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RBA with common priors and interdependent values

I Two crucial assumptions were used in the previous lecture:
non-common priors and private values

I Each of these is controversial:
I Arbitrary departures from common priors seem implausible
I Why should bidders know exactly their own value?

I For the next two lectures, we will impose the common prior
assumption, but allow interdependent values

I In fact, we will often go to an opposite extreme, and assume that
the bidders have pure common values, i.e., they have exactly the
same value for the good (although many results generalize)

I In addition, whereas we previously assumed that the seller picks the
equilibrium, we will instead look for robustness with respect to
equilibrium selection... this limits our use of the revelation principle!

I (NB: There’s no a priori reason why these have to go together, but
they lead to a very tractable and fruitful theory)
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Robust predictions

I So, the new high-level goal is to characterize auctions that
perform well, regardless of the bidders’ common-prior beliefs
and which equilibrium is played

I Preliminary step: develop a tool for characterizing, for a fixed
mechanism, the set of possible outcomes that could arise,
consistent with common priors and Bayes Nash equilibrium

I This is Bayes correlated equilibrium (BCE) (Bergemann
and Morris, 2013, 2016)
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Basic environment

I Payoff relevant state θ ∈ Θ

I Players i = 1, . . . ,N
I A game form G = (A, u):

I Actions Ai

I Payoff functions ui : A×Θ→ R
I We can write a common-prior information structures as
I = (S , π), where π ∈ ∆(S ×Θ)



5

Bayes Nash equilibrium

I Together, (G, I) constitute a Bayesian game

I Player i ’s strategies are mappings bi : Si → ∆(Ai )

I Under the tuple of strategies b = (b1, . . . , bN), player i ’s
expected payoff is

Ui (b) =
∑
θ,s,a

π(s, θ)b(a|s)ui (a, θ)

I A Bayes Nash equilibrium is a tuple of strategies b such
that for all i and strategies b′i ,

Ui (b) ≥ Ui (b
′
i , b−i )

I High-level question: What are the outcomes of G that are
consistent with Bayes Nash equilibrium for some I?
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Outcomes and BCE

I An outcome of G is a σ ∈ ∆(Θ× A)

I Any I and BNE b of (G, I) induce the outcome:

σ(θ, a) =
∑
s∈S

π(s, θ)b(a|s)

I A Bayes correlated equilibrium of G = (A, u) is an
σ ∈ ∆(Θ× A) that satisfies the following obedience
constraints for all i and ai ,∑

θ,a−i

σ(θ, (ai , a−i ))(ui (ai , a−i , θ)− ui (a
′
i , a−i , θ)) ≥ 0

I In other words, a BCE is just an information structure of the
form (A, σ) for which the identity mapping is a BNE
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Epistemic characterization

Theorem
An outcome σ is a BCE of G iff σ is induced by some information
structure I and a BNE b of (G, I).

I So, BCE are the outcomes that are consistent with rationality
and common priors
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Proof

I If: induced by some (I, b) =⇒ BCE

I We simply verify the obedience constraints

I If not, there is a profitable deviation for some player i of the
form: play a′i whenever you would have played ai

I Only if: BCE =⇒ induced by some (I, b)

I Define Si = Ai and π = σ

I The strategies are the identity mapping, i.e.,

bi (ai |ai ) = 1

I IC follows from the obedience constraint; if they have a
profitable deviation in the proposed information/equilibrium,
then an obedience constraint is violated
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Comments on BCE

I Relative to Lecture 2, we now impose the common prior

I But still much more general than the classical
fixed-information models, reviewed in Lecture 1

I In addition, BCE allows for an arbitrary equilibrium to be
played, not just a particular “designer preferred” equilibrium

I Analytically very tractable: BCE are the intersection of a
family of linear incentive constraints

I Often useful to further discipline the set of BCE by restricting
the marginal of σ on Θ

I That way, differences in outcomes across BCE are just due to
differences in beliefs, rather than differences in fundamentals
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Application: Common-value first-price auctions
I We apply the BCE methodology to first-price auctions,

following Bergemann, Brooks, and Morris (2017)

I N bidders

I Pure common value v ∼ F with support [v , v ], strictly
positive density f (v)

I The bidders compete in a first-price auction:

I Bids ai ∈ R+

I High bidder wins and pays their bid

I No reserve price =⇒ total surplus is always

v̂ =

∫ 1

v=0
vf (v)dv

I The split between seller and bidders depends on information

I One possibility: All information is public, so that bidders
compete away their rents

I What is minimum revenue across all BCE with the prior f ?
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Winning bid distributions

I Turns out that we only need to look at certain
marginals/conditionals of the BCE

I H(a|v) is the CDF of the winning bid conditional v

I H(a) =
∫ v
v=v H(a|v)f (v)dv is the unconditional CDF

I Hi (a|v) is the prob that i wins and the winning bid is less
than a, so that

H(a|v) =
n∑

i=1

Hi (a|v)

I Bidder i ’s surplus is

Ui =

∫ v

v=v

∫ ∞
x=0

(v − x)Hi (dx |v)f (v)dv
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Uniform upward deviations

I Consider the uniform upward deviation (up to a):
I Bid a whenever you would have bid x ≤ a in equilibrium;
I if you would have bid x > a, do not change your action

I If H does not have an atom at a, deviator’s surplus is∫ v

v=v

(
(v − a)H(a|v) +

∫ ∞
x=a

(v − x)Hi (dx |v)

)
f (v)dv

I Why? You never bid less than a, so clearly you should win
whenever the equilibrium winning bid is less than a

I But if the equilibrium winning bid is above a, the outcome is
not changed by this deviation

I Either the deviator would have won, in which case the
deviation does not affect the bid, or someone else would have
won, in which case they still outbid the deviator
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Uniform upward incentive constraints

I These deviations must not be attractive,∫ v

v=v

∫ ∞
x=0

(v − x)Hi (dx |v)f (v)dv

≥
∫ v

v=v

(
(v − a)H(a|v) +

∫ ∞
x=a

(v − x)Hi (dx |v)

)
f (v)dv

I Rearranging and integrating by parts:∫ v

v=v
(v − a)(H(a|v)− Hi (a|v))f (v)dv ≤

∫ v

v=v

∫ a

x=0
Hi (x |v)dxf (v)dv
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Stochastic dominance ordering

I A CDF F first-order stochastically dominates a CDF F ′ if
F (x) ≤ F ′(x) for all x ∈ R

I Equivalent characterization: for any monotonic function, the
expectation under F is greater than or equal to the
expectation under F ′

I NB a partial order on probability distributions
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Main theorem

I Define

b∗(v) =
1

(F (v))
N−1
N

∫ v

w=v
w
N − 1

N

f (w)dw

(F (w))
1
n

H∗(a) = F ((b∗)−1(a))

Theorem
If H is induced by some (I, b), then H first-order stochastically
dominates H∗. Moreover, there exists I = (S , π) and a BNE b
such that (I, b) induce H∗ and the marginal of π on V is f .

I Minimum revenue across BCE is therefore

ΠFPA =

∫ v

v=v
b∗(v)dF (v)
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The argument

Step 0: We can lower bound equilibrium H by showing that there is a
minimal H that satisfies UUIC

Step 1: Linearity of UUIC and expected revenue imply WLOG to look
at symmetric solutions

Step 2: WLOG to restrict attention to solutions in which v and the
winning are perfectly positively correlated (lowers the LHS of
the UUIC as much as possible)

Step 3: Monotonic and symmetric solutions are described by winning
bid functions; can show, using a contraction mapping
argument, that b∗ is the minimal winning bid function that
satisfies UUIC
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Step 4: Equilibrium construction

I Last step: Construct (I, b) that induce H∗

I Worst-case information structure I∗:
I Signals Si = [v , v ]
I si ∈ Si are iid draws from F 1/N

I Value is equal to maxi si

I Equivalently, a randomly selected bidder observes the true v ,
and the others see iid draws on [v , v ] from (F (s)/F (v))1/N

I Can show that b∗ is a symmetric pure-strategy equilibrium!
I In fact, b∗ is the equilibrium of the FPA in the IPV model

where vi ∼ F 1/N , denoted I IPV
I Downward deviations look the same in (I∗, b∗) and (I IPV , b∗)
I In (I∗, b∗), bidders are indifferent to all upward deviations
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Back to auction design

I We have been analyzing a fixed mechanism, the FPA

I Turns out that the FPA is robustly optimal, among a certain
class of mechanisms, when values are common

I We say that a mechanism M = (A, q, t) is standard if
I Ai = R
I A high bidder is allocated the good
I There is a symmetric and monotonic pure strategy equilibrium

in symmetric IPV information structures in which equilibrium
bidder surplus is non-negative

I First-price, second-price, all-pay, and combinations thereof are
standard auctions
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Strategic equivalence

Proposition (Bergemann, Brooks, and Morris (2019))

Suppose that M is a standard mechanism and b is a symmetric
and monotonic pure-strategy equilibrium of (M, I IPV ). Then b is
also an equilibrium of (M, I∗).

I Proof: The allocation induced by b is precisely that induced
by the monotonic pure-strategy equilibrium of the FPA

I Revenue equivalence then implies that the interim expected
transfer is Ti (si ) = T ∗(si ) + ci , where T ∗ is the interim
transfer in the FPA in the equilibrium b∗, and ci is a constant
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Proof, continued

I Let U(si , s
′
i ) denote the payoff when si bids b(s ′i ) in (M, I∗)

I UFPA is the corresponding payoff in (MFPA, I∗)
I Then

Ui (si , s
′
i ) = UFPA

i (si , s
′
i )− ci

I But UFPA
i (si , si ) ≥ UFPA

i (si , s
′
i ) for any s ′i , so

Ui (si , si ) ≥ Ui (si , s
′
i ) as well

I Finally, just have to check that bidders don’t want to deviate
to a report bi that is not in the range of b

I But for any such bid, there must be an equilibrium bid with
the same winning probability and a weakly lower transfer, so
such deviations cannot be attractive �
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Robust optimality of the FPA

I This result immediately yields the following characterization:

Theorem
If M is standard, then

ΠFPA ≥ inf
σ∈BCE(M)

∫
A×[v ,v ]

N∑
i=1

ti (a)σ(da, dv).

Thus, among all standard auctions, the first-price auction
maximizes minimum revenue in BCE.
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Proof

I For any standard M, there is an equilibrium b on (M, I IPV ),
which (by the proposition) is also an equilibrium on (M, I∗)

I In each of these games, the strategies b induce revenue Π

I But ΠFPA is revenue from the equilibrium b∗ of
(MFPA, I IPV ), which is maximum revenue among all efficient
mechanisms and equilibria on I IPV , subject to bidder utilities
being non-negative

I Hence, Π ≤ ΠFPA

I Since we have an information structure and equilibrium of M
in which revenue is less than ΠFPA, we conclue that infimum
revenue from M across BCE is also less than ΠFPA �
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Going further

I The theorem is a kind of robust revenue ranking: the FPA has
a higher “revenue guarantee” across all BCE than any other
standard auction, e.g., the second-price auction

I Of course, we didn’t need the theorem to tell us that
minimum revenue across BCE in the SPA is less than ΠFPA

I Regardless of beliefs, the SPA has equilibria with zero revenue,
in which one bidder always bids v and all others bid zero

I What is perhaps a bit more surprising is that minor
perturbations of the mechanism that might kill off that
equilbrium (e.g., placing a small probability on pay-as-bid)
cannot lead to greater minimum revenue than ΠFPA...
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Revenue guarantee equivalence with affiliated values

I A famous result of Milgrom and Weber (1982) is that in
affiliated-values environments, English and second-price
auctions generate more revenue than first-price auctions
(in the particular equilibria they construct)

I Interestingly, I∗ is affiliated

I But the strict revenue ranking relies on correlation in signals,
which is absent on I∗

I Combining these observations, we get the following result:

I If one selects the MW equilibria of the SPA and English
auction, and if we restrict attention to symmetric
affiliated-values information structures, then the three
mechanisms are revenue guarantee equivalent
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A saddle point

I The FPA achieves maxmin revenue (with the min over BCE)
when we restrict attention to standard mechanisms

I Moreover, (MFPA, I∗) are a saddle point:
I For the mechanism MFPA, revenue is at least ΠFPA in all

information structures and equilibria
I On I∗, no standard mechanism can achieve more revenue than

ΠFPA in all information structures and equilibria

I Could this be a saddle point for the unrestricted problem,
where the seller can choose any mechanism?

No!
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Numerical example

I Taking v ∼ U[0, 1], then

b∗(v) =
1

v
N−1
N

∫ v

w=0
w
N − 1

N

dw

w
1
N

=
N − 1

2N − 1
v

I Thus, the minimum winning bid distribution is
U[0, (N − 1)/(2N − 1)]

I As N →∞, converges to U[0, 1/2], i.e., limit revenue and
bidder surplus are 1/4

I NB 1/4 is less than the total surplus of 1/2, so bidders still
get rents in the limit

I Very different from older positive results of Wilson (1977) and
Milgrom (1979) that show asymptotic full surplus extraction
of the FPA in the mineral-rights model
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Robust surplus extraction with many bidders

I Begs the question, are there other mechanisms that extract
more revenue in all BCE?

I Du (2018) constructs a sequence of mechanisms that
asymptotically have revenue equal to v̂ , regardless of F

I A fortiori, even with finite N, the revenue guarantee of the
FPA is improvable
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Du (2018)

I Consider the following MN = ([0, 1]N , qN , tN)

I If ai1 ≥ ai2 · · · ≥ aiN , then

qNik (a) =
k∑

k ′=1

ak ′ − ak ′+1

k ′

I Interpretation:
I The good is composed of a continuum of pieces x ∈ [0, 1]
I Action ai mans “I want to buy the pieces x ≤ ai
I Each piece is divided equally among the bidders that demand it

I The transfer is

tNi (a) =
2v

N log(N)
(exp(ai log(N))− 1)

I NB ti (0, a−i ) = 0, so in any equilibrium, Ui ≥ 0 ∀i
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Main result

Theorem (Du, 2018)

In any BCE of MN , revenue is equal to v̂ + O(log(N)).

I Proof: Expected revenue is

Π =
∑
i

∫
(v ,a)

tNi (a)σ(dv , da)

I Note that

tNi (a) =
1

log(N)

∂tNi (a)

∂ai
− 2v

N log(N)

I Hence,

Π =
1

log(N)

∑
i

∫
(v ,a)

∂tNi (a)

∂ai
σ(dv , da)− 2v

log(N)
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Proof, cont’d

I Can show that ai < 1 with prob 1 in equilibrium
(that’s why we have the 2 in the transfer)

I Moreover, ∑
i

∫
(v ,a)

(
v
∂qNi (a)

∂ai
− ∂tNi (a)

∂ai

)
≤ 0

I (Otherwise a positive measure of “local upward” obedience
constraints would be violated for some player)

I We conclude that

Π ≥ 1

log(N)

∑
i

∫
(v ,a)

v
∂qNi (a)

∂ai
σ(dv , da)− 2v

log(N)
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Proof cont’d

I Furthermore,

N∑
i=1

∂qi (a)

∂ai
=

N∑
i=1

1

|{j |aj > ai}|+ 1
≥

N∑
i=1

1

i
> log(N + 1)

I Putting it all together,

Π =
∑
i

∫
(v ,a)

tNi (a)σ(dv , da)

=
1

log(N)

∑
i

∫
(v ,a)

∂tNi (a)

∂ai
σ(dv , da)− 2v

log(N)

≥ 1

log(N)

∑
i

∫
(v ,a)

v
∂qNi (a)

∂ai
σ(dv , da)− 2v

log(N)

≥ 1

log(N)
v̂ log(N + 1)− 2v

log(N)
,

which goes to v̂ at a rate of 1/ log(N) �
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Remarks

I Both BBM (2017, 2019) and Du (2018) use obedience
constraints to lower bound revenue

I Du (2018) achieves a better bound (asymptotically)

I The key difference is that revenue is tied to local incentives

I This is done through the particular choice of transfer rule

I One then has to control the sensitivity of the allocation in
order to achieve a favorable revenue guarantee

I The next lecture will pursue this analysis to its logical
conclusion, and use local incentives/allocation sensitivity to
identify maxmin mechanisms for finite N


