

D.1 Fast trader’s single deviation

For a fast trader i, raising the price p∗t̄∆ by one unit has the following effects in period t̄:

∂x∗i,t̄∆
∂p∗

t̄∆

= (nF − 1)bF + nSbS ,
∂ZF,t̄∆
∂p∗

t̄∆

= nSbS ,
∂ZS,t̄∆
∂p∗

t̄∆

= −nSbS . (149)

Fast trader i’s first order condition at period t̄ is:

∞∑
t=0

E

[
e−rt∆

(
− λF (1− e−r∆)

r
(zi,(t̄+t)∆ + x∗i,(t̄+t)∆)

∂(zi,(t̄+t)∆ + x∗i,(t̄+t)∆)

∂p∗
t̄∆

− x∗i,(t̄+t)∆
∂p∗(t̄+t)∆

∂p∗
t̄∆

− p∗(t̄+t)∆
∂x∗i,(t̄+t)∆

∂p∗
t̄∆

)
| Hi,t̄∆ ∪ {p∗t̄∆}

]
= 0. (150)

For period t̄+ t, t ≥ 1, traders follow the strategies (64) and (65), so we can write:

E[x∗i,(t̄+t)∆ | Hi,t̄∆ ∪ {p∗t̄∆}] = Cx,t,0(zi,t̄∆ + x∗i,t̄∆) +

K−1∑
k=1

Cx,t,kZS,(t̄−k)∆ + Cx,t,KZS,t̄∆ + Cx,t,K+1ZF,t̄∆

E[zi,(t̄+t)∆ | Hi,t̄∆ ∪ {p∗t̄∆}] = Cz,t,0(zi,t̄∆ + x∗i,t̄∆) +
K−1∑
k=1

Cz,t,kZS,(t̄−k)∆ + Cz,t,KZS,t̄∆ + Cz,t,K+1ZF,t̄∆

E[p∗i,(t̄+t)∆ | Hi,t̄∆ ∪ {p∗t̄∆}] =
K−1∑
k=1

Cp,t,kZS,(t̄−k)∆ + Cp,t,KZS,t̄∆ + Cp,t,K+1ZF,t̄∆,

for each t ≥ 1. The constants Cz,t,k, Cx,t,k and Cp,t,k can be recursively computed from the coefficients
in Equations (64) and (65).
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We can rewrite the first order condition as:

− x∗i,t̄∆ +

(
−λF (1− e−r∆)

r
(zi,t̄∆ + x∗i,t̄∆)− p∗t̄∆

)
((nF − 1)bF + nSbS)

− λF (1− e−r∆)

r

∞∑
t=1

e−rt∆(Cz,t+1,0((nF − 1)bF + nSbS)− Cz,t+1,KnSbS + Cz,t+1,K+1nSbS)

·

(
Cz,t+1,0(zi,t̄∆ + x∗i,t̄∆) +

K−1∑
k=1

Cz,t+1,kZS,(t̄−k)∆ + Cz,t+1,KZS,t̄∆ + Cz,t+1,K+1ZF,t̄∆

)

−
∞∑
t=1

e−rt∆

(
Cx,t,0(zi,t̄∆ + x∗i,t̄∆) +

K−1∑
k=1

Cx,t,kZS,(t̄−k)∆ + Cx,t,KZS,t̄∆ + Cx,t,K+1ZF,t̄∆

)
· (−Cp,t,KnSbS + Cp,t,K+1nSbS)

−
∞∑
t=1

e−rt∆

(
K−1∑
k=1

Cp,t,kZS,(t̄−k)∆ + Cp,t,KZS,t̄∆ + Cp,t,K+1ZF,t̄∆

)
· (Cx,t,0((nF − 1)bF + nSbS)− Cx,t,KnSbS + Cx,t,K+1nSbS)

= 0, (151)

where

ZF,t̄∆ = (1 + dF )ZF,(t̄−1)∆ − nF bF p∗t̄∆ + nF eFZF,(t̄−1)∆ + nF

K−1∑
k=1

fF,kZS,(t̄−k)∆, (152)

ZS,t̄∆ = (1 + dS)
∑

j∈C(t̄∆)

zj,t̄∆ − nSbSp∗t̄∆ + nSeSZF,(t̄−1)∆ + nS

K−1∑
k=1

fS,kZS,(t̄−k)∆, (153)

dS
∑

j∈C(t̄∆)

zj,t̄∆ = (nF bF + nSbS)p∗t̄∆ −

(
(dF + nF eF + nSeS)ZF,(t̄−1)∆ +

K−1∑
k=1

(nF fF,k + nSfS,k)ZS,(t̄−k)∆

)
.

(154)

D.2 Slow trader’s single deviation

For a slow trader j, raising the price p∗t̄∆ by one unit has the following effects in period t̄:

∂x∗j,t̄∆
∂p∗

t̄∆

= nF bF + (nS − 1)bS ,
∂ZF,t̄∆
∂p∗

t̄∆

= −nF bF ,
∂ZS,t̄∆
∂p∗

t̄∆

= nF bF . (155)

Slow trader j’s first order condition at period t̄ is:

∑
t=lK,
l≥0

E

[
e−rt∆

(
− λS(1− e−rK∆)

r
(zj,(t̄+t)∆ + x∗j,(t̄+t)∆)

∂(zj,(t̄+t)∆ + x∗j,(t̄+t)∆)

∂p∗
t̄∆

− x∗j,(t̄+t)∆
∂p∗(t̄+t)∆

∂p∗
t̄∆

− p∗(t̄+t)∆
∂x∗j,(t̄+t)∆

∂p∗
t̄∆

)
| Hj,t̄∆ ∪ {p∗t̄∆}

]
= 0. (156)
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For period t̄+ t, traders follow the strategies (64) and (65), so we can write:

E[x∗j,(t̄+t)∆ | Hj,t̄∆ ∪ {p∗t̄∆}] = Dx,t,0(zj,t̄∆ + x∗j,t̄∆) +
K−1∑
k=1

Dx,t,kZS,(t̄−k)∆ +Dx,t,KZS,t̄∆ +Dx,t,K+1ZF,t̄∆

E[zj,(t̄+t)∆ | Hj,t̄∆ ∪ {p∗t̄∆}] = Dz,t,0(zj,t̄∆ + x∗j,t̄∆) +

K−1∑
k=1

Dz,t,kZS,(t̄−k)∆ +Dz,t,KZS,t̄∆ +Dz,t,K+1ZF,t̄∆,

for each t ∈ {K, 2K, 3K, . . .}. The constants Dz,t,k and Dx,t,k can be recursively computed from the
coefficients in Equations (64) and (65).

We can rewrite the first order condition as:

− x∗j,t̄∆ +

(
−λS(1− e−rK∆)

r
(zj,t̄∆ + x∗j,t̄∆)− p∗t̄∆

)
(nF bF + (nS − 1)bS)

− λS(1− e−rK∆)

r

∑
t=lK,
l≥1

e−rt∆(Dz,t+K,0(nF bF + (nS − 1)bS) +Dz,t+K,KnF bF −Dz,t+K,K+1nF bF )

·

(
Dz,t+K,0(zj,t̄∆ + x∗j,t̄∆) +

K−1∑
k=1

Dz,t+K,kZS,(t̄−k)∆ +Dz,t+K,KZS,t̄∆ +Dz,t+K,K+1ZF,t̄∆

)

−
∑
t=lK,
l≥1

e−rt∆

(
Dx,t,0(zj,t̄∆ + x∗j,t̄∆) +

K−1∑
k=1

Dx,t,kZS,(t̄−k)∆ +Dx,t,KZS,t̄∆ +Dx,t,K+1ZF,t̄∆

)

· (Cp,t,KnF bF − Cp,t,K+1nF bF )

−
∑
t=lK,
l≥1

e−rt∆

(
K−1∑
k=1

Cp,t,kZS,(t̄−k)∆ + Cp,t,KZS,t̄∆ + Cp,t,K+1ZF,t̄∆

)

· (Dx,t,0(nF bF + (nS − 1)bS) +Dx,t,KnF bF −Dx,t,K+1nF bF )

= 0, (157)

where ZF,t̄∆ and ZS,t̄∆ are given by Equations (152) and (153).
Given Equations (151) and (157), we then match the coefficients with Equations (64) and (65) to

get 2(K+ 2) equations with 2(K+ 2) unknown variables (bF , dF , eF , bS , dS , eS , fF,k, and fS,k, where
k = 1, . . . ,K − 1).
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