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The question
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You are a seller of a good

You know the set of bidders

You know the distribution of bidders values

You are uncertain about the model of bidders’ information
You cannot (or won't) quantify this uncertainty in terms of a
Bayesian prior

What auction should you run?



An answer

» In many cases, the auction you should run is proportional
auction: A; = R, for each bidder /,
aj

Gi(a) = o= Q'(Ta),  t(m) = == T*(Ta),

where Ta =YV a,

Ya/x* Xa<x¥,
1 Ya > x*.

Q*(ra) = {



Values

» A single unit for sale

> N bidders
» Value v; € V; C [0,00), |Vi] < 0
> v=(v1,...,vy)

» Prior u € A(V)



Mechanisms

» A mechanism is a triple M = (A, g, t)
» Finite actions A; fori=1,... . N
» Action profiles A= A; x -+ X An
> Allocations g : A — [0,1]V, Tq(a) < 1
(Ex =x3 + -+ xy for x € RV)
» Transfers: t: A — RN
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Mechanisms

» A mechanism is a triple M = (A, g, t)
» Finite actions A; fori=1,... . N
» Action profiles A= A; x -+ X An
> Allocations g : A — [0,1]V, Tq(a) < 1
(Ix = x + -+ xy for x € RV)
» Transfers: t: A — RN
» Participation security: For all i, there exists a action 0 € A;

such that t;(0,a_;) =0 Vv;,a_;
> M set of participation-secure mechanisms



Information structures (aka type spaces)

» An information structure is a pair Z = (S, 0)
» Finite signals S;
» Signal profiles S = 5; x -+ x Sy
» Joint distribution o € A(S x V) where marginal on V' is

» | is the set of information structures



Equilibrium

» Given (M,Z), (behavioral) strategies b; : S; — A(A;)
» B(M,I) is the set of Bayes Nash equilibria
» Induced profit from b:

MM, Z,b) = > ti(a)b(a] s)o(s, v)

v,s,a,i



A strong minimax theorem

Theorem
Suppose p(v) > 0 for all v € V. Then

sup inf inf T(M,Z,b)=inf sup sup [I(M,Z,b).
MeMZel beB(M,I) Zel MeM beB(M )

» LHS is “MAX-2MIN", RHS is “MIN-2MAX"
» The value of these programs is [1*, the profit guarantee

» Equilibrium selection does not matter!

> (MMAX2MIN 7MIN-2MAX) is 3 saddle point

» Builds on Chung and Ely (2007)



An even stronger theorem

» We construct sequences of linear programs that, for a finite

number of actions/signals, bound the MAX-2MIN and
MIN-2MAX profits

» For each k> 1 and i:
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An even stronger theorem

» We construct sequences of linear programs that, for a finite
number of actions/signals, bound the MAX-2MIN and
MIN-2MAX profits

» For each k> 1 and i:

1 k2 —1
X,-(k):{O,k,..., g ,k}

> X(k) = xienXi(k)

» M(k) are the participation-secure mechanisms with actions
X (k)

[IMAX-2MIN (1)

= sup inf inf T(M,Z,Db)
MeM(k) Ll beB(M,I)

» I(k) is the set of information structures with signal space
X(k)

I—IMIN—2MAX(k): inf  sup sup M(M,Z,b)
Zel(k) MeM beB(M,T)



Discrete derivatives

> Let f: X(k) — RV, and define the discrete upward partial
derivative:

VIF(x) = Lock(k = 1)(fixi + 1/ k. x-) — fi(x))

> VT(x) = (V{f(x),...,Vif(x))
>V f(x) = YN, Vif(x)
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Linear relaxation for MAX-2MIN

I—IMAX—QMIN ( k)

ma A
a:X(k)—=RY, t:)i((k)aR’V, ;/ (v)A(v)
A V=R v (1)

s.t. Xg(x) <1Vx;
t;(O,X,,') =0Vi,x_j
A(v) < Tt(x) + v VEg(x) = T - 1(x) v, x

» Maximizing a lower bound on revenue across mechanisms,
subject to local IC
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Linear relaxation for MAX-2MIN

» For a fixed mechanism, minimize the revenue across (local)
Bayes correlated equilibria

(BCE) (D-BCE)
min > ti(x)7(x,v) max ;u(vwv)
s.t. s.t.
Z o(x,v) = u(v) Vv; A(v) < Zt(x)
x + Za;(x;)(v;V?rq(x) — Vit(x)) Vx, v
Z (v;V?‘q(x,',x,,-) i\x;

X_j,V

— Vit(xi, x_i))o(xi, x_i, v) < 0 Vi, x;
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Censored geometric distribution

» Now define

p(x) =[] pilx)

i=1

» (PMF of the censored geometric with arrival rate 1/k)

13



Linear relaxation for MIN-2MAX

ﬁMIN72MAX(k) _
min Z ~¥(x)
o X(k)x V=R, , w:X(k)—=RY,
(k) W}(;H"‘ﬁ&( RL ex(k)
s.t. Z a(x,v) = p(v) Vv;
xeX(k) (2)
> o(x,v) = p(x) vx;

veVv
1
w(x) = o) VGZV vo(x,v) Vx
2(x) 2 p(x) [wilx) — VHw(x)] v

» Minimizing the highest virtual value across information
structures where the signal distribution is p
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Linear relaxations converge as k — oo

Theorem
For all k > 0,

—=MIN-2MAX

m (k) > HMIN—QMAX(k) > HMAX—QMIN(k) > I—IMAX72MIN(k).

If u(v) >0 for all v e V, then

lim T A% () = fim OMAX=2MIN () e

k—o00 k—o0
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Linear relaxations converge as k — oo

Theorem
For all k > 0,

ﬁMIN—?MAX(k) > nMIN-zMAX(k) > HMAX—QMIN(k) > DMAX72MIN(k).

If u(v) >0 for all v e V, then

lim T A% () = fim OMAX=2MIN () e

k— o0 k— o0
Moreover,

> If(q,t) solves (1), then profit in (X(k), q,t) is at least
OMAX=2MIN 4y for any information structure and equilibrium.

> [f o solves (2), then profit in (X(k),o) is at most ﬁMIN?QMAX(k)

in any mechanism and equilibrium.
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Two programs

(1)

max Z w(v)A(v)

q>0,t,\
sit. Xg(x) <1V¥x
t,'(O, X,,') =0 VI'7 X—i;
A(v) < Tt(x)
+v-Vhg(x) = V' - t(x) Vx, v

(2)
o2y, 270
st. Y o(x,v) : w(v) Yv;
Ei:a(x, v) = p(x) Vx;

1 o
wi(x) = o) zv: vio(x,v) Vi, x;

7(x) 2 p()wi(x) — Vi wi(x)] Vi, x
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Solving out transfers from (1)

» In program (2), we “solved out” the transfers
» Can do the same thing in (1):
> Let =(x) = VT - t(x) — Lt(x) denote the aggregate excess
growth
» For fixed =, there exists a t that satisfies this equation iff
> p(X)=(x) = 0 (implied by, e.g., Farkas' lemma)
» So, in program (1), we can substitute in = for t and add the
expectation of = to the objective:
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Two programs

(1)

max 3 (AW + 3 pl0)=(0)

s.t. XTg(x) <1 Vx;
AMv) +=(x) < v-V'g(x) ¥x, v.

(2)
o2y, 270
st. Y o(x,v) : u(v) Vv;
Ei:cr(x, v) = p(x) Vx;

1 o
wi(x) = o) zv: vio(x, v) Vi, x;

v(x) > p(x)[wi(x) — Vfwj(x)] Vi, x
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(1) and dual of (2)

(1)

Jmax S p(vAW) + 37 p0E()

sit. Xg(x) <1Vx;
Av) +=(x) < v-Vig(x) ¥x, v

(D-2)

_max > u(VAW) + 3 p(x=(x)

sit. Xg(x) < 1Vx;
Av)+=(x) <v-V g(x) Vx, v
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Shifting

» We complete the proof of the theorem by showing that (1')
and (2) have almost the same value when k is large

> They are “almost” a dual pair, except for the direction of
local IC

20



Shifting

» We complete the proof of the theorem by showing that (1')
and (2) have almost the same value when k is large

> They are “almost” a dual pair, except for the direction of
local IC

» Given a feasible g for (D-2), we construct a feasible ¢’ for
(1'), so that (1") and (2) have almost the same value

» If ¢’ is non-decreasing, can use:

gi(xi — 1/k, x_; if x; > 0;
) = T ko)
0 if ;=0
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Shifting

>

>

>

We complete the proof of the theorem by showing that (1')
and (2) have almost the same value when k is large

They are "almost” a dual pair, except for the direction of
local IC

Given a feasible g for (D-2), we construct a feasible ¢ for
(1'), so that (1") and (2) have almost the same value

If ¢’ is non-decreasing, can use:

qi X,'—l k,X_,' ifX,‘>0;
qi(x) = ( fhox-i) .
0 if ;=0

Complication: If g decreases, could have X¢'(x) > 1

Last step: decrease in g is bounded below, and the bound
goes to zero faster than 1/k = we can “rescale” ¢’ to
make it feasible without significantly changing the objective
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As k — oo

[IMAX—2MIN FMIN-2MAX
Jmax > u(AV) + D p(x)E() Loming > ()
s.t. Xg(x) < 1Vx; [v(x)] s.t. Z a(x,v) = p(v) Vv; [Z(x)]

A(v) +=(x) < v-Vg(x) Vx, v; [o(x, v)]
D olx,v) = p(x) Vx; [A(V)]

1 H .
wi(x) = m ; vio(x,v) Vi, x;

V(%) = p()[wi(x) = Viwi(x)] Vi, x; [gi(x)]

» Suppose the two programs are an exact dual pair as k — oo

> Then at the optimal, complementary-slackness conditions
should hold
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Binary common values

» Suppose v; € {0,1}, and pu({vi =wvo =--- = wy}) =1.

» That is, the seller only knows the expected common value.

22



Binary common values

Suppose v; € {0,1}, and py({vi =vo=--- = w}) =1.
That is, the seller only knows the expected common value.

As k — o0, pi(x;) = exp(—x;).

vvyyypy

Value function:

]

. Cexp(Xx) Xx < x*
wi(x) = i}
1 x> x

» All bidders have the same virtual value, which is 0 if x < x*

and is 1 otherwise

» The last constraint in QMAX—2MIN

is free to be interior

is always binding, so g;(x)



MAX-2MIN mechanisms

> w* implies:
> o*(x,v) > 0 for both v :§ and v = T when ¥x < x*
> o*(x,v) > 0 only for v =1 when x > x*
» By complementary-slackness:
> A (v)+Z=*(x) < v-Vg*(x) binds for both v when Xx < x*
» it only binds for v =1 when Xx > x*
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MAX-2MIN mechanisms

> w* implies:
> o*(x,v) > 0 for both v :§ and v = T when ¥x < x*
> o*(x,v) > 0 only for v =1 when x > x*
» By complementary-slackness:
> A (v)+Z=*(x) < v-Vg*(x) binds for both v when Xx < x*
» it only binds for v =1 when Xx > x*
> With some additional regularity and boundary conditions, an
allocation g is MAX-2MIN optimal as long as V;q(x) = 1/x*
(< 1/x*)if Zx < x* (> x¥)
» For example, these conditions are satisfied by the
proportional allocation:

q; (x) =

N
max{x*, Xx}

23



Transfers

» We show that for any such allocation,
=H(x) = V- q"(x) = A (1)

satisfies f]M =*(x)p(dx) =0

P> As a result, there always exists a transfer rules that solves

=*(x) = V- t(x) — £t(x)
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Transfers
» We show that for any such allocation,
= (x) = V-q*(x) - A (1)
satisfies f]M =*(x)p(dx) =0
P> As a result, there always exists a transfer rules that solves

=*(x) = V- t(x) — £t(x)

» For the proportional allocation g*, there is a transfer that
solves this equation and has the proportional form:

t; (x) = q; (x) T*(xx),

where T* solves an ODE

> We call this MAX-2MIN mechanism proportional auction.
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Truthful equilibrium

» In the finite bounding programs, we use a revelation principle,
so the strategies are truthful /obedient

» Another heuristic for the continuum limit is that
truthtelling/obedience should be locally optimal at the saddle
point

» In fact, we show directly that the truthful /obedient strategies
are an equilibrium for the saddle point we construct

25



Robustness of proportional auction

» If the value is common but not binary, proportional auction
remains MAX-2MIN optimal.

» If each bidder's expected value is known and the same, but
the correlation and information structure are unknown,
proportional auction remains MAX-2MIN optimal.

»> Common value is the worst-case (MIN-2MAX) information
structure.

26



Common value full surplus extraction

Proposition
The profit guarantee of the proportional auction converges to the
full surplus (expected common value) as N — oo at the rate of

1
0.7

0.6

0.5

04r W - Optimal profit guarantee
03[’ . for uniform distribution
0.2+

0.1+

0.0 I I I I LN
0 20 40 60 80 100
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v
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v
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Conclusion

» Linear programs that compute the optimal profit guarantee
over all information structures and equilibria

» In many cases, the optimal (MAX-2MIN) mechanism is the
proportional auction

» Guarantees full surplus extraction in common value setting
with large markets

» Open questions:
» Lower bounds on information? Private values?
» Simple mechanisms that guarantee a good approximation of
the full surplus?
» Other welfare criteria? (Minmax regret for social surplus?)
> Relax equilibrium assumption? (Rationalizability? Adaptive
agents?)
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