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Information in auction design

I In lecture 1, we explored various instances of the optimal auction
design model

I A core component of each model is a description of the bidders’
information: What do they know about the value of the good, and
what do they know about what others know?

I All of the examples can be viewed as special cases of an
information structure (also known as a type space)

I More abstractly, fix a set of payoff-relevant states Θ

I An information structure is a pair I = (S , π), where
I Each bidder has a set of signals Si (or types)
I There is a function πi (s−i , θ|si ) that represents bidder i ’s

beliefs about (s−i , θ) (others signals and the state)

I For example, in Vickrey’s IPV model, Θ = V n, Si = V , and
πi (s−i , v |si ) = Is=v f−i (s−i )
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Information structures and higher-order beliefs

I Harsanyi (1967) famously proposed information structures as
an analytically tractable way to represent higher order
beliefs, i.e.,
I A first-order belief about the state in ∆(Θ)
I A second-order belief about the state and others’ first-order

beliefs in ∆(Θ×∆(Θ)n−1)
I etc.

I Given I = (S , π), there is a natural way to associate each
si ∈ Si with a hierarchy of beliefs

I Mertens and Zamir (1985) later described a sense in which
any “reasonable” hierarchy corresponds to a signal in some
information structure
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Common priors
I A special class of information structures are those in which

the beliefs can be derived from a common prior
I For example, in the IPV model, we can start with a product

distribution f (v) =
∏n

i=1 fi (vi ), with marginal distributions fi
I Private values ⇐⇒ Si = Vi , and si = vi with probability one

I Each bidder’s belief is derived from the joint distribution over
S ×V n by Bayesian updating, which due to the independence,
gives us πi (s−i , v |si ) = Is=v f−i (s−i )

I More broadly, we say that π ∈ ∆(S ×Θ) is a common prior
for I if πi (·, ·|si ) is obtained by Bayesian updating from π,
conditional on si

I The common-prior assumption (CPA) (i.e., the assumption
that there exists a common prior) is somewhat controversial,
although it is often made in practice

I Main benefits are (i) tractability and (ii) an integrated view of
all agents’ (ex ante) welfare (including the mechanism
designer)
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Common knowledge in mechanism design

I Circling back to the models from Lecture 1, we have made
some strong assumptions about what is common knowledge:
I A common prior from which all agents’ beliefs are derived
I The rules of the game
I The strategies that are being used

I Should we really expect economic agents to agree on all of
these things, in a practical setting?

I On top of all of that, we have assumed extremely simple
forms for information, e.g., private values, independence,
symmetry, regularity

I Should we not expect agents to have information about their
own value and also about others’ values? This is ruled out in
the IPV model: You learn your value exactly, but get no
information about others’ values (beyond the prior)
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The Wilson critique

Game theory has a great advantage in explicitly analyz-
ing the consequences of trading rules that presumably are
really common knowledge; it is deficient to the extent it
assumes other features to be common knowledge, such as
one player’s probability assessment about another’s pref-
erences or information.
I foresee the progress of game theory as depending on suc-
cessive reductions in the base of common knowledge re-
quired to conduct useful analyses of practical problems.
Only by repeated weakening of common knowledge as-
sumptions will the theory approximate reality.
—Bob Wilson (1987)
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Stronger implementation concepts

I In a Bayes Nash equilibrium, optimality of one’s actions
depends on beliefs about payoff relevant states and others’
behavior

I Wilson’s critique beseeches us to focus on mechanisms that
achieves the designer’s objective, regardless of the detailed
structure of beliefs

I In an extreme form, we insist that agents’ strategies are
optimal, regardless of their higher-order beliefs

I This is referred to as ex post implementation
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Implementation approach

I An important paper of Bergemann and Morris (2005)
formalizes this connection

I Finitely many agents i = 1, . . . ,N

I Finite set of payoff type profiles: Θ =
∏

i Θi

I Finite set of outcomes Y

I Agents have expected utility preferences over (y , θ)
represented by ui : Y ×Θ→ R

I The designer’s goals are represented by a social choice
correspondence: F : Θ→ 2Y \ ∅
Interpretation: When the payoff type profile is θ ∈ Θ, the
mechanism designer wants to implement an outcome in F (θ)
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Information structures

I BM specialize to known-payoff-type (KPT) information
structures I that can be written in the form
I Finite sets of types Si for each i
I A mapping θ̂i : Si → Θi for each i
I A belief function π̂i : Si → ∆(S−i )

I This corresponds to an assumption on the belief hierarchies,
that player i “knows” their payoff type θi , and only θ is
payoff-relevant

I Private values: ui only depends on θi and not θ−i
I Quasilinear auction model:

I Y = Y0

∏
i Yi

I Y0 = ∆({0, 1, . . . ,N}), Yi = R
I ui (y , θ) = v(y0, θ)− yi

(y0 is the allocation, yi is the transfer)
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Implementation

I Given I = (S , θ̂, π), a (direct) mechanism f : S → Y is
interim incentive compatible (IIC) if for all i and si , s

′
i ∈ Si ,∑

s−i

ui (f (si , s−i ), θ̂(si , s−i ))π(s−i |si )

≥
∑
s−i

ui (f (s ′i , s−i ), θ̂(si , s−i ))π(s−i |si )

I F is interim implementable on I if there exists an IIC
f : S → Y such that f (s) ∈ F (θ̂(s)) for all s ∈ S

I f : Θ→ Y is ex post incentive compatible (EPIC) if for all
i and θ, and θ′i ,

ui (f (θ), θ) ≥ ui (f (θ′i , θ−i ), θ)

I F is ex post implementable if there is an f : Θ→ Y that is
EPIC and f (θ) ∈ F (θ) for all θ ∈ Θ
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Ex post and dominant strategies

I f is dominant strategy incentive compatible if

ui (f (θi , θ
′
−i ), θ) ≥ ui (f (θ′i , θ

′
−i ), θ)

for all i , θ, θ′−i , and θ′i
I Clearly implies EPIC, but in general it is weaker

I They coincide in the special case of private values, since then
ui does not depend on θ−i , except through f

I For consistency, I will use the term “ex post” rather than
“dominant”, even when we specialize to private-value models
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Robustness of ex post implementation

Proposition

If F is ex post implementable, then it is implementable on all KPT
information structures.

I Proof: Suppose F is ex post implementable by, say, f : Θ→ Y

I Then F is implementable on I by the function f ′ : S → Y
defined by f ′(s) = f (θ̂(s)) �
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BM’s question

I Suppose we want to implement a SCF F , regardless of the
details of higher-order beliefs

I Of course, we can do this if F is ex post implementable

I Are there F ’s that can be implemented on all KPT
information structures, even if they are not ex post
implementable? Or does the “Wilson doctrine” inevitably lead
us to ex post implementation?
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Separable environments

I We say that (Θ,Y , u,F ) is separable if

I Y = Y0

∏N
i=1 Yi

I ui (y , θ) = ũi (y0, yi , θ)
I There exists f0 : Θ→ Y0 and Fi : Θ→ 2Yi \ ∅ such that

F (θ) = f0(θ)
∏

i Fi (θ)

I Y0 is the public good component and Yi are private goods

I Substantive assumption: Options for private good for i does
not depend on selection of private goods for other agents

I In the quasilinear auction model, Y0 could represent the
allocation, Yi is bidder i ’s transfer,

I If there is a unique social welfare maximizing allocation given
θ, then the problem of implementing a social welfare
maximizing social choice function is separable
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BM’s main result

Proposition

If (Θ,Y , u,F ) is separable and F is implementable on all KPT
information structures, then F is ex post implementable.

I For some i and θ−i , look at the information structure where
Si = Θi and Sj = {θj}

I Separability and the fact that F is interim implementable

=⇒ there exist g
i ,θ−i

i : Θ→ Yi such that

ũi (f0(θ), g
i ,θ−i

i (θ), θ) ≥ ũi (f0(θi , θ−i ), g
i ,θ−i

i (θ′i , θ−i ), θ)

I From separability, the function f ′ : Θ→ Y where

f ′0(θ) = f0(θ) and f ′i (θ) = g
i ,θ−i

i (θ) is feasible, and it is EPIC,
so F is ex post implementable �
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i (θ), θ) ≥ ũi (f0(θi , θ−i ), g
i ,θ−i

i (θ′i , θ−i ), θ)

I From separability, the function f ′ : Θ→ Y where

f ′0(θ) = f0(θ) and f ′i (θ) = g
i ,θ−i

i (θ) is feasible, and it is EPIC,
so F is ex post implementable �



15

BM’s main result

Proposition

If (Θ,Y , u,F ) is separable and F is implementable on all KPT
information structures, then F is ex post implementable.

I For some i and θ−i , look at the information structure where
Si = Θi and Sj = {θj}

I Separability and the fact that F is interim implementable

=⇒ there exist g
i ,θ−i

i : Θ→ Yi such that
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Necessity of separability

I BM show by example that separability cannot be dropped:

I N = {1, 2}, Θi = {θi , θ′i}, Y = {a, b, c}
I Payoffs:

a θ2 θ′2 b θ2 θ′2 c θ2 θ′2
θ1 (1, 0) (−1, 2) θ1 (−1, 2) (1, 0) θ1 (0, 0) (0, 0)
θ′1 (0, 0) (0, 0) θ′1 (0, 0) (0, 0) θ′1 (1, 1) (1, 1)

I Social choice correspondence

F (θ1, θ2) = F (θ1, θ
′
2) = {a, b}

F (θ′1, θ2) = F (θ′1, θ
′
2) = {c}

I This SCF is always interim implementable (let player 1 choose
the outcome), but it is not implementable ex post
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Auctions with ex post implementation

I Let’s return to the auction model with n bidders, values
vi ∈ V = {v1, . . . , vM}, where vk − vk−1 = γ

I We continue to assume private values, so each bidder’s vi is
their known payoff type

I The environment is separable, so an outcome is interim
implementable in all KPT information structures if and only if
is ex post implementable

I EPIC takes the following form:

viqi (v)− ti (v) ≥ viqi (v
′
i , v−i )− ti (v

′
i , v−i ) ∀i , v

I It is standard to also ask that bidders be willing to participate
for all KPT information structures, so we get an ex post
participation constraint, i.e.,

viqi (v)− ti (v) ≥ 0 ∀i , v
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Profit maximization with ex post implementation

I What are the ex post mechanisms that maximize expected
profit?

I Let f ∈ ∆(V n) be the seller’s prior

I The revenue maximization program is:

max
(q,t)

∑
v∈V n

N∑
i=1

ti (v)f (v)

s.t. qi (v) ≥ 0 ∀i , v ,
N∑
i=1

qi (v) ≤ 1 ∀v ;

viqi (v)− ti (v) ≥ 0 ∀i , v ;

viqi (v)− ti (v) ≥ viqi (v
′
i , v−i )− ti (v

′
i , v−i ) ∀i , v ;

(P)

I NB: Very different if we use interim participation!
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An upper bound on revenue

I As in the independent case, we can derive an upper bound on
optimal revenue in terms of virtual values

I Consider the following weighted sum of the EPIC/EPIR constraints:

M∑
m=1

αi (v
m, v−i )[vm(qi (v

m, v−i )− qi (v
m−1, v−i ))− (ti (v

m, v−i )− ti (v
m−1, v−i ))],

where we interpret qi (v
0, v−i ) = ti (v

0, v−i ) = 0

I We can then rearrange to

M∑
m=1

qi (v
m, v−i )(vmαi (v

m, v−i )− vm+1αi (v
m+1, v−i ))

−
M∑

m=1

ti (v
m, v−i )(αi (v

m, v−i )− αi (v
m+1, v−i ))
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Virtual values and regularity

I If we set αi (v) =
∑

v ′i ≥vi
f (v ′i , v−i ), then this sum reduces to

M∑
m=1

f (vm, v−i )

qi (vm, v−i )

(
vm + γ

∑M
l=m+1 f (v l , v−i )

f (vm, v−i )

)
︸ ︷︷ ︸

≡φi (vm,v−i )

−ti (vm, v−i )


I φi (v) represents a generalized virtual value

I Since αi ≥ 0, the sum is non-negative for any EPIC/IR mechanism

I If we add the sums to expected revenue, we get∑
v

∑
i

f (v)ti (v) ≤
∑
v

∑
i

f (v)φi (v)qi (v)
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Generalized regularity

I f is regular if φi is non-decreasing in vi for all i , v−i
I In this case, the upper bound is maximized by a mechanism

that allocates the good to a bidder with the highest φi (v)

I This allocation can be implemented by an auction in which
the high-virtual value bidder has to pay
min{vi |φi (vi , v−i ) ≥ 0}, so the upper bound is attained

I Moreover, αi (v) must be optimal Lagrange multiplier on local
downward EPIC and EPIR for the lowest value

I (The other multipliers are all zero)
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Maxmin foundations

I As discussed in the first lecture, when there is correlation, the
seller can generally do strictly better with interim
implementation than with ex post, e.g., Crémer and McLean

I One foundation for ex post mechanisms is we want the
outcome to be implemented on all KPT information structures

I Of course, if the real goal is revenue maximization, we might
ask: why care whether the same outcome is always
implemented, as long as the mechanism performs well in
terms of revenue?

I Regardless of the information structure, the seller has the
option of running the optimal ex post mechanism, and obtain
a payoff of Π∗ (as long as they can select the equilibrium)

I Natural question: Would any mechanism generate uniformly
higher revenue, regardless of the information structure?
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Chung and Ely (2007)

I We endow the seller with a prior f over bidders’ values

I Chung and Ely (2007): If f is regular, then the answer is no

I In particular, for any mechanism, there is a KPT information
structure such that revenue is no greater than Π∗

I In fact, there is a “worst case” information structure I∗ such
that maximum revenue across all Bayesian mechanisms is Π∗

I Thus, an optimal ex post mechanism M∗ and I∗ are a
“saddle point”, in the sense that M∗ maximizes revenue on
I∗, and I∗ minimizes revenue on M∗

I We will subsequently return to this notion of a saddle point
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A worst-case belief structure

I In I∗, each bidder’s signal is just their valuation, so it is described
by beliefs πi (v−i |vi )

I The corresponding revenue maximization problem is:

max
(q,t)

∑
v∈V n

N∑
i=1

ti (v)f (v)

s.t. qi (v) ≥ 0 ∀i , v ,
N∑
i=1

qi (v) ≤ 1 ∀v ;∑
v−i

πi (v−i |vi )(viqi (vi , v−i )− ti (vi , v−i ) ≥ 0 ∀i , vi ;∑
v−i

πi (v−i |vi )(viqi (v)− ti (v))

≥
∑
v−i

πi (v−i |vi )(viqi (v
′
i , v−i )− ti (v

′
i , v−i )) ∀i , v ;

(P′)
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Deriving π∗

I Chung and Ely construct π∗ so (P) and (P′) have the same value
I In fact, π∗ can be derived from the optimal multipliers for (P)
I Recall that under the regularity hypothesis, only local downward IC

and IR for the lowest type are binding
I The optimal multiplier for (i , v) is αi (v) =

∑
v ′i ≥vi

f (v ′i , v−i )

I Basic fact about linear programs: The value remains the same if a
subset of the binding constraints are replaced by a weighted sum of
those constraints, with weights that are proportional to the optimal
multipliers

I As a result, the value of (P) remains the same if we replace

vmqi (v
m, v−i )− ti (v

m, v−i ) ≥ viqi (v
m−1, v−i )− ti (v

m−1, v−i ) ∀v−i

with the weighted sum, for any constant Ci (v
m):∑

v−i

Ci (v
m)αi (v

m, v−i ) [vmqi (v
m, v−i )− ti (v

m, v−i )]

≥
∑
v−i

Ci (v
m)αi (v

m, v−i )
[
vmqi (v

m−1, v−i )− ti (v
m−1, v−i )

]
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and IR for the lowest type are binding
I The optimal multiplier for (i , v) is αi (v) =

∑
v ′i ≥vi

f (v ′i , v−i )

I Basic fact about linear programs: The value remains the same if a
subset of the binding constraints are replaced by a weighted sum of
those constraints, with weights that are proportional to the optimal
multipliers

I As a result, the value of (P) remains the same if we replace

vmqi (v
m, v−i )− ti (v

m, v−i ) ≥ viqi (v
m−1, v−i )− ti (v
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with the weighted sum, for any constant Ci (v
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Reinterpretation as beliefs

I If we take Ci (vi ) = 1/
∑

v−i
α(vi , v−i ), then

π∗i (v−i |vi ) := Ci (vi )α(vi , v−i ) is a belief!

I Hence, the aggregated constraint is just a Bayesian
local-downward IC constraint for the beliefs π∗

I We can do the same thing with the EPIR constraints for the
lowest type, and aggregate them into a Bayesian IR constraint
with the beliefs π∗, all without changing the value of (P)

I Finally, since the other ex post constraints are slack at the
optimal solution to (P), we can aggregate them however we
want without changing the value

I Thus, (P′) with the beliefs π∗ has the same value as (P)
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Retrospective on maxmin ex post mechanisms

I An incredibly beautiful result

I Further justifies ex post implementation in auctions

I But, still relies on the somewhat strong regularity assumption,
as well as private values

I Recently, some papers have been extending the theory beyond
Chung and Ely (Yamashita and Zhu 2020, Chen and Li 2018)

I All of these results rely on non-common prior beliefs on the
part of the bidders

I Chung and Ely show by examples that relaxing regularity and
imposing the CPA both break the result

I Moreover, even if the optimal ex post mechanism solves the
maxmin problem, there are other mechanisms that do just as
well on the worst case, and improve elsewhere (Borgers, 2013)
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Ex post implementation versus maxmin

I Bergemann and Morris (2005) give us a nice characterization
of when ex post implementation captures the desire for
robustness embodied in the Wilson critique

I Similarly, Chung and Ely (2007) give a maxmin foundation for
ex post mechanisms in the specific context of auction design

I Problem with ex post implementation:
In general, not many SCFs are ex post implementable

I Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame (2006) show in
an interdependent value and quasilinear environment with
multiple signals, that generically, the only ex post
implementable SCFs are constant, i.e., they choose the same
alternative independent of the type profile

I Of course, the maxmin criterion can still be applied, even
when not many SCFs are ex post implementable

I This suggests that in more general environments (e.g., those
without KPT), maxmin may be more fruitful
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Informational vs. other kinds of robustness

I It’s important to distinguish the Wilson critique with other
robustness considerations

I In AGT, we often assume a simple form for information (e.g., IPV),
and look for “robustness” to fundamentals, like the prior
distribution of values

I The evaluation criterion generally takes the form of constant factor
approximation of some interesting benchmark

I In robust auction design, we may be willing to fix a prior on
fundamentals (at least for the seller), while we look for robustness
with respect to information/beliefs (although some other notions of
robustness are sometimes studied)

I We also typically use implementation theoretic/optimization criteria

I There are obvious areas of overlap that remain largely unexplored,
namely, constant factor approximations with rich information
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