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The question

I You are a seller of a good

I You know the set of bidders

I You know the distribution of bidders values

I You are uncertain about the model of bidders’ information

I You cannot (or won’t) quantify this uncertainty in terms of a
Bayesian prior

I What auction should you run?
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An answer

I In many cases, the auction you should run is proportional
auction: Ai = R+ for each bidder i ,

q∗i (a) =
ai
Σa
· Q∗(Σa), t∗i (m) =

ai
Σa
· T ∗(Σa),

where Σa =
∑N

i=1 ai ,

Q∗(Σa) =

{
Σa/x∗ Σa < x∗,

1 Σa ≥ x∗.



4

Values

I A single unit for sale

I N bidders

I Value vi ∈ Vi ⊂ [0,∞), |Vi | <∞
I v = (v1, . . . , vN)

I Prior µ ∈ ∆(V )
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Mechanisms

I A mechanism is a triple M = (A, q, t)
I Finite actions Ai for i = 1, . . . ,N
I Action profiles A = A1 × · · · × AN

I Allocations q : A→ [0, 1]N , Σq(a) ≤ 1
(Σx = x1 + · · ·+ xN for x ∈ RN)

I Transfers: t : A→ RN

I Participation security: For all i , there exists a action 0 ∈ Ai

such that ti (0, a−i ) = 0 ∀vi , a−i
I M set of participation-secure mechanisms
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Information structures (aka type spaces)

I An information structure is a pair I = (S , σ)
I Finite signals Si
I Signal profiles S = S1 × · · · × SN
I Joint distribution σ ∈ ∆(S × V ) where marginal on V is µ

I I is the set of information structures
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Equilibrium

I Given (M, I), (behavioral) strategies bi : Si → ∆(Ai )

I B(M, I) is the set of Bayes Nash equilibria

I Induced profit from b:

Π(M, I, b) =
∑
v ,s,a,i

ti (a)b(a | s)σ(s, v)
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A strong minimax theorem

Theorem
Suppose µ(v) > 0 for all v ∈ V . Then

sup
M∈M

inf
I∈I

inf
b∈B(M,I)

Π(M, I, b) = inf
I∈I

sup
M∈M

sup
b∈B(M,I)

Π(M, I, b).

I LHS is “MAX-2MIN”, RHS is “MIN-2MAX”

I The value of these programs is Π∗, the profit guarantee

I Equilibrium selection does not matter!

I (MMAX-2MIN, IMIN-2MAX) is a saddle point
I Builds on Chung and Ely (2007)
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An even stronger theorem
I We construct sequences of linear programs that, for a finite

number of actions/signals, bound the MAX-2MIN and
MIN-2MAX profits

I For each k ≥ 1 and i :

Xi (k) =

{
0,

1

k
, . . . ,

k2 − 1

k
, k

}
I X (k) = ×i∈NXi (k)

I M(k) are the participation-secure mechanisms with actions
X (k)

ΠMAX−2MIN(k) = sup
M∈M(k)

inf
I∈I

inf
b∈B(M,I)

Π(M, I, b)

I I (k) is the set of information structures with signal space
X (k)

ΠMIN−2MAX(k) = inf
I∈I (k)

sup
M∈M

sup
b∈B(M,I)

Π(M, I, b)
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Discrete derivatives

I Let f : X (k)→ RN , and define the discrete upward partial
derivative:

∇+
i f (x) = Ixi<k(k − 1)(fi (xi + 1/k , x−i )− fi (x))

I ∇+f (x) = (∇+
1 f (x), . . . ,∇+

N f (x))

I ∇+ · f (x) =
∑N

i=1∇
+
i f (x)
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Linear relaxation for MAX-2MIN

ΠMAX−2MIN(k) =

max
q:X (k)→RN

+, t:X (k)→RN ,
λ:V→R

∑
v∈V

µ(v)λ(v)

s.t. Σq(x) ≤ 1 ∀x ;

ti (0, x−i ) = 0 ∀i , x−i ;
λ(v) ≤ Σt(x) + v · ∇+q(x)−∇+ · t(x) ∀v , x

(1)

I Maximizing a lower bound on revenue across mechanisms,
subject to local IC
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Linear relaxation for MAX-2MIN

I For a fixed mechanism, minimize the revenue across (local)
Bayes correlated equilibria

(BCE)

min
σ≥0

∑
x,v,i

ti (x)σ(x , v)

s.t.∑
x

σ(x , v) = µ(v) ∀v ;

∑
x−i ,v

(
vi∇+

i q(xi , x−i )

−∇+
i t(xi , x−i )

)
σ(xi , x−i , v) ≤ 0 ∀i , xi

(D-BCE)

max
α≥0,λ

∑
v

µ(v)λ(v)

s.t.

λ(v) ≤ Σt(x)

+
∑
i,xi

αi (xi )
(
vi∇+

i q(x)−∇+
i t(x)

)
∀x , v



13

Censored geometric distribution

I Now define

ρi (xi ) =

(
1− 1

k

)kxi
(

1

k

)Ixi<k

ρ(x) =
N∏
i=1

ρi (xi )

I (PMF of the censored geometric with arrival rate 1/k)
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Linear relaxation for MIN-2MAX

Π
MIN−2MAX

(k) =

min
σ:X (k)×V→R+, w :X (k)→RN

+,

γ:X (k)→R+

∑
x∈X (k)

γ(x)

s.t.
∑

x∈X (k)

σ(x , v) = µ(v) ∀v ;

∑
v∈V

σ(x , v) = ρ(x) ∀x ;

w(x) =
1

ρ(x)

∑
v∈V

vσ(x , v) ∀x

γ(x) ≥ ρ(x)
[
wi (x)−∇+

i w(x)
]
∀x ;

(2)

I Minimizing the highest virtual value across information
structures where the signal distribution is ρ
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Linear relaxations converge as k →∞

Theorem
For all k > 0,

Π
MIN−2MAX

(k) ≥ ΠMIN−2MAX(k) ≥ ΠMAX−2MIN(k) ≥ ΠMAX−2MIN(k).

If µ(v) > 0 for all v ∈ V , then

lim
k→∞

Π
MIN−2MAX

(k) = lim
k→∞

ΠMAX−2MIN(k) = Π∗.

Moreover,

I If (q, t) solves (1), then profit in (X (k), q, t) is at least
ΠMAX−2MIN(k) for any information structure and equilibrium.

I If σ solves (2), then profit in (X (k), σ) is at most Π
MIN−2MAX

(k)
in any mechanism and equilibrium.
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Two programs

(1)

max
q≥0,t,λ

∑
v

µ(v)λ(v)

s.t. Σq(x) ≤ 1 ∀x
ti (0, x−i ) = 0 ∀i , x−i ;

λ(v) ≤ Σt(x)

+ v · ∇+q(x)−∇+ · t(x) ∀x , v

(2)

min
σ≥0,γ≥0,w

∑
x

γ(x)

s.t.
∑
x

σ(x , v) = µ(v) ∀v ;∑
v

σ(x , v) = ρ(x) ∀x ;

wi (x) =
1

ρ(x)

∑
v

viσ(x , v) ∀i , x ;

γ(x) ≥ ρ(x)[wi (x)−∇+
i wi (x)] ∀i , x
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Solving out transfers from (1)

I In program (2), we “solved out” the transfers
I Can do the same thing in (1):

I Let Ξ(x) = ∇+ · t(x)− Σt(x) denote the aggregate excess
growth

I For fixed Ξ, there exists a t that satisfies this equation iff∑
x ρ(x)Ξ(x) = 0 (implied by, e.g., Farkas’ lemma)

I So, in program (1), we can substitute in Ξ for t and add the
expectation of Ξ to the objective:
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Two programs

(1′)

max
λ,q≥0,t

∑
v

µ(v)λ(v) +
∑
x

ρ(x)Ξ(x)

s.t. Σq(x) ≤ 1 ∀x ;

λ(v) + Ξ(x) ≤ v · ∇+q(x) ∀x , v .

(2)

min
σ≥0,γ≥0,w

∑
x

γ(x)

s.t.
∑
x

σ(x , v) = µ(v) ∀v ;∑
v

σ(x , v) = ρ(x) ∀x ;

wi (x) =
1

ρ(x)

∑
v

viσ(x , v) ∀i , x ;

γ(x) ≥ ρ(x)[wi (x)−∇+
i wi (x)] ∀i , x
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(1’) and dual of (2)

(1′)

max
λ,Ξ,q≥0

∑
v

µ(v)λ(v) +
∑
x

ρ(x)Ξ(x)

s.t. Σq(x) ≤ 1 ∀x ;

λ(v) + Ξ(x) ≤ v · ∇+q(x) ∀x , v

(D-2)

max
Ξ,λ,q≥0

∑
v

µ(v)λ(v) +
∑
x

ρ(x)Ξ(x)

s.t. Σq(x) ≤ 1 ∀x ;

λ(v) + Ξ(x) ≤ v · ∇−q(x) ∀x , v
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Shifting

I We complete the proof of the theorem by showing that (1’)
and (2) have almost the same value when k is large

I They are “almost” a dual pair, except for the direction of
local IC

I Given a feasible q for (D-2), we construct a feasible q′ for
(1’), so that (1’) and (2) have almost the same value

I If q′ is non-decreasing, can use:

q′i (x) =

{
qi (xi − 1/k, x−i ) if xi > 0;

0 if xi = 0

I Complication: If q decreases, could have Σq′(x) > 1

I Last step: decrease in q is bounded below, and the bound
goes to zero faster than 1/k =⇒ we can “rescale” q′ to
make it feasible without significantly changing the objective
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As k →∞

ΠMAX−2MIN

max
λ,q≥0,t

∑
v

µ(v)λ(v) +
∑
x

ρ(x)Ξ(x)

s.t. Σq(x) ≤ 1 ∀x ; [γ(x)]

λ(v) + Ξ(x) ≤ v · ∇q(x) ∀x , v ; [σ(x , v)]

Π
MIN−2MAX

min
σ≥0,γ≥0,w

∑
x

γ(x)

s.t.
∑
x

σ(x , v) = µ(v) ∀v ; [Ξ(x)]∑
v

σ(x , v) = ρ(x) ∀x ; [λ(v)]

wi (x) =
1

ρ(x)

∑
v

viσ(x , v) ∀i , x ;

γ(x) ≥ ρ(x)[wi (x)−∇iwi (x)] ∀i , x ; [qi (x)]

I Suppose the two programs are an exact dual pair as k →∞
I Then at the optimal, complementary-slackness conditions

should hold
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Binary common values

I Suppose vi ∈ {0, 1}, and µ({v1 = v2 = · · · = vN}) = 1.

I That is, the seller only knows the expected common value.

I As k →∞, ρi (xi ) = exp(−xi ).

I Value function:

w∗i (x) =

{
C exp(Σx) Σx < x∗

1 Σx ≥ x∗

I All bidders have the same virtual value, which is 0 if Σx < x∗

and is 1 otherwise

I The last constraint in ΠMAX−2MIN is always binding, so q∗i (x)
is free to be interior
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MAX-2MIN mechanisms

I w∗ implies:
I σ∗(x , v) > 0 for both v = ~0 and v = ~1 when Σx < x∗

I σ∗(x , v) > 0 only for v = ~1 when Σx ≥ x∗

I By complementary-slackness:
I λ∗(v) + Ξ∗(x) ≤ v · ∇q∗(x) binds for both v when Σx < x∗

I it only binds for v = ~1 when Σx ≥ x∗

I With some additional regularity and boundary conditions, an
allocation q is MAX-2MIN optimal as long as ∇iq(x) = 1/x∗

(< 1/x∗) if Σx < x∗ (≥ x∗)

I For example, these conditions are satisfied by the
proportional allocation:

q∗i (x) =
xi

max{x∗,Σx}
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Transfers

I We show that for any such allocation,

Ξ∗(x) = ∇ · q∗(x)− λ∗(~1)

satisfies
∫
RN

+
Ξ∗(x)ρ(dx) = 0

I As a result, there always exists a transfer rules that solves

Ξ∗(x) = ∇ · t(x)− Σt(x)

I For the proportional allocation q∗, there is a transfer that
solves this equation and has the proportional form:

t∗i (x) = q∗i (x)T ∗(Σx),

where T ∗ solves an ODE

I We call this MAX-2MIN mechanism proportional auction.
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Truthful equilibrium

I In the finite bounding programs, we use a revelation principle,
so the strategies are truthful/obedient

I Another heuristic for the continuum limit is that
truthtelling/obedience should be locally optimal at the saddle
point

I In fact, we show directly that the truthful/obedient strategies
are an equilibrium for the saddle point we construct
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Robustness of proportional auction

I If the value is common but not binary, proportional auction
remains MAX-2MIN optimal.

I If each bidder’s expected value is known and the same, but
the correlation and information structure are unknown,
proportional auction remains MAX-2MIN optimal.
I Common value is the worst-case (MIN-2MAX) information

structure.
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Common value full surplus extraction

Proposition

The profit guarantee of the proportional auction converges to the
full surplus (expected common value) as N →∞ at the rate of

1√
N

.
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Conclusion

I Linear programs that compute the optimal profit guarantee
over all information structures and equilibria

I In many cases, the optimal (MAX-2MIN) mechanism is the
proportional auction

I Guarantees full surplus extraction in common value setting
with large markets

I Open questions:
I Lower bounds on information? Private values?
I Simple mechanisms that guarantee a good approximation of

the full surplus?
I Other welfare criteria? (Minmax regret for social surplus?)
I Relax equilibrium assumption? (Rationalizability? Adaptive

agents?)
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