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Abstract

We study the design of optimal mechanisms when the designer is uncertain both
about the information held by the agents and also about which equilibrium will be
played. The guarantee of a mechanism is the minimum of the designer’s welfare across
all information structures and equilibria. The potential of an information structure
is the maximum welfare across all mechanisms and equilibria. We formulate a pair
of linear programs that lower bound the maximum guarantee across all mechanisms
and upper bound the minimum potential across all information structures. In ap-
plications to public expenditure, bilateral trade, and optimal auctions, we use the
bounding programs to characterize guarantee-maximizing mechanisms and potential-
minimizing information structures and show that the max guarantee is equal to the
min potential.
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1 Introduction

1.1 Motivation

In the standard model of Bayesian mechanism design, the designer is assumed to know the
precise form of the agents’ private information about payoff relevant states, specified as an
information structure. As is well known, the predictions of the model may depend on fine
details of the information structure.1 There are settings in which the information structure
corresponds to physical objects in the world that an analyst could conceivably observe and
measure. But more often, the information structure is an abstract “as-if” representation of
agents’ thought processes and preferences that is conceptually appealing and also disciplines
our modeling of behavior under incomplete information. The abstract and artificial nature
of the information structure is problematic insofar as it is not something that we should
expect a real-world mechanism designer to know with any confidence, and the dependence
of the theory on the particulars of the information structure limit its practical usefulness.

A distinct issue is that many theories of Bayesian mechanism design assume that the
designer chooses which equilibrium is played. In some cases, the mechanisms suggested by
the theory have equilibria that are both normatively desirable and compelling as a positive
prediction. But in other cases, the theory leads to mechanisms that are vulnerable to
the agents coordinating on equilibria that are bad for the designer (such as low revenue
“bidding ring” equilibria of second-price auctions). Existing methodologies for ruling out
such undesirable equilibria often involve theoretically valid but impracticable constructions,
such as integer games.

In this paper, we propose a new framework for informationally-robust mechanism design
that does not depend on the precise structure of agents’ private information or on which
equilibrium will be played. The designer only specifies the distribution of payoff relevant
states. The guarantee of a mechanism is its lowest performance across all equilibria and
all common prior information structures for which the marginal on states matches the de-
signer’s prior. We characterize mechanisms that maximize the guarantee. Such mechanisms
provide the best possible lower bound on performance, given these minimal assumptions
about information and behavior.

In parallel, we also study information structures that are especially challenging for
the designer: The potential of an information structure is maximum performance across
all mechanisms and equilibria. We characterize information structures that minimize the
potential. Such information structures can be used to certify that a mechanism maximizes
the guarantee. In particular, given a mechanism and information structure, if the associated
guarantee and potential are equal, then they are also equal to the max guarantee and the
min potential. A further reason for analyzing potential-minimizing information structures is
that they represent the environments that guarantee-maximizing mechanisms are guarding
against. The plausibility of these environments is important for assessing the value of this
particular kind of robustness.

1For example, whether or not there is correlation in agents’ signals can dramatically affect what outcomes
can be implemented (Myerson, 1981; Crémer and McLean, 1988; McAfee and Reny, 1992).
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1.2 Results

Our first main result, Theorem 1, describes a pair of bounding linear programs, one of which
lower bounds the max guarantee, and the other of which upper bounds the min potential.
The programs are parameterized by a finite number of actions in the mechanism or signals
in the information structure. The bounds are obtained from the max guarantee and min
potential programs by fixing an arbitrary order on actions or signals, dropping equilibrium
constraints that are non-local with respect to that order, and choosing units for actions
or signals so that the Lagrange multiplier on local constraints is normalized to one. The
interest in these programs stems primarily from the fact that for a number of applications,
the bounds turn out to be tight, in the sense that difference between the optimal value
of the bounding programs goes to zero as the number of actions and signals grows large.
A fortiori, for these applications, max guarantee is equal to min potential. Moreover,
whenever the bounds are tight, the solutions to the bounding programs are necessarily
approximate guarantee maximizers and approximate potential minimizers.

The structure of the bounding programs also sheds light on the essential properties of
guarantee-maximizing mechanisms and potential-minimizing information structures. Given
an information structure, we define a new object associated with each signal profile and
outcome, which we term the informational virtual objective. This is the designer’s objective
less information rents accruing to the agents’ from the ability to mimic nearby (lower)
types. In the special case of revenue maximization from the sale of private goods, the
informational virtual objective coincides with the “virtual value” familiar from the theory
of optimal auctions (Myerson, 1981). The upper bounding program is simply choosing the
information structure to minimize the expectation (across signals) of the highest (across
outcomes) informational virtual objective.

Analogously, given a mechanism, an action profile, and a payoff relevant state, the
strategic virtual objective is the designer’s objective plus a strategic adjustment term coming
from the agents’ ability to deviate to nearby (higher) actions. The lower bounding program
is simply choosing the mechanism to maximize the expectation (across states) of the lowest
(across action profiles) strategic virtual objective.

The upshot is that when the bounding programs are tight, what makes a mechanism
robust in terms of the guarantee is that it achieves a favorable expected lowest strategic
virtual objective, and what makes an information structure unfavorable in terms of the
potential is that it depresses the expected highest informational virtual objective.

An issue that is of fundamental importance to this theory is whether or not the bounds
are tight. We show that the bounding programs are “almost” a dual pair, in the sense
that the dual of the upper bound program has the same form as the lower bound program,
but with a subtly modified virtual objective, and vice versa. The key differences are that
in the lower bound, the relevant equilibrium constraints point away from the action with
the relevant participation constraint, whereas in the upper bound, the relevant equilibrium
constraints point towards the type with the relevant participation constraint. Also, there
is an important difference in how we model participation: in the lower bound, we impose a
novel condition on mechanisms that we call participation security—each agent must have an
action that guarantees them a payoff greater than their outside option, analogous to bidding
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zero in an auction—whereas for the upper bound, we impose the usual constraint that
interim utility is greater than the outside option. Thus, whether or not the bounds are tight
is related to whether the solutions are sufficiently smooth—so that the direction of local
equilibrium constraints is immaterial—and whether or not the two forms of participation
constraint are equivalent.

We apply our framework to two classic problems in mechanism design: public goods
provision and optimal auctions. The application to public goods is fully developed in Brooks
and Du (2023); in the present paper we simply outline the results, as they relate to the
bounding programs. In the public goods problem, the mechanism determines expenditure
on a public good, subject to budget balance and participation constraints. The designer’s
goal is to maximize social surplus. (The two agent version of this model can be reinterpreted
as a model of bilateral trade, thus showing that our methodology can be fruitfully applied
to that problem as well.) We use the bounding programs to construct a saddle point
consisting of a guarantee-maximizing mechanism and a potential-minimizing information
structure.

We then turn attention to revenue maximization in multi-good auctions. Our main
result for that section, Theorem 2, shows that for this class of problems, the bounds are
always tight. Theorem 2 also reveals additional structure of the bounding programs, in
particular why it is suboptimal for the designer to use mechanisms that are discontinuous
in the limit. Theorem 2 is a kind of strong duality theorem: Even though the argument
is non-constructive, it gives us assurance that the bounds are tight, thereby motivating us
to search for saddle points. We also apply the bounding programs to characterize revenue
guarantee-maximizing mechanisms for a new class of environments, where the designer
knows the empirical distribution of agents’ values, but does not know which agent has
which value. Collectively, these applications and our prior work demonstrate the utility of
the bounding programs for solving informationally-robust mechanism design problems.

1.3 Related literature

This paper builds on prior work on revenue maximization from the sale a single good
(Bergemann, Brooks, and Morris, 2016; Du, 2018; Brooks and Du, 2021a,b). These papers
used similar bounding methodology to solve for guarantee-maximizing mechanisms and
potential-minimizing information structures. The contribution of this paper is explicitly
describe and to generalize the bounding methodology, to show that it can be fruitfully
applied in diverse applications, and to prove non-constructively that the bounds are tight
for optimal auction design with multiple goods and interdependent values.2

We also contribute to the large literature on robust mechanism design. Much of this
literature has attempted to relax the assumption of common knowledge of the information
structure on the part of the agents by adopting stronger implementation concepts, most

2He and Li (2022) also study robust revenue maximization in private value auctions, but look for
robustness with respect to the correlation between agents’ values rather than information per se. In
contrast, the application of our framework to auctions allows for values to be interdependent, and we hold
the joint distribution of values fixed throughout (although it is straightforward to extend our theory to one
where the guarantee is over a set of value distributions).
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prominently ex post implementation. When restricting to direct mechanisms, this requires
truthful reporting to be optimal regardless of agents’ beliefs.3 Ex post implementation does
not address our primary concern, which is that the standard model requires the designer to
have an implausibly detailed description of the informational environment. In particular,
to provide ex post incentives, the designer still has to know the possible signals of the
agents and how they are related to the agents’ and designer’s preferences.4 Moreover, ex
post implementation entails the restrictive assumption that the outcome of the mechanism
cannot vary with agents’ beliefs, even when such variation might be acceptable or even
desirable.5

Our work is also related to the literature on full implementation, pioneered by Maskin
(1999). Serrano and Vohra (2010) provide necessary and sufficient conditions for full imple-
mentation in mixed-strategy Bayes Nash equilibrium, meaning that there exists a mecha-
nism for which a given social choice set is precisely the set of social choice functions that are
induced in some equilibrium.6 This approach may contrasted with partial implementation,
described in our opening paragraphs, where the designer only asks for a given social choice
function to be implemented in one equilibrium. The mechanisms that we construct are, of
course, implementing some social choice set, which must satisfy the conditions of Serrano
and Vohra (2010). Moreover, the mechanism’s guarantee is the minimum expected payoff
over all elements of the social choice set and common priors with the correct marginal over
states.

Our approach represents a middle ground between the literatures on full implementation
and partial implementation. We share the concern that is central in the full implementation
literature about how performance varies across environments and equilibria. But like the
partial implementation literature, we derive the implemented social choice set from primi-
tive preferences of the designer, under the retained assumption of a common prior that is

3Ex post implementation is equivalent to dominant strategy implementation when values are private
(Dasgupta et al., 1979; Chung and Ely, 2007; Yamashita, 2016; Chen and Li, 2018; Che, 2020; Bachrach
et al., 2022).

4For example, in their classic paper on ex post implementation, Bergemann and Morris (2005) restrict
attention to a class of information structures parameterized by a collection of “payoff types.” They assume
that agents know their own payoff types, which collectively capture everything about the environment that
is payoff relevant to the agents and the designer.

5Chung and Ely (2007) and Bergemann and Morris (2005) give conditions under which a designer would
not benefit from having implemented outcomes depend on agents’ beliefs. Our view is that these conditions
are quite demanding, and they suggest that the range of applications to which ex post implementation
can be fruitfully applied may be quite limited. In the auction context, Chung and Ely (2007) require a
generalized form of regularity á la Myerson (1981). Yamashita and Zhu (2018) and Chen and Li (2018)
provide analogous conditions for more general environments. Bergemann and Morris’s (2005) result relies
on a “separability” condition: the designer is flexible is only with respect to agent-specific dimensions of
the outcome (e.g., transfers), there are no joint feasibility restrictions across agents, and each agent cares
only about their own dimension. Relatedly, Jehiel et al. (2006) show that in generic environments with
multidimensional types, only constant mechanisms are ex post implementable.

6A superficial difference between our model and the Bayesian full implementation literature is that that
the latter typically considers a single information structure, with a fixed set of signals. Only interim beliefs
are specified, and the prior over the whole information structure plays no role in the question of which
social choice sets can be fully implemented. We can view this single “grand” information structure as the
disjoint union of the information structures considered in our model.
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shared between the designer and the agents. Also, the guarantee-maximizing mechanisms
end up being tailored to the potential-minimizing information structures, which often have
a great deal of structure that is inherited by the mechanism, and vice versa. In deriv-
ing mechanisms that are optimal for the potential minimizer, we obtain relatively natural
looking mechanisms, with meaningfully ordered actions, reminiscent of classical results in
partial implementation, such as Myerson (1981). However, the mechanisms that we derive
are not tied to an exogenously given language for types, nor do they require the agents to
explicitly report their higher-order beliefs or the information structure itself (even though
this is allowed in our model). This is a desirable and emergent feature of our theory.7

But in spite of the focus on potential minimizers, we can still partially characterize the
performance of these mechanisms in other environments and equilibria.

The rest of this paper proceeds as follows. Section 2 describes our model. Section
3 describes our main results on the bounding linear programs. Section 4 presents an
application to the public expenditure problem and bilateral trade. Section 5 develops our
tightness results for revenue maximization with multiple goods. Section 6 solves a special
case of revenue maximization with a single good where the empirical distribution of values
is known. Section 7 concludes the paper with a discussion of our assumptions and directions
for future research. Appendix A contains additional theoretical results and omitted proofs,
and Online Appendix B contains further results and numerical examples.

2 Model

There is a mechanism designer and a finite group of agents indexed by i P t1, . . . , Nu.
The designer controls an outcome ω P Ω, where Ω is finite. The designer and the agents
have expected utility preferences over outcomes. In particular, the preferences of agent
i “ 1, . . . , N over outcomes and states are represented by the utility index uipω, θq, which
depends on a payoff-relevant state of the world θ P Θ, where Θ is also finite. The designer’s
preferences are similarly represented by the utility index wpω, θq. The designer has a prior
belief about θ, denoted µ P ∆pΘq, which is held fixed throughout our analysis.8

Each agent could choose not to participate in the designer’s mechanism and receive
a certain state-dependent payoff. We normalize this outside option to zero and interpret
agent i’s utility as their payoff net of the outside option.

7The focus on potential-minimizing information structures also means that the guarantee-maximizing
mechanisms that we describe look very different from the mechanisms used in the full implementation
literature, which generally require the agents to report their signals in a grand information structure, in
addition to sending auxiliary messages that are used to kill off undesirable mixed equilibria, e.g., integer
games. The reporting of signals in a grand information structure is antithetical to our goal of building
a theory of mechanism design that is not dependent on a complex and artificial language for private
information.

8We do not assume that µpθq ą 0 for all θ P Θ, although this assumption will later be imposed for
Theorem 2. The distinction between Θ and the support of µ allows the participation security condition to
be formulated independently of the prior. In Brooks and Du (2023), we allow for the designer to have a
set of priors, which need not all have the same support.
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The agents’ private information about θ is described by an information structure, which
consists of: a finite product set of signal profiles S “

ś

i Si,
9 where Si is agent i’s set of

signals, and a joint distribution σ P ∆pS ˆ Θq for which the marginal on Θ is µ. An
information structure is denoted I “ pS, σq, and I is the set of information structures.10

The designer commits to a mechanism, which consists of: a finite product set of action
profiles A “

ś

iAi, where Ai is agent i’s set of actions, and an outcome function m : AÑ
∆pΩq that maps action profiles to lotteries over outcomes. An action ai P Ai is participation
secure if

ř

ω uipω, θqmpω|ai, a´iq ě 0 for all a´i and θ. A mechanism is participation secure
if every agent has an action that is participation secure. We will restrict the mechanism
designer to use only mechanisms that are participation secure. This ensures that, regardless
of the information structure and other agents’ strategies, no agent will have a strict incentive
to exit the mechanism, since they can always play a participation secure action and receive
a weakly higher payoff than their outside option. A mechanism is denoted by M “ pA,mq,
the set of all mechanisms is M, and the set of participation secure mechanisms are M˚.
We assume that a participation secure mechanism exists.

A mechanism and an information structure pM, Iq together define a Bayesian game,
in which a (behavioral) strategy for agent i is a mapping bi : Si Ñ ∆pAiq. A strategy
profile b “ pb1, . . . , bNq is identified with the function from S to ∆pAq defined by bpa|sq “
ś

i bipai|siq. Expected utility for agent i is

UipM, I, bq “
ÿ

θ,s,a,ω

uipω, θqmpω|aqbpa|sqσps, θq,

and the designer’s welfare is

W pM, I, bq “
ÿ

θ,s,a,ω

wpω, θqmpω|aqbpa|sqσps, θq.

A strategy profile b is a (Bayes Nash) equilibrium of pM, Iq if UipM, I, bq ě UipM, I, b1i, b´iq
for all i “ 1, . . . , N and b1i. The set of equilibria is EpM, Iq, which we note is always
non-empty, since the mechanism and information structure are both finite.

The guarantee of a mechanism M is

GpMq “ inf
IPI

inf
bPEpM,Iq

W pM, I, bq,

that is, the infimum welfare of the designer across all information structures and equilibria.
The potential of an information structure I is

P pIq “ sup
MPM˚

sup
bPEpM,Iq

W pM, I, bq,

that is, the supremum welfare of the designer across all participation-secure mechanisms and
equilibria. It is immediate that for any M PM˚ and I P I, GpMq ď P pIq. The purpose of

9Throughout our exposition, a sum or a product with respect to a variable without qualification means
that the operation should be applied for all values of the variable. In this case, the product is over all i,
that is, i “ 1, . . . , N .

10The set of (finite) information structures is defined by identifying finite sets of signals with finite subsets
of the natural numbers. Likewise for the set of (finite) mechanisms.
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this paper is to study mechanisms that maximize the guarantee and information structures
that minimize the potential, i.e., solutions to the programs

sup
MPM˚

GpMq “ sup
MPM˚

inf
IPI

inf
bPEpM,Iq

W pM, I, bq (MAX-G)

inf
IPI

P pIq “ inf
IPI

sup
MPM˚

sup
bPEpM,Iq

W pM, I, bq (MIN-P)

We illustrate these definitions with an application to the public expenditure problem:
Society chooses the total expenditure E P r0, 1s on a public good. The designer must
balance the budget, and therefore chooses the contribution ei ě 0 of each agent i, with
ř

i ei “ E. Agent i’s value from a unit of expenditure is θi ě 0, and the utility index
of agent i is ui “ θiE ´ ei. The designer’s objective is to maximize utilitarian welfare:
w “ p

ř

i θi ´ 1qE. The designer can choose any participation secure mechanism, which
maps actions to individual contributions. We can embed this problem in our framework
by setting Θ Ă RN

` and Ω “ t0, 1, . . . , Nu, where ω “ 0 is the outcome that E “ 0, and
ω ‰ 0 is the outcome that eω “ E “ 1, i.e., agent ω contributes the full expenditure. Thus,
we can interpret Epaq “ 1 ´mp0|aq as the (expected) total expenditure implemented by
the designer, and eipaq “ mpi|aq is agent i’s (expected) contribution. We assume that for
every i there exists a θ P Θ such that θi “ 0, so that participation security is equivalent to
the existence of an action 0 for which eip0, a´iq “ 0 for all a´i, that is, the good may be
produced but agent i refuses to bear any part of the cost. We return to this application
in Section 4, where we informally derive guarantee-maximizing mechanisms and potential-
minimizing information structures. (The problem is treated rigorously in Brooks and Du
(2023).)

Another application is the optimal auctions problem: There are L goods for sale, indexed
by l “ 1, . . . , L. The set of value profiles is given by a finite set Θ Ă RNL

` , with θi,l being
agent i’s value for good l. We further assume that µpθq ą 0 for all θ P Θ, and for every i,
there is a θ P Θ with θi,l “ 0 for all l. The outcome consists of an allocation of each good
to one of the agents (or withholding the good) and also a transfer that each agent i pays to
the mechanism. We write qi,l for the likelihood that agent i is allocated good l and ti for
agent i’s transfer. The allocation satisfies qi,l ě 0 for all i, l and

ř

i qi,l ď 1 for all l, and the
transfers are unrestricted. Each agent i has quasilinear-additive utility ui “

ř

l θi,lqi,l ´ ti,
and the designer’s payoff is revenue w “

ř

i ti. In the special case where L “ 1, we will
drop the l subscript on the values and allocations. Because of our assumption that values
could be zero for all goods, participation security is equivalent to requiring that each agent
i has an action 0 such that tip0, a´iq ď 0 for all a´i.

11

The allocation q can be mapped into in our formalism in a similar manner as with
the public expenditure problem, where the designer chooses between the finitely many
alternatives of whether to withhold the good or to allocate to one of the agents. We can
also embed the transfers by fixing a large maximum transfer t and interpreting ti as the
expectation of a lottery on t´t, tu. Our analysis in Section 5 will in fact work with the
cleaner limit model where ti is unrestricted, to which our main results readily generalize
(and which we prove formally in Online Appendix B.2).

11In Section 5, we will actually work with an even stronger form of participation security that requires
tip0, a´iq “ 0 for all a´i, which makes our tightness result Theorem 2 even stronger as well.
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The single-good version of the optimal auctions problem was studied by Bergemann,
Brooks, and Morris (2016), Du (2018), and Brooks and Du (2021b) in the case of common
values (where θ1,1 “ ¨ ¨ ¨ “ θN,1) and by Brooks and Du (2021a) where each agent has a
known expected value for the good. In Section 6, we solve the single good problem when
the empirical distribution of the agents’ values is known, but it is unknown which agent
has which value.

3 The Bounding programs

We now derive the bounding linear programs and state our first result, Theorem 1, which
asserts that these programs do indeed provide a lower bound on the max guarantee and an
upper bound on the min potential. A discussion follows.

3.1 Deriving the bounding programs

3.1.1 Preliminaries

The bounding programs are parametrized by a set which will represent actions in a mech-
anism for the lower bound and signals in an information structure for the upper bound.
Specifically, for each i and k P N, the set of actions/signals of a given agent is

Xipkq “

"

l

k

ˇ

ˇ

ˇ

ˇ

0 ď l ď k2, l P N
*

,

and Xpkq “
ś

iXipkq is the set of action/signal profiles. Note that Xipkq has k2 ` 1
elements. As k goes to infinity, the number of actions and signals becomes arbitrarily
large, and “fills in” the non-negative real line.

At this point, the labels for actions/signals are completely arbitrary. But they will
acquire a meaning when we use the natural order on Xipkq to construct a particular lower
bound on the guarantee for a mechanism and a particular upper bound on the potential
for the information structure.

3.1.2 The lower bound

We first describe how this works for the lower bound. To start, we will lower bound the
max guarantee by constraining the designer to only use mechanisms for which Xpkq is the
message space and for which the lowest action 0 P Xipkq is participation secure. Let Mk

be the set of mechanisms defined on the action space Xpkq, and let M0
k be the subset of

Mk that satisfy
ÿ

ω

uipω, θqmpω|0, x´iq ě 0 @θ, x´i.

In words, M0
k is the set of mechanisms defined on Xpkq for which the action 0 P Xipkq is

participation secure for each agent i. With a slight abuse of the notation, we identify Mk

with the associated set of outcome functions m : Xpkq Ñ ∆pΩq, and and likewise for M0
k.
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In the lower bound program, the designer can only use mechanisms in M0
k. By itself,

this is only a substantive restriction in that it bounds the cardinality of the action space.
Now, the guarantee of such a mechanism is the minimum welfare of the designer across all
information structures and equilibria. As is well known, in computing the optimal value of
this information design problem, it is without loss to restrict attention to Bayes correlated
equilibria (Bergemann and Morris, 2016): These are “direct recommendation” information
structures, in which each agent’s signal is a recommended action, and the joint distribution
of actions and states is such that playing the recommended actions is an equilibrium. Let
Ik be the set of information structures on Xpkq, which (again, slightly abusing notation)
we identify with the subset of ∆pXpkq ˆ Θq such that the marginal on Θ is the prior µ.
To compute the guarantee, we minimize over σ P Ik, subject to obedience constraints : For
every agent i and “recommended” action xi P Xipkq, xi must be a best response to the
conditional distribution of px´i, θq.

Next, to obtain an even more permissive lower bound, we will make the problem of
minimizing the designer’s welfare easier by dropping all obedience constraints except for
those that are associated with deviating from an action xi to the next higher action xi`1{k
(as long as xi ă k).12 In fact, we will go one step further: rather than imposing local-
upward equilibrium constraints, we minimize a Lagrangian formed by adding the slack in
the obedience constraints into the objective, weighted by a particular choice of Lagrange
multipliers. The following multipliers may seem arbitrary, but as we elaborate on in Section
3.3.2 below, they are essentially a normalization of the units for actions in the mechanism
(given our focus on local upward obedience constraints).

To be more precise, given a function f : Xpkq Ñ R, we define the discrete upward
partial derivative ∇`

i fpxq by13

∇`
i fpxq “

#

pk ´ 1q rfpxi ` 1{k, x´iq ´ fpxqs if xi ă k;

0 if xi “ k.
(1)

In this notation, the obedience constraint that agent i not benefit by deviating to the next
higher action is equivalent to, for all xi,

ÿ

ω,x´i

σpxi, x´i, θquipω, θq∇`
i mpω|xi, x´iq ď 0. (2)

Adding these constraints to the designer’s objective yields the Lagrangian

ÿ

x,θ

σpx, θq
ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇`
i mpω|xq

ff

. (3)

12In the interest of arriving at Theorem 1 sooner, we have not yet given any intuition for why this
particular relaxation should give a tight lower bound. Such an intuition is given below in Section 3.3.2.

13Given that the increment between elements in Xipkq is 1{k, a seemingly more natural definition of a
discrete derivative would have a factor k rather than k ´ 1. Of course, these definitions are equivalent in
the limit as k tends to infinity, and by using k ´ 1 rather than k, we simplify the arguments for Theorem
2. See Footnote 28 below.
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Thus, for any m PM0
k, the minimum of (3) across all σ P Ik is a lower bound on the guar-

antee of pXpkq,mq. But notice that the only remaining restriction on the joint distribution
σ is that the marginal over θ has to be µ. Hence, the σ that minimizes (3) will, for each θ,
put probability one on an action profile x that minimizes the inner sum over ω. We refer
to this minimand as the strategic virtual objective:

ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇`
i mpω|xq

ff

(4)

This is the welfare of the designer plus the sum of the agents’ gains from local upward
deviations. The lower bounding program is simply maximizing the minimum value of (3)
across all m PM0

k:

max
mPM0

k

ÿ

θ

µpθqmin
x

ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇`
i mpω|xq

ff

. (LB-G-k)

In words, the lower bounding program is to maximize (over m P Mk) the expected (over
θ) lowest (over x) strategic virtual objective. In effect, the concern is that information
could coordinate the agents on actions with a low strategic virtual objective (which may
be depend on the state θ), and the designer chooses the mechanism in order to guarantee
that this kind of coordination will not be too harmful.

3.1.3 The upper bound

A parallel approach leads us to the upper bounding program. We first restrict the set of
information structures over which we minimize to those of the form pXpkq, σq for σ P Ik.
In addition, we obtain an upper bound on the potential by relaxing constraints on the
mechanism designer. In particular, we first relax participation security by only requiring
that interim expected utilities in equilibrium are non-negative, that is, interim individual
rationality. Then, by the revelation principle, it is without loss for the designer to restrict
attention to direct mechanisms, in which each agent’s action is a report of their signal,
truthful reporting is an equilibrium, and interim utilities are non-negative. We then obtain
even more permissive upper bound by dropping all individual rationality constraints except
for the lowest signal xi “ 0, and by dropping all truth-telling constraints except for those
associated with a type xi ą 0 mimicking the next lower type xi ´ 1{k.

The remaining individual rationality and truth-telling constraints can be represented
concisely by introducing a discrete downward derivative: for f : Xpkq Ñ R, we define

∇´
i fpxq “

$

’

&

’

%

fpk, x´iq ´ fpk ´ 1{k, x´iq if xi “ k;

krfpxi, x´iq ´ fpxi ´ 1{k, x´iqs if 0 ă xi ă k;

kfp0, x´iq if xi “ 0.

Then individual rationality for the lowest type and local downward truth-telling constraints
are equivalent to, for all i and xi,

ÿ

ω,x´i

σpxi, x´i, θquipω, θq∇´
i mpω|xi, x´iq ě 0. (5)
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As a final step, we relax the mechanism designer’s problem even further by adding these
constraints to the objective and letting the designer maximize a Lagrangian:

ÿ

x,θ

σpx, θq
ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇´
i mpω|xq

ff

. (6)

Again, implicit in the definition of ∇´
i is a particular choice of Lagrange multipliers, which

essentially fix the units for signals in the information structure. Thus, an upper bound on
the potential of an information structure of the form pXpkq, σq is the maximum of (6) over
all m PMk.

To see this maximum a bit more clearly, it is helpful to sum (6) by parts, move the
discrete downward derivative off of m, and replace it with a discrete upward derivative on
σ (the only other term that involves x). As Lemma 2 in Appendix A.1 shows, the correct
discrete upward derivative is not given by ∇`

i , but rather has a slightly different definition,
primarily regarding the boundary cases:

∇̃`
i fpxq “

$

’

&

’

%

´fpk, x´iq if xi “ k

fpk, x´iq ´ kfpk ´ 1{k, x´iq if xi “ k ´ 1{k

krfpxi ` 1{k, x´iq ´ fpxqs otherwise.

(7)

Applying the summation-by-parts formula of Lemma 2, we rewrite Lagrangian (6) as

ÿ

x,ω

mpω|xq
ÿ

θ

«

wpω, θqσpx, θq ´
ÿ

i

uipω, θq∇̃`
i σpx, θq

ff

.

But notice that the mechanism can depend arbitrarily on x, so that the optimum will, for
each x, put probability one on an outcome ω that maximizes inner sum over θ. We refer
to the inner maximand as the informational virtual objective:

ÿ

θ

«

wpω, θqσpx, θq ´
ÿ

i

uipω, θq∇̃`
i σpx, θq

ff

(8)

This is welfare of the designer plus the sum of the agents’ gains from local downward
misreports, as well as the payoffs for the lowest type. The upper bounding program is
simply minimizing the maximum value of (6) over all σ P Ik:

min
σPIk

ÿ

x

max
ω

ÿ

θ

«

wpω, θqσpx, θq ´
ÿ

i

uipω, θq∇̃`
i σpx, θq

ff

. (UB-P-k)

In words, the upper bounding program is to minimize (over σ P Ik) the expectation (over
x) of the highest (over ω) informational virtual objective. In effect, the designer uses
the agents’ information to select the outcome that maximizes the informational virtual
objective, and the information structure is chosen in order to limit the potential benefits
from this selection.14

14In the optimal auctions problem, the informational virtual objective reduces to an interdependent
values analogue of the virtual value of Myerson (1981). See Remark 5 below.

12



3.2 Main result

We are now ready to state the main result of this section. Given an optimization program
P , let W pP q denote its optimal value.

Theorem 1. For all k P N, we have

W (UB-P-k) ě W (MIN-P) ě W (MAX-G) ě W (LB-G-k).

Moreover,

• If m solves (LB-G-k), then GpXpkq,mq ě W (LB-G-k).

• If σ solves (UB-P-k), then P pXpkq, σq ď W (UB-P-k).

The formal proof of Theorem 1 is in Appendix A.1. The steps are the same as in the
preceding derivation, but we fully write out the programs that are referenced along the
way, and we are more explicit in our invocations of duality.

Remark 1. The programs (LB-G-k) and (UB-P-k) are presented as saddle point problems,
but they are easily converted into linear programs by introducing auxiliary variables. In
particular, (LB-G-k) is equivalent to the linear program:

max
m:XpkqˆΩÑR`,

λ:ΘÑR

ÿ

θ

µpθqλpθq

s.t. λpθq ď
ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇`
i mpω|xq

ff

@θ, x

ÿ

ω

uipω, θqmpω|0, x´iq ě 0 @i, x´i, θ

ÿ

ω

mpω|xq “ 1 @x

(9)

Similarly, (UB-P-k) is equivalent to:

min
σ:XpkqˆΘÑR`,
γ:XpkqÑR

ÿ

x

γpxq

s.t. γpxq ě
ÿ

θ

«

wpω, θqσpx, θq ´
ÿ

i

uipω, θq∇̃`
i σpx, θq

ff

@x, ω

ÿ

x

σpx, θq “ µpθq @θ

(10)

Remark 2. The prior µ captures all of the designer’s uncertainty about the economy. In
our view, asking the designer to specify µ is much more reasonable task than specifying an
entire information structure. Even so, a designer may concerned about misspecification of
µ. Proposition 4 in Online Appendix B.1.2 shows that if we fix a mechanism M “ pXpkq,mq
and λ that solve (9) at µ and then change the prior to µ1, then the associated lower bound
on the guarantee for M can decrease by at most

ř

θ λpθq rµpθq ´ µ
1pθqs. In that sense, the

model is robust to misspecification of the prior.
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3.3 Discussion

The remainder of this section provides further results and commentary on the bounding
programs. In particular, we discuss whether and when the bounding programs will be tight,
a deeper explanation of why we focus on local equilibrium constraints, and the connection
to the literature. This material not necessary to understand our subsequent applications.

3.3.1 Tightness of the bounds and approximate duality

We say that the bounds are tight if

lim
kÑ8

W (UB-P-k)´W (LB-G-k) “ 0.

There is a duality gap if W (MIN-P) ą W (MAX-G). Importantly, while Theorem 1 as-
serts that the bounding programs are in fact bounds for the max guarantee and the min
potential, it does not assert that the bounds are tight. But if the bounds are tight, then
there is no duality gap, and max guarantee is equal to min potential. In that case, by
solving (LB-G-k) and (UB-P-k) for k sufficiently large, one can obtain arbitrarily good
approximations of the max guarantee and min potential, and associated almost guarantee
maximizing mechanisms and almost potential-minimizing information structures. More-
over, these approximate solutions have the property that there is a linear order on actions
and signals, and the only relevant equilibrium constraints are those that are local in that
order. Also, participation security/constraints are relevant only for the lowest action/type.
We will give examples where the bounds are tight in Sections 4 and 6, and sufficient condi-
tions for the bounds to be tight in Section 5. In these applications, the one-dimensionality
of actions/signals is associated with very particular forms for guarantee-maximizing mech-
anisms and potential-minimizing information structures. We also give an example where
there is a duality gap in Section 4.

To obtain more intuition for why we might expect the bounds to be tight, consider again
the Lagrangian (6). This was an intermediate step in upper bounding the potential for an
information structure of the form pXpkq, σq, and before we summed by parts and solved
out the mechanism. But we could have stayed with the saddle point problem in which σ
is chosen first and m is chosen second. This is a zero-sum game, where the actions σ and
m are elements of compact and convex sets, and the objective is bilinear. By the minimax
theorem, the optimal value does not depend on the order of moves. If we reverse the order
and choose m first, then we can solve out σ—as we did in deriving (LB-G-k)—to conclude
that the value of (UB-P-k) is

max
mPMk

ÿ

θ

µpθqmin
x

ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇´
i mpω|xq

ff

. (11)

This program is almost the same as (LB-G-k), except that instead of imposing participation
security as a constraint on the designer, we have priced individual rationality into the
Lagrangian, as part of the definition of ∇´

i . Also, the local equilibrium constraints point
towards the types with the binding participation constraints, rather than pointing away
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from the participation secure actions. This leads to a modified strategic virtual objective
as the minimand in (11).

Indeed, as in Remark 1, we can formulate (11) as the linear program

max
m:XpkqˆΩÑR`,

λ:ΘÑR

ÿ

θ

µpθqλpθq

s.t. λpθq ď
ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇´
i mpω|xq

ff

@θ, x

ÿ

ω

mpω|xq “ 1 @x

This is precisely the dual linear program to (10) (and hence (UB-P-k) as well), where
mpω|xq is the Lagrange multiplier on the constraint that the maximum informational vir-
tual objective at x is at least that obtained at the outcome ω, and σpx, ωq is the Lagrange
multiplier on the constraint that the minimum (modified) strategic virtual objective at ω
is at least that obtained at the action profile x. Indeed, this linear program has almost the
same form as (9), except for the aforementioned differences regarding participation con-
straints and the direction of local equilibrium constraints. It is in this sense that (LB-G-k)
and (UB-P-k) are “almost” a dual pair of linear programs.

Intuitively, the gap between (LB-G-k) and (UB-P-k) should disappear in the limit as k
goes to infinity, as long as there are solutions (11) that converge to a differentiable function
m : RN

` Ñ ∆pΩq and for which the actions 0 are participation secure. In this case, we can
approximate that limit with feasible solutions to (LB-G-k) that have a similar value, and
hence the bounds will be tight. This observation is formalized as Proposition 6 in Online
Appendix B.1.4.

When the bounds are tight, one has the intuition that this approximate duality becomes
exact in the limit as k goes to infinity. If we make the conceptual leap from approximate
to exact duality, then the usual properties of saddle points of linear programming problems
would apply, and a feasible pair pm,σq are optimal if and only if they satisfy complementary
slackness : σpx, θq ą 0 only if x minimizes the strategic virtual value for m at θ, and
mpω|xq ą 0 only if ω maximizes the informational virtual objective for σ at x. Moreover,
the potential upper bound is exactly equal to the guarantee lower bound. To be clear: we
do not formally establish that this exact complementary slackness is either necessary or
sufficient for pσ,mq to be optimal for (LB-G-k) and (UB-P-k), nor do we think it is true for
any finite k. Nonetheless, this form of complementary slackness is present in the limiting
solutions that we have constructed thus far in cases where the bounds are tight, including
in Brooks and Du (2021a,b, 2023). It has also proven to be a useful heuristic for deriving
the analytical solution, as we will demonstrate with examples in Sections 4 and 6.

In light of this somewhat speculative discussion, we feel compelled to briefly mention a
related phenomenon. When complementary slackness is exactly satisfied, the mechanism
M that solves (LB-G-k) maximizes the informational virtual objective for the information
structure I that solves (UB-P-k). As a result, if we were to view M as a direct mechanism
on I, we know that no agent has an incentive to misreport as the next lower type. But
in fact, for the solutions constructed for optimal auctions (Bergemann et al., 2016; Brooks
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and Du, 2021a,b) and for public goods and bilateral trade (Brooks and Du, 2023), the
mechanism turns out to be globally incentive compatible, meaning that truthful reporting is
an equilibrium of the game pM, Iq. Flipping the interpretation, we can also view I as a direct
recommendation information structure on M , and obeying the recommendation is also an
equilibrium. We have previously referred to this phenomenon as the double revelation
principle. While we do not yet have a general explanation for why global constraints are
implied by local at the saddle point, the fact that this rather mysterious structure has
manifested itself in both of these applications suggests that it is more than a coincidence.
While we do not discuss it further in this paper, the finding that truthful/obedient strategies
are an equilibrium at the saddle point is addressed in our related work.

Finally, we note that the solutions to the bounding programs need not be unique. More-
over, even when the bounds are tight, there may be solutions to (MAX-G) and (MIN-P)
that are not solutions to the bounding programs. For example, it is in principle possible
that the designer could maximize the guarantee by asking the agents to report the infor-
mation structure itself. Such solutions would be more in the spirit of the literature on
full implementation that we referenced in the introduction. However, such solutions are
implicitly ruled out by the focus on the bounding program (LB-G-k) and mechanisms that
admit a tight lower bound on welfare derived from local obedience constraints.

3.3.2 Further explanation of the bounding programs

We now give a heuristic explanation for why one-dimensional equilibrium constraints should
naturally appear in the bounding programs. At a key step in the derivation of the lower
bounding program, we formulated the Lagrangian (3) by adding to the designer’s objective
the slack in local upward obedience constraints, formulated as (2). Similarly, in deriv-
ing the upper bounding program, we formulated the Lagrangian (6) by subtracting from
the designer’s objective the slack in local downward truthtelling constraints and individual
rationality for the lowest type, formulated as (5). Implicit in these steps is a particular
choice of Lagrange multipliers on obedience, truthtelling, and individual rationality con-
straints. The logic behind these multipliers can be understood by examining more general
Lagrangian relaxations of the potential and the guarantee, where we allow an arbitrary
choice of multipliers.

Consider first the lower bound. The full set of obedience constraints is

ÿ

x´i,θ,ω

σpx, θquipω, θq rmpω|xi, x´iq ´mpω|x
1
i, x´iqs ě 0 (12)

for all i, xi, and x1i. For any choice of non-negative multipliers αobedi pxi, x
1
iq on these con-

straints, we can subtract the product of multipliers and the non-negative left-hand side of
the obedience constraints from the objective to obtain a saddle point problem that lower
bounds the max guarantee:

max
mPMk
s.t. p.s.

min
σPIk

ÿ

x,θ,ω

σpx, θq

»

–wpω, θqmpω|xq ´
ÿ

i,x1i

αobedi pxi, x
1
iquipω, θq rmpω|xq ´mpω|x

1
i, x´iqs

fi

fl . (13)
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In the outer maximization, we have restricted to mechanisms in Mk that are participation
secure (but not necessarily with 0 being the participation secure action).

Consider next the upper bound. Truthtelling constraints can be written in precisely the
same manner as obedience in (12), and individual rationality requires that

ÿ

x´i,θ,ω

σpxi, x´i, θquipω, θqmpω|xi, x´iq ě 0

for all i and xi. For any choice of non-negative multipliers αtruthi pxi, x
1
iq and βipxiq on

truthtelling and individual rationality constraints, we can add the product of multipliers
and non-negative left-hand sides to the objective to obtain a saddle point problem that
upper bounds the min potential:

min
σPIk

max
mPMk

ÿ

x,θ,ω

σpx, θq
”

wpω, θqmpω|xq `
ÿ

i,x1i

αtruthi pxi, x
1
iquipω, θq rmpω|xq ´mpω|x

1
i, x´iqs

`
ÿ

i

βipxiquipω, θqmpω|xq
ı

.

We emphasize that these bounds are valid for any choice of multipliers.
The generalized bounds differ from one another in three key respects: (i) the order of

moves is reversed, (ii) the lower bound imposes participation security on the mechanism,
whereas the upper bound prices individual rationality into the objective, and (iii) the
programs have different signs on equilibrium constraints.

As mentioned above, the minimax theorem implies that (i) is not an issue: For any
choice of multipliers, these are compact finite dimensional bilinear saddle point problems,
and we can reverse the order of moves without changing the value.

The differences (ii) and (iii) are more substantive. In formulating (LB-G-k) and (UB-P-k),
we engineered the multipliers and the choice of participation secure action to make the two
bounds as “similar as possible.” To finesse (ii), we fixed a particular action/signal for each
agent (labeled as zero) to be the one which is participation secure/has a positive multiplier
on individual rationality. To finesse (iii), we have reversed the sign on the equilibrium
constraints by linearly ordering actions and signals, dropping non-local constraints, and
flipping the direction of binding constraints between the two programs. Specifically, in the
lower bound, the binding local obedience constraints point away from the participation se-
cure action, and in the upper bound, the binding local truthtelling constraints point towards
the type with a binding individual rationality constraint. Up to rescaling the multipliers,
the resulting programs are simply

max
mPM0

k

min
σPIk

ÿ

x,θ,ω

σpx, θq
”

wpω, θqmpω|xq `
ÿ

i

αobedi pxiquipω, θq∇`
i mpω|xq

ı

max
mPMk

min
σPIk

ÿ

x,θ,ω

σpx, θq
”

wpω, θqmpω|xq `
ÿ

i

αtruthi pxiquipω, θq∇´
i mpω|xq

ı

,
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where we write αobedi pxiq for the rescaled multipliers on local upward obedience and αtruthi pxiq
for the rescaled multipliers on local downward truthtelling and individual rationality for
the lowest type.15

These steps get us almost to (LB-G-k) and (UB-P-k) (and more specifically, the latter’s
dual program (11)). To get the rest of the way, we set αobedi pxiq “ αtruthi pxiq “ 1 for all
i and xi. This choice of multipliers may seem arbitrary, but there is a sense in which it
is without loss when k is large. This can be seen most clearly in the continuous limit.16

Suppose that the action/signal space is all of R`, and mpω|xq is differentiable in xi for all
i. Then the continuous analogue of the strategic virtual objective is

ÿ

θ

«

wpω, θqmpω|xq `
ÿ

i

uipω, θqαipxiq
B

Bxi
mpω|xq

ff

.

where αipxiq is the Lagrange multiplier on local equilibrium constraints. Suppose further
that αi is bounded away from zero. Then we can change units so that an action xi P R` is
mapped to an action gipxiq, where

gipxiq “

ż xi

y“0

1

αipyiq
dyi.

With these new units, the mechanism becomes

m̃pω|yq “ mpω|g´1
1 py1q, . . . , g

´1
N pyNqq,

and hence, by the inverse function theorem, we have that at y “ gpxq,

B

Byi
m̃pω|yq

ˇ

ˇ

ˇ

ˇ

yj“gjpxjq@j

“
B

Bxi
mpω|g´1

pyqq
1

g1ipg
´1
i pyiqq

ˇ

ˇ

ˇ

ˇ

yj“gjpxjq @j

“ αipxiq
B

Bxi
mpω|xq.

The strategic virtual objective in the new units is therefore

ÿ

θ

«

wpω, θqm̃pω|yq `
ÿ

i

uipω, θq
B

Byi
m̃pω|yq

ff

.

In effect, the change in units for actions rescales the “size” of a local deviation, so that a
unit deviation in the new units is equivalent to a deviation of 1{αipxiq in the original units.

The point is that given any mechanism and optimal local multipliers, as long as that
mechanism is sufficiently well behaved when k is large, we can adjust the units for actions
so that the same mechanism (under the new units) would have exactly the same strategic
virtual objective, except that the multipliers are normalized to one. In applications, we
have found this to be a natural choice of units, but it is not a theoretical necessity.

15Note that these local multipliers are rescaled from the general multipliers, in order to align with
the definitions of ∇`i and ∇´i . For example, when xi ă k, αobedi pxiq “ pk ´ 1qαobedi pxi, xi ` 1{kq, and
αtruthi p0q “ kβip0q.

16A precise formulation of convergence to a continuous limit is given before Proposition 6 in Online
Appendix B.1.4.
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3.3.3 Context within the literature

The fact that local constraints appear so prominently in our theory is not entirely sur-
prising. The pattern of binding local truthtelling constraints that point to a lone type
with a binding participation constraint is familiar from the analysis of optimal auctions in
Myerson (1981). And yet, strong assumptions on primitives are usually needed for these
constraints to be the only ones that bind at the optimum, such as independence, private
values, and concavity of the revenue curve (i.e., regularity). An important distinction
is that in the classical analysis, the optimal multipliers and mechanism are derived from
primitive assumptions about information, whereas in the present model, the multipliers
and mechanism and information are all jointly determined.

Still, it is far from obvious that the local structure would emerge as optimal for the
applications we describe, and with minimal assumptions on primitives. This structure is
however suggested by prior work on guarantees and potentials in the optimal auctions prob-
lem (Bergemann, Brooks, and Morris, 2016, 2017, 2019, 2020; Du, 2018; Brooks and Du,
2021a,b). To begin with, Bergemann, Brooks, and Morris (2017) computed the guarantee
of the first-price auction and showed that the optimal multipliers on obedience constraints,
denoted αFPA, have a particular form: All upward constraints bind, and the multiplier
depends only on the deviation, and not the recommendation.17 Recall the general lower
bound program (13), and consider that lower bound applied to the guarantee for revenue
in the auction setting. Further suppose we set αobed “ αFPA (in lieu of the local-upward
multipliers used to obtain (LB-G-k)). We do not know what is the mechanism that max-
imizes (13) given these multipliers, but one feasible choice is the first-price auction itself,
and for that mechanism, the optimal value of (13) with the multipliers αFPA is precisely
the guarantee of the first-price auction. Thus, the value of (13) with αobed “ αFPA and
optimized over all participation secure mechanisms must be even higher.

This example shows that imposing a seemingly arbitrary order on actions and an as-
sociated pattern on multipliers αobed can yield non-trivial lower bounds on the maximum
guarantee. And yet, there were reasons to think that the particular multipliers αFPA would
not maximize the lower bound. In particular, in the limit where the number of bidders
becomes large, the guarantee of the first-price auction is generally bounded away from
total surplus. But Du (2018) showed that when values are common, there is a sequence
of mechanisms whose guarantees converge to total surplus when the number of bidders
goes to infinity. This is demonstrated using lower bounds on the mechanisms’ guarantees
which are derived from local obedience constraints that point away from an action which
is participation secure.18,19 Thus, for revenue maximization in common value auctions, this

17Here, “upward” is with respect to the natural order on bids, and the lowest action in the first-price
auction, a bid of zero, is participation secure.

18Further evidence that αFPA are not the optimal multipliers came from Bergemann, Brooks, and Morris
(2020), who calculated the potential of information structure that minimizes expected revenue for the first-
price auction. That potential turns out to be is strictly greater than the first-price auction’s revenue
guarantee. Thus, the pair of the first-price auction and its own worst-case information structure is not a
saddle point, even though a potential-minimizing information structure necessarily minimizes the welfare
of the guarantee-maximizing mechanism (that is, when the duality gap is zero).

19The working paper version of Du (2018) used discrete actions, whereas the published version worked
in the continuum limit.
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pattern of obedience constraints is approximately optimal with many bidders. Brooks and
Du (2021b) pursued this logic even further in the context of common value auction, and
showed that max guarantee equals min potential for any fixed number of bidders, and they
prove it using the pattern of constraints underlying the bounding programs (LB-G-k) and
(UB-P-k), specialized to that setting, and in the continuum limit. Our Theorem 1 distills
and extends this logic to more general environments.

We conclude this section with two other comments on the literature. In contrast to the
discrete model studied here, Brooks and Du (2021b) allow for mechanisms and information
structures that have arbitrary measurable spaces of actions and signals. As alluded to
previously, this appears to be necessary in order to exactly attain the max guarantee and
min potential. Moreover, the critical action and signal spaces end up being the non-negative
real line, and the optimal mechanism and information structures are almost everywhere
differentiable. The obvious advantage of working directly in the continuum limit is that
it allows one to use calculus in deriving and characterizing solutions. In our applications
below, we will often work in the continuum limit, guided by the discrete bounding programs
(LB-G-k) and (UB-P-k) as a heuristic. On the other hand, the discrete model allows us
to rely on the elementary but powerful theory of finite dimensional linear programming.
Also, the restriction to finite mechanisms and information structures dispels any concerns
that the desirable properties of our solutions might be due to a controversial use of infinite
action or signal spaces, as in the integer games commonly used in full implementation with
mixed strategies.

Finally, when working directly with infinite mechanisms and information structures,
Brooks and Du (2021b) finessed the issue of equilibrium existence by employing a novel
solution concept called a strong maxmin solution, which is a triple pM, I, bq, where b P
EpM, Iq, and GpMq “ P pIq. In Online Appendix B.1.3, we define an analogous ε-strong
maxmin solution, appropriate to the discrete setting where the optimum may only be
attained in the large k limit. Proposition 5 shows the equivalence between “max guarantee
equals min potential” and the existence of ε-strong maxmin solutions for arbitrary ε.

4 Social welfare and public expenditure

4.1 Setup

We now describe an application of our methodology to the public expenditure problem
(Samuelson, 1954; Güth and Hellwig, 1986). This application is developed in full rigor and
greater generality in Brooks and Du (2023). Here we present an informal overview of the
solution, in a special case where the social value of the good is known. Afterwards, we
reinterpret the case of N “ 2 as a model of bilateral trade.

The model was previously introduced in Section 2. We further assume that Θ consists
of the vectors θ P RN where for some i, θi “ θ and θ´i “ 0, and the prior µ is uniform
on Θ. Thus, there is common knowledge that values are non-negative and the social value
is

ř

i θi “ θ.20 We further assume that θ ě 1, so that the socially efficient outcome is

20Our results would remain the same if we relaxed the symmetry assumption and instead just assumed
that values are positive and the social value is at least θ. This is the formulation adopted in Brooks and
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full expenditure. While the social value of expenditure is known, what is unknown is the
agents’ idiosyncratic values. Moreover, each agent can opt out of the mechanism and pay
nothing. This gives rise to a free-rider problem: Agents have the option of behaving as if
their value is low, so as to avoid paying for the public good, while still enjoying its benefits.

4.2 Evidence from Simulations

In Figure 1, we plot features of numerical solutions to the bounding programs (LB-G-k)
and (UB-P-k) when N “ 2, θ “ 3 and k “ 30. Figure 1 reveals some striking structures,
and clearly suggests the functional form of the saddle point.

To start, the top-left panel is a contour plot of the total expenditure function Epxq “
1´mp0 | xq from (LB-G-k). It is clear that total expenditure depends only on the aggregate
action Σx. The middle-left panel shows that E is increasing and concave in Σx, and hits
1 at a finite level, which we denote by y. Finally, the bottom-left panel shows agent 1’s
expenditure share e1pxq{Epxq as a function of x1, holding fixed Σx at various levels. The
expenditure share is clearly linear in x1, interpolating from 0 to 1, meaning that e1pxq{Epxq
the proportional fraction x1{Σx. We refer to a mechanism of this form as a proportional
cost-sharing mechanism.

Turning now to the information structure, the top-right panel is a contour plot of the
log of the marginal distribution of signals ρpxq “

ř

θPΘ σpx, θq from (UB-P-k). Clearly,
the signal distribution depends only on the aggregate signal Σx. The middle-right panel
shows that ρ discontinuously drops to near zero when the aggregate signal Σx exceeds a
certain threshold, which is close to the point where E hits one.21 The bottom-right panel
shows agent 1’s interim value v1pxq “

ř

θ θ1σpx, θq{ρpxq. Again, this function is linear in
x1, holding Σx fixed, indicating that it also has a proportional form: v1pxq “ θx1{Σx.

We will presently use these functional forms and the complementary-slackness heuristic
discussed in Section 3.3.1 to deduce the functional forms of E and ρ and the threshold y.
We will also sketch the argument for why the bounds are tight. The heuristic argument
will appeal to a continuous approximation when k is large, and supposing that the total
expenditure and signal density functions converge to limits that are differentiable functions
on the action/signal space RN

` .

Du (2023). That paper also considers an extension where there are lower and upper bounds on the social
value of the good, and a lower bound on the expectation.

21In the simulations, the density is never exactly zero. One reason is that the barrier algorithm used to
compute the solution approaches the optimum from the interior of the feasible set. But more generally,
one of the criteria used for convergence by numerical algorithms is that the duality gap is below a certain
strictly positive threshold. For action/signal profiles above the boundary where the allocation hits one and
the density drops discontinuously, the likelihood is so small that the associated violation of complementary
slackness (and the corresponding contribution to the duality gap) is negligible.
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Figure 1: Numerical solutions for public goods when N “ 2, θ “ 3, and k “ 30.

4.2.1 Guarantee-maximizing mechanism

The logic behind the proportional cost-sharing mechanism can be understood by examining
its strategic virtual objective. First observe that social welfare is

ÿ

ω

wpω, θqmpω|xq “ pθ ´ 1qEpxq,
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where we allow total expenditure to be an arbitrary function of x P RN
` . Moreover, the

strategic adjustment is
ÿ

ω

uipω, θq∇impω|xq “ θi∇iEpxq ´∇ieipxq,

where ∇i “ B{Bxi is the partial derivative with respect to xi. (To reiterate, in this heuristic
derivation, we substitute the partial derivative ∇i for the discrete upward derivative ∇`

i .)
Hence, the strategic virtual objective (4) is

pθ ´ 1qEpxq `
ÿ

i

pθi∇iEpxq ´∇ieipxqq .

Now, if Epxq “ pEpΣxq and eipxq “ pxi{Σxq pEpΣxq, then (4) further reduces to

pθ ´ 1qp pEpΣxq ` pE 1pΣxqq ´
pN ´ 1q pEpΣxq

Σx
.

In other words, the strategic virtual objective depends only on the aggregate action and
the social value. As a result, the scope for information to depress welfare is limited to its
effect on the aggregate action. Note that participation security of xi “ 0 is satisfied only if
pEp0q “ 0, which is a feature of the solution we now derive.

In fact, the functional form for E is obtained by pursing this logic one step further, and
making the strategic virtual objective independent of the aggregate action as well. This is
also suggested by the complementary slackness heuristic of Section 3.3.1: the simulations
indicate that σpx, θq ą 0 for all θ and all x for which Σx ď y, and hence all such x must

minimize the strategic virtual objective. Thus, for some constant λ ě 0, pE must solve the
following linear first-order ODE

pθ ´ 1qp pEpyq ` pE 1pyqq ´
N ´ 1

y
pEpyq “ λ.

The solution, subject to the initial condition that pE “ 0 when y “ 0, is

pEpy;λq ”
λ

θ ´ 1

ż y

z“0

exppz ´ yq

ˆ

z

y

˙´pN´1q{pθ´1q

dz. (14)

The integral converges as long as θ{N ą 1. We now maintain this as an assumption on
parameters, which will be discussed further below.

In order for the mechanism to be feasible, we can only use this functional form until the
total expenditure hits 1. This occurs at a boundary which we implicitly define as pypλq. For
λ sufficiently small, pypλq is infinite (the expenditure never hits one) but for λ sufficiently

large, the boundary is finite. For y ą pypλq, we set pEpy;λq “ 1, so that the strategic virtual
objective for y ą pypλq is

pθ ´ 1q ´
N ´ 1

y
.
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Since this expression is increasing in y, the minimum strategic virtual objective for y ě pypλq
is attained at y “ pypλq, at a value of

pλpλq ” pθ ´ 1q ´
N ´ 1

pypλq
.

This is again consistent with complementary slackness: for the information structure sug-
gested by the simulations, there is zero probability of Σx ą pypλq, and hence these action
profiles need not minimize the strategic virtual objective.

By construction, the strategic virtual objective below the boundary pypλq is constant

and equal to λ. Therefore, the overall minimum strategic virtual objective is mintλ, pλpλqu.

Note that pEpy;λq is increasing pointwise in λ, so that both pypλq and pλpλq are decreasing
in λ. Hence, the expected minimum strategic virtual objective is maximized by choosing
λ as large as possible subject to λ ď pλpλq. This achieved by the λ that solves λ “ pλpλq,
the optimal boundary is y “ pypλq, and the optimal aggregate expenditure function is

Epyq “ pEpy;λq. Finally, we note that the boundary condition Epyq “ 1 implies that the
guarantee of this mechanism is

λ “ pθ ´ 1q
exppyqy´pN´1q{pθ´1q

şy

z“0
exppzqz´pN´1q{pθ´1qdz

.

This formula will be useful for comparing this guarantee with the potential of the informa-
tion structure that we construct in the next subsection.

4.2.2 Potential-minimizing information structure

Just as with the guarantee-maximizing mechanism, we can understand the information
structure in the simulations by examining the informational virtual objective. Let ρpxq
denote the density of the signal profile x and let vipxq denote the conditional expectation
of θi given x. Again, supposing that these are differentiable functions on RN

` , we have
ÿ

θ

wpω, θqσpx, θq “ Iω‰0pθ ´ 1qρpxq

and
ÿ

θ

uipω, θq∇iσpx, θq “ ∇i rpvipxqIω‰0 ´ Iω“iqρpxqs .

Hence, the informational virtual objective (8) at the outcome ω is

Iω‰0pθ ´ 1qρpxq ´
ÿ

i

∇i rpvipxqIω‰0 ´ Iω“iqρpxqs .

Now, with the functional forms ρpxq “ pρpΣxq and vipxq “ θxi{Σx suggested by the
simulations, the informational virtual objective further reduces to

Iω‰0

ˆ

pθ ´ 1qppρpΣxq ´ pρ1pΣxqq ´ θ
N ´ 1

Σx
pρpΣxq

˙

.
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In other words, the informational virtual objective only depends whether full expenditure
is implemented, and not on how the cost is shared. This limits the mechanism designer’s
ability to increase welfare by controlling the agents’ individual shares.

The optimal pρ can be deduced by pursuing this logic one step further, and making
the informational virtual objective independent of ω. This is again suggested by the com-
plementary slackness heuristic: the optimal expenditure is interior when Σx ď y, so the
informational virtual objective must be the equal for all ω at these signal profiles, meaning
that it is exactly zero. This is equivalent to the first-order linear ODE

pθ ´ 1qppρpyq ´ pρ1pyqq ´ θ
N ´ 1

y
pρpyq “ 0,

whose solution is

ρpyq “

$

&

%

exppyqy´pN´1qθ{pθ´1q

şy
z“0 exppzqz´pN´1qθ{pθ´1q zN´1

pN´1q!
dz

if y ď y;

0 if y ą y.
(15)

Note that the constant of integration is determined so that ρ integrates to 1 on the simplex
tx P RM

` |x ď yu. Again, the integrals in this expression converge as long as θ{N ą 1.
Equation (15) ensures that the informational virtual objective is zero for every outcome

when Σx ă y. Moreover, when Σx ą y, the density and the informational virtual objective
are both zero. But this leads to a minor paradox: If the informational virtual objective
is zero everywhere, then it seems that the potential is zero as well. However, we must
keep in mind that when Σx “ y, the density ρ drops discontinuously to zero, and so
the corresponding informational virtual objective is infinite. Thus, in order to calculate
the contribution of the boundary to the potential, we have have to reintroduce a discrete
upward deviation of size 1{k, for which the associated informational virtual objective at
Σx “ y is

Iω‰0pθ ´ 1qρpΣxq ´
ÿ

i

∇̃`
i

”´

θ
xi
Σx

Iω‰0 ´ Iω“i
¯

ρpΣxq
ı

« Iω‰0pθ ´ 1qρpyqk.

since the left-hand side is dominated by ∇̃`
i ρpyq “ p0 ´ ρpyqqk.22 In particular, the in-

formational virtual objective is positive when ω ‰ 0 and blows up as k goes to infinity.
As a result, the optimal outcome at the boundary Σx “ y is full expenditure, just as we
constructed in the previous subsection and also just as we observed in the simulations.

At the same time, as k goes to infinity, the mass on the boundary goes to zero, and is
approximately yN´1{pkpN ´1q!q. The boundary’s overall contribution to the informational
virtual objective is therefore approximately

pθ ´ 1qρpyq
yN´1

pN ´ 1q!
“ pθ ´ 1q

exppyqy´pN´1q{pθ´1q

şy

z“0
exppzqz´pN´1q{pθ´1qdz

“ λ. (16)

22The discrete derivative here can be interpreted as a deviation in the continuous mechanism, wherein
an agent increases their reported signal by 1{k. Such deviations are needed to obtain a tight upper bound
on the potential, given the discontinuity in ρ at the upper bound of the support. See Brooks and Du (2023)
for details. The public expenditure problem thus demonstrates that discrete local equilibrium constraints
are not the same as first-order conditions, and the former may be needed to pin down the value when
utilities are not smooth.
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Thus, the boundary’s contribution to the potential does not vanish in the limit as k goes
to infinity. Moreover, this expression for the potential exactly coincides with the guarantee
constructed in the previous subsection. A fortiori, λ is both the max guarantee and the
min potential, and moreover, the bounds in Theorem 1 coincide. See Brooks and Du (2023)
for a rigorous proof.

4.3 Discussion

To our knowledge, the proportional cost-sharing mechanisms are new to the literature. In
mitigating free riding, it is natural to consider agents’ marginal incentives to move their
actions in a direction that reduces their contribution. The strategic virtual objective is
precisely the sum of welfare and the agents’ marginal utilities with respect to their own
actions. By making the strategic virtual objective invariant to who pays for the good, these
mechanisms are resistant to adverse outcomes in which funding disproportionately depends
on agents who have an outsized marginal incentive to free ride, due to the particulars of
the information structure or equilibrium. Moreover, the form of the expenditure function
exactly balances welfare against the aggregate marginal incentive. As a result, if expected
total welfare were too low, then the expected aggregate marginal utility would be too high,
and some agent would benefit by increasing their action. This is the logic that sustains the
welfare guarantee.

2 4 6 8 10
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0.2

0.4

0.6

0.8

1.0

λ

-1+θ

Figure 2: Optimal guarantee as a fraction of the efficient surplus, N “ 2.

For the case of N “ 2, Figure 2 depicts the max guarantee as a fraction of the efficient
welfare, λ{pθ ´ 1q, as we vary θ. For θ ą 2, the guarantee starts near zero, increases, and
eventually converges to the efficient surplus. This is the range satisfying our parametric
assumption that θ{N ą 1, which we adopted after equation (14). When θ ď 2, the max
guarantee is zero. This is not surprising when θ ď 1, since in this case production is
inefficient. But when θ P r1, 2s, the max guarantee is zero, even though there is common
knowledge that full expenditure is efficient.

Indeed, if θ{N ď 1, then the guarantee of any participation secure mechanism is zero:
Suppose the agents have no information, so that each agent’s interim expected value is
θ{N . Under such information, it is an equilibrium for all agents to play the participation
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secure action with probability one. To see why, suppose agent i deviates and induces total
expenditure E. The other agents’ actions are participation secure, so ej “ 0 for all j ‰ i.
Hence, ei “ E, and agent i’s payoff is pθ{N ´ 1qE ď 0. In effect, any agent who deviates
has to provide all of the funds, which may not be worthwhile when the social-value per
capita is less than 1.

A näıve reaction might be that the issue is equilibrium selection: Under no informa-
tion, there are obviously alternative mechanisms and equilibria under which there is full
expenditure.23 However, it turns out that when θ{N ď 1, there are information structures
for which the potential is arbitrarily close to zero, meaning that all mechanisms and all
equilibria generate negligible surplus.24

These perverse information structures sometimes involve large differences in the agents’
interim values. In the most extreme cases, the value is zero for all but one of the agents.
One way to forestall the collapse to zero potential would be to limit the heterogeneity in
values. For example, if agents all have the same value θ{N P p1{N, 1q, then the potential
is the efficient surplus, and it can be achieved by the binary-action mechanism described
in Footnote 23. However, as long as Θ contains a state with θi “ 0 for every i, any
participation secure mechanism will still have an equilibrium with zero expenditure, so
that the max guarantee is zero, and the duality gap is positive.25

That the potential may be zero even though there is common knowledge that full
expenditure is efficient indicates how demanding participation security is, and it may be
deemed too demanding, depending on the circumstances. Even so, as long as the social
value is relatively large, proportional cost-sharing mechanisms attain non-trivial guarantees,
even when there can be extreme heterogeneity across agents and even with such a strong
assurance that agents will be willing to participate.

As mentioned above, Brooks and Du (2023) rigorously develops the public expenditure
application. The analysis is unchanged if we regard θ as only a lower bound on the social
value. They also show that proportional-cost sharing maximizes the guarantee when there
θ has a known expectation and known bounds on the support.

Finally, Brooks and Du (2023) show that the model with N “ 2 can be reinterpreted
as a model of bilateral trade, in which the seller’s value is θ1 P t0, θu, both equally likely,
and the buyer’s value is θ1` θ´1. Whether or not the good is produced is reinterpreted as

23For example, consider the mechanism in which agents can either opt out or opt in; there is full
expenditure only if all agents opt in, in which case they share the cost equally, and otherwise the total
expenditure is zero. Under this mechanism and no information, it is an equilibrium for all agents to opt in
(under the hypothesis that full expenditure is socially efficient).

24Such is the case for information structures of the same form as in (15) but with a positive lower bound
for the signals. The resulting potential would be the same as (16), but the integral in the denominator
would range from z “ y ą 0 to y. As y Ñ 0, the denominator blows up, and the potential converges to
zero. See Brooks and Du (2023) for details.

25In this example, Θ is a strict superset of the support of the prior. But it is straightforward to enrich the
example so that Θ is equal to the support of the prior. Suppose that µ puts probability 1´ ε on all agents
having a value of θ{N P p1{N, 1q and probability ε that all agents have a value zero. For any information
structure consistent with this prior, consider the direct mechanism that implements full expenditure if and
only if the expected social value given the reported signal profile is greater than 1. Clearly, the probability
that full expenditure is interim efficient converges to one as εÑ 0, so the potential converges to the efficient
surplus, even though the max guarantee is zero.
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whether or not trade occurs, and the sharing of the cost corresponds to the terms of trade.
The proportional cost-sharing mechanism is reinterpreted as a proportional-price trading
mechanism, where trade occurs with probability Epx1 ` x2q at the price

ppxq “ θ ´
x1

x1 ` x2

.

This mechanism is participation secure, because if x1 “ 0, trade only occurs at a price
equal to the highest value of the seller, and if x2 “ 0, then trade only occurs at a price
equal the lowest value of the buyer. The results on the public expenditure problem imply
that the min potential for gains from trade is zero when 1 ă θ ă 2, even though it is
common knowledge that trade is efficient. This illustrates that welfare maximization in
bilateral trade may be even more challenging than suggested by either the lemons market
of Akerlof (1970) or the low-welfare information structures constructed by Carroll (2016)
in the context of posted price mechanisms.

5 Optimal multi-good auctions

We next consider the optimal auctions problem introduced in Section 2 and prove non-
constructively that the bounds are tight.

5.1 Solving out transfers

As a preliminary step, we solve out the transfers from the bounding programs, and replace
them with a simpler object, the aggregate excess growth.26 In a slight abuse of notation, we
define M0

k to be the set of allocation and transfer rules pq, tq defined on the action profile
space Xpkq, and for which tip0, a´iq “ 0 for all i and a´i. Using the functional forms for
the agents’ and the designer’s preferences, the bounding programs are

max
pqp¨q,tp¨qqPM0

k

ÿ

θ

µpθqmin
x

«

ÿ

i

tipxq `
ÿ

i

˜

ÿ

l

θi,l∇`
i qi,lpxq ´∇`

i tipxq

¸ff

; (17)

min
σPIk

ÿ

x

max
pq̃,t̃qPp∆t0,...,NuqLˆRN

ÿ

θ

«

ÿ

i

t̃iσpx, θq ´
ÿ

i

˜

ÿ

l

θi,lq̃i,l ´ t̃i

¸

∇̃`
i σpx, θq

ff

. (18)

In writing the programs in this manner, we have simply integrated out ω and replaced the
terms corresponding to m with q and t, which are the allocation probabilities and expected
transfers, respectively.

Because the transfers are allowed to be unbounded, the bounding programs (17) and
(18) are not a special case of (LB-G-k) and (UB-P-k). However, it is straightforward to
extend the proof of Theorem 1 to cover the case of unbounded transfers. For completeness,
we have included a statement and proof of the analogue of Theorem 1 for the optimal

26In Online Appendix B.3, we prove several further results about transfers. In particular, we construct
“canonical” transfers associated with balanced aggregate excess growth functions, and we characterize all
transfer rules with a given aggregate excess growth.
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auctions problem in Appendix B.2. A difference with the analysis in Section 3 is that it is
no longer immediate the upper bound on min potential is bounded. But as we prove shortly,
there is a choice of σ that causes transfers to drop out and be replaced by a simpler object,
the aggregate excess growth (following terminology established in Brooks and Du (2021b)).
This reduction is the main advantage of working with unbounded transfers. Moreover, it
will be self-evident that the reduced program has a finite value.

To that end, observe that the coefficient on t̃i in (18) is

ξipxq ”
ÿ

θ

”

σpx, θq ` ∇̃`
i σpx, θq

ı

.

If σ is such that ξipxq is non-zero for some x, then the designer can take t̃i to be a large
number with the same sign as ξipxq and make the inner maximum arbitrarily large. Thus,
in order for the value of the inner program to be finite, it must be that ξipxq “ 0. This
yields a difference equation for σ, for which the solution is

ÿ

θ

σpx, θq “ ρipxiq
ÿ

θ

σp0, x´i, θq,

where

ρipxiq ”

ˆ

1´
1

k

˙kxi 1

kIxiăk
.

Iterating over i, and using the fact that
ř

xi
ρipxiq “ 1, we conclude that

ÿ

θ

σpx, θq “
ź

i

ρipxiq ” ρ.

We have proven the following:

Proposition 1. The value of the inner program of (18) is finite only if the marginal of σ
on x is ρ.

Remark 3. This result relies on the fact that the designer places positive weight on trans-
fers. It would remain true if, say, the designer’s objective were a weighted sum of revenue
and social welfare, with the weight on revenue normalized to be one. At a higher level, it
is not surprising that the potential-minimizing signals should be independent when the ob-
jective is revenue maximization, because of the well-known result that correlation between
signals can be exploited to make participation constraints bind (Myerson, 1981; Crémer
and McLean, 1988; Luz, 2013). Note that independence of signals is not a general property
of potential-minimizing information: in the public expenditure problem studied in Section
4, where the objective is social welfare maximization and transfers have to satisfy ex post
budget balance, the potential-minimizing signal distribution is actually correlated.

Remark 4. There is a curious connection between Proposition 1 and the characterization
of revenue maximizing mechanisms in the independent private value model due to Myerson
(1981). As mentioned above in Section 3.3.3, in that model, all of the local downward
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incentive constraints and the lowest participation constraint bind. Moreover, in the regular
case, the optimal multiplier on the local downward constraint is the inverse hazard rate
of the marginal distribution of the signal.27 (See also discussions in Vohra, 2011; Cai,
Devanur, and Weinberg, 2019). Proposition 1 provides a partial converse: If these are the
binding constraints at the optimum, then signals must be independent, with the multiplier
being the inverse hazard rate of the marginal.

Continuing with our analysis, in light of Proposition 1, any optimal solution σ of (18)
must be such that the marginal on x is ρ, and t̃i drops out of the inner program. Moreover,
the optimal q̃ will simply allocate good l to whichever bidder maximizes the informational
virtual objective, ´

ř

θ θi,l∇̃
`
i σpx, θq, as long as the maximum is positive, and otherwise

the good will not be sold. We can therefore rewrite (18) as the linear program

min
σ:XpkqˆΘÑR`,
γ:XpkqÑRL`

ÿ

x,l

γlpxq

s.t. γlpxq ě ´
ÿ

θ

θi,l∇̃`
i σpx, θq @x, i, l

ÿ

θ

σpx, θq “ ρpxq @x

ÿ

x

σpx, θq “ µpθq @θ,

(19)

It is evident that (19) has a finite value, and therefore so does (18).

Remark 5. There is a tight connection between the informational virtual objective and the
classical virtual value. Let

vi,lpxq ”
1

ρpxq

ÿ

θ

θi,lσpx, θq

denote agent i’s interim value for good l. Hence, for xi ă k,

´
ÿ

θ

θi,l∇̃`
i σpx, θq “ k rvi,lpxqρpxq ´ vi,lpxi ` 1{k, x´iqρpxi ` 1{k, x´iqs

“

„

vi,lpxq ´
k ´ 1

k
∇̃`
i vi,lpxq



ρpxq.

The term in brackets is no more than agent i’s virtual value for good l. This is a discrete
analogue of the virtual value derived in Bulow and Klemperer (1996) in a continuous and
differentiable independent-signal interdependent-values model:

vi,lpxq ´
1´ Fipxiq

fipxiq
∇ivi,lpxq,

where Fi is the cumulative distribution of i’s signal and fi is the density. This formula
reduces to that of Myerson (1981) in the special case of private values and a single good,

27For this result, it is necessary to formulate the truthtelling constraint in ex ante probability units.
Otherwise, the optimal multiplier is the upward cumulative distribution.
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and under the normalization that vipxq “ xi. Note that for the distribution ρi, the discrete
inverse hazard rate is precisely pk ´ 1q{k. Thus, in the optimal auctions problem, the
upper bounding program reduces to choosing an independent-signal information structure
to minimize the classical Myersonian upper bound on revenue, i.e., the expected highest
virtual value for each good.

We now complete the task of solving out transfers. The dual of (19) is:

max
qě0,Ξ,λ

ÿ

θ

µpθqλpθq `
ÿ

x,l

ρpxqΞpxq

s.t. λpθq ` Ξpxq ď
ÿ

i,l

θi,l∇´
i qi,lpxq @θ, x

ÿ

i

qi,lpxq ď 1 @x, l.

(20)

The last step is to manipulate (17) into a form that is comparable to (20). Let

Ξpxq ”
ÿ

i

“

∇`
i tipxq ´ tipxq

‰

. (21)

Clearly, Ξ is the only feature of the transfer that matters for the value of (17). So, we could
substitute Ξ for the transfers, but we have to restrict ourselves to Ξ that satisfy (21) for
some participation secure transfer rule. The following lemma reformulates that constraint
without the existential quantifier:28

Lemma 1. Given Ξ : Xpkq Ñ R, there exists a t : Xpkq Ñ RN that solves

Ξpxq “ ∇`
¨ tpxq ´ Σtpxq @x; (22)

tip0, x´iq “ 0 @i, x´i (23)

if and only if

ÿ

x

ρpxqΞpxq “ 0. (24)

Proof. By Fredholm’s alternative, there exists a t that solves (22) and (23) if and only if
there does not exist a ρ̃ such that

ÿ

x

ρ̃pxqΞpxq ‰ 0 (25)

ρ̃pxq “

#

k´1
k
ρ̃pxi ´ 1{k, x´iq if 0 ă xi ă k;

pk ´ 1qρ̃pk ´ 1{k, x´iq if xi “ k.

28We defined ∇`i to be scaled by pk ´ 1q rather than k so that the distribution that appears in the
balance condition (24) is precisely ρ, which also appears independently in Proposition 1. By defining ∇`i
so that these two distributions are the same, the only remaining difference between the upper and lower
bounds is the direction of discrete derivatives on the allocation rule.
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Thus, the choice of ρ̃p0q pins down the rest of ρ̃, and in fact

ρ̃pxq “ ρpxq
ρ̃p0q

ρp0q
.

As a result, (25) holds if and only if
ř

x ρpxqΞpxq ‰ 0, and therefore (22)–(23) has a solution
if and only if Ξ satisfies (24).

We refer to aggregate excess growth functions that satisfy (24) as balanced. This con-
dition appeared in earlier work on the optimal auctions problem (Brooks and Du, 2021b).
We comment more on the connection in Online Appendix B.3.

By Lemma 1, program (17) is equivalent to the following:

max
q:XpkqÑRNL` ,

Ξ:XpkqÑR, λ:ΘÑR

ÿ

θ

µpθqλpθq

s.t. λpθq ` Ξpxq ď
ÿ

i,l

θi,l∇`
i qi,lpxq @θ, x

ÿ

x

ρpxqΞpxq “ 0

ÿ

i

qi,lpxq ď 1 @x, l.

(26)

Here we have substituted Ξ according to (21), and added the balance constraint (24).
Alternatively, we can just add the expectation of Ξ to the objective, to obtain a program
that is still equivalent to (17) but is closer in form to (20):

max
q:XpkqÑRNL` ,

Ξ:XpkqÑR,λ:ΘÑR

ÿ

θ

µpθqλpθq `
ÿ

x

ρpxqΞpxq

s.t. λpθq ` Ξpxq ď
ÿ

i,l

θi,l∇`
i qi,lpxq @θ, x

ÿ

i

qi,lpxq ď 1 @x, l.

(27)

To see why adding the expectation of Ξ under ρ to the objective is equivalent to imposing
the balance condition (24), note that if pλ,Ξq is feasible for (26), then it is also feasible for
(27) with the same objective value. On the other hand, if we take pλ,Ξq that are feasible
for (27), then we can define

pλpθq ” λpθq `
ÿ

x1

ρpx1qΞpx1q, pΞpxq ” Ξpxq ´
ÿ

x1

ρpx1qΞpx1q.

Then pΞ is balanced, so that ppλ, pΞq is feasible for (26), and
ÿ

θ

µpθqpλpθq “
ÿ

θ

µpθqλpθq `
ÿ

x

ρpxqΞpxq.

We have proven the following:
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Proposition 2. The program (17) has the same value as (27). The program (18) has the
same value as (20).

Thus, the task of showing the bounds are tight is reduced to showing that (20) and (27)
have approximately the same value, in the limit as k becomes large.

5.2 Tightness of the bounds

We now arrive at the main result for this section:

Theorem 2. For the optimal auctions problem,

lim
kÑ8

W (18) “ W (MIN-P) “ W (MAX-G) “ lim
kÑ8

W (17).

The formal proof appears in Appendix A.2. Here we sketch the argument. In light
of Proposition 2, it suffices to show that (20) has the same value as (27), in the limit
as k goes to infinity. The only difference between these two programs is the direction of
local derivatives. We show that there is an optimal solution pλ,Ξ, qq to (20) that can be
manipulated into a feasible solution pλ1,Ξ1, q1q of (27), such that the difference in value is
small when k is large. In fact, this is easy to do when q is non-decreasing, in which case
we can set λ1 “ λ k

k´1
and Ξ1 “ Ξ k

k´1
unchanged and define, for 0 ă xi ă k,

q1i,lpxq “ qi,lpxi ´ 1{k, x´iq. (28)

As a result,

∇´
i qi,l “

k

k ´ 1
∇`
i q
1
i,l,

and (setting aside delicate boundary cases) the values of the two solutions in their respective
programs will be close as k becomes large. But if q decreases at x, then it could be that
the “shifted” allocation q1 defined by (28) is infeasible, because

ř

i q
1
i,lpxq ą 1. However, as

long as the absolute decrease in q is small when k is large, we can simply rescale q1 so that
it is feasible, without significantly changing the discrete upward derivative.

In fact, we establish an even stronger property: Lemma 4 in Appendix A.2 shows that
for every ε ą 0, we can find a k large enough so that there is an allocation q̃ that is ε-optimal
for (20) and for which

|q̃i,lpxi ` 1{k, x´iq ´ q̃i,lpxq| ď ε

for every i, l, and qx. Thus, the allocation q̃ is approximately optimal and almost contin-
uous.

At a high level, the argument is as follows. Let pλ˚,Ξ˚, q˚q be optimal for (20). Suppose
we change the allocation to q, hold fixed pλ˚, qq, and partially optimize the value of (20)
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over Ξ. This gives us a value, denoted W pqq, which is clearly concave in q.29 We can use
this fact to “smooth out” q˚ to produce the desired q̃.30

In particular, given y P Xpkq, define

qypxq “

#

q˚px´ yq if xi ě yi @i;

0 otherwise.

This is the allocation in which all actions are translated down by the vector y (and the
allocation is zero if any of the translated actions are negative). Lemma 4 shows that each qy

is almost optimal, as long as yi is small relative to k. In particular, if yi is less than
?
k, then

the approximate optimality result holds, as we now explain. Except at the boundaries, the
term in W pq˚q that involves ∇´

i q
˚
i,lpxq also appears in the calculation of W pqyq, except that

the probability weighting changes from ρpxq to ρpx`yq. The likelihood ratio is on the order

of p1´1{kq
?
k « expp´1{

?
kq, which converges to 1 as k goes to infinity, so that for k large,

the contribution of these terms is essentially the same. There are also terms that appear in
W pqyq but have no counterpart in W pq˚q, which are when xi ă yi for some i, so qy is zero.
But these terms have vanishingly small probability weight according to ρ, on the order of
1´ expp´1{

?
kq. Moreover, we show that the optimal λ˚ must be bounded uniformly in k.

This result crucially relies on the full support hypothesis (previously introduced in Section
2) that µpθq ą 0 for all θ P Θ. Boundedness of λ˚ implies that the optimal Ξpxq is bounded
for regions in which qy is zero, and hence the contribution of these terms is negligible as
well. Finally, there are terms in W pq˚q, for xi ą k ´ yi, which have no counterpart in the
translated allocation. These terms may grow on the order of k, but the weight assigned to
these terms under ρ is on the order of expp´

?
kq, so that the overall contribution to W pq˚q

is again small when k is large.
Hence, we can define a new solution q̃ to be the arithmetic average of the qy for y P Xpkq

and for which yi ď
?
k for all i. By concavity, W pq̃q is at least the minimum W pqyq across

y, which is close to W pq˚q. Finally, as long as the number of terms in that are averaged in
q̃pxq grows without bound as k goes to infinity, very few terms in the average will change
when we increment x, so that q̃ is almost continuous.

Incidentally, this argument also establishes an upper bound on the rate of convergence
of the values of the bounding programs, which is shown to be on the order of 1{

?
k. This

explained in detail in Proposition 9 in Online Appendix B.4.

5.3 Exchangeable values

An interesting special case is when the prior is exchangeable across goods, meaning that if
θ1 is obtained from θ by permuting agent i’s values for the different goods, then both value
profiles are equally likely. In this case, it is without loss to restrict attention to mechanisms

29To see that W is concave, suppose pλ˚,Ξ, qq and pλ˚,Ξ1, q1q are both feasible, with values W pqq and
W pq1q. Then for any α P r0, 1s, the mixture pαΞ ` p1 ´ αqΞ1, λ˚, αq ` p1 ´ αqqq is also feasible and has a
value αW pqq ` p1´ αqW pq1q, which is a lower bound on the value W pαq ` p1´ αqq1q.

30The previous proof of the smoothness of optimal solutions to (20) contained an error. We are grateful
to Gabriel Carroll for suggesting this correct proof strategy.
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in which the seller only offers the goods as a grand bundle (meaning that probabilities
of being allocated each good is the same), and to information structures in which agents
only receive information about the value of the grand bundle. The reason is as follows.
Clearly, if the mechanism only offers the grand bundle, then in computing the guarantee, it
is without loss to consider information structures that are only informative about the value
of the grand bundle. In the other direction, if the prior is exchangeable across goods and
the information structure is only informative about the value of the grand bundle, then
agents will have the same interim expected value for each good, so it is without loss to
restrict attention to mechanisms for which the allocation is the same for all goods, i.e., the
mechanism only offers the grand bundle.

In independent and concurrent work, Deb and Roesler (2023) studied informationally
robust optimal auctions with a single agent.31 They also conclude that when the prior is
exchangeable across goods, there is a guarantee-maximizing mechanism in which the seller
only offers the grand bundle. Online Appendix B.5 contains numerical examples in which
the exchangeability condition is violated, and guarantee-maximizing mechanisms offer more
than just the grand bundle. We also report simulations for the cases where there is a single
good and values are either perfectly correlated or independently distributed.

6 Optimal Auctions

with a Known Empirical Distribution

We now apply our theory to the optimal auctions problem when there is a single good
L “ 1, and the empirical distribution of the agents’ ex post values for the good is known.32

This assumption is especially natural in a large market, although for ease of analysis, we
will primarily focus on N “ 2. We set Θ “ tp1, 0q, p0, 1qu, with the two value profiles being
equally likely. By Theorem 2, the bounding programs are tight. We will analyze their
solutions when k becomes large.

6.1 Potential-minimizing information structures

If the agents have no information about their values, no mechanism can guarantee more
revenue than 1{2, which is each agent’s ex ante expected value for the good. The min
potential is therefore less than 1{2.

Moreover, the potential of any information structure I “ pS, σq is at least 1{2. To
see why, note that v1psq ` v2psq “ 1 for all s. Now, consider the direct mechanism that
allocates the good to whichever agent has vipsq ě 1{2 (breaking ties arbitrarily when
v1psq “ v2psq “ 1{2), and charge a price of 1{2 to whoever is allocated the good. This

31Che and Zhong (2021) study a related model, but rather than fixing the distribution of ex post values,
they consider value distributions with fixed mean values for each good, goods are divided into “product
groups,” and some convex moment is known for the sum of the values within each product group. They
similarly find that the maxmin mechanism involves bundling all of the goods within a product group.

32The case of known empirical distribution may be contrasted with the common value model studied by
Brooks and Du (2021b), where there is uncertainty about the empirical distribution, but no uncertainty
about heterogeneity across agents.
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mechanism is clearly incentive compatible and individually rational and it generates revenue
of 1{2. We therefore conclude that the min potential is exactly 1{2, and no information is
a potential minimizer.

6.2 Guarantee-maximizing mechanism

Theorem 2 implies that there are mechanisms with profit guarantees arbitrarily close to
1{2. Constructing such mechanisms turns out to be a subtle matter, as we now explain.
A natural guess is to simply post a price of p “ 1{2 ´ ε for ε small (so as to break ties in
favor of buying). Such mechanisms would be approximately optimal under no information.
However, the guarantee of such a posted price is actually bounded away from 1{2. To
see why, consider the following information structure: Si “ t0, 1u, signals are conditionally
independent, and si “ θi with probability 3{4 conditional on θ. When ε is small, there is an
equilibrium of the posted price mechanism with this information structure in which agents
purchase if and only if si “ 1.33 Thus, under this information structure and equilibrium,
a sale occurs only if at least one agent has a signal si “ 1, which occurs with probability
13{16 ă 1.

We conclude that posted prices do not maximize the guarantee. Intuitively, what is
needed is a mechanism that will aggregate the agents’ private information in order to
determine who has the higher value and should therefore purchase the good. But rather
than proceeding from first principles, we will simply construct feasible solutions to (17)
with value close to 1{2.

To that end, let λpvq ” 1{2 for all v. Motivated by simulations of the sort described in
Section 4, we guess and verify a solution of the following form. Fix a positive integer m,
and define

qipxq ”

$

’

&

’

%

1 if xi ą xj `m;

0 if xi ă xj ´m;
xi´xj`m

2m
otherwise

and

Ξpxq ” min
v
v ¨∇`qpxq ´ λpvq “ min

i“1,2
∇`
i qpxq ´ 1{2.

By construction, pλ,Ξ, qq is feasible for (27). Note that

∇`
i qpxq “

#

k´1
k

1
2m

if m ą xi ´ xj ě ´m and xi ă k;

0 otherwise.

33Conditional on a signal si “ 0 and asking to purchase the good, the posterior probability that vi “ 1
is only 1{4, so that the expected utility from buying the good is

1

4

ˆ

3

4
`

1

4

1

2

˙

p1´ pq `
3

4

ˆ

1

4
`

3

4

1

2

˙

p0´ pq “ ´
1

8
`

11

16
ε,

which is negative when ε ă 2{11.
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Hence,

Ξpxq “ ´1{2`

#

k´1
k

1
2m

if |x1 ´ x2| ă m and maxpx1, x2q ă k;

0 otherwise.
(29)

The above construction ensures that the strategic virtual objective is equalized across
bidders all x.

Now, when k is large, x converges in distribution to independent exponential, so x1´x2

converges to Laplace, and |x1´x2| converges to exponential. Thus, when k is large we have

ÿ

xPXpkq

ρpxqΞpxq « ´1{2`
1

2m

ż m

y“0

expp´yqdy

“ ´1{2`
1´ expp´mq

2m
.

The limit profit guarantee associated with this mechanism is therefore arbitrarily close to
p1´ expp´mqq{2m. Using L’Hôpital’s rule, we find that

lim
mÑ0

1´ expp´mq

2m
“ lim

mÑ0

expp´mq

2
“

1

2
.

Hence, by first taking k large and then m small, the seller can guarantee profit arbitrarily
close to 1{2. In this limit, the good is essentially allocated to whichever agent has the
highest action.

Note that for finite k, the function Ξ given by (29) is not balanced. But it is straight-
forward to modify the solution by setting C equal to the expectation of Ξ, replacing λ and
Ξ with λ ` C and Ξ ´ C, respectively. Then Ξ ´ C is balanced, and hence by Lemma
1, there exist participation secure transfers t with aggregate excess growth Ξ´ C, so that
pλ` C, q, tq is feasible for (17) and has value close to 1{2.

Finally, we relate the optimal Ξ to the guarantee-maximizing transfers. Propositions 7
and 8 in Online Appendix B.3 give a general construction of transfers that induce a given
balanced aggregate excess growth. In Online Appendix B.3.4, we show that applying this
construction to the present model leads to fairly complicated transfers, given in equation
(50). However, by leveraging additional results in the Online Appendix, and Proposition 8
in particular, we constructed an alternative transfer rule that induces the same aggregate
excess growth and is considerably simpler. In the limit where we first take k Ñ 8 and then
mÑ 0, these transfers converge to

tipxq “

$

’

&

’

%

0 if xi “ 0 or xi ă xj;

1{4 if xi “ xj “ą 0 or xi ą xj “ 0;

1{2 xi ą xj otherwise.

Thus, as mÑ 0 the good is allocated to the high bidder for a posted price of 1{2.
The bottom line is that the seller can guarantee revenue of 1{2 with mechanisms that

are, in a sense, discrete approximations of the following enriched posted price mechanism:
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the agents bid non-negative real numbers, the high bidder wins, and the winner pays a
posted price of 1{2. The extra actions allow the agents to express intensity of preference
in a manner that aggregates private information and determines which bidder has the
higher expected value. Importantly though, in the discrete approximations, it is necessary
to smooth out the allocation, so that a change in the bid has negligible effect on the
allocation when k is large.

6.3 Extensions

The construction can be generalized to priors µ supported on value profiles for which
θ1 ` θ2 “ θ for some constant θ, and the two agents have the same ex ante expected value
θ{2. We can proceed with the same allocation q as before, λpθq “ θ{2 for all θ,

Ξpxq “ θmin
i“1,2

∇`
i qpxq ´ θ{2 ď min

θ
θ ¨∇`qpxq ´ λpθq

for all x, and multiplying the transfers by a factor of θ. Our constructed solution pλ,Ξ, qq
is still feasible for (27), and the mechanism remains optimal.

The generalization to N ą 2 is both more interesting and less straightforward. The
critical step is to construct an allocation that satisfies

ÿ

xPXpkq

ρpxq min
i“1,...,N

∇`
i qpxq « 1{N.

Simulations indicate that such an allocation exists for N “ 3. If existence of such an
allocation can be established theoretically, then it is straightforward to extend the rest of
our construction to prove that (18) has value θ{N .

7 Conclusion

This paper has developed new tools for the characterization of guarantee-maximizing mech-
anisms and potential-minimizing information structures. The bounding programs we de-
rived have a natural economic interpretation in terms of the strategic and informational
virtual objectives, which adjust the designer’s welfare to account for agents’ incentives to
deviate to nearby actions or mimic nearby types. We used the bounding programs to
construct solutions for public expenditure, bilateral trade, and optimal auctions, and we
showed non-constructively that the bounds are tight for optimal auctions with multiple
goods and interdependent values. In all of these cases, we conclude that max guarantee
equals min potential.

There remain many promising applications which we have not yet explored, in different
environments and under different conditions on primitives. We also suspect that our non-
constructive tightness result can be extended beyond the optimal auctions problem. In
addition, we have gone go back and forth between the discrete model for general theory
and the continuous model in applications. It would be useful to formulate the bounding
problems and their duality directly in the continuum limit. Finally, an ambitious and
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challenging goal is to incorporate more flexible restrictions on the agents’ information into
the framework.

We conclude by discussing the interpretation of our results. The guarantee-maximization
program literally represents the preferences of a designer who evaluates each mechanism
by its minimum welfare across all information structures and equilibria. We do not believe
that real-world designers generally exhibit such extreme pessimism and paranoia. At the
same time, we suspect that designers in a practical setting may be unable or unwilling
to commit to a single information structure and equilibrium as the correct description of
behavior, as required by the classical Bayesian mechanism design paradigm. The truth is
likely somewhere in between: Designers may know some features of agents’ information
without being able to give a complete description. Of course, uncertainty about agents’
information may be accompanied by distinct concerns about the complexity of the mech-
anism or the empirical validity of the equilibrium hypothesis. It is beyond our present
abilities to incorporate all such concerns into the theory of optimal mechanism design. We
can, however, ask which mechanisms are robust to uncertainty about agents’ information in
an extreme sense, provided we are still willing to accept the common prior and Bayes Nash
equilibrium as an “as-if” description of behavior. Our results show that it is not necessary
for the agents to explicitly articulate or communicate all of their private information in
order for a mechanism to attain the optimal guarantee, and in that sense, the approach
does not unduly strain the credulity of our assumptions.

In our view, the greatest promise of this approach is that it may lead to the discovery
of novel mechanisms, such as proportional auctions, proportional cost-sharing mechanisms,
and proportional-price trading mechanisms, that are compelling both for their optimal
worst-case performance as well as for their simplicity.34 The guarantee of a mechanism is,
in a sense, a measure of how “safe” it is. To be sure, it is just one of many criteria that might
be considered in applied mechanism design. For example, one may also wish to consider
how the mechanism performs in benchmark environments, such as affiliated values in the
auction context. Importantly, these criteria need not conflict: when values are common
and the number of agents is large, the maximum guarantee for profit is approximately the
entire surplus, so that profit-guarantee-maximizing mechanisms are nearly optimal in all
information structures (Du, 2018; Brooks and Du, 2021b); and likewise for the welfare-
guarantee-maximizing mechanism in the public expenditure problem when the social value
is large. This will not always be the case, however, and an important task for future work
is to evaluate guarantee-maximizing mechanisms on a variety of information structures and
under different solution concepts. Such analyses will lead to a more balanced view of the
merits and demerits of these new mechanisms, and of the tradeoff between informational
robustness and Bayesian optimality.

34The worst-case analysis naturally leads to a great deal of structure on information and mechanisms,
which we view as being relatively “simple.” This judgment is of course subjective.
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Güth, W. and M. Hellwig (1986): “The private supply of a public good,” Journal of
Economics, 46, 121–159.

He, W. and J. Li (2022): “Correlation-robust auction design,” Journal of Economic
Theory, 200, 105403.

Jehiel, P., M. Meyer-ter Vehn, B. Moldovanu, and W. R. Zame (2006): “The
limits of ex post implementation,” Econometrica, 74, 585–610.

Luz, V. F. (2013): “Surplus extraction with rich type spaces,” Journal of Economic
Theory, 148, 2749–2762.

Maskin, E. (1999): “Nash Equilibrium and Welfare Optimality,” The Review of Economic
Studies, 66, 23–38.

McAfee, R. P. and P. J. Reny (1992): “Correlated Information and Mechanism De-
sign,” Econometrica, 60, 395–421.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research,
6, 58–73.

Samuelson, P. A. (1954): “The pure theory of public expenditure,” The Review of
Economics and Statistics, 387–389.

Serrano, R. and R. Vohra (2010): “Multiplicity of mixed equilibria in mechanisms: A
unified approach to exact and approximate implementation,” Journal of Mathematical
Economics, 46, 775–785.

41



Vohra, R. V. (2011): Mechanism Design: A Linear Programming Approach, vol. 47,
Cambridge University Press.

Yamashita, T. (2016): “Revenue Guarantee in Auction with a (Correlated) Common
Prior and Additional Information,” Working paper.

Yamashita, T. and S. Zhu (2018): “On the foundations of ex post incentive compatible
mechanisms,” American Economic Journal: Microeconomics.

A Omitted proofs

A.1 Proof of Theorem 1

A.1.1 Summation by parts formula

Lemma 2. For functions f : Xpkq Ñ R and g : Xpkq Ñ R,

ÿ

x

p∇´
i fpxqqgpxq “ ´

ÿ

x

fpxqp∇̃`
i gpxqq.

Proof. Using the definitions, we have

ÿ

x

p∇´
i fpxqqgpxq “

ÿ

x´i

«

kfp0, x´iqgp0, x´iq `
ÿ

0ăxiăk

kpfpxq ´ fpxi ´ 1{k, x´iqqgpxq

` pfpk, x´iq ´ fpk ´ 1{k, x´iqqgpk, x´iq

ff

“ ´
ÿ

x´i

«

´ kfp0, x´iqgp0, x´iq ´
ÿ

0ăxiăk

kfpxqgpxq `
ÿ

0ďxiăk´1{k

kfpxqgpxi ` 1{k, x´iq

´ fpk, x´iqgpk, x´iq ` fpk ´ 1{k, x´iqgpk, x´iq

ff

“ ´
ÿ

x´i

«

ÿ

0ďxiăk´1{k

fpxqkpgpxi ` 1{k, x´iq ´ gpxqq ` fpk ´ 1{k, x´iqgpk, x´iq

´ kfpk ´ 1{k, x´iqgpk ´ 1{k, x´iq ´ fpk, x´iqgpk, x´iq

ff

“ ´
ÿ

x

fpxq∇̃`
i gpxq.
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A.1.2 W (MIN-P) is greater than W (MAX-G)

For any M PM˚, I P I, and b P EpM, Iq,

P pIq “ sup
M 1PM˚,b1PEpM 1,Iq

W pM 1, I, b1q ě W pM, I, bq ě inf
I 1PI,b1PEpM,I 1q

W pM, I 1, b1q “ GpMq.

and hence W (MIN-P) “ infIPI P pIq ě supMPM˚ GpMq “ W (MAX-G) as desired.

A.1.3 (UB-P-k) is an upper bound on (MIN-P)

For each k, an upper bound on W (MIN-P) is the infimum potential across all information
structures of the form pXpkq, σq for σ P Ik.

Now, fix I “ pXpkq, σq, σ P Ik. For any M PM˚ and b P EpM, Iq, it must be that for
all i and xi, agent i’s interim payoff given a signal xi is non-negative. If not, then agent
i could obtain a higher payoff by playing any participation secure action with probability
one. Thus, participation security implies interim individual rationality. An upper bound on
P pIq may therefore be computed by applying the revelation principle and maximizing the
designer’s payoff over all incentive compatible and individually rational direct mechanisms,
i.e.,

max
m:XpkqˆΩÑR`

ÿ

x,θ,ω

wpω, θqmpω|xqσpx, θq

s.t.
ÿ

x´i,θ,ω

uipω, θq rmpω|xi, x´iq ´mpω|x
1
i, x´iqsσpxi, x´i, θq ě 0 @i, xi, x

1
i (30a)

ÿ

x´i,θ,ω

uipω, θqmpω|xi, x´iqσpxi, x´i, θq ě 0 @i, xi (30b)

ÿ

ω

mpω|xq “ 1 @x (30c)

This program has a bounded feasible set, and by hypothesis it is non-empty because a
participation-secure mechanism exists. By strong duality, this program and its dual have
the same optimal value.

Let αipxi, x
1
iq ě 0 be the multiplier on the truthtelling constraint (30a), let βipxiq ě 0 be

the multiplier on individual rationality (30b), and let γpxq be the multiplier on feasibility
(30c). The dual to (30) is

min
α:X1pkqˆX1pkqÑRN` , β:X1pkqÑRN` ,

γ:XpkqÑR

ÿ

x

γpxq

s.t. γpxq ě
ÿ

θ

wpω, θqσpx, θq

´
ÿ

θ,i,x1i

uipω, θq rαipx
1
i, xiqσpx

1
i, x´i, θq ´ αipxi, x

1
iqσpxi, x´i, θqs

`
ÿ

θ,i

uipω, θqβipxiqσpx, θq @x, ω

(31)
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We obtain an upper bound on the optimal value of (31) by fixing

αipxi, x
1
iq “

$

’

&

’

%

1 if xi “ x1i ` 1{k “ k;

k if xi “ x1i ` 1{k ă k;

0 otherwise,

βipxiq “

#

k if xi “ 0;

0 otherwise.

and optimizing over γ, i.e.,

min
γ:XpkqÑR

ÿ

x

γpxq s.t. γpxq ě
ÿ

θ

«

wpω, θqσpx, θq ´
ÿ

i

uipω, θq∇̃`
i σpx, θq

ff

@x, ω, (32)

where ∇̃`
i is defined in (7). For any σ P Ik, the value of (32) is an upper bound on

(31), which is in turn an upper bound on P pXpkq, σq, which is in turn an upper bound on
W (MIN-P). Minimizing (32) over all σ P Ik is precisely (UB-P-k).

A.1.4 W (LB-G-k) is a lower bound on W (MAX-G)

For each k, a lower bound on W(MAX-G) is the supremum guarantee over all mechanisms
of the form pXpkq,mq for m PM0

k.
For a fixed M “ pXpkq,mq, m P M0

k, we compute GpMq by applying the revelation
principle for information design and minimizing welfare over BCE, i.e.,

min
σ:XpkqˆΘÑR`

ÿ

x,θ,ω

wpω, θqmpω|xqσpx, θq

s.t.
ÿ

x´i,θ,ω

uipω, θq rmpω|xi, x´iq ´mpω|x
1
i, x´iqsσpxi, x´i, θq ě 0 @i, xi, x

1
i (33a)

ÿ

x

σpx, θq “ µpθq @θ (33b)

This program has a feasible set that is bounded and, by Nash’s theorem, is non-empty. As
a result, by strong duality, it has an optimal value which is equal to the optimal value of
its dual. Let αipxi, x

1
iq ě 0 be the multiplier on (33a), and let λpθq be the multiplier on

(33b). Then the dual of (33) is

max
α:X1pkqˆX1pkqÑRN` ,

λ:ΘÑR

ÿ

θ

µpθqλpθq

s.t. λpθq ď
ÿ

ω

»

–wpω, θqmpω|xq `
ÿ

i,x1i

uipω, θqαipxi, x
1
iq pmpω|x

1
i, x´iq ´mpω|xi, x´iqq

fi

fl @θ, x

(34)

We obtain a lower bound on (34) by fixing

αipxi, x
1
iq “

#

k ´ 1 if xi “ x1i ´ 1{k;

0 otherwise,
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and optimizing over λ, i.e.,

max
λ:ΘÑR

ÿ

θ

µpθqλpθq

s.t. λpθq ď
ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇`
i mpω|xq

ff

@θ, x,

(35)

where ∇`
i is defined in (1). For any m P M0

k, the value of (35) is a lower bound on (34),
which is equal to GpXpkq,mq, which is in turn a lower bound on (MAX-G). Maximizing
(35) over all m PM0

k is precisely (LB-G-k). This concludes the proof of Theorem 1.

A.2 Proof of Theorem 2

A.2.1 Boundedness of optimal λ

Let θ ” maxi,l,θ θi,l.

Lemma 3. For all k and θ, if pλ˚,Ξ˚, q˚q is an optimal solution to (20) such that Ξ˚

satisfies (24), then

|λ˚pθq| ď
Lθ

minθ1 µpθ1q
” Cλ

for all θ. Hence, the optimal value of (20) is at most Cλ.

Proof. We first show that λ˚pθq ď Lθ. To obtain a contradiction, suppose there exists a θ1

such that λ˚pθ1q ą Lθ. Consider the program (20) but where we hold fixed λ “ λ˚, which
has the same optimal value as (19), equal to

ř

θ µpθqλ
˚pθq. This program has the dual:

min
σ:XpkqˆΘÑR`,
γ:XpkqÑRL`

ÿ

x,l

γlpxq ´
ÿ

θ

λ˚pθq

˜

ÿ

x

σpx, θq ´ µpθq

¸

s.t. γlpxq ě ´
ÿ

θ

θi,l∇̃`
i σpx, θq @i, x, l

ÿ

θ

σpx, θq “ ρpxq @x.

(36)

Note that both (20) with fixed λ˚ and (36) are feasible.35 Hence, by the strong duality
theorem, these two programs must have the same optimal value, equal to

ř

θ µpθqλ
˚pθq.

35For (20) with fixed λ˚, we can define q “ 0 and set Ξpxq to be the mimimum across θ of

ÿ

i,l

θi,l∇´i qi,lpxq ´ λ
˚pθq.

For (36), given an arbitrary choice of σ, we can simply define γlpxq to be the maximum of the right-hand
side across i for each px, lq.
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Let σpx, θq “ ρpxqIθ“θ1 and γlpxq “ ρpxqmaxi θ
1
i,l (in other words, put probability one

on θ1, x is distributed according to ρ, and and assign good l to whichever agent has the
highest value for good l). It is easy to check that pσ, γq is feasible for (36) (because
ρpxq “ ´∇̃`

i ρpxq) and the resulting objective is
ř

l maxi θ
1
i,l´ λ

˚pθ1q `
ř

θ µpθqλ
˚pθq, which

is strictly less than (20) because λ˚pθ1q ą Lθ ą
ř

l maxi θ
1
i,l, which contradicts weak duality.

Now we show that λ˚pθq ě ´Lθ{µpθq for all θ. Note that q “ Ξ “ λ “ 0 is always
feasible for (20)), so the optimal value

ř

θ µpθqλ
˚pθq must be non-negative. Using that and

the fact that λ˚pθ1q ď Lθ for all θ, we have

λ˚pθq “

˜

ÿ

θ1

µpθ1qλ˚pθ1q ´
ÿ

θ1‰θ

µpθ1qλ˚pθ1q

¸

{µpθq

ě ´Lθ{µpθq,

as desired.

A.2.2 Continuity

Lemma 4. Fix a function h : NÑ N such that limkÑ8 hpkq “ 8 and limkÑ8 hpkq{k “ 0.
Then there exists a function εpkq such that εpkq Ñ 0 as k Ñ 8, and with the following
additional property: For any k, there exists a feasible solution pλ,Ξ, qq to (20) with value
at least W (20)´εpkq, that satisfies |λpθq| ď Cλ for all θ, and

|qi,lpxq ´ Ixią0qi,lpxi ´ 1{k, x´iq| ď
2

hpkq ` 1
@i, x, l. (37)

Proof. Fix an optimal solution pλ˚,Ξ˚, q˚q to (20). Without loss, we may assume that Ξ˚

satisfies (24). (If not, we can add and subtract a constant from Ξ˚ and λ˚ so that (24) is
satisfied, and without changing the value of the solution.)

Let W pqq be the value of (20) with fixed pλ˚, qq and under the partially optimal Ξ, i.e.,

W pqq ”
ÿ

θ

µpθqλ˚pθq `
ÿ

x

ρpxqmin
θ

#

ÿ

i,l

θi,l∇´
i qi,lpxq ´ λ

˚
pθq

+

.

Note that W pqq is concave (as a minimum of linear functions of ∇´
i qi,l, and as ∇´

i is a
linear operator). Moreover, W pq˚q “ W (20).

Let Y “ t0, 1{k, . . . hpkq{kuN . For a y P Y , define qy by

qypxq “

#

q˚px´ yq if xi ě yi @i;

0 otherwise.
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Hence, if xi ă yi for some i, we have ∇´
i q

y
i,lpxq “ 0, and if xi ě yi for all i, we have

∇´
i q

y
i,lpxq “ ∇´

i q
˚
i,lpx´ yq.

36 We therefore have

W pqyq “
ÿ

θ

µpθqλ˚pθq `
ÿ

x:Di xiăyi

ρpxqmin
θ
t´λ˚pθqu

`
ÿ

x:@i yiďxiăk

ρpxqmin
θ

#

ÿ

i,l

θi,l∇´
i q
˚
i,lpx´ yq ´ λ

˚
pθq

+

`
ÿ

x:xěy,
Di xi“k

ρpxqmin
θ

#

ÿ

i,l

θi,l∇´
i q
˚
i,lpx´ yq

1

kIxi“k,yią0
´ λ˚pθq

+

.

(38)

(The third line of this equation is adjusting for the fact that a boundary case in ∇´
i q

y
i,lpxq

may not be a boundary case in ∇´
i q
˚
i,lpx´ yq.) Now,

ÿ

x:Di xiăyi

ρpxqmin
θ
t´λ˚pθqu ě ´Cλ

ÿ

x:Di xiăyi

ρpxq ě ´CλN
ÿ

xi:xiăyi

ρipxiq ě ´CλN

«

1´

ˆ

1´
1

k

˙hpkq
ff

.

Since hpkq{k Ñ 0, the term in square brackets goes to zero as k Ñ 8, so that the lower
bound goes to zero.37 Next,

ÿ

x:@i
yiďxiăk

ρpxqmin
θ

#

ÿ

i,l

θi,l∇´
i q
˚
i,lpx´ yq ´ λ

˚
pθq

+

“

ˆ

1´
1

k

˙kΣy
ÿ

x:@i yiďxiăk

ρpx´ yqmin
θ

#

ÿ

i,l

θi,l∇´
i q
˚
i,lpx´ yq ´ λ

˚
pθq

+

“

ˆ

1´
1

k

˙kΣy
˜

W pq˚q ´
ÿ

x:Di xiěk´yi

ρpxqmin
θ

#

ÿ

i,l

θi,l∇´
i q
˚
i,lpxq ´ λ

˚
pθq

+¸

ě

ˆ

1´
1

k

˙kΣy
˜

W pq˚q ´N

ˆ

1´
1

k

˙k2´hpkq

pkNLθ ` Cλq

¸

.

If W pq˚q ě N
`

1´ 1
k

˘k2´hpkq
pkNLθ ` Cλq, then this expression is at least

ˆ

1´
1

k

˙Nhpkq
˜

W pq˚q ´N

ˆ

1´
1

k

˙k2´hpkq

pkNLθ ` Cλq

¸

36This second case subtly depends on the definition of ∇´i . In particular, if xi “ yi, then we have

∇´i q
˚
i,lpx´ yq “ kq˚i,lpx´ yq “ kpqyi,lpxq ´ 0q “ kpqyi,lpxq ´ q

y
i,lpxi ´ 1{k, x´iq “ ∇´i q

y
i,lpxq.

37One way to see this limit is that

1 ě

ˆ

1´
1

k

˙hpkq

“

ˆ

1´
hpkq{k

hpkq

˙hpkq

ě

ˆ

1´
x

hpkq

˙hpkq

Ñ expp´xq,

for any x ą 0, since hpkq{k Ñ 0. Since expp´xq Ñ 1 as xÑ 0, limkÑ8p1´ 1{kqhpkq “ 1.

47



ě W pq˚q ´

˜

1´

ˆ

1´
1

k

˙Nhpkq
¸

Cλ ´N

ˆ

1´
1

k

˙k2`pN´1qhpkq

pkNLθ ` Cλq.

The last line uses the result of Lemma 3 that |W pq˚q| ď Cλ. The second term above goes to
zero as k Ñ 8 (see footnote 37), and the third term goes to zero as well, since p1´ 1{kqk

2
k

converges to zero.38

If W pq˚q ´N
`

1´ 1
k

˘k2´hpkq
pkNLθ ` Cλq ă 0, we have

ÿ

x:@i
yiďxiăk

ρpxqmin
θ

#

ÿ

i,l

θi,l∇´
i q
˚
i,lpx´ yq ´ λ

˚
pθq

+

ě W pq˚q´N

ˆ

1´
1

k

˙k2´hpkq

pkNLθ`Cλq,

where the second term on the righthand side again goes to zero as k Ñ 8.

Finally, since ρipkq “
`

1´ 1
k

˘k2
, the third line of (38) is at least ´N

`

1´ 1
k

˘k2
pkNLθ`

Cλq, which again converges to zero.
We have proven that for each y P Y , W pqyq ě W pq˚q ´ εpkq, where

εpkq ” CλN

«

1´

ˆ

1´
1

k

˙hpkq
ff

`N

ˆ

1´
1

k

˙k2

pkNLθ ` Cλq

`max

#˜

1´

ˆ

1´
1

k

˙Nhpkq
¸

Cλ `N

ˆ

1´
1

k

˙k2`pN´1qhpkq

pkNLθ ` Cλq,

N

ˆ

1´
1

k

˙k2´hpkq

pkNLθ ` Cλq

+

,

(39)

and that εpkq Ñ 0 as k Ñ 8.
Now, let q̃pxq ” 1

|Y |

ř

yPY q
ypxq. By concavity of W , we have that

W pq̃q ě
1

|Y |

ÿ

yPY

W pqyq ě W pq˚q ´ εpkq.

Moreover, for each x´i, only two terms enter leave the sum in q̃i,lpxq at each increment of

xi. We therefore have |q̃i,lpxq ´ Ixią0q̃i,lpx ´ 1{k, x´iq| ď
´

ř

y´i
2
¯

{|Y | ď 2{phpkq ` 1q, as

desired.
38To see this, first note that for z P p´8, 0q, we have logp1{p1 ´ zqq ě z. This follows because the two

expressions are equal when z “ 0, the derivative of the left-hand side with respect to z is 1{p1 ´ zq ă 1,
which is the derivative of the right-hand side. As a result,

d

dl

´

1`
x

l

¯l

“

´

1`
x

l

¯l d

dl

”

log
´

1`
x

l

¯

l
ı

“

´

1`
x

l

¯l
«

log

˜

1

1´ x
l`x

¸

´
x

l ` x

ff

ě 0,

as long as l ě ´ x. Hence, p1` x{lql is less than its limit as lÑ8, which is exppxq, so that

ˆ

1´
1

k

˙k2

k “

ˆ

1´
k

k2

˙k2

k ď expp´kqk,

which converges to zero as k Ñ8.
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A.2.3 Shifting

We now complete the proof of Theorem 2:

Proof of Theorem 2. Let hpkq satisfy the hypotheses of Lemma 4 (for example, hpkq can
be the smallest integer larger than

?
k). Hence, for every k, there exists a feasible solution

pλ,Ξ, qq to (20) that is within εpkq of being optimal, satisfies (37) and |λpθq| ď Cλ. To
simplify expressions, we define ε̃pkq “ 2{phpkq ` 1q.

We modify pλ,Ξ, qq to obtain a feasible solution for (27). Define

q1i,lpxq “

#

qi,lpxi´1{k,x´iq

1`Nε̃pkq
if 0 ă xi ă k;

0 if xi “ 0 or xi “ k;

λ1pθq “
k ´ 1

kp1`Nε̃pkqq
λpθq @θ;

Ξ1pxq “

#

k´1
kp1`Nε̃pkqq

Ξpxq if x R BXpkq;

´pk ´ 1qNLθ ´maxθ λ
1pθq if x P BXpkq,

where BXpkq “ tx P Xpkq | xi ě k ´ 1{k for some iu.
We claim that pλ1,Ξ1, q1q is feasible for (27): First, the constraint on λ1pθq`Ξ1pxq holds

for all θ and x P BXpkq because

Ξ1pxq “ ´pk ´ 1qNLθ ´max
θ
λ1pθq ď

ÿ

i,l

θi,l∇`
i q
1
lpxq ´ λ

1
pθq @θ;

it also holds for x R BXpkq because ∇`
i q
1
lpxq “

k´1
kp1`Nε̃pkqq

∇´
i qlpxq, Ξ1pxq “ k´1

kp1`Nε̃pkqq
Ξpxq,

λ1pθq “ k´1
kp1`Nε̃pkqq

λpθq, and Ξpxq ` λpθq ď
ř

i,l θi,l∇
´
i qlpxq. Also, q1 is feasible, as

ÿ

i

q1i,lpxq ď
ÿ

i

qi,lpxi ´ 1{k, x´iq

1`Nε̃pkq
I0ăxiăk ď

ÿ

i

qi,lpxq ` ε̃pkq

1`Nε̃pkq
ď 1.

Finally, using Lemma 4 and defining εpkq as in (39), we know that the difference between
the optimal value of (20) and the value of (27) under pλ1,Ξ1, q1q is at most

εpkq `
ÿ

x

ρpxqpΞpxq ´ Ξ1pxqq `
ÿ

θ

µpθqpλpθq ´ λ1pθqq

“ εpkq `

ˆ

1´
k ´ 1

kp1`Nε̃pkqq

˙

«

ÿ

x

ρpxqΞpxq `
ÿ

θ

µpθqλpθq

ff

`
ÿ

xPBXpkq

ρpxq

ˆ

k ´ 1

kp1`Nε̃pkqq
Ξpxq ´ Ξ1pxq

˙

ď εpkq `

ˆ

1´
k ´ 1

kp1`Nε̃pkqq

˙

Cλ

`
ÿ

xPBXpkq

ρpxq

ˆ

k ´ 1

kp1`Nε̃pkqq
Ξpxq ` pk ´ 1qNLθ `max

θ

k ´ 1

kp1`Nε̃pkqq
λpθq

˙

ď εpkq `

ˆ

1´
k ´ 1

kp1`Nε̃pkqq

˙

Cλ `Np1´ 1{kqk
2´1

ˆ

k ´ 1

kp1`Nε̃pkqq
kNLθ ` pk ´ 1qNLθ

˙

.
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In the third inequality, we have used the result of Lemma 3 that the value of (20) is at
most Cλ. In the last inequality, we use the fact that ρpBXpkqq ď Np1 ´ 1{kqk

2´1 and
Ξpxq`λpθq ď

ř

i,l θi,l∇
´
i qlpxq ď kNLθ. The last line vanishes as k Ñ 8 because εpkq Ñ 0,

ε̃pkq Ñ 0 and p1´ 1{kqk
2´1k Ñ 0.

Thus, we conclude that the optimal value of (27) is at least that of (20), minus a term
that converges to zero as k goes to infinity. By Proposition 2, (27) has the same value as
(17) Moreover, by strong duality, (20) has the same value as (19), which by Proposition 2
has the same value as (18). Hence, the value of (17) is at least the value of (18), minus a
term that goes to zero as k goes to infinity. Moreover, by Theorem 3 in Online Appendix
B.2 (the analogue of Theorem 1 for the optimal auctions problem), for all k, the value of
(18) is at least the minimum potential, which is greater than the max guarantee, which is
greater than the value of (17). We conclude that (17) and (18) have the same value in the
limit as k Ñ 8, as desired.

50



B Online Appendix

B.1 Additional theoretical results for Section 3

B.1.1 Approximate solutions

Proposition 3. For any σ P Ik, we have

P pXpkq, σq ď
ÿ

x

max
ω

ÿ

θ

«

wpω, θqσpx, θq `
ÿ

i

uipω, θq∇̃`
i σpx, θq

ff

.

For any m PM0
k, we have

GpXpkq,mq ě
ÿ

θ

µpθqmin
x

ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇`
i mpω|xq

ff

.

Proof. This is an immediate implication of the proofs of Theorem 1. In particular, the
program (UB-P-k) is obtained by taking the dual of the inner maximization over mech-
anisms and equilibria from (MIN-P), so that any feasible solution to that dual provides
an upper bound on the value of the primal, meaning that it provides an upper bound on
welfare under any mechanism and equilibrium. Similarly, we obtained (LB-G-k) by taking
the dual of the inner minimization program, and any feasible solution to the dual provides
a lower bound on welfare in the primal program.

B.1.2 Robustness to the prior

The following corollary of Proposition 3 generalizes Proposition 7 of Brooks and Du (2021b):

Proposition 4. Fix a mechanism m P M0
k. Then for any µ1 P ∆pΘq, welfare in any

information structure I 1 with prior µ1 and equilibrium b P EppXpkq,mq, I 1q is at least

ÿ

θ

µ1pθqmin
x

ÿ

ω

«

wpω, θqmpω|xq `
ÿ

i

uipω, θq∇`
i mpω|xq

ff

. (40)

In particular, the bound (40) holds for an optimal solution m PM0
k.

Proof. From Proposition 3, we replace µ with µ1 and conclude that (40) is a lower bound
on equilibrium welfare.

Thus, while we have treated the prior over θ as a feature of the environment that is
ostensibly known by the designer, in fact our theory remains valid and useful even if the
designer has only approximate knowledge of the distribution of θ.
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B.1.3 Strong maxmin solutions

As discussed in Section 3.3.3, Brooks and Du (2021b) characterize analogues of (LB-G-k)
and (UB-P-k) in a setting with infinitely many actions and signals. In this case, equilibrium
existence is not guaranteed, and care has to be taken that guarantees and potentials are
not vacuous. To finesse this issue, we solved for a strong maxmin solution, which is a triple
pM, I, bq such that b P EpM, Iq, and P pIq “ GpMq.

With finite action and signal spaces, an equilibrium always exists, but the optimal
guarantee and potential may not be exactly attained. We now formulate an analogous
solution concept for the discrete setting and relate its existence to whether or not there is
a duality gap.

A pair pM, Iq is an ε-strong maxmin solution if P pIq ´GpMq ď ε. The following result
is immediate from definitions:

Proposition 5. The min potential is equal to the max guarantee if and only if for every
ε ą 0, there exists an ε-strong maxmin solution.

Proof. If W (MIN-P) “ W (MAX-G) “ W ˚, then for every ε ą 0, there exists an M and
I such that GpMq ě W ˚ ´ ε{2 and P pIq ď W ˚ ` ε{2, and hence P pIq ´ GpMq ď ε.
Conversely, suppose pM, Iq is an ε-strong maxmin solution. Then W (MIN-P) ď P pIq and
W (MAX-G) ě GpMq. Hence, W (MIN-P) ´W (MAX-G) ď P pIq ´ GpMq ď ε. Since ε is
arbitrary, we conclude that W (MIN-P) “ W (MAX-G).

As a consequence of Proposition 5 and Theorem 2, we obtain the following:

Corollary 1. In the optimal auctions problem, an ε-strong maxmin solution exists for all
ε ą 0.

Corollary 1 is essentially a “strong minimax theorem” for the zero-sum game in which
the designer chooses the mechanism and an adversary chooses the information structure
to maximize and minimize welfare, respectively. It is important to note, however, that
this is not quite a game, because for a given pM, Iq, there may be multiple equilibria
with different payoffs for the designer, and therefore the standard results on zero-sum
games do not apply. In (MAX-G), we have effectively selected the mechanism designer’s
preferred equilibrium, and in (MIN-P), we selected the worst case for the designer. The
theorem therefore implies that the values of these programs would coincide regardless of
how an equilibrium is selected. Equivalently, we could consider the collection of zero-sum
games that are parameterized by the choice of equilibrium selection rule (as a function
of the mechanism and information structure). Then any ε-strong maxmin solution is an
ε-equilibrium of all of the zero-sum games with different equilibrium selection rules.

B.1.4 A sufficient condition for tight bounds and zero duality gap

For a sequence of functions tfku8k“1, where fk : Xpkq Ñ R, and a function f : RN
` Ñ R, we

say that tfku converges uniformly to f if for all ε ą 0, there exists a K such that if k ě K
and x P Xpkq, then |fkpxq ´ fpxq| ď ε. Given a f : RN

` Ñ R, we denote by ∇if the partial
derivative with respect to the ith argument. Also define X ipkq “ tx P Xpkq|xi ă ku.
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Proposition 6. Suppose that there exist optimal solutions to (11), tpmk, λkqu8k“1, for which
mk converge uniformly to a Lipschitz continuous function m : RN

` Ñ ∆pΩq.39 Further
suppose that ∇impω|xq exists everywhere and is Lipschitz continuous, ∇´

i m
kpω|¨q restricted

to X ipkq converges uniformly to ∇impω|¨q for all i, and that xi “ 0 is participation secure
under m for all i. Then

lim
kÑ8

W (UB-P-k) “ W (MIN-P) “ W (MAX-G) “ lim
kÑ8

W (LB-G-k).

Proof. Let C1 be an upper bound on |wpω, θq| and |uipω, θq|. Since λk is optimal,

λkpθq “ min
x

ÿ

ω

«

wpω, θqmk
pω|xq `

ÿ

i

uipω, θq∇´
i m

k
pω|xq

ff

.

The program (UB-P-k) is feasible with σpx, θq “ µpθq{k2N for all θ and x, which generates
an upper bound on the value of (UB-P-k) equal to

max
ω

ÿ

θ

µpθq

«

wpω, θq `
1

k2N

ÿ

i

uipω, θq
`

p1´ kqIxi“k´1{k ´ Ixi“k
˘

ff

ď pN ` 1qC1.

We conclude that for all k,
ř

θ µpθqλ
kpθq ď pN ` 1qC1.

Now, let m̃kpω|θq be the restriction of m to Xpkq, and define

λ̃kpθq “ min
x

ÿ

ω

«

wpω, θqm̃k
pω|xq `

ÿ

i

uipω, θq∇`
i m̃

k
pω|xq

ff

.

Participation security of m̃k follows from that of m, so pm̃k, λ̃kq is feasible for (9), and

W (UB-P-k)´W (LB-G-k) ď
ÿ

θ

µpθqpλkpθq ´ λ̃kpθqq.

Let C2 be a Lipschitz constant for ∇im and m. Fix ε ą 0. From uniform convergence,
there exists a K such that for k ě K and x P Xpkq, |mkpω|xq ´mpω|xq| ď ε, and for all i
and x P X ipkq, |∇´

i m
kpω|xq ´∇impω|xq| ď ε. Without loss, we may also take K ě C2{ε.

As a result, if x P X ipkq and k ě K, then

∇`
i m̃

k
pω|xq “ pk ´ 1q

ż xi`1{k

y“xi

∇impω|y, x´iqdy

“
k ´ 1

k
∇impω|xq ` pk ´ 1q

ż 1{k

z“0

p∇impω|xi ` z, x´iq ´∇impω|xqq dz,

and hence,
ˇ

ˇ

ˇ

ˇ

∇`
i m̃

k
pω|xq ´

k ´ 1

k
∇´
i m

k
pω|xq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

∇`
i m̃

k
pω|xq ´

k ´ 1

k
∇impω|xq

ˇ

ˇ

ˇ

ˇ

` ε

39By this, we mean that the sequence of functions mkpω|¨q : Xpkq Ñ R converge uniformly to mpω|¨q :
RN` Ñ R, for every ω.
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ď pk ´ 1q

ż 1{k

z“0

|∇impω|xi ` z, x´iq ´∇impω|xq| dz ` ε

“
C2pk ´ 1q

k2
` ε ď

C2

K
` ε ď 2ε.

In addition, if x P XpkqzX ipkq and k ě K, then
ˇ

ˇ

ˇ

ˇ

∇`
i m̃

k
pω|k, x´iq ´

k ´ 1

k
∇´
i m

k
pω|k, x´iq

ˇ

ˇ

ˇ

ˇ

“
k ´ 1

k

ˇ

ˇmk
pω|k, x´iq ´m

k
pω|k ´ 1{k, x´iq

ˇ

ˇ

ď |mpω|k, x´iq ´mpω|k ´ 1{k, x´iq| ` 2ε

ď
C2

k
` 2ε ď 3ε.

We conclude that for k ě K,

λ̃kpθq “ min
xPXpkq

ÿ

ω

«

wpω, θqm̃k
pω|xq `

ÿ

i

uipω, θq∇`
i m̃

k
pω|xq

ff

ě
k ´ 1

k
min
xPXpkq

ÿ

ω

«

wpω, θqmk
pω|xq `

ÿ

i

uipω, θq∇´
i m

k
pω|xq

ff

´ C1|Ω|

ˆ

ε
k ´ 1

k
`

1

k
` 3Nε

˙

“
k ´ 1

k
λkpθq ´ C1|Ω|

ˆ

ε
k ´ 1

k
`

1

k
` 3Nε

˙

.

As a result, for k ě K,

ÿ

θ

µpθq
´

λkpθq ´ λ̃kpθq
¯

ď
1

k

ÿ

θ

µpθqλkpθq ` C1|Ω|

ˆ

ε
k ´ 1

k
`

1

k
` 3Nε

˙

ď
1

k
pN ` 1qC1 ` C1|Ω|

ˆ

ε
k ´ 1

k
`

1

k
` 3Nε

˙

.

Since ε is arbitrary, we conclude that (UB-P-k) and (LB-G-k) have the same value when
k Ñ 8, as desired.

The hypotheses of Proposition 6 may be difficult to verify in practice. Their value is
in making precise what kind of asymptotic smoothness implies that the bounds are tight.
Note that these conditions, Lipschitz continuity of ∇impω|xq in particular, are stronger
than needed and are not always satisfied by guarantee maximizers in the optimal auctions
problem, such as in Brooks and Du (2021b).

B.2 Bounding programs for the optimal auctions problem

We now derive the bounding programs for the optimal auctions problem.

Theorem 3. For all k P N, we have

W (18) ě W (MIN-P) ě W (MAX-G) ě W (17).

Moreover,
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• If pq, tq solves (17), then GpXpkq, q, tq ě W (LB-G-k).

• If σ solves (18), then P pXpkq, σq ď W (UB-P-k).

Proof. The proof that W (MIN-P)ě W (MAX-G) is the same as for Theorem 1.
For (MAX-G), clearly a subset of participation secure mechanisms are those with the

message space Xpkq and the action 0 is participation secure, and moreover, the transfer is
zero if an agent takes action 0. For any such mechanism, infimum expected revenue across
all information structures and equilibria is equal to minimum expected revenue across all
Bayes correlated equilibria, i.e.,

min
σ:XpkqˆΘÑR`

ÿ

θ,x,i

tipxqσpx, θq

s.t.
ÿ

x´i,θ

˜

ÿ

l

θi,l rqi,lpxi, x´iq ´ qi,lpx
1
i, x´iqs ´ rtipxi, x´iq ´ tipx

1
i, x´iqs

¸

σpxi, x´i, θq ě 0 @i, xi, x
1
i

ÿ

x

σpx, θq “ µpθq @θ

This program is clearly feasible, and because Xpkq is finite and t and σ are bounded, the
value of this program is also bounded. Hence, by the strong duality theorem, its value is
equal to that of its dual:

max
α:X1pkqˆX1pkqÑRN` ,

λ:ΘÑR

ÿ

θ

λpθqµpθq

s.t. λpθq ď
ÿ

i

tipxq

`
ÿ

i,x1i

αipxi, x
1
iq

˜

ÿ

l

θi,l rqi,lpx
1
i, x´iq ´ qi,lpxi, x´iqs ´ rtipx

1
i, x´iq ´ tipxi, x´iqs

¸

@x, θ.

We may further constrain this program (and therefore decrease its value) by fixing

αipxi, x
1
iq “

#

k ´ 1 if xi ă k and x1i “ xi ` 1{k;

0 otherwise,

which results in the program

max
λ:ΘÑR

ÿ

θ

λpθqµpθq

s.t. λpθq ď
ÿ

i

tipxq `
ÿ

i

˜

ÿ

l

θi,l∇`
i qi,lpxi, x´iq ´∇`

i tipxi, x´iq

¸

@x, θ.

(41)

We conclude that (41) is a lower bound on equilibrium expected revenue for any mechanism
in M0

k. Hence, a lower bound on (MAX-G) can be obtained by maximizing this lower bound
across all such mechanisms, which is (17).
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Similarly, for (MIN-P), an upper bound on the min potential is given by restricting
attention to information structures with signals in Xpkq. Moreover, participation security
implies that each agent’s interim expected utility is non-negative. Thus, by the revelation
principle, maximum expected revenue across participation secure mechanisms and equilib-
ria is bounded above by maximum expected revenue across all incentive compatible and
individually rational direct mechanisms, that is

max
q:XpkqÑRNL` ,t:XpkqÑRN

ÿ

x,θ,i

tipxqσpx, θq

s.t.
ÿ

i

qi,lpxq ď 1 @l, x

ÿ

x´i,θ

˜

ÿ

l

θi,lqi,lpxi, x´iq ´ tipxi, x´iq

¸

σpxi, x´i, θq ě 0 @i, xi

ÿ

x´i,θ

˜

ÿ

l

θi,l rqi,lpxi, x´iq ´ qipx
1
i, x´iqs ´ rtipxi, x´iq ´ tipx

1
i, x´iqs

¸

σpxi, x´i, θq ě 0 @i, xi, x
1
i.

We obtain an even more permissive upper bound on the value of the inner program by
dropping the interim individual rationality constraint except for xi “ 0 and dropping
incentive compatibility except for x1i “ xi ´ 1{k and xi ą 0:

max
q:XpkqÑRNL` ,t:XpkqÑRN

ÿ

x,θ,i

tipxqσpx, θq

s.t.
ÿ

i

qi,lpxq ď 1 @l, x

ÿ

x´i,θ

˜

ÿ

l

θi,lqi,lp0, x´iq ´ tip0, x´iq

¸

σp0, x´i, θq ě 0 @i

ÿ

x´i,θ

˜

ÿ

l

θi,l rqi,lpxi, x´iq ´ qipxi ´ 1{k, x´iqs

´ rtipxi, x´iq ´ tipxi ´ 1{k, x´iqs

¸

σpxi, x´i, θq ě 0 @i, xi ą 0.

Since the constraints are not altered by multiplication by a positive scalar (1 or k), this
program is equivalent to

max
q:XpkqÑRNL` ,t:XpkqÑRN

ÿ

x,θ,i

tipxqσpx, θq

s.t.
ÿ

i

qi,lpxq ď 1 @l, x

ÿ

x´i,θ

˜

ÿ

l

θi,l∇´
i qi,lpxi, x´iq ´∇´

i tipxi, x´iq

¸

σpxi, x´i, θq ě 0 @i, xi.
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Note that this program is feasible with q ” 0 and t ” 0. However, it may be unbounded.
Nonetheless, its value (possibly infinity) is an upper bound on the potential of the infor-
mation structure pXpkq, σq. Finally, we can relax the program even further by removing
the constraints and adding them to the objective, which gives us a weakly higher value:

max
q:XpkqÑRNL` ,

t:XpkqÑRN

ÿ

x,θ,i

«

tipxq `
ÿ

l

θi,l∇´
i qi,lpxi, x´iq ´∇´

i tipxi, x´iq

ff

σpx, θq

s.t.
ÿ

i

qi,lpxq ď 1 @l, x.

Using Lemma 2 to sum by parts, the objective in this last program is equivalent to

ÿ

x,θ,i

«

tipxqσpx, θq ´

˜

ÿ

l

θi,lqi,lpxi, x´iq ´ tipxi, x´iq

¸

∇̃`
i σpx, θq

ff

Hence, minimizing the value of this program across all σ P ∆pXpkqˆΘq is exactly (18).

B.3 Transfers and the aggregate excess growth

B.3.1 Preliminary observations

The proof of Theorem 2, and Lemma 1 in particular, shows that we can essentially solve out
the transfers from the optimal auctions lower bound program (17) in terms of the aggregate
excess growth Ξ, to obtain the equivalent program (27). In applications, we have found
that it is often more convenient to work with the program (27), and derive the optimal
multipliers and allocation pλ,Ξ, qq.

Importantly, Lemma 1 tells us that it is possible to go back and forth between solutions
of the programs (17) and (27). In particular, given pλ, q, tq that is feasible for (17), we can
define Ξ according to (22). Lemma 1 implies that Ξ is balanced, so that pλ,Ξ, qq is feasible
for (27) and has the same value as pλ, q, tq in (17). In the other direction, given pλ,Ξ, qq
that is feasible for (27), there is another optimal solution pλ`C,Ξ´C, qq such that Ξ´C
is balanced. Lemma 1 then implies that there exists a transfer rule t with aggregate excess
growth Ξ ´ C and satisfies participation security (23), so that pλ ` C, q, tq is feasible for
(17) and has the same value. This discussion is formalized in the following corollary:

Corollary 2. The triple pλ˚, q˚, t˚q is an optimal solution to (17) only if pλ˚,Ξ˚, q˚q is an
optimal solution to (27), where Ξ˚ “ ∇` ¨ t˚ ´ Σt˚. The triple pλ˚,Ξ˚, q˚q is an optimal
solution to (27) only if there is a C P R and a t˚ where Ξ˚ ´ C “ ∇` ¨ t˚ ´ Σt˚ and
pλ˚ ` C, q˚, t˚q is an optimal solution to (17).

The proof of Lemma 1 is non-constructive. But in fact, given a balanced Ξ, we can
construct a transfer rule t that is participation secure and has the given aggregate excess
growth. To develop this result, let us first denote by ξipxq agent i’s individual excess growth:

ξipxq ” ∇`
i tpxq ´ tipxq. (42)
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We can view this as a first-order difference equation in xi, which we can use to solve for the
transfer in terms of the individual excess growth. The solution that satisfies the boundary
condition tipk, x´iq “ ´ξipk, x´iq (which is just equation (42) when xi “ k) is

tipxq “ ´
ÿ

yi:yiěxi

ˆ

k ´ 1

k

˙pyi´xiqk 1

kIyiăk
ξipyi, x´iq.

Using the definition of ρi, we can rewrite this more simply as

tipxq “ ´
1

ρipxiq

ÿ

yi:yiěxi

ρipyiqξipyi, x´iq. (43)

Thus, the transfers will satisfy tip0, x´iq “ 0 if and only if40

ÿ

yiPXipkq

ρipyiqξipyi, x´iq “ 0. (44)

We conclude that there is a correspondence between ξ that satisfy (44) and participation-
secure transfer rules with individual excess growths ξ.

Now, for Ξ to be the aggregate excess growth, we must have

Σξpxq “ Ξpxq (45)

for all x. Thus, the task of constructing transfers with a given aggregate excess growth
reduces to constructing individual excess growths that satisfy (44) and (45).

Proposition 7. Fix a transfer rule t and its associated individual excess growth functions
ξ defined by (42). Then t is given by the formula (43). Moreover, t is participation secure
and has aggregate excess growth Ξ if and only if ξ satisfies (44) and (45).

B.3.2 Construction of transfers for N “ 2

Given a balanced Ξ, we now explicitly describe the solutions to (44) and (45), which in
turn define transfer rules with aggregate excess growth Ξ. For notational simplicity, we
specialize to the case of N “ 2. In the next section, we give a general construction for
N ą 2, which is conceptually the same but more involved in terms of notation.

A balanced division of Ξ is a pair of functions Ξi : Xpkq Ñ R for i “ 1, 2 such that Ξi is
balanced and Ξ “ Ξ1 ` Ξ2. Any balanced division induces individual excess growths that
satisfy (44) and (45), as we now explain. We interpret Ξi as agent i’s “initial” allocation
of the aggregate excess growth. We then make “correction” to the initial excess growth to
satisfy (44):

ξipxq “ Ξipxq ´
ÿ

yiPXipkq

Ξipyi, xjqρipyiq `
ÿ

yjPXjpkq

Ξjpxi, yjqρjpyjq. (46)

40Brooks and Du (2021b) stated and used an analogue of (44) in a continuum model where actions are
non-negative real numbers. In particular, the condition (44) is key to showing that truthful reporting is an
equilibrium of the strong maxmin solution constructed in that paper. A subtlety arises in the continuum
model, in that there is no boundary condition at the top. Instead, the analogue of the condition (44)
ensures that transfers remain bounded in the limit as xi goes to infinity, and the transfer given by (43)
converges to limxiÑ8 ξipxi, x´iq.
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Proposition 8. Suppose N “ 2. If pΞ1,Ξ2q is a balanced division of Ξ, then ξ given by
(46) satisfies (44) and (45). The corresponding transfers t defined by (43) are participation
secure and have aggregate excess growth Ξ.

The proof of Proposition 8 follows immediately from the definitions: Summing over xi,
the last term in the right-hand side of (46) vanishes, since Ξj is balanced, and the first two
terms obviously cancel each other; thus, ξ defined by (46) satisfies (44). Moreover, using
the assumption that Ξ1pxq ` Ξ2pxq “ Ξpxq, it is easy to see that ξ1pxq ` ξ2pxq “ Ξpxq in
(46) as well.

The set of solutions to (44) and (45) given by Proposition 8 is complete in the sense
that if pξ1, ξ2q satisfies (44) and (45), then pΞ1,Ξ2q “ pξ1, ξ2q is clearly a balanced division,
and the correction terms in (46) are all zero.

While it is simple to prove, Proposition 8 yields rich possibilities for constructing par-
ticipation secure transfers with the desired aggregate excess growth. For example, we can
set Ξ1pxq “ cΞpxq and Ξ2 “ p1 ´ cqΞpxq, where c P r0, 1s is a constant, which is a bal-
anced division whenever Ξ is balanced. Moreover, if pΞ1,Ξ2q is a balanced division, then
so is pΞ1 ` E,Ξ2 ´ Eq for any balanced function E. If E is skew-symmetric—meaning
Epx1, x2q “ ´Epx2, x1q—then E will also be balanced; this follows from the fact that ρ is
exchangeable, so the expectation of E over ρ is zero. Simple examples of skew symmetric
functions include any odd function of the difference x1 ´ x2. In Online Appendix B.3.4
we will illustrate that including a skew-symmetric E in the balanced division can lead to
a significant simplification in the functional form of the transfers in the model studied in
Section 6.

B.3.3 Construction of transfers for N ą 2

We now give a general construction of participation secure transfers via balanced divisions
of the aggregate excess growth. The idea of the general construction is as follows: When
there were two agents, we initially allocated each agent a share of the total aggregate excess
growth. Each agent then received an “adjustment” so that their individual excess growth
satisfied (44), where the adjustment is essentially the interim expected individual excess
growth of the other agent. We now adopt a more general construction where there is an
initial allocation of the aggregate excess growth to each agent, and then adjustments (in
the form of interim expected excess growths) are passed around from agent to agent, so
that (44) is satisfied.

We now proceed formally. For this section, we will suppress k and write Xi “ Xipkq.
For any subset N 1 Ď t1, 2, . . . , Nu of agents, let XN 1 “

ś

iPN 1 Xi.
Let Z be the set of non-repeating sequences in t1, . . . , Nu of length less than or equal

to N . We also define Zpiq Ď Z to be the set of sequences of length less than or equal to
N ´ 1 which do not contain i. Given z P Z, we let Npzq be the set of agents not in z. And
for z P Zpiq, we let pz, iq be the sequence that appends i to the end of z.

Fix an aggregate excess growth Ξ that is balanced. We say that a collection tΞzuzPZ is
a balanced division (of Ξ) if the following conditions are satisfied:

1. ΞH “ Ξ.
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2. For all i, z P Zpiq, Ξpz,iq : XNpzq Ñ R.

3. For all i, z P Zpiq,
ř

xXNpzq
Ξpz,iqpxq

ś

jPNpzq ρjpxjq “ 0.

4. For all i, z P Zpiq, and xNpz,iq P XNpz,iq,

ÿ

xiPXi

Ξpz,iqpxi, xNpz,iqqρipxiq “
ÿ

jPNpz,iq

Ξpz,i,jqpxNpz,iqq.

5. For all x P XNpHq “
śN

j“1Xj,

ΞHpxq “
ÿ

jPNpHq

Ξjpxq.

We interpret Ξpz,iq as agent i’s excess growth (before adjustment) when the agents in z
are ahead of i in a queue. Condition 2 says that the excess growth Ξpz,iq depends on xi and
xNpz,iq, but not on the actions of the agents in z. Condition 3 says that Ξpz,iq is balanced.
Condition 4 says that the adjustment one makes to i’s excess growth (see equation (47)) is
equal to the total unadjusted excess growths of the agents who are behind i in the queue.
Finally, Conditions 1 and 5 says that the unadjusted excess growths for agents who are
first in the queue adds up to the given aggregate excess growth Ξ.

An example of a balanced division is Ξipxq “ Ξpxq{N , and

Ξpz,i,jqpxNpz,iqq “
1

|Npz, iq|

ÿ

xiPXi

Ξpz,iqpxi, xNpz,iqqρipxiq.

Another example is Ξ1pxq “ Ξpxq, and

Ξpz,i,jq “

#

ř

xiPXi
Ξpz,iqpxi, xNpz,iqqρipxiq if j “ i` 1;

0 otherwise,

where i` 1 is defined in modulo arithmetic, i.e., N ` 1 “ 1.
Given a balanced division tΞzuzPZ , we can define the individual excess growths

ξipxq “
ÿ

zPZpiq

˜

Ξpz,iqpxi, xNpz,iqq ´
ÿ

yiPXi

Ξpz,iqpyi, xNpz,iqqρipyiq

¸

. (47)

We claim that ξi defines participation secure transfers. This can be verified by checking:

ÿ

xiPXi

ξipxqρipxiq “
ÿ

zPZpiq

¨

˚

˚

˚

˚

˝

ÿ

xiPXi

Ξpz,iqpxi, xNpz,iqqρipxiq ´
ÿ

yiPXi

Ξpz,iqpyi, xNpz,iqqρipyiq

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

“0

˛

‹

‹

‹

‹

‚

“ 0.
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Moreover, tξiu1ďiďN has aggregate excess growth Ξ, since

N
ÿ

i“1

ξipxq “
N
ÿ

i“1

Ξipxq

`

N
ÿ

i“1

ÿ

tzPZpiq:|z|ăN´1u

»

—

—

—

—

–

ÿ

jPNpz,iq

Ξpz,i,jqpxNpz,iqq ´
ÿ

yiPXi

Ξpz,iqpyi, xNpz,iqqρipyiq

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

“0

fi

ffi

ffi

ffi

ffi

fl

´

N
ÿ

i“1

ÿ

tzPZpiq:|z|“N´1u

ÿ

yiPXi

Ξpz,iqpyiqρipyiq

loooooooooomoooooooooon

“0

“ Ξpxq.

In this last calculation, all we have done is to break up the sum over sequences into those
that end in i and those that end in pi, jq, then we use the fact that Npz, iq “ H when
|z| “ N ´ 1, so the balanced condition implies that the terms in the third line are all zero.

Given an arbitrary profile of participation secure transfers, we can “recover” their in-
dividual excess growths ξ from equation (47) with the balanced division tΞzuzPZ such that
ΞH “ Σξ, Ξi “ ξi and Ξz “ 0 for all other z. Thus, the participation secure transfers given
by the balanced divisions are complete.

When N “ 2, then Z just consists of tH, 1, 2, 12, 21u. For a balanced division tΞzuzPZ ,
Ξ1 and Ξ2 are balanced and satisfies Ξ “ Ξ1 ` Ξ2; moreover, we have

ÿ

x2PX2

Ξ2px1, x2qρ2px2q “ Ξ21px1q,

and likewise for Ξ1 and Ξ12. Thus, the expression of ξi in (47) reduces to equation (46).

B.3.4 Transfer rules for constant-sum values

We now apply the results of this section to the construction of transfers for optimal auctions
problem with a certain empirical distribution of values from Section 6. We first take k Ñ 8

and then take mÑ 0.
Let us first consider the case where the agents initially get half of the aggregate excess

growth: Ξ1 “ Ξ2 “ Ξ{2.
Taking k Ñ 8, the aggregate excess growth from equation (29) becomes

Ξpxq “ ´
1

2m
p1´ expp´mqq `

1

2m
I|x1´x2|ăm,

where we have modified the constant to make Ξ balanced for a fixed m ą 0 (see the
paragraph following (29) for a discussion about the distribution of |x1 ´ x2|).
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The individual excess growth (equation (46)) and the transfers (equation (43)) in the
limit as k Ñ 8 are

ξipxq “
1

2
Ξpxq ´

1

2

ż 8

yi“0

expp´yiqΞpyi, xjqdyi `
1

2

ż 8

yj“0

expp´yjqΞpxi, yjqdyj

“´
1

4m
p1´ expp´mqq `

1

4m
I|xi´xj |ăm

´
1

4m

ż 8

yi“0

expp´yiqI|yi´xj |ămdyi `
1

4m

ż 8

yj“0

expp´yjqI|xi´yj |ămdyj

(48)

and

tipxq “
´1

expp´xiq

ż 8

yi“xi

expp´yiqξipyi, xjqdyi

“´

ż 8

yi“0

expp´yiqξipxi ` yi, xjqdyi.

Substituting ξi into ti, we get

tipxq “
1

4m
p1´ expp´mqq ´

ż 8

yi“0

1

4m
I|xi`yi´xj |ăm expp´yiqdyi (49)

`
1

4m

ż 8

yi“0

expp´yiqI|yi´xj |ămdyi ´
1

4m

ż 8

yi“0

ż 8

yj“0

expp´yj ´ yiqI|xi`yi´yj |ămdyjdyi

“
1

4m
p1´ expp´mqq

loooooooooomoooooooooon

A

´
1

4m
pexpp´maxpxj ´ xi ´m, 0qq ´ expp´maxpxj ´ xi `m, 0qqq

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

B

`
1

4m
pexpp´maxpxj ´m, 0qq ´ expp´pxj `mqqq

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

C

´
1

4m
pLp´xi `mq ´ Lp´xi ´mqq

loooooooooooooooooooomoooooooooooooooooooon

D

,

where L is the CDF of a Laplace distribution:

Lpzq “

#

exppzq{2 z ă 0;

1´ expp´zq{2 z ě 0.

Using L’Hôpital’s rule to take mÑ 0, we get

A “ 1{4;

B “

$

’

&

’

%

0 xj ă xi;

1{4 xj “ xi;

expp´xj ` xiq{2 xj ą xi;

C “

#

1{4 xj “ 0;

expp´xjq{2 xj ą 0;

D “ expp´xiq{4.
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So in the limit as mÑ 0, we have

tipxq “

$

’

&

’

%

1{4´ expp´xj ` xiq{2` expp´xjq{2´ expp´xiq{4 xi ă xj;

expp´xjq{2´ expp´xiq{4 xj “ xi;

1{4` expp´xjq{2´ expp´xiq{4 xi ą xj,

(50)

when xj ą 0, and

tipxq “

#

0 xi “ 0;

1{2´ expp´xiq{4 xi ą 0,
(51)

when xj “ 0.
We now show that an alternative balanced division of the aggregate excess growth

yields a simpler transfer rule. To this end suppose initially agent i gets Ξipxq “ Ξpxq{2 `
c signpxi ´ xjq, where c is a constant, and signpzq is 1 if z ą 0, ´1 if z ă 0, and zero if
z “ 0.

The individual excess growth (equation (46)) in the limit is now

ξipxq “
Ξpxq

2
` c signpxi ´ xjq ´

ż 8

yi“0

expp´yiq

ˆ

Ξpyi, xjq

2
` c signpyi ´ xjq

˙

dyi

`

ż 8

yj“0

expp´yjq

ˆ

Ξpxi, yjq

2
` c signpyj ´ xiq

˙

dyj

Let us denote the difference between the above equation and equation (48) as

vipxq ” c signpxi ´ xjq ´

ż 8

yi“0

expp´yiqc signpyi ´ xjqdyi `

ż 8

yj“0

expp´yjqc signpyj ´ xiqdyj.

The transfer given by Ξipxq “ Ξpxq{2` c signpxi ´ xjq is equation (49) plus

∆ipxq ” ´

ż 8

yi“0

expp´yiqvipxi ` yi, xjqdyi

“´

ż 8

yi“0

c signpxi ` yi ´ xjq expp´yiqdyi `

ż 8

yi“0

expp´yiqc signpyi ´ xjqdyi

´

ż 8

yi“0

ż 8

yj“0

expp´yj ´ yiqc signpyj ´ xi ´ yiqdyjdyi

“´ cp2 expp´maxpxj ´ xi, 0qq ´ 1q ` cp2 expp´xjq ´ 1q ` cp1´ expp´xiqq.

Taking c “ ´1{4 and adding ∆ipxq to equations (50) and (51), we get as mÑ 0

tipxq “

$

’

&

’

%

0 xi ă xj;

1{4 xj “ xi;

1{2 xi ą xj,

when xj ą 0, and

tipxq “

#

0 xi “ 0;

1{4 xi ą 0,

when xj “ 0. Thus, in the limit as mÑ 0, the winner simply pays a posted price of 1{2.

63



B.3.5 Concluding remarks

In summary, given pλ˚, q˚, t˚q that is feasible for (17), there will generally be many transfer
rules t such that pλ˚, q˚, tq is also feasible and has the same value. For example, in charac-
terizing guarantee-maximizing transfers in the pure common value model, Brooks and Du
(2021b) showed that in addition to the solution given by (46) with Ξi “ Ξ{2, there is a
distinct solution with an especially simple form, wherein each agent simply pays a constant
price per unit, and that price depends just on the sum of the bids. This multiplicity of
optimal transfer rules, not all of which are of practical interest, presents a challenge to
the study of guarantee-maximizing auctions, and additional properties may be needed to
isolate the most useful transfer rules. Going back to common values, the transfer rule in the
proportional auction is characterized by the property that the aggregate transfer depends
only on the aggregate action.

B.4 Rate of convergence for optimal auctions

Our next result calculates an upper bound on the rate of convergence of the bounding
programs in the optimal auctions problem:

Proposition 9. For all k ě 1,

|W (UB-P-k)´W (LB-G-k)| ď Op1{
?
kq.

Proof. Theorem 3 shows that W (UB-P-k) ´ W (LB-G-k) ě 0. The proof of Theorem 2
shows that W (UB-P-k)´W (LB-G-k) is at most

εpkq `

ˆ

1´
k ´ 1

kp1`Nε̃pkqq

˙

Cλ `Np1´ 1{kqk
2´1

ˆ

k ´ 1

kp1`Nε̃pkqq
kNLθ ` pk ´ 1qNLθ

˙

,

where εpkq is given by (39) and ε̃pkq “ 2{phpkq ` 1q. The second term can be rewritten as

1`Nkε̃pkq

kp1`Nε̃pkqq
Cλ “

1{k ` 2N{phpkq ` 1q

1` 2N{phpkq ` 1q
Cλ,

which goes to zero at a rate of 1{hpkq since hpkq goes to infinity at a slower rate than k.
The third term goes to zero at the same rate as expp´kqk (cf. Footnote 38). Moreover,
considering the formula in (39), we see that the first term in εpkq goes to zero at a rate equal
to that of 1´ expp´hpkq{kq “ Ophpkq{kq, while the remaining terms go to zero at a rate of
either 1´expp´Nhpkq{kq or expp´kqk. Thus, the rate at which W (UB-P-k)´W (LB-G-k)
goes to zero is therefore maxp1{hpkq, hpkq{kq. Clearly the optimal choice is hpkq “

?
k,

which gives a rate of 1{
?
k.

B.5 Numerical examples for optimal auctions

B.5.1 Perfectly correlated values

We now present a numerical example with one good and two bidders, L “ 1, N “ 2, and
θ1 “ θ2 ` c for a constant c, i.e., values are perfectly positively correlated. Agent 2’s value
θ2 is uniformly distributed on an evenly spaced grid of 10 values between 0 and 1.
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Figure 3: Approximate guarantee-maximizing allocations and potential-minimizing infor-
mation with pure common values.
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We first present numerical results for the case of c “ 0, that is, there is a pure common
value for the good. This case was previously studied in Brooks and Du (2021b), where we
solved analytically for optimal mechanisms and information structures in the limit when the
action/signal space is all of R`. The mechanism has the form of a “proportional auction,” in
which the aggregate allocation and aggregate transfer only depend on the aggregate action,
and individual allocations and transfers are proportional to actions. For this example, the
aggregate allocation Qpxq “ q1pxq`q2pxq has the form QpΣxq “ mintαΣx, 1u for a constant
α, and qipxq “ QpΣxq xi

Σx
. Thus, each agent i’s allocation on the low rationing region is a

simple linear function of their action: qipxq “ αxi. (This appears to be a general feature
of aggregate allocations for solutions to the optimal auctions problem in which the good is
rationed at low aggregate actions.)

The top and middle panels of Figure 3 shows the approximate optimal allocation as
computed by solving (17) with k “ 10 (so that each agent has 101 actions). The asso-
ciated profit guarantee is 0.2620, or 52% of the expected value. The approximate opti-
mal aggregate allocation in the top panels bears a close resemblance to the theoretical
solution QpΣxq “ mintαΣx, 1u for α « 1{2. The middle panel shows that bidder 1’s
share q1pxq{Qpxq in the approximate optimal allocation is close to the proportional frac-
tion x1{Σx. Indeed, the solution in Brooks and Du (2021b) was in part motivated by
looking at simulations of this sort.

We have omitted the numerical solution for the transfer. As we discussed in Section 5
and Online Appendix B.3, even holding fixed a particular guarantee-maximizing allocation,
there may be many transfer rules which could complete a guarantee-maximizing mechanism.
Numerical simulations of (17) need not produce the most interesting or tractable solution.
In this case, the numerical solution did not suggest the proportional form which is part
of the analytical solution in Brooks and Du (2021b). In our subsequent examples, we will
similarly focus on optimal allocations.

The bottom panels of Figure 3 shows the approximate potential-minimizing information
structure that solves (18). The potential of this information structure is at most 0.2820, so
that the gap between W (17) and W (18) is approximately 3.99% of the expected value. The
approximate potential-minimizing information very nearly coincides with the theoretical
solution with a continuum of signals: The interim expected (common) value vpxq “ vipxq
is an increasing function of the aggregate signal. There is a cutoff (which is around 2 in
the approximate solution), below which the interim expected value grows exponentially,
and above which the interim expected value is equal to the ex post value. This structure
gives rise to the discontinuities in the value function, evident in bottom-right panel, which
occur when the interim expected value jumps up to the next higher value in the grid with
increments of 0.1. Note that the signals themselves are distributed according to ρ, as per
Proposition 1, as they are in all of the simulations reported in this appendix.

Our next simulation has c “ 0.1, so that there is common knowledge that agent 1’s
value is higher than agent 2’s.41 In this case, it is socially efficient to always allocate the
good to agent 1. In contrast, the guarantee-maximizing mechanism takes into account the
cost of incentives, and sometimes allocates to agent 2 so as to reduce information rents,

41Note that this model does not have pure common values and is not characterized by Brooks and Du
(2021b).
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Figure 4: Approximate guarantee-maximizing mechanism and potential-minimizing infor-
mation with perfectly correlated asymmetric values (c “ 0.1).

as we can see in the simulated allocation depicted in the top panels of Figure 4. We also
see that the aggregate allocation no longer just depends on the aggregate action, and the
contour lines tend to be vertical, i.e., the the aggregate allocation tends to just depend on
agent 1’s action. Together with the transfer that solves (17), this mechanism guarantees
profit at least 0.3045, while the efficient us (if the good is always allocated to agent 1) is now
0.6.42 In the approximate potential-minimizing information structure in the bottom panels
of Figure 4, agent 2’s interim expected value is identical to that when c “ 0. (Agent 1’s
interim expected value is simply v1pxq “ v2pxq ` 0.1.) Profit on this information structure
is at most 0.3272. Consistent with Theorem 2, we see that the upper and lower bounds on
profit are quite close.

42Note that the profit guarantee rises by much less than the increase in the efficient surplus, because
in order to realize that gain, it would be necessary to allocate the good to agent 1, which in turn would
necessitate granting agent 1 a large information rent.
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Figure 5: Approximate guarantee-maximizing mechanism and potential-minimizing infor-
mation for independent values.

As c increases, the region where the aggregate allocation is interior shrinks. When c
is sufficiently large, the optimal mechanism always allocates the good to agent 1 at their
lowest ex post value.

B.5.2 Independent values

Our next example involves one good and two agents whose values are independently dis-
tributed on the same evenly spaced ten-point grid in r0, 1s. The simulated allocation and
interim values for agent 1 are depicted in Figure 5.

The allocation that solves (17) with k “ 10 is in the top and bottom-left panels. We
again see some striking structure: The aggregate allocation Qpxq has the same functional
form as that of the common value, and Qpxq “ mintαΣx, 1u for α « 1{1.75. Agent 1’s share
of allocation q1pxq{Qpxq (the bottom-left panel) is x1{Σx when Σx is below the threshold
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of 1.75 (just like the case of common value), but q1pxq
Qpxq

“ min
!

maxtx1´fpΣxq,0u
Σx´2fpΣxq

, 1
)

when Σx

is above the threshold for some function f of the aggregate action. Moreover, Σx´ 2fpΣxq
appears to be a constant when Σx is above the threshold of 1.75, which corresponds to the
parallel lines when Σx is fixed at 2, 3 and 6 in the bottom-left panel.

The expected highest value in this discrete example is 0.6818, and the lower bound on
the max guarantee is 0.2892, or approximately 42% of the efficient surplus.43

The interim expected value that solves (18) with k “ 10 is in the bottom-right panel.
While there is more noise than in the allocation, we again see some patterns: In particular,
v1pxq essentially depends only on |x1 ´ x2| when this absolute difference is large enough.
While agents’ ex post values are independent, their interim expectations are highly corre-
lated, with both agents’ interim expected values being higher when the absolute difference
in their signals is large. The potential of this information structure is at most 0.3127.

B.5.3 Multiple goods

We now present examples with two agents and two goods. First assume agents have pure
common values for each good, so θ1,l “ θ2,l almost surely for each l “ 1, 2. The common
values are independently distributed across goods and are distributed on the same evenly
spaced ten-point grid in r0, 1s. The lower and upper bounds from solving (17) and (18)
with k “ 10 are 0.5897 and 0.6306, respectively. The simulated solution in Figure 6 clearly
indicates that the interim expected values for the two goods are exactly the same and have
the same form as that in Figure 3. The approximate guarantee-maximizing allocations for
the two goods also have the same form as in Figure 3, and we omit their plots. Thus, the
two-good pure common value model reduces to a single-good pure common value model, in
which the value for the single good is the sum of the values of the two goods. The logic for
this finding was given above in Section 5.3, where we argued that the model should always
reduce to a single good problem, where the mechanism only offers the “grand bundle,” as
long as the ex post value distribution is “exchangeable across goods.”

If, however, values are not exchangeable across goods, then the multiple-good problem
need not reduce to an auction for the grand bundle, as the following example shows. Agent
2’s values θ2,l are distributed as before, uniform on each good l and independent across
goods; agent 1 has the same value for good 2 as agent 1 but assigns more value to good
1 than agent 2: θ1,2 “ θ2,2 and θ1,1 “ θ2,1 ` 1. The approximate optimal allocations are
depicted in Figure 7 as surface plots, so that it is easier to see levels. As we can see, the
two agents receive each good with different probabilities. As we would expect, good 1 is
mostly allocated to agent 1, since their value for that good is much higher. Interestingly,
agent 1 also tends to get more shares of good 2 than agent 2, even though the two agents
have the same value for good 2, because of the endogenous bundling of the two goods in
the guarantee-maximizing mechanism.

43Thus, while the profit guarantee is higher than with the common value, it does not rise nearly as much
as the surplus. The reason, of course, is that the agents also have more private information when their
values are independent than when they are common.
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Figure 6: Approximate potential-minimizing information with pure common values and
two goods.
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Figure 7: Approximate guarantee-maximizing allocation with two goods with non-
exchangeable values.
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