Online Appendix to
 "Optimal auction design with common values: An informationally-robust approach"

Benjamin Brooks Songzi Du

November 16, 2020

B Proofs for Section 5

B. 1 Proof of Proposition 5

Let $\Delta=1 / K$, and recall that the message space for $\overline{\mathcal{M}}(\underline{m}, K)$ is

$$
M_{i}=\{\underline{m}, \underline{m}+\Delta, \ldots, \underline{m}+K\} .
$$

Note that the highest message $\bar{m}=\underline{m}+K$ is at least Δ^{-1}. We shall extend the domain of the allocation and transfer rules to all of \mathbb{R}_{+}^{N} for notational convenience. The discrete aggregate allocation sensitivity is

$$
\mu(m)=\frac{1}{\Delta} \sum_{i=1}^{N} \mathbb{I}_{m_{i}<\bar{m}}\left(q_{i}\left(m_{i}+\Delta, m_{-i}\right)-q_{i}(m)\right)
$$

and the discrete aggregate excess growth is

$$
\Xi(m)=\frac{1}{\Delta} \sum_{i=1}^{N} \mathbb{I}_{m_{i}<\bar{m}}\left(t_{i}\left(m_{i}+\Delta, m_{-i}\right)-t_{i}(m)\right)-\Sigma t(m)
$$

Now, define

$$
\lambda(m ; v)=v \mu(m)-\Xi(m)-c \bar{Q}(\Sigma m),
$$

and let $\lambda(v)=\min _{m \in M} \lambda(m ; v)$.
Lemma 1. For any information structures \mathcal{S} and equilibrium β of $(\mathcal{S}, \overline{\mathcal{M}}(\underline{m}, K)$), expected profit is at least $\int_{V} \lambda(v) H(d v)$.
Proof of Lemma 1. The equilibrium hypothesis implies that for all i,

$$
\int_{S} \sum_{m \in M}\left[w(s)\left(q_{i}\left(\min \left\{m_{i}+\Delta, \bar{m}\right\}, m_{-i}\right)-q_{i}(m)\right)\right.
$$

$$
\left.-\left(t_{i}\left(\min \left\{m_{i}+\Delta, \bar{m}\right\}, m_{-i}\right)-t_{i}(m)\right)\right] \beta(m \mid s) \pi(d s) \leq 0
$$

which corresponds to the incentive constraint for deviating to $\min \left\{m_{i}+\Delta, \bar{m}\right\}$. Summing across bidders, and dividing by Δ, we conclude that

$$
\int_{S} \sum_{m \in M}[w(s) \mu(m)-\Xi(m)-\Sigma t(m)] \beta(m \mid s) \pi(d s) \leq 0 .
$$

Hence, expected profit is

$$
\begin{aligned}
& \int_{S} \sum_{m \in M}[\Sigma t(m)-c Q(\Sigma m)] \beta(m \mid s) \pi(d s) \\
& \geq \int_{S} \sum_{m \in M}[\Sigma t(m)-c Q(\Sigma m)+w(s) \mu(m)-\Xi(m)-\Sigma t(m)] \beta(m \mid s) \pi(d s) \\
& =\int_{S} \sum_{m \in M}[w(s) \mu(m)-\Xi(m)-c Q(\Sigma m)] \beta(m \mid s) \pi(d s) \\
& \geq \int_{S} \lambda(w(s)) \pi(d s) \\
& \geq \int_{V} \lambda(v) H(d v)
\end{aligned}
$$

where the last line follows from the mean-preserving spread condition on $w(s)$ and that λ is concave, being the infimum of linear functions.

Lemma 2. For all $m \in M$,

$$
\mu(m) \geq \frac{1}{\Delta} \int_{y=0}^{\Delta} \bar{\mu}(\Sigma m+y) d y-\widehat{L}(\underline{m}, \Delta)
$$

where

$$
\widehat{L}(\underline{m}, \Delta)=N(N+1) \Delta+\frac{N(N-1)}{\Delta}\left(\log (N \underline{m}+\Delta)+\frac{N \underline{m}}{N \underline{m}+\Delta}-\log (N \underline{m})-1\right) .
$$

Moreover, for all $\underline{m}>0, \widehat{L}(\underline{m}, \Delta) \rightarrow 0$ as $\Delta \rightarrow 0$.
Proof of Lemma 2. From Lemma 12, we know that

$$
\begin{aligned}
\mu(m) & =\sum_{i=1}^{N} \frac{1}{\Delta}\left(q_{i}\left(m_{i}+\Delta, m_{-i}\right)-q_{i}(m)\right)-\sum_{i=1}^{N} \mathbb{I}_{m_{i}=\bar{m}} \frac{1}{\Delta}\left(q_{i}\left(m_{i}+\Delta, m_{-i}\right)-q_{i}(m)\right) \\
& \geq \sum_{i=1}^{N} \frac{1}{\Delta}\left(q_{i}\left(m_{i}+\Delta, m_{-i}\right)-q_{i}(m)\right)-N \frac{N+1}{\bar{m}} \\
& \geq \sum_{i=1}^{N} \frac{1}{\Delta}\left(q_{i}\left(m_{i}+\Delta, m_{-i}\right)-q_{i}(m)\right)-N(N+1) \Delta .
\end{aligned}
$$

Recall that

$$
\bar{\mu}(x)=\frac{N-1}{x} \bar{Q}(x)+\bar{Q}^{\prime}(x) .
$$

Also recall that

$$
\frac{\partial q_{i}(m)}{\partial m_{i}}=\frac{\Sigma m_{-i}}{(\Sigma m)^{2}} \bar{Q}(\Sigma m)+\frac{m_{i}}{\Sigma m} \bar{Q}^{\prime}(\Sigma m)
$$

Thus,

$$
\begin{aligned}
& \sum_{i=1}^{N} \frac{1}{\Delta}\left(q_{i}\left(m_{i}+\Delta, m_{-i}\right)-q_{i}(m)\right) \\
& =\frac{1}{\Delta} \sum_{i=1}^{N} \int_{y=0}^{\Delta} \frac{\partial q_{i}\left(m_{i}+y, m_{-i}\right)}{\partial m_{i}} d y \\
& =\frac{1}{\Delta} \sum_{i=1}^{N} \int_{y=0}^{\Delta}\left[\frac{\Sigma m_{-i}}{(\Sigma m+y)^{2}} \bar{Q}(\Sigma m+y)+\frac{m_{i}+y}{\Sigma m+y} \bar{Q}^{\prime}(\Sigma m+y)\right] d y \\
& =\frac{1}{\Delta} \int_{y=0}^{\Delta}\left[\frac{(N-1) \Sigma m}{(\Sigma m+y)^{2}} \bar{Q}(\Sigma m+y)+\frac{\Sigma m+N y}{\Sigma m+y} \bar{Q}^{\prime}(\Sigma m+y)\right] d y \\
& =\frac{1}{\Delta} \int_{y=0}^{\Delta} \bar{\mu}(\Sigma m+y) d y-\frac{N-1}{\Delta} \int_{y=0}^{\Delta} \frac{y}{\Sigma m+y}\left[\frac{\bar{Q}(\Sigma m+y)}{\Sigma m+y}-\bar{Q}^{\prime}(\Sigma m+y)\right] d y
\end{aligned}
$$

We need to bound the last integral from above. If x is in a non-graded interval, then $\bar{Q}(x) / x-\bar{Q}^{\prime}(x)$ is just $1 / x$. If x is in a graded interval $[a, b]$, then

$$
\frac{\bar{Q}(x)}{x}-\bar{Q}^{\prime}(x)=\frac{C(a, b)}{N}+\frac{D(a, b)}{x^{N}}-\frac{C(a, b)}{N}+(N-1) \frac{D(a, b)}{x^{N}}=\frac{N D(a, b)}{x^{N}} .
$$

From equation (33), $D(a, b) \leq x^{N-1}$, so that the integrand in this case is at most N / x, and

$$
\begin{aligned}
\int_{y=0}^{\Delta} \frac{y}{x+y}\left[\frac{\bar{Q}(x+y)}{x+y}-\bar{Q}^{\prime}(x+y)\right] d y & \leq N \int_{y=0}^{\Delta} \frac{y}{(x+y)^{2}} d y \\
& =N \int_{y=0}^{\Delta}\left(\frac{1}{x+y}-\frac{x}{(x+y)^{2}}\right) d y \\
& =N\left(\log (x+\Delta)+\frac{x}{x+\Delta}-\log (x)-1\right) .
\end{aligned}
$$

The derivative with respect to x is

$$
N\left(\frac{1}{x+\Delta}-\frac{1}{x}+\frac{\Delta}{(x+\Delta)^{2}}\right)=N \Delta\left(\frac{1}{(x+\Delta)^{2}}-\frac{1}{x(x+\Delta)}\right)
$$

which is clearly negative, so subject to $x \geq N \underline{m}$, the expression is maximized with $x=N \underline{m}$, which gives us the lower bound on μ.

Moreover, as $\Delta \rightarrow 0, N(N+1) \Delta \rightarrow 0$, and by L'Hôpital's rule,

$$
\lim _{\Delta \rightarrow 0}\left(\frac{\log (N \underline{m}+\Delta)+\frac{N \underline{m}}{N \underline{m}+\Delta}-\log (N \underline{m})-1}{\Delta}\right)=\lim _{\Delta \rightarrow 0}\left(\frac{1}{N \underline{m}+\Delta}-\frac{N \underline{m}}{(N \underline{m}+\Delta)^{2}}\right)=0 .
$$

Now let us write $\Xi^{p}(m)=\Xi(m)-\underline{v}(\mu(m)-Q(m))$, and recall that $\bar{\Xi}^{p}(x)=\bar{\Xi}(x)-$ $\underline{v}(\bar{\mu}(x)-\bar{Q}(x))$. These are the excess growths for the "premium" transfers $t_{i}^{p}(m)=t_{i}(m)-$ $\underline{v} \underline{q_{i}}(m)$ and $\bar{t}_{i}^{p}(m)=\bar{t}_{i}(m)-\underline{v} \bar{q}_{i}(m)$, respectively. We similarly denote by $\bar{T}^{p}(x)=\bar{T}(x)-$ $\underline{v} \bar{Q}(x)$ the aggregate premium transfer, and note that \bar{T}^{p} satisfies the differential equation

$$
\left(\frac{N-1}{x}-1\right) \bar{T}^{p}(x)+\frac{d}{d x} \bar{T}^{p}(x)=\bar{\Xi}^{p}(x)
$$

with the boundary condition $\bar{T}^{p}(0)=0$.
Lemma 3. Let L_{Ξ} be an upper bound on $\left|\bar{\Xi}^{p}\right|$ and let L_{T} be an upper bound on \bar{T}^{p}. Then

$$
\begin{aligned}
& \Xi^{p}(m) \leq \frac{1}{\Delta} \\
& \int_{y=0}^{\Delta} \bar{\Xi}^{p}(\Sigma m+y) d y+\tilde{L}(\underline{m}) \frac{\Delta}{2}+N L_{p} \underline{m} \\
&-\frac{1}{\Delta} \sum_{i} \mathbb{I}_{m_{i}=\bar{m}}\left[\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right]
\end{aligned}
$$

where

$$
\tilde{L}(\underline{m})=\left(1+\frac{N-1}{N \underline{m}}\right) L_{p}+\frac{N-1}{(N \underline{m})^{2}} L_{T}
$$

Proof of Lemma 3. Recall that \bar{T}^{p} is Lipschitz with constant L_{p}. Furthermore, the function $\bar{T}^{p}(x)(N-1) / x$ is Lipschitz on $[N \underline{m}, \infty)$, and

$$
\begin{aligned}
\left|\frac{d}{d x}\left(\frac{N-1}{x} \bar{T}^{p}(x)\right)\right| & =\left|\frac{N-1}{x} \frac{d}{d x} \bar{T}^{p}(x)-\frac{N-1}{x^{2}} \bar{T}^{p}(x)\right| \\
& \leq \frac{N-1}{N \underline{m}} L_{p}+\frac{N-1}{(N \underline{m})^{2}} L_{T}=L_{1}(\underline{m}) .
\end{aligned}
$$

Using the differential equation for \bar{T}^{p},

$$
\begin{aligned}
& \frac{1}{\Delta} \int_{y=0}^{\Delta} \bar{\Xi}^{p}(\Sigma m+y) d y \\
& =\frac{1}{\Delta} \int_{y=0}^{\Delta}\left[\left(\frac{N-1}{\Sigma m+y}-1\right) \bar{T}^{p}(\Sigma m+y)+\left.\frac{d}{d x} \bar{T}^{p}(x)\right|_{x=\Sigma m+y}\right] d y \\
& =\frac{1}{\Delta}\left[\int_{y=0}^{\Delta}\left(\frac{N-1}{\Sigma m+y}-1\right) \bar{T}^{p}(\Sigma m+y) d y+\bar{T}^{p}(\Sigma m+\Delta)-\bar{T}^{p}(\Sigma m)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{1}{\Delta}\left[\int_{y=0}^{\Delta}\left(\frac{N-1}{\Sigma m+\Delta} \bar{T}^{p}(\Sigma m+\Delta)-L_{1}(\underline{m})(\Delta-y)-\bar{T}^{p}(\Sigma m)-L_{p} y\right) d y+\bar{T}^{p}(\Sigma m+\Delta)-\bar{T}^{p}(\Sigma m)\right] \\
& =\frac{1}{\Delta}\left[\Delta \frac{N-1}{\Sigma m+\Delta} \bar{T}^{p}(\Sigma m+\Delta)-\Delta \bar{T}^{p}(\Sigma m)-\left(L_{1}(\underline{m})+L_{p}\right) \frac{\Delta^{2}}{2}+\bar{T}^{p}(\Sigma m+\Delta)-\bar{T}^{p}(\Sigma m)\right] \\
& =\frac{1}{\Delta}\left[\frac{\Sigma m+N \Delta}{\Sigma m+\Delta} \bar{T}^{p}(\Sigma m+\Delta)-\bar{T}^{p}(\Sigma m)\right]-\bar{T}^{p}(\Sigma m)-(\underbrace{L_{1}(\underline{m})+L_{p}}_{\equiv \tilde{L}(\underline{m})}) \frac{\Delta}{2}
\end{aligned}
$$

Now, let us write $T^{p}(\Sigma m)$ for the aggregate transfer when the messages are m. Thus,

$$
\begin{aligned}
\Xi^{p}(m) & =\frac{1}{\Delta} \sum_{i=1}^{N}\left[t_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-t_{i}^{p}(m)\right]-T^{p}(\Sigma m)-\frac{1}{\Delta} \sum_{i=1}^{N} \mathbb{I}_{m_{i}=\bar{m}}\left[t_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-t_{i}^{p}(m)\right] \\
& =\frac{1}{\Delta} \sum_{i=1}^{N}\left[\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right]-T^{p}(\Sigma m)-\frac{1}{\Delta} \sum_{i=1}^{N} \mathbb{I}_{m_{i}=\bar{m}}\left[\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right] \\
& \leq \frac{1}{\Delta}\left[\frac{\Sigma m+N \Delta}{(\Sigma m+\Delta)} \bar{T}^{p}(\Sigma m+\Delta)-\bar{T}^{p}(\Sigma m)\right]-T^{p}(\Sigma m)-\frac{1}{\Delta} \sum_{i} \mathbb{I}_{m_{i}=\bar{m}}\left[\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right]
\end{aligned}
$$

The lemma follows from combining these two inequalities, with the observation that $T^{p}(x)=$ $\bar{T}^{p}(x)-N L_{p} \underline{m}$.

Lemma 4. For all $\epsilon>0$, there exists a K such that for all m such that $\Sigma m>K$ and for all i,

$$
\frac{1}{\Delta}\left|\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right|<\epsilon .
$$

Proof of Lemma 4. Since $\lim _{x \rightarrow \infty} \bar{T}^{p}(x)=-\bar{\Xi}^{p}(\infty)$, we can find a K large enough so that for $x>K,\left|\bar{T}^{p}(x)+\bar{\Xi}^{p}(\infty)\right|<\epsilon / 4$ and $L_{T} / K<\epsilon / 4$, and thus $\left|d \bar{T}^{p}(x) / d x\right|<\epsilon / 2$. Thus, when $\Sigma m>K$, then using $\Delta=K^{-1}$,

$$
\begin{aligned}
\frac{1}{\Delta}\left[\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right] & =\frac{1}{\Delta} \int_{y=0}^{\Delta} \frac{\partial \bar{t}_{i}^{p}\left(m_{i}+y, m_{-i}\right)}{\partial m_{i}} d y \\
& =\frac{1}{\Delta} \int_{y=0}^{\Delta}\left[\frac{\Sigma m_{-i}}{(\Sigma m+y)^{2}} \bar{T}^{p}(\Sigma m+y)+\left.\frac{m_{i}+y}{\Sigma m+y} \frac{d}{d x} \bar{T}^{p}(x)\right|_{x=\Sigma m+y}\right] d y \\
& \leq \frac{L_{T}}{K}+\frac{\epsilon}{2} \\
& <\epsilon
\end{aligned}
$$

Proof of Proposition 5. We first argue that there exists \underline{m} and a K such that $\lambda(m ; v) \geq$ $\inf _{m^{\prime} \in \mathbb{R}^{N}} \bar{\lambda}\left(m^{\prime} ; v\right)-\epsilon$ for all $m \in M$ and $v \in[\underline{v}, \bar{v}]$, where

$$
\bar{\lambda}(m ; v)=(v-\underline{v}) \bar{\mu}(\Sigma m)-\bar{\Xi}^{p}(\Sigma m)+(\underline{v}-c) \bar{Q}(\Sigma m)
$$

From Lemma 12, we know that $|\bar{Q}(x+y)-\bar{Q}(x)| \leq y(N-1) / \underline{m}$. Thus,

$$
\begin{aligned}
\left|\bar{Q}(x)-\frac{1}{\Delta} \int_{y=0}^{\Delta} \bar{Q}(x+y) d y\right| & \leq \frac{1}{\Delta} \int_{y=0}^{\Delta}|\bar{Q}(x+y)-Q(x)| d y \\
& \leq \frac{1}{\Delta} \int_{y=0}^{\Delta} y \frac{N-1}{\underline{m}} d y=\Delta \frac{N-1}{2 \underline{m}}
\end{aligned}
$$

Combining this inequality with Lemmas 2 and 3, we get that

$$
\begin{aligned}
\lambda(m ; v)= & (v-\underline{v}) \mu(m)-\Xi^{p}(m)+(\underline{v}-c) \bar{Q}(\Sigma m) \\
\geq & \frac{1}{\Delta} \int_{y=0}^{\Delta}\left[(v-\underline{v}) \bar{\mu}(\Sigma m+\Delta)-\bar{\Xi}^{p}(\Sigma m+y)+(\underline{v}-c) \bar{Q}(\Sigma m+y)\right] d y \\
& -(\bar{v}-\underline{v}) \widehat{L}(\underline{m}, \Delta)-\bar{v} \Delta \frac{N-1}{2 \underline{m}}-\frac{\Delta}{2} \tilde{L}(\underline{m})-N L_{p} \underline{m} \\
& -\frac{1}{\Delta} \sum_{i} \mathbb{I}_{m_{i}=\bar{m}}\left|\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right| \\
\geq & \inf _{\left\{m^{\prime} \mid \Sigma m \leq \Sigma m^{\prime} \leq \Sigma m+\Delta\right\}} \bar{\lambda}\left(m^{\prime} ; v\right) \\
& \quad(\bar{v}-\underline{v}) \widehat{L}(\underline{m}, \Delta)-\bar{v} \Delta \frac{N-1}{2 \underline{m}}-\frac{\Delta}{2} \tilde{L}(\underline{m})-N L_{p} \underline{m} \\
& \quad-\frac{1}{\Delta} \sum_{i} \mathbb{I}_{m_{i}=\bar{m}}\left|\bar{t}_{i}^{p}\left(m_{i}+\Delta, m_{-i}\right)-\bar{t}_{i}^{p}(m)\right| .
\end{aligned}
$$

We can first pick $\underline{m}>0$ so that $N L_{p} \underline{m}<\epsilon / 2$. We can then pick K large enough (and Δ small enough) such that the remaining terms in the last two lines sum to less than $\epsilon / 2$ (where for the first term in the middle line and last line, this follows from Lemmas 2 and 4 , respectively). We then conclude that

$$
\lambda(m ; v) \geq \inf _{m^{\prime} \in \mathbb{R}_{N}^{+}} \bar{\lambda}\left(m^{\prime} ; v\right)-\epsilon \geq \bar{\lambda}(v)-\epsilon .
$$

Hence, $\lambda(v) \geq \bar{\lambda}(v)-\epsilon$, and Lemma 1 and Lemma 6 give the result.
This proof goes through verbatim with the maxmin must-sell mechanism $\widehat{\mathcal{M}}$.

B. 2 Proof of Proposition 6

Recall the definition of $\overline{\mathcal{S}}(K)$. Let $\Delta=1 / K$. We subsequently choose K sufficiently large (and equivalently Δ sufficiently small) to attain the desired ϵ. Note that the signal space can be written

$$
S_{i}=\left\{0, \Delta, \ldots, K^{2} \Delta\right\}
$$

and the highest message is simply Δ^{-1}. The probability mass function of s_{i} is

$$
f_{i}\left(s_{i}\right)= \begin{cases}(1-\exp (-\Delta)) \exp \left(-s_{i}\right) & \text { if } s_{i}<\Delta^{-1} \\ \exp \left(-\Delta^{-1}\right) & \text { if } s_{i}=\Delta^{-1}\end{cases}
$$

As a result, s_{i} / Δ is a censored geometric random variable with arrival rate $1-\exp (-\Delta)$. We write $f(s)=\times{ }_{i=1}^{N} f_{i}\left(s_{i}\right)$ for the joint probability, and

$$
F_{i}\left(s_{i}\right)=\sum_{s_{i}^{\prime} \leq s_{i}} f_{i}\left(s_{i}^{\prime}\right)= \begin{cases}1-\exp \left(-s_{i}-\Delta\right) & \text { if } s_{i}<\Delta^{-1} \\ 1 & \text { otherwise }\end{cases}
$$

for the cumulative distribution. The value function is

$$
w(s)=\frac{1}{f(s)} \int_{\left\{s^{\prime} \in \mathbb{R}_{+}^{N} \mid \tau\left(s_{i}^{\prime}\right)=s_{i} \forall i\right\}} \bar{w}\left(\Sigma s^{\prime}\right) \exp \left(-\Sigma s^{\prime}\right) d s^{\prime},
$$

where

$$
\tau(x)= \begin{cases}\Delta\lfloor x / \Delta\rfloor & \text { if } x<\Delta^{-1} \\ \Delta^{-1} & \text { otherwise }\end{cases}
$$

An interpretation is that we draw "true" signals s^{\prime} for the bidders from $\overline{\mathcal{S}}$ and agent i observes $s_{i}=\min \left\{\Delta\left\lfloor\Delta^{-1} s_{i}^{\prime}\right\rfloor, \Delta^{-1}\right\}$, i.e., signals above Δ^{-1} are censored and otherwise they are rounded down to the nearest multiple of Δ, and w is the conditional expectation of \bar{w} given the noisy observations s. Thus, the distribution of \bar{w} is a mean-preserving spread of the distribution of w, so that H is a mean-preserving spread of the distribution of w as well.

Lemma 5. If $s_{i}<\Delta^{-1}$ for all i, then $w(s)$ only depends on the sum of the signals $l=\Sigma s$ and

$$
w(s)=\frac{\exp (l)}{(1-\exp (-\Delta))^{N}} \int_{x=l}^{l+N \Delta} \bar{w}(x) \rho(x-l) \exp (-x) d x
$$

where $\rho(y)$ is the $N-1$-dimensional volume of the set $\left\{s \in[0, \Delta]^{N} \mid \Sigma s=y\right\}$.
Proof of Lemma 5. First observe that

$$
f(s)=(1-\exp (-\Delta))^{N} \exp (-\Sigma s)=(1-\exp (-\Delta))^{N} \exp (-l)
$$

Thus,

$$
\begin{aligned}
w(s) & =\frac{\exp (l)}{(1-\exp (-\Delta))^{N}} \int_{\left\{s^{\prime} \in \mathbb{R}_{+}^{N} \mid \tau_{i}\left(s^{\prime}\right)=s_{i} \forall i\right\}} \bar{w}\left(\Sigma s^{\prime}\right) \exp \left(-\Sigma s^{\prime}\right) d s^{\prime} \\
& =\frac{\exp (l)}{(1-\exp (-\Delta))^{N}} \int_{x=l}^{l+N \Delta} \int_{\left\{s^{\prime} \in \mathbb{R}_{+}^{N} \mid \tau_{i}\left(s^{\prime}\right)=s_{i} \forall i, \Sigma s^{\prime}=x\right\}} \bar{w}\left(\Sigma s^{\prime}\right) \exp \left(-\Sigma s^{\prime}\right) d s^{\prime} d x \\
& \left.=\frac{\exp (l)}{(1-\exp (-\Delta))^{N}} \int_{x=l}^{l+N \Delta} \bar{w}(x) \exp (-x) \int_{\left\{s^{\prime} \in \mathbb{R}_{+}^{N} \mid \tau_{i}\left(s_{i}^{\prime}-s_{i}\right)=0\right.} \forall i, \Sigma s^{\prime}=x\right\} \\
& =\frac{\exp (l)}{(1-\exp (-\Delta))^{N}} \int_{x=l}^{l+N \Delta} \bar{w}(x) \exp (-x) \int_{\left\{s^{\prime} \in \mathbb{R}_{+}^{N} \mid \tau_{i}\left(s^{\prime}\right)=0 \forall i, \Sigma s^{\prime}=x-l\right\}} d s^{\prime} d x
\end{aligned}
$$

where the inner integral is just $\rho(x-l)$.

We now abuse notation slightly by writing $w(l)$ for the value when $l=\Sigma s$, and let $\gamma(l)=w(l)-c$.

Lemma 6. If $l>\Delta$, then $\gamma(l) \leq \exp (\Delta) \gamma(l-\Delta)$.
Proof of Lemma 6. From Lemma 5, we know that

$$
\begin{aligned}
\gamma(l) & =\frac{\exp (l)}{(1-\exp (-\Delta))^{N}} \int_{x=l}^{l+N \Delta} \bar{\gamma}(x) \exp (-x) \rho(x-l) d x \\
& =\frac{\exp (l)}{(1-\exp (-\Delta))^{N}} \int_{x=l-\Delta}^{l+(N-1) \Delta} \bar{\gamma}(x+\Delta) \exp (-x-\Delta) \rho(x-l+\Delta) d x \\
& \leq \frac{\exp (l-\Delta)}{(1-\exp (-\Delta))^{N}} \int_{x=l-\Delta}^{l+(N-1) \Delta} \bar{\gamma}(x) \exp (\Delta) \exp (-x) \rho(x-l+\Delta) d x \\
& =\exp (\Delta) \gamma(l-\Delta),
\end{aligned}
$$

where the inequality follows from Lemma 2.
Lemma 7. If the direct allocation $q_{i}(s)$ is Nash implemented by a participation secure mechanism, profit is at most

$$
\begin{equation*}
\sum_{s \in S} f(s) \sum_{i=1}^{N} q_{i}(s)\left[\gamma(\Sigma s)-\frac{1-F_{i}\left(s_{i}\right)}{f_{i}\left(s_{i}\right)}(\gamma(\Sigma s+\Delta)-\gamma(\Sigma s))\right] . \tag{1}
\end{equation*}
$$

Proof of Lemma 7. This follows from standard revenue equivalence arguments: If we write $U_{i}\left(s_{i}, s_{i}^{\prime}\right)$ for the utility of a signal s_{i} that reports s_{i}^{\prime}, with $U_{i}\left(s_{i}\right)=U_{i}\left(s_{i}, s_{i}\right)$, then

$$
U_{i}\left(s_{i}\right) \geq U_{i}\left(s_{i}, s_{i}^{\prime}\right)=U_{i}\left(s_{i}^{\prime}\right)+\sum_{s_{-i} \in S_{-i}} f_{-i}\left(s_{-i}\right) q_{i}\left(s_{i}^{\prime}, s_{-i}\right)\left(\gamma\left(s_{i}+\Sigma s_{-i}\right)-\gamma\left(s_{i}^{\prime}+\Sigma s_{-i}\right)\right) .
$$

Thus, for $s_{i} \geq \Delta$,

$$
U_{i}\left(s_{i}\right) \geq U_{i}(0)+\sum_{k=0}^{s_{i} / \Delta-1} \sum_{s_{-i} \in S_{-i}} f_{-i}\left(s_{-i}\right) q_{i}\left(k \Delta, s_{-i}\right)\left(\gamma\left((k+1) \Delta+\Sigma s_{-i}\right)-\gamma\left(k \Delta+\Sigma s_{-i}\right)\right) .
$$

The expectation of $U_{i}\left(s_{i}\right)$ across s_{i} is therefore bounded below by

$$
\begin{aligned}
& \sum_{s \in S} f(s) \sum_{k=0}^{s_{i} / \Delta-1} q_{i}\left(k \Delta, s_{-i}\right)\left(\gamma\left((k+1) \Delta+\Sigma s_{-i}\right)-\gamma\left(k \Delta+\Sigma s_{-i}\right)\right) \\
& =\sum_{s \in S} f(s) q_{i}(s)(\gamma(\Sigma s+\Delta)-\gamma(\Sigma s)) \frac{1-F_{i}\left(s_{i}\right)}{f_{i}\left(s_{i}\right)}
\end{aligned}
$$

The formula then follows from subtracting the bound on bidder surplus from total surplus.

Let Π denote the maximum of the profit bound (1) across all q. Let $\tilde{\Pi}$ denote the profit bound when we set $q_{1}(s)=1$ and $q_{j}(s)=0$ for all $j \neq 1$.

Lemma 8. $\Pi \leq \tilde{\Pi}+\left(1-\left(1-\exp \left(-\Delta^{-1}\right)\right)^{N}\right) \bar{v}$.
Proof of Lemma 8. When signals are all less than Δ^{-1}, the bidder-independent virtual value is

$$
\begin{aligned}
& \gamma(l)-\frac{1}{\exp (\Delta)-1}(\gamma(l+\Delta)-\gamma(l)) \\
& \geq \gamma(l)-\frac{\exp (-\Delta)}{1-\exp (-\Delta)}(\gamma(l) \exp (\Delta)-\gamma(l))=0
\end{aligned}
$$

where the inequality follows from Lemma 6 . Thus, the virtual value is maximized pointwise by allocating with probability one to, say, bidder 1 . With probability $1-\left(1-\exp \left(-\Delta^{-1}\right)\right)^{N}$, one of the signals is above Δ^{-1}, in which case \bar{v} is an upper bound on the virtual value.
Lemma 9. $\lim _{\Delta \rightarrow 0} \tilde{\Pi} \leq \bar{\Pi}$.
Proof of Lemma 9. Plugging in $q_{1}=1$, we find that

$$
\begin{aligned}
\tilde{\Pi} & =\sum_{s_{-1} \in S_{-1}} f_{-1}\left(s_{-1}\right) \sum_{s_{1} \in S_{1}}\left[f_{1}\left(s_{1}\right) \gamma(\Sigma s)-\sum_{s_{1}^{\prime}>s_{1}} f_{1}\left(s_{1}^{\prime}\right)(\gamma(\Sigma s+\Delta)-\gamma(\Sigma s))\right] \\
& =\sum_{s_{-1} \in S_{-1}} f_{-1}\left(s_{-1}\right) \sum_{s_{1} \in S_{1}}\left[f_{1}\left(s_{1}\right)\left[\gamma(\Sigma s)+\sum_{s_{1}^{\prime}<s_{1}}\left(\gamma\left(s_{1}^{\prime}+\Sigma s_{-1}\right)-\gamma\left(s_{1}^{\prime}+\Sigma s_{-1}+\Delta\right)\right)\right]\right] \\
& =\sum_{s_{-1} \in S_{-1}} f_{-1}\left(s_{-1}\right) \gamma\left(\Sigma s_{-1}\right) .
\end{aligned}
$$

Using the definition of γ, this is

$$
\begin{aligned}
\tilde{\Pi} & =\frac{1}{1-\exp (-\Delta)} \int_{y=0}^{\Delta} \int_{x=0}^{\infty} \bar{\gamma}(x+y) g_{N-1}(x) \exp (-y) d x d y \\
& =\frac{1}{1-\exp (-\Delta)} \int_{x=0}^{\infty} \bar{\gamma}(x) \int_{y=0}^{\min \{x, \Delta\}} g_{N-1}(x-y) \exp (-y) d y d x \\
& \leq \frac{1}{1-\exp (-\Delta)}\left[\int_{x=\Delta}^{\infty} \bar{\gamma}(x) \int_{y=0}^{\Delta} g_{N-1}(x-y) \exp (-y) d y d x+G_{N}(\Delta) \bar{v}\right] .
\end{aligned}
$$

Now, observe that

$$
\begin{aligned}
\int_{y=0}^{\Delta} g_{N-1}(x-y) \exp (-y) d y & =\frac{x^{N-1}-(x-\Delta)^{N-1}}{(N-1)!} \exp (-x) \\
& \leq \frac{\Delta(N-1) x^{N-2}}{(N-1)!} \exp (-x)=\Delta g_{N-1}(x)
\end{aligned}
$$

where we have used convexity of x^{N-1}. Thus,

$$
\tilde{\Pi} \leq \frac{\Delta}{1-\exp (-\Delta)} \int_{x=0}^{\infty} \bar{\gamma}(x) g_{N-1}(x) d x+\frac{G_{N}(\Delta) \bar{v}}{1-\exp (-\Delta)}
$$

An application of L'Hôpital's rule shows that the last term converges to zero as $\Delta \rightarrow 0$ and $\Delta /(1-\exp (-\Delta)) \rightarrow 1$, this implies the lemma.

Proof of Proposition 6. Combining Lemmas 7 and 8, we can pick Δ sufficiently small so that $\Pi \leq \tilde{\Pi}+\epsilon / 2 \leq \bar{\Pi}+\epsilon$. This completes the proof of the proposition.

Note that every step of the proof of Proposition 6 goes through in the must-sell case, where we replace \bar{w} with \widehat{w}, and we skip the step in Lemma 8 of proving that the discrete virtual value is non-negative.

C Proofs for Section 6

Proof of Lemma 9. The left-tail assumption could equivalently be stated as: there exists some $\bar{\alpha}>0$ and $\varphi>1$ such that for all $0 \leq \alpha^{\prime}<\alpha \leq \bar{\alpha}$

$$
H^{-1}(\alpha)-\underline{v} \leq G_{N}^{-1}(\alpha)^{\varphi}
$$

and if $\underline{v}>c$,

$$
\frac{H^{-1}(\alpha)-c}{H^{-1}\left(\alpha^{\prime}\right)-c} \leq \exp \left(G_{N}^{-1}(\alpha)-G_{N}^{-1}\left(\alpha^{\prime}\right)\right)
$$

The following Lemma 10 implies that if the above two conditions hold for N, they hold for all $N^{\prime}>N$ as well.

Lemma 10. For any $N \geq 1$ and $N^{\prime}>N$, there exists $\bar{\alpha}>0$ such that $G_{N}^{-1}(\alpha)-G_{N}^{-1}\left(\alpha^{\prime}\right) \leq$ $G_{N^{\prime}}^{-1}(\alpha)-G_{N^{\prime}}^{-1}\left(\alpha^{\prime}\right)$ for all $0 \leq \alpha^{\prime}<\alpha \leq \bar{\alpha}$.

Proof of Lemma 10. Clearly it suffices to prove the lemma for $N^{\prime}=N+1$. Let us extend the definition of G_{N} to any real number N :

$$
G_{N}(x)=\int_{y=0}^{x} e^{-y} \frac{y^{N-1}}{\Gamma(N)} d y
$$

where

$$
\Gamma(N)=\int_{y=0}^{\infty} e^{-y} y^{N-1} d y
$$

(We have $\Gamma(N)=(N-1)$! when $N \geq 1$ is an integer.)
By definition, we have

$$
\int_{x=0}^{G_{N}^{-1}(\alpha)} e^{-x} \frac{x^{N-1}}{\Gamma(N)} d x=\alpha
$$

Differentiating the above equation with respect to N gives:

$$
\frac{\partial G_{N}^{-1}(\alpha)}{\partial N} \frac{e^{-G_{N}^{-1}(\alpha)} G_{N}^{-1}(\alpha)^{N-1}}{\Gamma(N)}+\int_{x=0}^{G_{N}^{-1}(\alpha)} e^{-x} \frac{\partial\left(\frac{x^{N-1}}{\Gamma(N)}\right)}{\partial N} d x=0
$$

i.e.,

$$
\begin{aligned}
\frac{\partial G_{N}^{-1}(\alpha)}{\partial N} & =\frac{\Gamma(N) e^{G_{N}^{-1}(\alpha)}}{G_{N}^{-1}(\alpha)^{N-1}}\left(-\int_{x=0}^{G_{N}^{-1}(\alpha)} e^{-x} \frac{\partial\left(\frac{x^{N-1}}{\Gamma(N)}\right)}{\partial N} d x\right) \\
& =\frac{e^{G_{N}^{-1}(\alpha)}}{\Gamma(N) G_{N}^{-1}(\alpha)^{N-1}} \int_{x=0}^{G_{N}^{-1}(\alpha)} e^{-x}\left[-x^{N-1} \log (x) \Gamma(N)+x^{N-1} \Gamma^{\prime}(N)\right] d x \\
& =\frac{e^{G_{N}^{-1}(\alpha)}}{\Gamma(N)} f\left(G_{N}^{-1}(\alpha), N\right)
\end{aligned}
$$

where

$$
f(z, N)=\frac{1}{z^{N-1}} \int_{x=0}^{z} e^{-x}\left[-x^{N-1} \log (x) \Gamma(N)+x^{N-1} \Gamma^{\prime}(N)\right] d x
$$

We compute:

$$
\begin{aligned}
\frac{\partial f(z, N)}{\partial z}= & \frac{1}{z^{2(N-1)}}\left(z^{N-1} e^{-z}\left[-z^{N-1} \log (z) \Gamma(N)+z^{N-1} \Gamma^{\prime}(N)\right]\right. \\
& \left.-(N-1) z^{N-2} \int_{x=0}^{z} e^{-x}\left[-x^{N-1} \log (x) \Gamma(N)+x^{N-1} \Gamma^{\prime}(N)\right] d x\right) \\
= & e^{-z}\left[-\log (z) \Gamma(N)+\Gamma^{\prime}(N)\right]-(N-1) z^{-N} \int_{x=0}^{z} e^{-x}\left[-x^{N-1} \log (x) \Gamma(N)+x^{N-1} \Gamma^{\prime}(N)\right] d x
\end{aligned}
$$

For any $z \leq 1$, we have

$$
\begin{aligned}
\frac{\partial f(z, N)}{\partial z} & \geq e^{-z}\left[-\log (z) \Gamma(N)+\Gamma^{\prime}(N)\right]-(N-1) z^{-N} \int_{x=0}^{z}\left[-x^{N-1} \log (x) \Gamma(N)+x^{N-1} \Gamma^{\prime}(N)\right] d x \\
& =e^{-z}\left[-\log (z) \Gamma(N)+\Gamma^{\prime}(N)\right]-(N-1) z^{-N}\left[\Gamma(N)\left(\frac{z^{N}}{N^{2}}-\frac{z^{N} \log z}{N}\right)+\Gamma^{\prime}(N) \frac{z^{N}}{N}\right] \\
& =e^{-z}\left[-\log (z) \Gamma(N)+\Gamma^{\prime}(N)\right]-\frac{N-1}{N}\left[\Gamma(N)\left(\frac{1}{N}-\log z\right)+\Gamma^{\prime}(N)\right] \\
& =\left(e^{-z}-\frac{N-1}{N}\right)\left[-\log (z) \Gamma(N)+\Gamma^{\prime}(N)\right]-\frac{N-1}{N^{2}} \Gamma(N) .
\end{aligned}
$$

Since the last line goes to infinity as z goes to zero, for any fixed $N \geq 1$ we can choose $\bar{z} \in(0,1]$ such that $\partial f(z, \widehat{N}) / \partial z \geq 0$ for all $z \in[0, \bar{z}]$ and $\widehat{N} \in[N, N+1]$. Let $\bar{\alpha}=G_{N+1}(\bar{z})$.

Suppose $0 \leq \alpha^{\prime}<\alpha \leq \bar{\alpha}$. We have

$$
\left[G_{N+1}^{-1}(\alpha)-G_{N+1}^{-1}\left(\alpha^{\prime}\right)\right]-\left[G_{N}^{-1}(\alpha)-G_{N}^{-1}\left(\alpha^{\prime}\right)\right]=\int_{\widehat{N}=N}^{N+1}\left(\frac{\partial G_{\widehat{N}}^{-1}(\alpha)}{\partial \widehat{N}}-\frac{\partial G_{\widehat{N}}^{-1}\left(\alpha^{\prime}\right)}{\partial \widehat{N}}\right) d \widehat{N}
$$

Since $d\left(e^{z} f(z, \widehat{N}) / \Gamma(\widehat{N})\right) / d z \geq 0$ for all $z \in[0, \bar{z}]$ and $\widehat{N} \in[N, N+1]$, we have $\partial G_{\widehat{N}}^{-1}(\alpha) / \partial \widehat{N}-$ $\partial G_{\widehat{N}}^{-1}\left(\alpha^{\prime}\right) / \partial \widehat{N} \geq 0$, which proves the lemma.

Let us now define

$$
\begin{aligned}
G_{N}^{C}(x) & =G_{N}(\sqrt{N-1} x+N-1) \\
g_{N}^{C}(x) & =\sqrt{N-1} g_{N}(\sqrt{N-1} x+N-1)
\end{aligned}
$$

To prove Proposition 7, we first need a number of technical results.
Lemma 11. As N goes to infinity, g_{N}^{C} and G_{N}^{C} converge pointwise to ϕ and Φ, respectively.

Proof of Lemma 11. Note that

$$
\begin{aligned}
g_{N+1}^{C}(x) & =\sqrt{N} g_{N+1}(\sqrt{N} x+N) \\
& =\sqrt{N} \frac{(\sqrt{N} x+N)^{N}}{N!} \exp (-\sqrt{N} x-N)
\end{aligned}
$$

Stirling's Approximation says that

$$
\lim _{N \rightarrow \infty} \frac{N!}{\sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N}}=1
$$

Moreover, for all N, the ratio inside the limit is greater than 1.
Thus, when N is large, $g_{N+1}^{C}(x)$ is approximately

$$
\frac{1}{\sqrt{2 \pi}}\left(1+\frac{x}{\sqrt{N}}\right)^{N} \exp (-\sqrt{N} x)
$$

and hence

$$
\log \left(g_{N+1}^{C}(x)\right) \approx \log (1 / \sqrt{2 \pi})+N \log \left(1+\frac{x}{\sqrt{N}}\right)-\sqrt{N} x
$$

Using the mean-value formulation of Taylor's Theorem centered around 0 , for every y, there exists a $z \in[0, y]$ such that

$$
\log (1+y)=y-\frac{y^{2}}{2}+\frac{1}{(1+z)^{3}} y^{3}
$$

Plugging in $y=x / \sqrt{N}$, we conclude that

$$
\begin{aligned}
\log \left(g_{N+1}^{C}(x)\right) & \approx \log (1 / \sqrt{2 \pi})+N \frac{x}{\sqrt{N}}-N \frac{1}{2}\left(\frac{x}{\sqrt{N}}\right)^{2}+N \frac{1}{(1+z)^{3}}\left(\frac{x}{\sqrt{N}}\right)^{3}-\sqrt{N} x \\
& =\log (1 / \sqrt{2 \pi})-\frac{1}{2} x^{2}+\frac{1}{(1+z)^{3}} \frac{x^{3}}{\sqrt{N}}
\end{aligned}
$$

which converges to $\log (1 / \sqrt{2 \pi})-\frac{1}{2} x^{2}$ as N goes to infinity, so $g_{N+1}^{C}(x)$ converges to $\phi(x)=$ $\exp \left(-x^{2} / 2\right) / \sqrt{2 \pi}$. Pointwise convergence of G_{N}^{C} to Φ follows from Scheffé's lemma.

Let us define

$$
\tilde{g}(x)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) & \text { if } x<0 \\ \frac{1}{\sqrt{2 \pi}}(1+x) \exp (-x) & \text { otherwise }\end{cases}
$$

Lemma 12. The function $\tilde{g}(x)|x|$ is integrable, and for all N and $x,\left|g_{N}^{C}(x)\right| \leq \tilde{g}(x)$.

Proof of Lemma 12. Note that

$$
\int_{x=-\infty}^{\infty} \tilde{g}(x)|x| d x=\int_{x=-\infty}^{0} \phi(x)|x| d x+\frac{1}{\sqrt{2 \pi}} \int_{x=0}^{\infty}(1+x) x \exp (-x) d x
$$

which is clearly finite, since the half-normal distribution has finite expectation.
Next, Stirling's Approximation implies that

$$
g_{N+1}^{C}(x) \leq \frac{1}{\sqrt{2 \pi}}\left(1+\frac{x}{\sqrt{N}}\right)^{N} \exp (-\sqrt{N} x) \equiv \tilde{g}_{N}(x)
$$

Now,

$$
\frac{d}{d N} \log \left(\tilde{g}_{N}(x)\right)=\log \left(1+\frac{x}{\sqrt{N}}\right)-\frac{1}{2} \frac{x}{\sqrt{N}+x}-\frac{x}{2 \sqrt{N}}
$$

which is clearly zero when $x=0$, and

$$
\begin{aligned}
\frac{d}{d x} \frac{d}{d N} \log \left(\tilde{g}_{N}(x)\right) & =\frac{1}{\sqrt{N}+x}-\frac{\sqrt{N}}{2(\sqrt{N}+x)^{2}}-\frac{1}{2 \sqrt{N}} \\
& =\frac{2 N+2 \sqrt{N} x}{2 \sqrt{N}(\sqrt{N}+x)^{2}}-\frac{N}{2 \sqrt{N}(\sqrt{N}+x)^{2}}-\frac{N+2 \sqrt{N} x+x^{2}}{2 \sqrt{N}(\sqrt{N}+x)^{2}} \\
& =\frac{-x^{2}}{2 \sqrt{N}(\sqrt{N}+x)^{2}}
\end{aligned}
$$

which is non-positive and strictly negative when $x \neq 0$. As a result, $\tilde{g}_{N}(x)$ is increasing in N when $x<0$ and decreasing in N when $x>0$. Since it converges to $\phi(x)$ in the limit as N goes to infinity, we conclude that for $x<0, g_{N+1}^{C}(x) \leq \tilde{g}_{N}(x) \leq \phi(x)=\tilde{g}(x)$, and for $x>0, g_{N+1}^{C}(x) \leq \tilde{g}_{N}(x) \leq \tilde{g}_{1}(x)=\tilde{g}(x)$ as desired.

Lemma 13. As N goes to infinity, $\widehat{\gamma}_{N}^{C}$ converges almost surely to $\widehat{\gamma}_{\infty}^{C}(x)=H^{-1}(\Phi(x))$ and $\widehat{\Gamma}_{N}^{C}$ converges pointwise to

$$
\widehat{\Gamma}_{\infty}^{C}(x)=\int_{y=-\infty}^{x} \widehat{\gamma}_{\infty}^{C}(y) \phi(y) d y
$$

The latter convergence is uniform on any bounded interval.
Proof of Lemma 13. Note that $\widehat{\gamma}_{N}^{C}(x)=H^{-1}\left(G_{N}^{C}(x)\right)-c$. By Lemma 11, $G_{N}^{C}(x)$ converges to $\Phi(x)$ pointwise. Thus, if H^{-1} is continuous at $\Phi(x)$, then as N goes to infinity, we must have $\widehat{\gamma}_{N}^{C}(x) \rightarrow H^{-1}(\Phi(x))-c=\widehat{\gamma}_{\infty}^{C}(x)$. Since H^{-1} is monotonic, the set of discontinuities has Lebesgue measure zero, so that the pointwise convergence is almost everywhere.

Pointwise convergence of $\widehat{\Gamma}_{N}^{C}$ follows from almost sure convergence of $\widehat{\gamma}_{N}^{C}$, combined with the fact that $\widehat{\gamma}_{N}^{C}$ is uniformly bounded by $|\bar{v}|$, so that we can apply the dominated convergence theorem. Moreover, $\widehat{\Gamma}_{N}^{C}(x)$ is uniformly Lipschitz continuous across N and x. As a result, the family $\left\{\widehat{\Gamma}_{N}^{C}(\cdot)\right\}_{N=2}^{\infty}$ is uniformly bounded and uniformly equicontinuous. The conclusion about uniform convergence is then a consequence of the Arzela-Ascoli theorem.

Recall that x^{*} is the largest solution to $\widehat{\Gamma}_{\infty}^{C}\left(x^{*}\right)=0$ (which may be $-\infty$). Also, let us define x_{N} so that $\bar{\Gamma}_{N}^{C}$ has a graded interval $\left[-\sqrt{N-1}, x_{N}\right]$. (If there is no graded interval with left end point $-\sqrt{N-1}$, then we let $x_{N}=-\sqrt{N-1}$.)

Lemma 14. As N goes to infinity, x_{N} converges to x^{*}.
Proof of Lemma 14. By a change of variables $y=\left(G_{N}^{C}\right)^{-1}(\Phi(x))$, we conclude that

$$
\widehat{\Gamma}_{\infty}^{C}\left(x^{*}\right)=\int_{x=-\infty}^{x^{*}} \widehat{\gamma}_{\infty}^{C}(x) \phi(x) d x=\int_{x=-\sqrt{N-1}}^{\left(G_{N}^{C}\right)^{-1}\left(\Phi\left(x^{*}\right)\right)} \widehat{\gamma}_{N}^{C}(x) g_{N}^{C}(x) d x=\widehat{\Gamma}_{N}^{C}\left(\left(G_{N}^{C}\right)^{-1}\left(\Phi\left(x^{*}\right)\right)\right)
$$

This integral must be zero by the definition of x^{*}, so that $x_{N} \geq\left(G_{N}^{C}\right)^{-1}\left(\Phi\left(x^{*}\right)\right)$. Since the latter converges to x^{*} as $N \rightarrow \infty$, we conclude $\liminf _{N \rightarrow \infty} x_{N} \geq x^{*}$.

Next, recall that x_{N+1} solves the equation

$$
\begin{aligned}
\widehat{\Gamma}_{N+1}^{C}\left(x_{N+1}\right) & =\widehat{\gamma}_{N+1}^{C}\left(x_{N+1}\right) \int_{x=-\sqrt{N}}^{x_{N+1}} \exp \left(\sqrt{N}\left(x-x_{N+1}\right)\right) g_{N+1}^{C}(x) d x \\
& =\widehat{\gamma}_{N+1}^{C}\left(x_{N+1}\right) \exp \left(-\sqrt{N} x_{N+1}-N\right) \int_{x=-\sqrt{N}}^{x_{N+1}} \exp (\sqrt{N} x+N) g_{N+1}^{C}(x) d x \\
& =\widehat{\gamma}_{N+1}^{C}\left(x_{N+1}\right) \exp \left(-\sqrt{N} x_{N+1}-N\right) \int_{x=-\sqrt{N}}^{x_{N+1}} \sqrt{N} \frac{(\sqrt{N} x+N)^{N}}{N!} d x \\
& \leq \bar{v} \exp \left(-\sqrt{N} x_{N+1}-N\right) \frac{\left(\sqrt{N} x_{N+1}+N\right)^{N+1}}{(N+1)!} \\
& =\bar{v} g_{N+2}^{C}\left(\sqrt{\frac{N}{N+1}} x_{N+1}-\frac{1}{\sqrt{N+1}}\right) \frac{1}{\sqrt{N+1}} \\
& \leq \bar{v} \tilde{g}\left(\sqrt{\frac{N}{N+1}} x_{N+1}-\frac{1}{\sqrt{N+1}}\right) \frac{1}{\sqrt{N+1}}
\end{aligned}
$$

where we have used Lemma 12. The last line converges to zero pointwise, so $\widehat{\Gamma}_{N}^{C}\left(x_{N}\right)$ must converge to zero as well.

Now, if $z=\lim \sup _{N \rightarrow \infty} x_{N}>x^{*}$, then since $\widehat{\Gamma}_{\infty}^{C}(z)>\widehat{\Gamma}_{\infty}^{C}\left(x^{*}\right)=0$, we would contradict our earlier finding that $\widehat{\Gamma}_{N}^{C}\left(x_{N}\right) \rightarrow 0$. Thus, $\lim \sup _{N \rightarrow \infty} x_{N} \leq x^{*}$, so x_{N} must converge to x^{*} as N goes to ∞.

Lemma 15. For every $\epsilon>0$, there exists \widehat{N} such that for all $N>\widehat{N}$, there exists an $x \in\left[x^{*}+\epsilon, x^{*}+2 \epsilon\right]$ at which $\bar{\gamma}_{N}^{C}$ is not graded.

Proof of Lemma 15. Suppose not. Then there exist infinitely many N such that for every $x \in\left[x^{*}+\epsilon, x^{*}+2 \epsilon\right], \bar{\gamma}_{N+1}^{C}(x)=\exp (\sqrt{N}(x-\tilde{x})) \widehat{\gamma}_{N+1}^{C}(\tilde{x})$ for some $\tilde{x} \geq x^{*}+2 \epsilon$. Thus, for all $x \leq x^{*}+\epsilon$, we conclude that

$$
\bar{\gamma}_{N+1}^{C}(x) \leq \bar{\gamma}_{N+1}^{C}\left(x^{*}+\epsilon\right) \leq \exp (-\sqrt{N} \epsilon) \bar{v}
$$

which converges to zero as N goes to infinity. This implies that $\liminf _{N \rightarrow \infty} \bar{\Gamma}_{N+1}^{C}\left(x^{*}+\epsilon\right)=0$. But $\bar{\Gamma}_{N+1}^{C}\left(x^{*}+\epsilon\right)$ must be weakly larger than $\widehat{\Gamma}_{N+1}^{C}\left(x^{*}+\epsilon\right)$, so

$$
0=\lim \inf _{N \rightarrow \infty} \bar{\Gamma}_{N+1}^{C}\left(x^{*}+\epsilon\right) \geq \lim \inf _{N \rightarrow \infty} \widehat{\Gamma}_{N+1}^{C}\left(x^{*}+\epsilon\right)=\widehat{\Gamma}_{\infty}^{C}\left(x^{*}+\epsilon\right)>0
$$

a contradiction.
Lemma 16. As N goes to infinity, $\bar{\gamma}_{N}^{C}$ converges almost surely to

$$
\bar{\gamma}_{\infty}^{C}(x)= \begin{cases}0 & \text { if } x<x^{*} \\ \widehat{\gamma}_{\infty}^{C}(x) & \text { if } x \geq x^{*}\end{cases}
$$

Proof of Lemma 16. Let $x<x^{*}$. Since $x_{N} \rightarrow x^{*}$ by Lemma 14, for N sufficiently large, $x_{N}>\left(x^{*}+x\right) / 2$. Since $\bar{\gamma}_{N}^{C}(x)$ is graded on $\left(-\infty, x_{N}\right]$, it is graded at x, and

$$
\begin{aligned}
\bar{\gamma}_{N}^{C}(x) & =\exp \left(\sqrt{N-1}\left(x-x_{N}\right)\right) \widehat{\gamma}_{N}^{C}\left(x_{N}\right) \\
& \leq \exp \left(\sqrt{N-1}\left(x-x^{*}\right) / 2\right) \bar{v}
\end{aligned}
$$

The last line clearly converges to zero pointwise. Since $\bar{\gamma}_{N}^{C}(x) \geq 0$ for all N, we conclude that $\bar{\gamma}_{N}^{C}(x) \rightarrow 0$.

Now consider $x>x^{*}$ at which $\widehat{\gamma}_{\infty}^{C}$ is continuous. Take ϵ so that $x>x^{*}+2 \epsilon$ and so that $\widehat{\gamma}_{\infty}^{C}$ is continuous at $x^{*}+\epsilon$. Lemma 15 says that there is a \widehat{N} such that for all $N>\widehat{N}$, there exists a point in $\left[x^{*}+\epsilon, x^{*}+2 \epsilon\right]$ at which the gains function is not graded. Moreover, since $\widehat{\gamma}_{N}^{C}\left(x^{*}+\epsilon\right)$ converges to $\widehat{\gamma}_{\infty}^{C}\left(x^{*}+\epsilon\right)$, we can pick \widehat{N} large enough and find a constant $\underline{\gamma}>0$ such that for $N>\widehat{N}, \widehat{\gamma}_{N}^{C}\left(x^{*}+\epsilon\right) \geq \underline{\gamma}$.

Now, suppose that $\bar{\gamma}_{N}^{C}$ is graded at x, with x in a graded interval $[a, b]$. Then $a \geq x^{*}+\epsilon$, and hence $\widehat{\gamma}_{N}^{C}(a) \geq \widehat{\gamma}_{N}^{C}\left(x^{*}+\epsilon\right) \geq \underline{\gamma}$. Recall that on $[a, b]$,

$$
\bar{\gamma}_{N}^{C}(x)=\widehat{\gamma}_{N}^{C}(a) \exp (\sqrt{N-1}(x-a)) .
$$

Since $\widehat{\gamma}_{N}^{C}$ is bounded above by \bar{v}, it must be that $\widehat{\gamma}_{N}^{C}(a) \exp (\sqrt{N-1}(b-a)) \leq \bar{v}$, so

$$
\begin{aligned}
b-a & \leq \frac{1}{\sqrt{N-1}} \log \left(\frac{\bar{v}}{\hat{\gamma}_{N}^{C}(a)}\right) \\
& \leq \frac{1}{\sqrt{N-1}} \log \left(\frac{\bar{v}}{\underline{\gamma}}\right)=\epsilon_{N}
\end{aligned}
$$

Thus,

$$
\widehat{\gamma}_{N}^{C}\left(x-\epsilon_{N}\right) \leq \bar{\gamma}_{N}^{C}(x) \leq \widehat{\gamma}_{N}^{C}\left(x+\epsilon_{N}\right)
$$

This was true if $\bar{\gamma}_{N}^{C}(x)$ is graded at x, but clearly the inequality is also true if it is not graded at x, in which case $\bar{\gamma}_{N}^{C}(x)=\widehat{\gamma}_{N}^{C}(x)$. Now, $\widehat{\gamma}_{N}^{C}(x)=\widehat{\gamma}_{\infty}^{C}\left(\Phi^{-1}\left(G_{N}^{C}(x)\right)\right)$, so

$$
\widehat{\gamma}_{\infty}^{C}\left(\Phi^{-1}\left(G_{N}^{C}\left(x-\epsilon_{N}\right)\right)\right) \leq \bar{\gamma}_{N}^{C}(x) \leq \widehat{\gamma}_{\infty}^{C}\left(\Phi^{-1}\left(G_{N}^{C}\left(x+\epsilon_{N}\right)\right)\right)
$$

As $N \rightarrow \infty$, the left and right hand sides converge to $\widehat{\gamma}_{\infty}^{C}(x)$ from the left and right, respectively. Since $\widehat{\gamma}_{\infty}^{C}$ is continuous at x, we conclude that $\bar{\gamma}_{N}^{C}(x) \rightarrow \widehat{\gamma}_{\infty}^{C}(x)$. The lemma follows from the fact that the monotonic function $\widehat{\gamma}_{\infty}^{C}$ is continuous almost everywhere.

Proof of Proposition 7. We argue that

$$
Z_{N+1}=\sqrt{N} \int_{x=0}^{\infty} \bar{\gamma}_{N+1}(x)\left(g_{N+1}(x)-g_{N}(x)\right) d x
$$

converges to a positive constant as N goes to infinity. Since this is \sqrt{N} times the difference between ex ante gains from trade and profit, this proves the result.

To that end, observe that
$Z_{N+1}=\sqrt{N} \int_{x=0}^{N / 2} \bar{\gamma}_{N+1}(x)\left(g_{N+1}(x)-g_{N}(x)\right) d x+\int_{x=-\sqrt{N} / 2}^{\infty} \bar{\gamma}_{N+1}^{C}(x) g_{N+1}^{C}(x) \frac{N x}{\sqrt{N} x+N} d x$.
We claim that the first integral converges to zero as $N \rightarrow \infty$. Note that $g_{N+1}(x) \leq g_{N}(x)$ if and only if $x \leq N$. Therefore,

$$
\begin{aligned}
\left|\sqrt{N} \int_{x=0}^{N / 2} \bar{\gamma}_{N+1}(x)\left(g_{N+1}(x)-g_{N}(x)\right) d x\right| & \leq(\bar{v}+c) \sqrt{N} \int_{x=0}^{N / 2}\left(g_{N}(x)-g_{N+1}(x)\right) d x \\
& =(\bar{v}+c) \sqrt{N}\left(G_{N}(N / 2)-G_{N+1}(N / 2)\right) \\
& =(\bar{v}+c) \sqrt{N} g_{N+1}(N / 2) \\
& =(\bar{v}+c) \sqrt{N} \frac{(N / 2)^{N} \exp (-N / 2)}{N!} \\
& \approx(\bar{v}+c) \sqrt{N} \frac{(N / 2)^{N} \exp (-N / 2)}{\sqrt{2 \pi N}(N / e)^{N}} \\
& =(\bar{v}+c) \frac{1}{\sqrt{2 \pi}} \exp (-N(\log (2)-1 / 2))
\end{aligned}
$$

where we have again used Stirling's Approximation between the third-to-last and second-to-last lines. The last line converges to zero as N goes to infinity.

Now consider the second integral in the formula for Z_{N+1}. By Lemma 12, the integrand is bounded above in absolute value by the integrable function $\bar{v} \tilde{g}(x)|x|$. Moreover, from Lemmas 11 and 16, we know that the integrand converges pointwise to $\bar{\gamma}_{\infty}^{C}(x) \phi(x) x$. The dominated convergence theorem then implies that as N goes to infinity, Z_{N} converges to

$$
\int_{x=-\infty}^{\infty} \bar{\gamma}_{\infty}^{C}(x) \phi(x) x d x
$$

which is strictly positive because $\bar{\gamma}_{\infty}^{C}$ is strictly increasing.
The proof goes through for the must-sell guarantee, if we replace $\bar{\gamma}_{N}^{C}$ with $\widehat{\gamma}_{N}^{C}$.
To prove Proposition 9, we need a few more intermediate results. Let $\bar{G}_{N}(x)=G_{N}(N x)$ be the cumulative distribution for the mean of N independent standard exponential random variables. Define $\bar{F}_{N}(x)=\exp (N(1-x+\log (x)))$. Clearly, $\bar{F}_{N}(x)$ is a cumulative distribution for $x \in[0,1], \bar{F}_{N}(0)=0$ and $\bar{F}_{N}(1)=1$. Finally, define the function $D_{N}(\alpha)$:

$$
D_{N}(\alpha)= \begin{cases}\frac{1}{\bar{F}_{N}^{-1}(\alpha)} & \text { if } \alpha \in[0,0.4] \\ 1.1 & \text { if } \alpha \in(0.4,1]\end{cases}
$$

The choices of 0.4 and 1.1 in $D_{N}(\alpha)$ are arbitrary: any numbers work that are less than $1 / 2$ and more than 1 , respectively.

Lemma 17. When \widehat{N} is sufficiently large, $\bar{\mu}_{N}\left(G_{N}^{-1}(\alpha)\right) \leq D_{\widehat{N}}(\alpha)$ for all $N \geq \widehat{N}$ and $\alpha \in[0,1]$.

Proof of Lemma 17. We first apply the theory of large deviations to the exponential distribution. Let $\Lambda(t)$ be the logarithmic moment generating function for the exponential distribution:

$$
\Lambda(t)=\log \left(\int_{x=0}^{\infty} \exp (x t-x) d x\right)= \begin{cases}\infty & \text { if } t \geq 1 \\ -\log (1-t) & \text { if } t<1\end{cases}
$$

Let $\Lambda^{*}(x)$ be the Legendre transform of $\Lambda(t)$:

$$
\Lambda^{*}(x)=\sup _{t \in \mathbb{R}}\{x t-\Lambda(t)\}= \begin{cases}\infty & x \leq 0 \\ x-1-\log x & x>0\end{cases}
$$

Cramér's theorem (or the Chernoff bound; see Theorem 1.3.12 in Stroock, 2011) then states that for any N,

$$
\bar{G}_{N}(x) \leq \exp \left(-N \Lambda^{*}(x)\right)=\bar{F}_{N}(x)
$$

for every $x \in[0,1]$; or equivalently, $\bar{F}_{N}^{-1}(\alpha) \leq \bar{G}_{N}^{-1}(\alpha)$ for every $\alpha \in\left[0, \bar{G}_{N}(1)\right]$.
By the law of large numbers, when \widehat{N} is sufficiently large, we have $\bar{G}_{N}(1) \geq 0.4$ and $1 / \bar{G}_{N}^{-1}(0.4) \leq 1.1$ and for all $N \geq \widehat{N}$. The claim of the lemma then follows from two cases:

If $\alpha \in[0,0.4]$, then we have

$$
\bar{\mu}_{N}\left(G_{N}^{-1}(\alpha)\right) \leq \frac{N}{G_{N}^{-1}(\alpha)}=\frac{1}{\bar{G}_{N}^{-1}(\alpha)} \leq \frac{1}{\bar{F}_{N}^{-1}(\alpha)} \leq \frac{1}{\bar{F}_{\widehat{N}}^{-1}(\alpha)}=D_{\widehat{N}}(\alpha)
$$

where we have used the bound $\bar{\mu}_{N}(x) \leq N / x$ (equation (21)), and the facts that $\bar{G}_{N}(1) \geq$ 0.4 when $N \geq \widehat{N}\left(\right.$ so $\bar{F}_{N}^{-1}(\alpha) \leq \bar{G}_{N}^{-1}(\alpha)$ for $\left.\alpha \leq 0.4 \leq \bar{G}_{N}(1)\right)$ and that $\bar{F}_{N}(x) \leq \bar{F}_{\widehat{N}}(x)$ for all $N \geq \widehat{N}$ and $x \in[0,1]$ (so $\bar{F}_{\widehat{N}}^{-1}(\alpha) \leq \bar{F}_{N}^{-1}(\alpha)$ for all α).

If $\alpha \in(0.4,1]$, then

$$
\bar{\mu}_{N}\left(G_{N}^{-1}(\alpha)\right) \leq \frac{1}{\bar{G}_{N}^{-1}(\alpha)} \leq \frac{1}{\bar{G}_{N}^{-1}(0.4)} \leq 1.1=D_{\widehat{N}}(\alpha)
$$

since $\bar{G}_{N}^{-1}(\alpha)$ is increasing in α, and $1 / \bar{G}_{N}^{-1}(0.4) \leq 1.1$ when $N \geq \widehat{N}$.
Lemma 18. When N is sufficiently large,

$$
\int_{\alpha=0}^{1} D_{N}(\alpha) d H^{-1}(\alpha)<\infty
$$

Proof of Lemma 18. Since $G_{N}(x)=1-\sum_{k=1}^{N} g_{k}(x)$, we have:

$$
\begin{aligned}
\bar{G}_{N}(x) & =1-\sum_{k=1}^{N} \exp (-N x) \frac{(N x)^{k-1}}{(k-1)!} \\
& =1-\exp (-N x)\left(\exp (N x)-\sum_{k=N}^{\infty} \frac{(N x)^{k}}{k!}\right) \geq \exp (-N x) \frac{(N x)^{N}}{N!}
\end{aligned}
$$

Clearly, there exists an $\bar{x} \in(0,1)$ such that

$$
\bar{F}_{N+1}(x)=\exp ((N+1)(1-x)) x^{N+1} \leq \exp (-N x) \frac{(N x)^{N}}{N!} \leq \bar{G}_{N}(x)
$$

for all $x \in[0, \bar{x}]$. We therefore have $D_{N+1}(\alpha)=1 / \bar{F}_{N+1}^{-1}(\alpha) \leq 1 / \bar{G}_{N}^{-1}(\alpha)$ for all $\alpha \in[0, \bar{\alpha}]$, where $\bar{\alpha}=\min \left\{\bar{F}_{N+1}(\bar{x}), 0.4\right\}$. As a result,
$\int_{\alpha=0}^{1} D_{N+1}(\alpha) d H^{-1}(\alpha) \leq \int_{\alpha=0}^{\bar{\alpha}} \frac{1}{\bar{G}_{N}^{-1}(\alpha)} d H^{-1}(\alpha)+\int_{\alpha=\bar{\alpha}}^{1} \max \left(\frac{1}{\bar{F}_{N+1}^{-1}(\bar{\alpha})}, 1.1\right) d H^{-1}(\alpha)<\infty$
whenever we have

$$
\int_{\alpha=0}^{1} \frac{1}{\bar{G}_{N}^{-1}(\alpha)} d H^{-1}(\alpha)=\int_{x=0}^{\infty} \frac{N}{x} d \widehat{w}_{N}(x)<\infty
$$

Finiteness of the last integral follows from part one of the left-tail assumption.
Lemma 19. Suppose $\lim _{N \rightarrow \infty} y_{N} \in(-\infty, \infty)$. Then $\lim _{N \rightarrow \infty} \bar{\mu}_{N+1}\left(\sqrt{N} y_{N}+N\right)=1$.
Proof of Lemma 19. We first argue that for almost every $y, \bar{\mu}_{N+1}(\sqrt{N} y+N)$ tends to 1 as $N \rightarrow \infty$. For this we recall x^{*} and x_{N} from Lemmas 14-16.

Consider first $y<x^{*}$. By Lemma 14, for N sufficiently large, the gains function is graded at y, and hence

$$
\bar{\mu}_{N+1}(\sqrt{N} y+N)=C\left(0, \sqrt{N} x_{N+1}+N\right)=\frac{N+1}{\sqrt{N} x_{N+1}+N} .
$$

Since we have already shown that $x_{N} \rightarrow x^{*}\left(\right.$ Lemma 14), we conclude that $\bar{\mu}_{N+1}(\sqrt{N} y+N)$ goes to 1 .

Now consider $y>x^{*}$ at which $\widehat{\gamma}_{\infty}^{C}$ is continuous. If the gains function is not graded at y, then $\bar{\mu}_{N+1}(\sqrt{N} y+N)=N /(\sqrt{N} y+N)$. If the gains function is graded at y, then the length of the graded interval $[a, b] \ni y$ in the central limit units is less than $\epsilon_{N}=\bar{v} /(\underline{\gamma} \sqrt{N})$ for some $\underline{\gamma}>0$ independent of N (see Lemma 16). Since $\bar{\mu}$ is decreasing (Lemma $\overline{3}$), we have

$$
\frac{N}{\sqrt{N}\left(y+\epsilon_{N}\right)+N} \leq \bar{\mu}_{N+1}(\sqrt{N} y+N) \leq \frac{N}{\sqrt{N}\left(y-\epsilon_{N}\right)+N}
$$

since $\lim _{z \nmid a} \bar{\mu}_{N+1}(\sqrt{N} z+N)=N /(\sqrt{N} a+N)$ and $\lim _{z \backslash b} \bar{\mu}_{N+1}(\sqrt{N} z+N)=N /(\sqrt{N} b+$ $N)$. As a result, $\bar{\mu}_{N+1}(\sqrt{N} y+N)$ is squeezed to 1 as N goes to infinity.

We conclude that $\bar{\mu}_{N+1}(\sqrt{N} y+N)$ goes to 1 for $y>x^{*}$ at which $\widehat{\gamma}_{\infty}^{C}$ is continuous. Since $\widehat{\gamma}_{\infty}^{C}(y)$ is a monotone function of y, it is continuous at almost every y, so the convergence $\bar{\mu}_{N} \rightarrow 1$ is almost everywhere.

Finally, suppose $\lim _{N \rightarrow \infty} y_{N}=y \in(-\infty, \infty)$. Choose y^{\prime} and $y^{\prime \prime}$ such that $y \in\left(y^{\prime}, y^{\prime \prime}\right)$ and such that

$$
\lim _{N \rightarrow \infty} \bar{\mu}_{N+1}\left(\sqrt{N} y^{\prime}+N\right)=1=\lim _{N \rightarrow \infty} \bar{\mu}_{N+1}\left(\sqrt{N} y^{\prime \prime}+N\right)
$$

When N is sufficiently large, we have $y_{N} \in\left(y^{\prime}, y^{\prime \prime}\right)$, so

$$
\bar{\mu}_{N+1}\left(\sqrt{N} y^{\prime \prime}+N\right) \leq \bar{\mu}_{N+1}\left(\sqrt{N} y_{N}+N\right) \leq \bar{\mu}_{N+1}\left(\sqrt{N} y^{\prime}+N\right)
$$

Taking the limit as $N \rightarrow \infty$, we conclude $\lim _{N \rightarrow \infty} \bar{\mu}_{N+1}\left(\sqrt{N} y_{N}+N\right)=1$.
Proof of Proposition 9. We first prove that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \bar{\lambda}_{N}(v ; H) \rightarrow v-c \tag{2}
\end{equation*}
$$

for every $v \in[\underline{v}, \bar{v}]$.
Replacing $\bar{\mu}_{N}$ by 1 in equation (18), the definition of $\bar{\lambda}_{N}(v ; H)$, we have

$$
\begin{aligned}
\bar{\Pi}_{N}(H)+\int_{y=0}^{\infty} G_{N}(y) d \widehat{w}_{N}(y)-\int_{\nu=v}^{\bar{v}} d \nu & =\bar{\Pi}_{N}(H)+\left(\bar{v}-\int_{y=0}^{\infty} g_{N}(y) \widehat{w}_{N}(y) d y\right)-(\bar{v}-v) \\
& =\bar{\Pi}_{N}(H)-\int_{v^{\prime}=\underline{v}}^{\bar{v}} v^{\prime} d H\left(v^{\prime}\right)+v
\end{aligned}
$$

Since by Proposition $7 \lim _{N \rightarrow \infty} \bar{\Pi}_{N}(H) \rightarrow \int_{v^{\prime}=\underline{v}}^{\bar{v}} v^{\prime} d H\left(v^{\prime}\right)-c$, to prove (2), it suffices to prove that

$$
\lim _{N \rightarrow \infty} \int_{y=0}^{\infty}\left|1-\bar{\mu}_{N}(y)\right| d \widehat{w}_{N}(y)=0 .
$$

Changing variables, we can rewrite the above equation as:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \int_{\alpha=0}^{1}\left|1-\bar{\mu}_{N}\left(G_{N}^{-1}(\alpha)\right)\right| d H^{-1}(\alpha)=0 \tag{3}
\end{equation*}
$$

We note that Stieltjes integration with respect to $d H^{-1}(\alpha)$ is equivalent to a Lebesgue integration with respect to the finite measure ω on $[0,1]$ satisfying $\omega([s, t))=H^{-1}(t)-$ $H^{-1}(s), 0 \leq s \leq t \leq 1$, and $\omega(\{1\})=0$. Part one of the left-tail assumption implies that

$$
\omega(\{0\})=\lim _{\alpha \rightarrow 0} \omega([0, \alpha))=\lim _{\alpha \rightarrow 0} H^{-1}(\alpha)-H^{-1}(0) \leq \lim _{\alpha \rightarrow 0} G_{N}^{-1}(\alpha)^{\varphi}=0
$$

for some $\varphi>1$. Therefore, $\omega(\{0,1\})=0$.
The central limit theorem implies that $\lim _{N \rightarrow \infty}\left(G_{N}^{-1}(\alpha)-(N-1)\right) / \sqrt{N-1}=\Phi^{-1}(\alpha)$ for every $\alpha \in(0,1)$. Therefore, Lemma 19 implies $\lim _{N \rightarrow \infty} \bar{\mu}_{N}\left(G_{N}^{-1}(\alpha)\right)=1$ for every $\alpha \in(0,1)$. Moreover, Lemmas 17 and 18 imply that there exists a \widehat{N} such that for all $N \geq \widehat{N}$, the
integrand $\left|1-\bar{\mu}_{N}\left(G_{N}^{-1}(\alpha)\right)\right|$ in (3) is dominated by $1+D_{\widehat{N}}(\alpha)$ which is integrable with respect to ω. Therefore, equation (3) follows from the dominated convergence theorem, from which equation (2) follows.

Finally, using the definition of $\bar{\lambda}_{N}(v ; H)$, we have

$$
\bar{\lambda}_{N}(v ; H) \leq \bar{\Pi}_{N}(H)+\int_{y=0}^{\infty} \bar{\mu}_{N}(y)\left(1+G_{N}(y)\right) d \widehat{w}_{N}(y) \leq(\bar{v}-c)+2 \int_{\alpha=0}^{1} D_{\widehat{N}}(\alpha) d H^{-1}(\alpha)<\infty
$$

for all $v \in[\underline{v}, \bar{v}]$ and $N \geq \widehat{N}$, where the last two inequalities follow from Lemmas 17 and 18 , respectively. Thus

$$
\lim _{N \rightarrow \infty} \int_{V} \bar{\lambda}_{N}(v ; H) d H^{\prime}(v)=\int_{V} v d H^{\prime}(v)-c
$$

follows the dominated convergence theorem using (2).
The proof for the must-sell $\widehat{\lambda}_{N}(v ; H)$ is identical, after replacing $\bar{\mu}_{N}(x)$ with $\widehat{\mu}_{N}(x)=$ $(N-1) / x$ and $\bar{\Pi}_{N}(H)$ with $\widehat{\Pi}_{N}(H)$.

Lemma 20. Suppose the condition on H in Lemma 10 holds. For any $\epsilon>0$, there exists an \widehat{N} such that for all $N>\widehat{N}$, we have

$$
\widehat{\gamma}_{N}(x) \leq \widehat{\gamma}_{N}(y) \exp (x-y)
$$

for all $x \geq y$ such that $\widehat{\gamma}_{N}(y) \geq \epsilon$.
Proof of Lemma 20. The condition on H implies that the support of H has no gap on $[\underline{v}, \bar{v}]$, so H^{-1} is continuous on $[0,1]$. We can partition $[0,1]$ into a countable collection of intervals $\left\{\left[\alpha_{i}, \beta_{i}\right]: i \in I\right\}$ such that $\alpha_{i}<\beta_{i}$, and either H^{-1} is strictly increasing on $\left[\alpha_{i}, \beta_{i}\right]$, or H^{-1} is constant on $\left[\alpha_{i}, \beta_{i}\right]$ (i.e., H has a mass point at v, where $v=H^{-1}(p)$ for all $p \in\left[\alpha_{i}, \beta_{i}\right]$). If H^{-1} is strictly increasing on $\left[\alpha_{i}, \beta_{i}\right]$, then

$$
\begin{equation*}
H^{-1}(q)-H^{-1}(p) \leq \frac{q-p}{C} \tag{4}
\end{equation*}
$$

for any $p, q \in\left(\alpha_{i}, \beta_{i}\right)$ such that $p \leq q$, since in this case we have $H\left(H^{-1}(q)\right)=q$ and $H\left(H^{-1}(p)\right)=p$. By continuity of H^{-1} we can extend (4) to any $p, q \in\left[\alpha_{i}, \beta_{i}\right]$ such that $p \leq q$.

If H^{-1} is constant on $\left[\alpha_{i}, \beta_{i}\right]$, then clearly (4) also holds for any $p, q \in\left[\alpha_{i}, \beta_{i}\right]$ such that $p \leq q$. Since $\left\{\left[\alpha_{i}, \beta_{i}\right]: i \in I\right\}$ is a partition of $[0,1]$, we conclude that (4) holds for any $p, q \in[0,1]$ such that $p<q$.

With the substitution $q=G_{N}^{C}(x)$ and $p=G_{N}^{C}(y)$, with $x>y$, equation (4) becomes

$$
\widehat{\gamma}_{N}^{C}(x)-\widehat{\gamma}_{N}^{C}(y) \leq \frac{G_{N}^{C}(x)-G_{N}^{C}(y)}{C}
$$

Thus,

$$
\frac{\widehat{\gamma}_{N}^{C}(x)}{\widehat{\gamma}_{N}^{C}(y)} \leq 1+\frac{1}{\widehat{\gamma}_{N}^{C}(y)} \frac{G_{N}^{C}(x)-G_{N}^{C}(y)}{C}
$$

The log-1 Lipschitz condition that we want to prove is equivalent to

$$
\frac{\widehat{\gamma}_{N}^{C}(x)}{\widehat{\gamma}_{N}^{C}(y)} \leq \exp \left(G_{N}^{-1}\left(G_{N}^{C}(x)\right)-G_{N}^{-1}\left(G_{N}^{C}(y)\right)\right)
$$

Thus, it is sufficient to show that for large N,

$$
1+\frac{1}{\widehat{\gamma}_{N}^{C}(y)} \frac{G_{N}^{C}(x)-G_{N}^{C}(y)}{C} \leq \exp \left(G_{N}^{-1}\left(G_{N}^{C}(x)\right)-G_{N}^{-1}\left(G_{N}^{C}(y)\right)\right)
$$

Both sides are equal to one when $x=y$, and the derivatives of the left- and right-hand sides with respect to x are, respectively

$$
\begin{equation*}
\frac{g_{N}^{C}(x)}{\widehat{\gamma}_{N}^{C}(y) C} \tag{5}
\end{equation*}
$$

and

$$
\begin{align*}
& \frac{g_{N}^{C}(x)}{g_{N}\left(G_{N}^{-1}\left(G_{N}^{C}(x)\right)\right)} \exp \left(G_{N}^{-1}\left(G_{N}^{C}(x)\right)-G_{N}^{-1}\left(G_{N}^{C}(y)\right)\right) \tag{6}\\
& =\sqrt{N-1} \exp \left(G_{N}^{-1}\left(G_{N}^{C}(x)\right)-G_{N}^{-1}\left(G_{N}^{C}(y)\right)\right) \geq \sqrt{N-1}
\end{align*}
$$

We now show that (5) is always less than (6). Note that g_{N} attains its maximum when $g_{N}=g_{N-1}$, i.e., when $x=N-1$, at a value of $\frac{(N-1)^{N-1}}{(N-1)!} \exp (-(N-1))$. Multiplied by $\sqrt{N-1}$, this upper bound converges to $\phi(0)$. Hence, when N is sufficiently large, $g_{N}^{C}(x) \leq 2 \phi(0)$ for all x. Since $\widehat{\gamma}_{N}^{C}(z)>0$, then there is an N large enough such that

$$
\frac{g_{N}^{C}(x)}{\widehat{\gamma}_{N}^{C}(y) C} \leq \frac{2 \phi(0)}{\epsilon C} \leq \sqrt{N-1}
$$

which proves the lemma.
Proof of Lemma 10. If $\underline{v}>c$, then we can take $\epsilon=\underline{v}-c$ in the statement of Lemma 20, in which case the statement of the Lemma follows immediately.

If $\underline{v}<c$, then $\widehat{\gamma}_{N}^{C}(-\sqrt{N-1})<0$, so that $\widehat{\Gamma}_{N}^{C}(x)$ is non-positive for x close to $-\sqrt{N-1}$. Hence, there must be a graded interval at the bottom of the form $\left[-\sqrt{N-1}, x_{N}\right]$. By Lemma 14, x_{N} converges to x^{*}. Moreover, by Lemma 16, $\bar{\gamma}_{N}^{C}$ converges almost surely to $\bar{\gamma}_{\infty}^{C}$. Thus, there exists an \widehat{N} such that for all $N>\widehat{N}, \widehat{\gamma}_{N}^{C}\left(x_{N}\right) \geq \epsilon$. If we take $\epsilon=\widehat{\gamma}_{\infty}^{C}\left(x^{*}\right) / 2$ in Lemma 20, then there exists a $\widehat{N}^{\prime} \geq \widehat{N}$ so that for all $N>\widehat{N}^{\prime}$, the log-1 Lipschitz condition is satisfied for all $x \geq x_{N}$. This implies that there is exactly one graded interval, and the conclusion of the Lemma follows.

Proof of Proposition 10. We first derive the allocation. When $\underline{v}>c$, we have $x^{*}=-\infty$ and the gains function $\bar{\gamma}$ is not graded when N is sufficiently large. In this case $\bar{Q}_{N}^{C}(x)$ is always exactly 1 .

When $\underline{v}<c, x^{*} \in(-\infty, \infty)$, and the gains function $\bar{\gamma}$ is single crossing (Section 4.4) when N is sufficiently large. Then $\bar{Q}_{N}^{C}(x)=\min \left((x \sqrt{N}+N) /\left(x_{N} \sqrt{N}+N\right)\right.$, 1$)$. Since x_{N} converges to x^{*} as defined by equation (29), $\bar{Q}_{N}^{C}(x)$ converges to 1 as $N \rightarrow \infty$.

We now derive the transfer. From Lemma 10, we know that there is at most one graded interval of the form $\left[-\sqrt{N}, x_{N}\right]$, where $x_{N}=-\sqrt{N}$ if $\underline{v}>c$ and $x_{N}>-\sqrt{N}$ if $\underline{v}<c$.

Recall that

$$
\begin{gathered}
\bar{T}_{N}(x)=\frac{1}{g_{N}(x)} \int_{y=0}^{x} \bar{\Xi}_{N}(y) g_{N}(y) d y \\
\bar{\Xi}_{N}(x)=\bar{\mu}_{N}(x) \widehat{w}_{N}(x)-\bar{\lambda}_{N}\left(\widehat{w}_{N}(x)\right)-c \bar{Q}_{N}(x) \\
\bar{\lambda}_{N}\left(\widehat{w}_{N}(x)\right)=\int_{y=0}^{\infty} \bar{\gamma}_{N}(y) g_{N-1}(y) d y+\int_{y=0}^{\infty} \bar{\mu}_{N}(y) G_{N}(y) d \widehat{w}_{N}(y)-\int_{y=x}^{\infty} \bar{\mu}_{N}(y) d \widehat{w}_{N}(y) \\
=\int_{y=0}^{\infty} \bar{\gamma}_{N}(y) g_{N-1}(y) d y+\int_{y=0}^{\infty} \bar{\mu}_{N}(y) G_{N}(y) d \widehat{w}_{N}(y)+\bar{\mu}_{N}(x) \widehat{w}_{N}(x)+\int_{y=x}^{\infty} \widehat{w}_{N}(y) d \widehat{\mu}_{N}(y) .
\end{gathered}
$$

Furthermore,

$$
\begin{aligned}
\int_{y=0}^{\infty} \bar{\mu}_{N}(y) G_{N}(y) d \widehat{w}_{N}(y) & =\int_{y=0}^{\infty} \bar{\mu}_{N}(y) G_{N}(y) d \widehat{\gamma}_{N}(y) \\
& =-\int_{y=0}^{\infty} \widehat{\gamma}_{N}(y) d\left(\bar{\mu}_{N}(y) G_{N}(y)\right) \\
& =-\int_{y=0}^{\infty} \widehat{\gamma}_{N}(y) G_{N}(y) d \bar{\mu}_{N}(y)-\int_{y=0}^{\infty} \widehat{\gamma}_{N}(y) \bar{\mu}(y) g_{N}(y) d y \\
& =-\int_{y=0}^{\infty} \widehat{\gamma}_{N}(y) G_{N}(y) d \bar{\mu}_{N}(y)-\int_{y=0}^{\infty} \bar{\gamma}_{N}(y) g_{N-1}(y) d y
\end{aligned}
$$

where the last inequality comes from equation (32). Thus,

$$
\bar{\lambda}_{N}\left(\widehat{w}_{N}(x)\right)=-\int_{y=0}^{\infty} \widehat{\gamma}_{N}(y) G_{N}(y) d \bar{\mu}_{N}(y)+\bar{\mu}_{N}(x) \widehat{w}_{N}(x)+\int_{y=x}^{\infty} \widehat{w}_{N}(y) d \bar{\mu}_{N}(y)
$$

and

$$
\begin{aligned}
\Xi_{N}(x) & =\int_{y=0}^{x} \widehat{\gamma}_{N}(y) G_{N}(y) d \bar{\mu}_{N}(y)+\int_{y=x}^{\infty}\left(\widehat{\gamma}_{N}(y) G_{N}(y)-\widehat{w}_{N}(y)\right) d \bar{\mu}_{N}(y)-c \bar{Q}_{N}(x) \\
& =\int_{y=0}^{x} \widehat{\gamma}_{N}(y) G_{N}(y) d \bar{\mu}_{N}(y)-\int_{y=x}^{\infty} \widehat{\gamma}_{N}(y)\left(1-G_{N}(y)\right) d \bar{\mu}_{N}(y)-c\left(\bar{Q}_{N}(x)-\bar{\mu}_{N}(x)\right)
\end{aligned}
$$

Let us now switch to central limit units.

$$
\begin{aligned}
\Xi_{N}^{C}(x) & =\bar{\Xi}_{N}(\sqrt{N-1} x+N-1) \\
& =\int_{y=-\sqrt{N}}^{x} \widehat{\gamma}_{N}^{C}(y) G_{N}^{C}(y) d \bar{\mu}_{N}^{C}(y)-\int_{y=x}^{\infty} \widehat{\gamma}_{N}^{C}(y)\left(1-G_{N}^{C}(y)\right) d \bar{\mu}_{N}^{C}(y)-c\left(\bar{Q}_{N}^{C}(x)-\bar{\mu}_{N}^{C}(x)\right) .
\end{aligned}
$$

By Lemmas 11 and $13, \widehat{\gamma}_{N}^{C}(y) \rightarrow \widehat{\gamma}_{\infty}^{C}(y)=H^{-1}(\Phi(y))-c$ and $G_{N}^{C}(y) \rightarrow \Phi(y)$ as $N \rightarrow \infty$.

Moreover, we have

$$
\sqrt{N-1} d \bar{\mu}_{N}^{C}(y)= \begin{cases}0 & \text { if } y<x_{N} \\ (N-1)\left(\frac{N-1}{x_{N} \sqrt{N-1}+N-1}-\frac{N}{x_{N} \sqrt{N-1}+N-1}\right) \rightarrow-1 & \text { if } y=x_{N} \\ -(N-1) \frac{N-1}{(y \sqrt{N-1}+N-1)^{2}} d y \rightarrow-d y & \text { if } y>x_{N}\end{cases}
$$

where the mass point on x_{N} is derived by comparing $\bar{\mu}_{N}^{C}$ to the left and right of x_{N}, and

$$
\sqrt{N-1}\left(\bar{Q}_{N}^{C}(x)-\bar{\mu}_{N}^{C}(x)\right)= \begin{cases}\sqrt{N-1}\left(\frac{x \sqrt{N-1}+N-1}{x_{N} \sqrt{N-1}+N-1}-\frac{N}{x_{N} \sqrt{N-1}+N-1}\right) & \text { if } x<x_{N} \\ \sqrt{N-1}\left(1-\frac{N-1}{x \sqrt{N-1}+N-1}\right) & \text { if } x>x_{N}\end{cases}
$$

which converges to x in both cases.
Define $F(x)=\lim _{N \rightarrow \infty} \sqrt{N-1} \bar{\Xi}_{N}^{C}(x)$. We have

$$
F(x)=\left\{\begin{array}{ll}
-c x+\widehat{\gamma}_{\infty}^{C}\left(x^{*}\right)\left(1-\Phi\left(x^{*}\right)\right)+\int_{y=x^{*}}^{\infty} \widehat{\gamma}_{\infty}^{C}(y)(1-\Phi(y)) d y & x<x^{*} \\
-c x-\widehat{\gamma}_{\infty}^{C}\left(x^{*}\right) \Phi\left(x^{*}\right)-\int_{y=x^{*}}^{x} \widehat{\gamma}_{\infty}^{C}(y) \Phi(y) d y+\int_{y=x}^{\infty} \widehat{\gamma}_{\infty}^{C}(y)(1-\Phi(y)) d y & x>x^{*}
\end{array} .\right.
$$

Therefore,

$$
\lim _{N \rightarrow \infty} \bar{T}_{N}^{C}(x)=\frac{1}{\phi(x)} \int_{y=0}^{x} F(y) \phi(y) d y
$$

D Derivation of Aggregate Transfer for Uniform Distribution

Suppose the prior H is the standard uniform distribution, so that $\widehat{w}(x)=G_{N}(x)$, and that $c=0$.

D. 1 Must-sell Case

In the must-sell case, $\widehat{\Xi}$ and \widehat{T} are independent of c, so $c=0$ is without loss. We have:

$$
\begin{aligned}
\widehat{\lambda}\left(G_{N}(x)\right) & =\int_{y=0}^{\infty} G_{N}(y) g_{N-1}(y) d y+\int_{y=0}^{\infty} \frac{N-1}{y} G_{N}(y) g_{N}(y) d y-\int_{y=x}^{\infty} \frac{N-1}{y} g_{N}(y) d y \\
& =2 \int_{y=0}^{\infty} G_{N}(y) g_{N-1}(y) d y-\left(1-G_{N-1}(x)\right) \\
& =2 \widehat{\Pi}-\left(1-G_{N-1}(x)\right) \\
\widehat{\Xi}(x) & =\frac{N-1}{x} G_{N}(x)-G_{N-1}(x)+1-2 \widehat{\Pi} .
\end{aligned}
$$

Next,

$$
\begin{aligned}
\int_{y=0}^{x} \widehat{\Xi}(y) g_{N}(y) d y & =\int_{y=0}^{x}\left(\frac{N-1}{y} G_{N}(y)-G_{N-1}(y)+1-2 \widehat{\Pi}\right) g_{N}(y) d y \\
& =2 \int_{y=0}^{x} G_{N}(y) g_{N-1}(y) d y-G_{N}(x) G_{N-1}(x)+(1-2 \widehat{\Pi}) G_{N}(x) \\
& =G_{N-1}(x)^{2}-2 \int_{y=0}^{x} g_{N}(y) g_{N-1}(y) d y-G_{N}(x) G_{N-1}(x)+(1-2 \widehat{\Pi}) G_{N}(x) \\
& =G_{N-1}(x) g_{N}(x)-2 \int_{y=0}^{x} g_{N}(y) g_{N-1}(y) d y+(1-2 \widehat{\Pi}) G_{N}(x) \\
& =G_{N-1}(x) g_{N}(x)-\frac{(2 N-3)!}{2^{2 N-3}(N-1)!(N-2)!} G_{2 N-2}(2 x)+(1-2 \widehat{\Pi}) G_{N}(x) \\
& =G_{N-1}(x) g_{N}(x)+\frac{(2 N-3)!}{2^{2 N-3}(N-1)!(N-2)!}\left(G_{N}(x)-G_{2 N-2}(2 x)\right)
\end{aligned}
$$

where the second line follows from integration by parts, the third and fourth lines use $G_{N}=G_{N-1}-g_{N}$, the fifth line is a direct computation using the formula for g_{N} in (14), and the last line follows from
$\widehat{\Pi}=\int_{y=0}^{\infty} G_{N}(y) g_{N-1}(y) d y=\frac{1}{2}-\int_{y=0}^{\infty} g_{N}(y) g_{N-1}(y) d y=\frac{1}{2}\left(1-\frac{(2 N-3)!}{2^{2 N-3}(N-1)!(N-2)!}\right)$.
Therefore, when $x>0$,

$$
\widehat{T}(x)=G_{N-1}(x)+\frac{\binom{2 N-3}{N-1}}{2^{2 N-3}} \frac{G_{N}(x)-G_{2 N-2}(2 x)}{g_{N}(x)} .
$$

In the central limit normalization, we define

$$
\widehat{T}^{C}(x)=\widehat{T}(N-1+\sqrt{N-1} x) .
$$

Lemma 11 shows that $G_{N}(N-1+\sqrt{N-1} x) \rightarrow \Phi(x)$ and $g_{N}(N-1+\sqrt{N-1} x) \sqrt{N-1} \rightarrow$ $\phi(x)$ as $N \rightarrow \infty$, where Φ and ϕ are, respectively, the cumulative distribution and density of a standard Normal; this also implies that $G_{2 N-2}(2(N-1+\sqrt{N-1} x)) \rightarrow \Phi(x \sqrt{2})$. Finally, using Stirling's approximation, it is easy to check that $\frac{\left(\begin{array}{l}2 N-3\end{array}\right)}{2^{2 N-3}} \sqrt{N-1} \rightarrow \frac{1}{\sqrt{\pi}}$ as $N \rightarrow \infty$. Therefore,

$$
\lim _{N \rightarrow \infty} \widehat{T}^{C}(x)=\Phi(x)+\frac{\Phi(x)-\Phi(x \sqrt{2})}{\sqrt{\pi} \phi(x)}
$$

for a fixed x.

D. 2 Can-keep Case

We have shown that the uniform distribution is single-crossing in Section 4.4. Let $\left[0, x^{*}\right]$ denote the graded interval. The cutoff x^{*} satisfies (cf. (28))

$$
\begin{equation*}
\frac{G_{N}\left(x^{*}\right)}{2}=g_{N+1}\left(x^{*}\right) \tag{7}
\end{equation*}
$$

This equation implies that $G_{N+1}\left(x^{*}\right)=G_{N}\left(x^{*}\right)-g_{N+1}\left(x^{*}\right)=g_{N+1}\left(x^{*}\right)=G_{N}\left(x^{*}\right) / 2$.
Define the constants

$$
\begin{aligned}
C= & \int_{x=0}^{\infty} \bar{\gamma}(x) g_{N-1}(x) d x+\int_{x=0}^{\infty} \bar{\mu}(x) G_{N}(x) g_{N}(x) d x \\
= & \underbrace{\int_{x=0}^{x^{*}} \exp \left(x-x^{*}\right) G_{N}\left(x^{*}\right) g_{N-1}(x) d x+\int_{x=0}^{x^{*}} \frac{N}{x^{*}} G_{N}(x) g_{N}(x) d x}_{C_{1}} \\
& +\underbrace{\int_{x=x^{*}}^{\infty} G_{N}(x) g_{N-1}(x) d x+\int_{x=x^{*}}^{\infty} \frac{N-1}{x} G_{N}(x) g_{N}(x) d x}_{C_{2}}
\end{aligned}
$$

We can simplify the constants as follows:

$$
\begin{aligned}
C_{1} & =2 \int_{x=0}^{x^{*}} \exp \left(x-x^{*}\right) G_{N}\left(x^{*}\right) g_{N-1}(x) d x \\
& =2 G_{N}\left(x^{*}\right) g_{N}\left(x^{*}\right) \\
C_{2} & =2 \int_{x=x^{*}}^{\infty} G_{N}(x) g_{N-1}(x) d x \\
& =1-G_{N-1}\left(x^{*}\right)^{2}-2 \int_{x=x^{*}}^{\infty} g_{N}(x) g_{N-1}(x) d x \\
& =1-G_{N-1}\left(x^{*}\right)^{2}-\frac{\binom{2 N-3}{N-1}}{2^{2 N-3}}\left(1-G_{2 N-2}\left(2 x^{*}\right)\right)
\end{aligned}
$$

$$
C=2 G_{N}\left(x^{*}\right) g_{N}\left(x^{*}\right)+1-G_{N-1}\left(x^{*}\right)^{2}-\frac{\binom{2 N-3}{N-1}}{2^{2 N-3}}\left(1-G_{2 N-2}\left(2 x^{*}\right)\right)
$$

Then

$$
\begin{aligned}
\bar{\lambda}\left(G_{N}(x)\right) & =C-\int_{y=x}^{\infty} \bar{\mu}(y) g_{N}(y) d y \\
& = \begin{cases}C-\int_{y=x}^{x^{*}} \frac{N}{x^{*}} g_{N}(y) d y-\int_{y=x^{*}}^{\infty} \frac{N-1}{y} g_{N}(y) d y & x \leq x^{*} \\
C-\int_{y=x}^{\infty} \frac{N-1}{y} g_{N}(y) d y & x>x^{*}\end{cases} \\
& = \begin{cases}C-\left(G_{N}\left(x^{*}\right)-G_{N}(x)\right) \frac{N}{x^{*}}-\left(1-G_{N-1}\left(x^{*}\right)\right) & x \leq x^{*} \\
C-\left(1-G_{N-1}(x)\right) & x>x^{*}\end{cases}
\end{aligned}
$$

and

$$
\bar{\Xi}(x)=\left\{\begin{array}{cl}
G_{N}(x) \frac{N}{x^{*}}-C+\left(G_{N}\left(x^{*}\right)-G_{N}(x)\right) \frac{N}{x^{*}}+\left(1-G_{N-1}\left(x^{*}\right)\right) & x \leq x^{*} \\
=-C+G_{N}\left(x^{*}\right) \frac{N}{x^{*}}+1-G_{N-1}\left(x^{*}\right) & \\
G_{N}(x) \frac{N-1}{x}-C+1-G_{N-1}(x) & x>x^{*}
\end{array}\right.
$$

For $x \leq x^{*}$, we have:

$$
\begin{aligned}
\int_{y=0}^{x} \bar{\Xi}(y) g_{N}(y) d y & =\int_{y=0}^{x}\left(-C+G_{N}\left(x^{*}\right) \frac{N}{x^{*}}+1-G_{N-1}\left(x^{*}\right)\right) g_{N}(y) d y \\
& =\left(-C+G_{N}\left(x^{*}\right) \frac{N}{x^{*}}+1-G_{N-1}\left(x^{*}\right)\right) G_{N}(x)
\end{aligned}
$$

For $x>x^{*}$, we have:

$$
\begin{aligned}
\int_{y=0}^{x} \bar{\Xi}(y) g_{N}(y) d y= & \left(-C+G_{N}\left(x^{*}\right) \frac{N}{x^{*}}+1-G_{N-1}\left(x^{*}\right)\right) G_{N}\left(x^{*}\right) \\
& +\underbrace{\int_{x^{*}}^{x}\left(G_{N}(y) \frac{N-1}{y}-C+1-G_{N-1}(y)\right) g_{N}(y) d y}_{X}
\end{aligned}
$$

Simplifying the second term, we get:

$$
\begin{aligned}
X= & (1-C)\left(G_{N}(x)-G_{N}\left(x^{*}\right)\right) \\
& +2 \int_{y=x^{*}}^{x} G_{N}(y) g_{N-1}(y) d y-\left(G_{N}(x) G_{N-1}(x)-G_{N}\left(x^{*}\right) G_{N-1}\left(x^{*}\right)\right) \\
= & (1-C)\left(G_{N}(x)-G_{N}\left(x^{*}\right)\right) \\
& -2 \int_{y=x^{*}}^{x} g_{N}(y) g_{N-1}(y) d y+g_{N}(x) G_{N-1}(x)-g_{N}\left(x^{*}\right) G_{N-1}\left(x^{*}\right) \\
= & (1-C)\left(G_{N}(x)-G_{N}\left(x^{*}\right)\right)
\end{aligned}
$$

$$
-\frac{\binom{2 N-3}{N-1}}{2^{2 N-3}}\left(G_{2 N-2}(2 x)-G_{2 N-2}\left(2 x^{*}\right)\right)+g_{N}(x) G_{N-1}(x)-g_{N}\left(x^{*}\right) G_{N-1}\left(x^{*}\right)
$$

Therefore, for $x \leq x^{*}$, we have:

$$
\bar{T}(x)=\left(-C+G_{N}\left(x^{*}\right) \frac{N}{x^{*}}+1-G_{N-1}\left(x^{*}\right)\right) \frac{G_{N}(x)}{g_{N}(x)}
$$

For $x>x^{*}$ we have:

$$
\begin{aligned}
& \bar{T}(x) \\
= & {\left[G_{N}\left(x^{*}\right)^{2} \frac{N}{x^{*}}-G_{N-1}\left(x^{*}\right)^{2}+(1-C) G_{N}(x)-\frac{\binom{2 N-3}{N-1}}{2^{2 N-3}}\left(G_{2 N-2}(2 x)-G_{2 N-2}\left(2 x^{*}\right)\right)\right] \frac{1}{g_{N}(x)}+G_{N-1}(x) . }
\end{aligned}
$$

Finally, we take the limit as $N \rightarrow \infty$ for the central limit normalization:

$$
\bar{T}^{C}(x)=\bar{T}(N-1+\sqrt{N-1} x) .
$$

Since $G_{N}\left(x^{*}\right) / 2=G_{N+1}\left(x^{*}\right)$ by the discussion following equation (7), we must have $\left(x^{*}-(N-1)\right) / \sqrt{N-1} \rightarrow-\infty, G_{N}\left(x^{*}\right) \rightarrow 0$, and $g_{N}\left(x^{*}\right) \rightarrow 0$ as $N \rightarrow \infty$. Moreover, by equation (7), $N G_{N}\left(x^{*}\right) / x^{*}=2 N g_{N+1}\left(x^{*}\right) / x^{*}=2 g_{N}\left(x^{*}\right) \rightarrow 0$ as $N \rightarrow \infty$. Substituting these into the expressions of C and \bar{T} and simplify as in the must-sell case, we get

$$
\lim _{N \rightarrow \infty} \bar{T}^{C}(x)=\Phi(x)+\frac{\Phi(x)-\Phi(x \sqrt{2})}{\sqrt{\pi} \phi(x)}
$$

References

Stroock, D. W. (2011): Probability Theory: An Analytic View, Cambridge University Press, 2 ed.

