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B Proofs for Section 5

B.1 Proof of Proposition 5

Let ∆ = 1/K, and recall that the message space for M(m,K) is

Mi = {m,m+ ∆, . . . ,m+K}.

Note that the highest message m = m + K is at least ∆−1. We shall extend the domain
of the allocation and transfer rules to all of RN

+ for notational convenience. The discrete
aggregate allocation sensitivity is

µ(m) =
1

∆

N∑
i=1

Imi<m(qi(mi + ∆,m−i)− qi(m)),

and the discrete aggregate excess growth is

Ξ(m) =
1

∆

N∑
i=1

Imi<m(ti(mi + ∆,m−i)− ti(m))− Σt(m).

Now, define

λ(m; v) = vµ(m)− Ξ(m)− cQ(Σm),

and let λ(v) = minm∈M λ(m; v).

Lemma 1. For any information structures S and equilibrium β of (S,M(m,K)), expected
profit is at least

∫
V
λ(v)H(dv).

Proof of Lemma 1. The equilibrium hypothesis implies that for all i,∫
S

∑
m∈M

[
w(s)(qi(min{mi + ∆,m},m−i)− qi(m))
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− (ti(min{mi + ∆,m},m−i)− ti(m))
]
β(m|s)π(ds) ≤ 0,

which corresponds to the incentive constraint for deviating to min{mi + ∆,m}. Summing
across bidders, and dividing by ∆, we conclude that∫

S

∑
m∈M

[w(s)µ(m)− Ξ(m)− Σt(m)] β(m|s)π(ds) ≤ 0.

Hence, expected profit is∫
S

∑
m∈M

[Σt(m)− cQ(Σm)] β(m|s)π(ds)

≥
∫
S

∑
m∈M

[Σt(m)− cQ(Σm) + w(s)µ(m)− Ξ(m)− Σt(m)] β(m|s)π(ds)

=

∫
S

∑
m∈M

[w(s)µ(m)− Ξ(m)− cQ(Σm)] β(m|s)π(ds)

≥
∫
S

λ(w(s))π(ds)

≥
∫
V

λ(v)H(dv),

where the last line follows from the mean-preserving spread condition on w(s) and that λ
is concave, being the infimum of linear functions.

Lemma 2. For all m ∈M ,

µ(m) ≥ 1

∆

∫ ∆

y=0

µ(Σm+ y)dy − L̂(m,∆),

where

L̂(m,∆) = N(N + 1)∆ +
N(N − 1)

∆

(
log(Nm+ ∆) +

Nm

Nm+ ∆
− log(Nm)− 1

)
.

Moreover, for all m > 0, L̂(m,∆)→ 0 as ∆→ 0.

Proof of Lemma 2. From Lemma 12, we know that

µ(m) =
N∑
i=1

1

∆
(qi(mi + ∆,m−i)− qi(m))−

N∑
i=1

Imi=m
1

∆
(qi(mi + ∆,m−i)− qi(m))

≥
N∑
i=1

1

∆
(qi(mi + ∆,m−i)− qi(m))−NN + 1

m

≥
N∑
i=1

1

∆
(qi(mi + ∆,m−i)− qi(m))−N(N + 1)∆.
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Recall that

µ(x) =
N − 1

x
Q(x) +Q

′
(x).

Also recall that

∂qi(m)

∂mi

=
Σm−i
(Σm)2

Q(Σm) +
mi

Σm
Q
′
(Σm).

Thus,

N∑
i=1

1

∆
(qi(mi + ∆,m−i)− qi(m))

=
1

∆

N∑
i=1

∫ ∆

y=0

∂qi(mi + y,m−i)

∂mi

dy

=
1

∆

N∑
i=1

∫ ∆

y=0

[
Σm−i

(Σm+ y)2
Q(Σm+ y) +

mi + y

Σm+ y
Q
′
(Σm+ y)

]
dy

=
1

∆

∫ ∆

y=0

[
(N − 1)Σm

(Σm+ y)2
Q(Σm+ y) +

Σm+Ny

Σm+ y
Q
′
(Σm+ y)

]
dy

=
1

∆

∫ ∆

y=0

µ(Σm+ y)dy − N − 1

∆

∫ ∆

y=0

y

Σm+ y

[
Q(Σm+ y)

Σm+ y
−Q′(Σm+ y)

]
dy.

We need to bound the last integral from above. If x is in a non-graded interval, then
Q(x)/x−Q′(x) is just 1/x. If x is in a graded interval [a, b], then

Q(x)

x
−Q′(x) =

C(a, b)

N
+
D(a, b)

xN
− C(a, b)

N
+ (N − 1)

D(a, b)

xN
=
ND(a, b)

xN
.

From equation (33), D(a, b) ≤ xN−1, so that the integrand in this case is at most N/x, and∫ ∆

y=0

y

x+ y

[
Q(x+ y)

x+ y
−Q′(x+ y)

]
dy ≤ N

∫ ∆

y=0

y

(x+ y)2
dy

= N

∫ ∆

y=0

(
1

x+ y
− x

(x+ y)2

)
dy

= N

(
log(x+ ∆) +

x

x+ ∆
− log(x)− 1

)
.

The derivative with respect to x is

N

(
1

x+ ∆
− 1

x
+

∆

(x+ ∆)2

)
= N∆

(
1

(x+ ∆)2
− 1

x(x+ ∆)

)
which is clearly negative, so subject to x ≥ Nm, the expression is maximized with x = Nm,
which gives us the lower bound on µ.
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Moreover, as ∆→ 0, N(N + 1)∆→ 0, and by L’Hôpital’s rule,

lim
∆→0

(
log(Nm+ ∆) + Nm

Nm+∆
− log(Nm)− 1

∆

)
= lim

∆→0

(
1

Nm+ ∆
− Nm

(Nm+ ∆)2

)
= 0.

Now let us write Ξp(m) = Ξ(m) − v(µ(m) − Q(m)), and recall that Ξ
p
(x) = Ξ(x) −

v(µ(x)−Q(x)). These are the excess growths for the “premium” transfers tpi (m) = ti(m)−
vqi(m) and t

p
i (m) = ti(m)− vqi(m), respectively. We similarly denote by T

p
(x) = T (x)−

vQ(x) the aggregate premium transfer, and note that T
p

satisfies the differential equation(
N − 1

x
− 1

)
T
p
(x) +

d

dx
T
p
(x) = Ξ

p
(x),

with the boundary condition T
p
(0) = 0.

Lemma 3. Let LΞ be an upper bound on |Ξp| and let LT be an upper bound on T
p
. Then

Ξp(m) ≤ 1

∆

∫ ∆

y=0

Ξ
p
(Σm+ y)dy + L̃(m)

∆

2
+NLpm

− 1

∆

∑
i

Imi=m

[
t
p
i (mi + ∆,m−i)− t

p
i (m)

]
,

where

L̃(m) =

(
1 +

N − 1

Nm

)
Lp +

N − 1

(Nm)2LT .

Proof of Lemma 3. Recall that T
p

is Lipschitz with constant Lp. Furthermore, the function
T
p
(x)(N − 1)/x is Lipschitz on [Nm,∞), and∣∣∣∣ ddx

(
N − 1

x
T
p
(x)

)∣∣∣∣ =

∣∣∣∣N − 1

x

d

dx
T
p
(x)− N − 1

x2
T
p
(x)

∣∣∣∣
≤ N − 1

Nm
Lp +

N − 1

(Nm)2
LT = L1(m).

Using the differential equation for T
p
,

1

∆

∫ ∆

y=0

Ξ
p
(Σm+ y)dy

=
1

∆

∫ ∆

y=0

[(
N − 1

Σm+ y
− 1

)
T
p
(Σm+ y) +

d

dx
T
p
(x)

∣∣∣∣
x=Σm+y

]
dy

=
1

∆

[∫ ∆

y=0

(
N − 1

Σm+ y
− 1

)
T
p
(Σm+ y)dy + T

p
(Σm+ ∆)− T p(Σm)

]
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≥ 1

∆

[∫ ∆

y=0

(
N − 1

Σm+ ∆
T
p
(Σm+ ∆)− L1(m)(∆− y)− T p(Σm)− Lpy

)
dy + T

p
(Σm+ ∆)− T p(Σm)

]
=

1

∆

[
∆

N − 1

Σm+ ∆
T
p
(Σm+ ∆)−∆T

p
(Σm)− (L1(m) + Lp)

∆2

2
+ T

p
(Σm+ ∆)− T p(Σm)

]
=

1

∆

[
Σm+N∆

Σm+ ∆
T
p
(Σm+ ∆)− T p(Σm)

]
− T p(Σm)− (L1(m) + Lp︸ ︷︷ ︸

≡L̃(m)

)
∆

2
.

Now, let us write T p(Σm) for the aggregate transfer when the messages are m. Thus,

Ξp(m) =
1

∆

N∑
i=1

[tpi (mi + ∆,m−i)− tpi (m)]− T p(Σm)− 1

∆

N∑
i=1

Imi=m [tpi (mi + ∆,m−i)− tpi (m)]

=
1

∆

N∑
i=1

[
t
p
i (mi + ∆,m−i)− t

p
i (m)

]
− T p(Σm)− 1

∆

N∑
i=1

Imi=m

[
t
p
i (mi + ∆,m−i)− t

p
i (m)

]
≤ 1

∆

[
Σm+N∆

(Σm+ ∆)
T
p
(Σm+ ∆)− T p(Σm)

]
− T p(Σm)− 1

∆

∑
i

Imi=m

[
t
p
i (mi + ∆,m−i)− t

p
i (m)

]
.

The lemma follows from combining these two inequalities, with the observation that T p(x) =
T
p
(x)−NLpm.

Lemma 4. For all ε > 0, there exists a K such that for all m such that Σm > K and for
all i,

1

∆

∣∣tpi (mi + ∆,m−i)− t
p
i (m)

∣∣ < ε.

Proof of Lemma 4. Since limx→∞ T
p
(x) = −Ξ

p
(∞), we can find a K large enough so that

for x > K,
∣∣T p(x) + Ξ

p
(∞)

∣∣ < ε/4 and LT/K < ε/4, and thus
∣∣dT p(x)/dx

∣∣ < ε/2. Thus,
when Σm > K, then using ∆ = K−1,

1

∆

[
t
p
i (mi + ∆,m−i)− t

p
i (m)

]
=

1

∆

∫ ∆

y=0

∂t
p
i (mi + y,m−i)

∂mi

dy

=
1

∆

∫ ∆

y=0

[
Σm−i

(Σm+ y)2
T
p
(Σm+ y) +

mi + y

Σm+ y

d

dx
T
p
(x)

∣∣∣∣
x=Σm+y

]
dy

≤ LT
K

+
ε

2
< ε.

Proof of Proposition 5. We first argue that there exists m and a K such that λ(m; v) ≥
infm′∈RN λ(m′; v)− ε for all m ∈M and v ∈ [v, v], where

λ(m; v) = (v − v)µ(Σm)− Ξ
p
(Σm) + (v − c)Q(Σm).
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From Lemma 12, we know that |Q(x+ y)−Q(x)| ≤ y(N − 1)/m. Thus,∣∣∣∣Q(x)− 1

∆

∫ ∆

y=0

Q(x+ y)dy

∣∣∣∣ ≤ 1

∆

∫ ∆

y=0

∣∣Q(x+ y)−Q(x)
∣∣ dy

≤ 1

∆

∫ ∆

y=0

y
N − 1

m
dy = ∆

N − 1

2m
.

Combining this inequality with Lemmas 2 and 3, we get that

λ(m; v) = (v − v)µ(m)− Ξp(m) + (v − c)Q(Σm)

≥ 1

∆

∫ ∆

y=0

[
(v − v)µ(Σm+ ∆)− Ξ

p
(Σm+ y) + (v − c)Q(Σm+ y)

]
dy

− (v − v)L̂(m,∆)− v∆
N − 1

2m
− ∆

2
L̃(m)−NLpm

− 1

∆

∑
i

Imi=m

∣∣tpi (mi + ∆,m−i)− t
p
i (m)

∣∣
≥ inf
{m′|Σm≤Σm′≤Σm+∆}

λ(m′; v)

− (v − v)L̂(m,∆)− v∆
N − 1

2m
− ∆

2
L̃(m)−NLpm

− 1

∆

∑
i

Imi=m

∣∣tpi (mi + ∆,m−i)− t
p
i (m)

∣∣ .
We can first pick m > 0 so that NLpm < ε/2. We can then pick K large enough (and
∆ small enough) such that the remaining terms in the last two lines sum to less than ε/2
(where for the first term in the middle line and last line, this follows from Lemmas 2 and
4, respectively). We then conclude that

λ(m; v) ≥ inf
m′∈R+

N

λ(m′; v)− ε ≥ λ(v)− ε.

Hence, λ(v) ≥ λ(v)− ε, and Lemma 1 and Lemma 6 give the result.

This proof goes through verbatim with the maxmin must-sell mechanism M̂.

B.2 Proof of Proposition 6

Recall the definition of S(K). Let ∆ = 1/K . We subsequently choose K sufficiently large
(and equivalently ∆ sufficiently small) to attain the desired ε. Note that the signal space
can be written

Si =
{

0,∆, . . . , K2∆
}
,

and the highest message is simply ∆−1. The probability mass function of si is

fi(si) =

{
(1− exp(−∆)) exp(−si) if si < ∆−1;

exp(−∆−1) if si = ∆−1.
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As a result, si/∆ is a censored geometric random variable with arrival rate 1 − exp(−∆).
We write f(s) = ×Ni=1fi(si) for the joint probability, and

Fi(si) =
∑
s′i≤si

fi(s
′
i) =

{
1− exp(−si −∆) if si < ∆−1;

1 otherwise,

for the cumulative distribution. The value function is

w(s) =
1

f(s)

∫
{s′∈RN

+ |τ(s′i)=si∀i}
w(Σs′) exp(−Σs′)ds′,

where

τ(x) =

{
∆bx/∆c if x < ∆−1;

∆−1 otherwise.

An interpretation is that we draw “true” signals s′ for the bidders from S and agent i
observes si = min{∆b∆−1s′ic,∆−1}, i.e., signals above ∆−1 are censored and otherwise
they are rounded down to the nearest multiple of ∆, and w is the conditional expectation
of w given the noisy observations s. Thus, the distribution of w is a mean-preserving spread
of the distribution of w, so that H is a mean-preserving spread of the distribution of w as
well.

Lemma 5. If si < ∆−1 for all i, then w(s) only depends on the sum of the signals l = Σs
and

w(s) =
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

w(x)ρ(x− l) exp(−x)dx,

where ρ(y) is the N − 1-dimensional volume of the set {s ∈ [0,∆]N |Σs = y}.

Proof of Lemma 5. First observe that

f(s) = (1− exp(−∆))N exp(−Σs) = (1− exp(−∆))N exp(−l).

Thus,

w(s) =
exp(l)

(1− exp(−∆))N

∫
{s′∈RN

+ |τi(s′)=si ∀i}
w(Σs′) exp(−Σs′)ds′

=
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

∫
{s′∈RN

+ |τi(s′)=si ∀i,Σs′=x}
w(Σs′) exp(−Σs′)ds′dx

=
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

w(x) exp(−x)

∫
{s′∈RN

+ |τi(s′i−si)=0 ∀i,Σs′=x}
ds′dx

=
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

w(x) exp(−x)

∫
{s′∈RN

+ |τi(s′)=0 ∀i,Σs′=x−l}
ds′dx,

where the inner integral is just ρ(x− l).
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We now abuse notation slightly by writing w(l) for the value when l = Σs, and let
γ(l) = w(l)− c.

Lemma 6. If l > ∆, then γ(l) ≤ exp(∆)γ(l −∆).

Proof of Lemma 6. From Lemma 5, we know that

γ(l) =
exp(l)

(1− exp(−∆))N

∫ l+N∆

x=l

γ(x) exp(−x)ρ(x− l)dx

=
exp(l)

(1− exp(−∆))N

∫ l+(N−1)∆

x=l−∆

γ(x+ ∆) exp(−x−∆)ρ(x− l + ∆)dx

≤ exp(l −∆)

(1− exp(−∆))N

∫ l+(N−1)∆

x=l−∆

γ(x) exp(∆) exp(−x)ρ(x− l + ∆)dx

= exp(∆)γ(l −∆),

where the inequality follows from Lemma 2.

Lemma 7. If the direct allocation qi(s) is Nash implemented by a participation secure
mechanism, profit is at most

∑
s∈S

f(s)
N∑
i=1

qi(s)

[
γ(Σs)− 1− Fi(si)

fi(si)
(γ(Σs+ ∆)− γ(Σs))

]
. (1)

Proof of Lemma 7. This follows from standard revenue equivalence arguments: If we write
Ui(si, s

′
i) for the utility of a signal si that reports s′i, with Ui(si) = Ui(si, si), then

Ui(si) ≥ Ui(si, s
′
i) = Ui(s

′
i) +

∑
s−i∈S−i

f−i(s−i)qi(s
′
i, s−i) (γ(si + Σs−i)− γ(s′i + Σs−i)) .

Thus, for si ≥ ∆,

Ui(si) ≥ Ui(0) +

si/∆−1∑
k=0

∑
s−i∈S−i

f−i(s−i)qi(k∆, s−i) (γ((k + 1)∆ + Σs−i)− γ(k∆ + Σs−i)) .

The expectation of Ui(si) across si is therefore bounded below by

∑
s∈S

f(s)

si/∆−1∑
k=0

qi(k∆, s−i) (γ((k + 1)∆ + Σs−i)− γ(k∆ + Σs−i))

=
∑
s∈S

f(s)qi(s)(γ(Σs+ ∆)− γ(Σs))
1− Fi(si)
fi(si)

.

The formula then follows from subtracting the bound on bidder surplus from total surplus.

Let Π denote the maximum of the profit bound (1) across all q. Let Π̃ denote the profit
bound when we set q1(s) = 1 and qj(s) = 0 for all j 6= 1.
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Lemma 8. Π ≤ Π̃ + (1− (1− exp(−∆−1))N)v.

Proof of Lemma 8. When signals are all less than ∆−1, the bidder-independent virtual
value is

γ(l)− 1

exp(∆)− 1
(γ(l + ∆)− γ(l))

≥ γ(l)− exp(−∆)

1− exp(−∆)
(γ(l) exp(∆)− γ(l)) = 0,

where the inequality follows from Lemma 6. Thus, the virtual value is maximized pointwise
by allocating with probability one to, say, bidder 1. With probability 1−(1−exp(−∆−1))N ,
one of the signals is above ∆−1, in which case v is an upper bound on the virtual value.

Lemma 9. lim∆→0 Π̃ ≤ Π.

Proof of Lemma 9. Plugging in q1 = 1, we find that

Π̃ =
∑

s−1∈S−1

f−1(s−1)
∑
s1∈S1

f1(s1)γ(Σs)−
∑
s′1>s1

f1(s′1)(γ(Σs+ ∆)− γ(Σs))


=

∑
s−1∈S−1

f−1(s−1)
∑
s1∈S1

f1(s1)

γ(Σs) +
∑
s′1<s1

(γ(s′1 + Σs−1)− γ(s′1 + Σs−1 + ∆))


=

∑
s−1∈S−1

f−1(s−1)γ(Σs−1).

Using the definition of γ, this is

Π̃ =
1

1− exp(−∆)

∫ ∆

y=0

∫ ∞
x=0

γ(x+ y)gN−1(x) exp(−y)dxdy

=
1

1− exp(−∆)

∫ ∞
x=0

γ(x)

∫ min{x,∆}

y=0

gN−1(x− y) exp(−y)dydx

≤ 1

1− exp(−∆)

[∫ ∞
x=∆

γ(x)

∫ ∆

y=0

gN−1(x− y) exp(−y)dydx+GN(∆)v

]
.

Now, observe that∫ ∆

y=0

gN−1(x− y) exp(−y)dy =
xN−1 − (x−∆)N−1

(N − 1)!
exp(−x)

≤ ∆(N − 1)xN−2

(N − 1)!
exp(−x) = ∆gN−1(x),

where we have used convexity of xN−1. Thus,

Π̃ ≤ ∆

1− exp(−∆)

∫ ∞
x=0

γ(x)gN−1(x)dx+
GN(∆)v

1− exp(−∆)
.

An application of L’Hôpital’s rule shows that the last term converges to zero as ∆→ 0 and
∆/(1− exp(−∆))→ 1, this implies the lemma.
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Proof of Proposition 6. Combining Lemmas 7 and 8, we can pick ∆ sufficiently small so
that Π ≤ Π̃ + ε/2 ≤ Π + ε. This completes the proof of the proposition.

Note that every step of the proof of Proposition 6 goes through in the must-sell case,
where we replace w with ŵ, and we skip the step in Lemma 8 of proving that the discrete
virtual value is non-negative.
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C Proofs for Section 6

Proof of Lemma 9. The left-tail assumption could equivalently be stated as: there exists
some α > 0 and ϕ > 1 such that for all 0 ≤ α′ < α ≤ α

H−1(α)− v ≤ G−1
N (α)ϕ

and if v > c,

H−1(α)− c
H−1(α′)− c

≤ exp(G−1
N (α)−G−1

N (α′)).

The following Lemma 10 implies that if the above two conditions hold for N , they hold for
all N ′ > N as well.

Lemma 10. For any N ≥ 1 and N ′ > N , there exists α > 0 such that G−1
N (α)−G−1

N (α′) ≤
G−1
N ′ (α)−G−1

N ′ (α
′) for all 0 ≤ α′ < α ≤ α.

Proof of Lemma 10. Clearly it suffices to prove the lemma for N ′ = N + 1. Let us extend
the definition of GN to any real number N :

GN(x) =

∫ x

y=0

e−y
yN−1

Γ(N)
dy,

where

Γ(N) =

∫ ∞
y=0

e−yyN−1 dy.

(We have Γ(N) = (N − 1)! when N ≥ 1 is an integer.)
By definition, we have ∫ G−1

N (α)

x=0

e−x
xN−1

Γ(N)
dx = α.

Differentiating the above equation with respect to N gives:

∂G−1
N (α)

∂N

e−G
−1
N (α)G−1

N (α)N−1

Γ(N)
+

∫ G−1
N (α)

x=0

e−x
∂
(
xN−1

Γ(N)

)
∂N

dx = 0.

i.e.,

∂G−1
N (α)

∂N
=

Γ(N)eG
−1
N (α)

G−1
N (α)N−1

−∫ G−1
N (α)

x=0

e−x
∂
(
xN−1

Γ(N)

)
∂N

dx


=

eG
−1
N (α)

Γ(N)G−1
N (α)N−1

∫ G−1
N (α)

x=0

e−x[−xN−1 log(x)Γ(N) + xN−1Γ′(N)] dx

=
eG
−1
N (α)

Γ(N)
f(G−1

N (α), N),

11



where

f(z,N) =
1

zN−1

∫ z

x=0

e−x[−xN−1 log(x)Γ(N) + xN−1Γ′(N)] dx.

We compute:

∂f(z,N)

∂z
=

1

z2(N−1)

(
zN−1e−z[−zN−1 log(z)Γ(N) + zN−1Γ′(N)]

− (N − 1)zN−2

∫ z

x=0

e−x[−xN−1 log(x)Γ(N) + xN−1Γ′(N)] dx

)

=e−z[− log(z)Γ(N) + Γ′(N)]− (N − 1)z−N
∫ z

x=0

e−x[−xN−1 log(x)Γ(N) + xN−1Γ′(N)] dx.

For any z ≤ 1, we have

∂f(z,N)

∂z
≥e−z[− log(z)Γ(N) + Γ′(N)]− (N − 1)z−N

∫ z

x=0

[−xN−1 log(x)Γ(N) + xN−1Γ′(N)] dx

=e−z[− log(z)Γ(N) + Γ′(N)]− (N − 1)z−N
[
Γ(N)

(
zN

N2
− zN log z

N

)
+ Γ′(N)

zN

N

]
=e−z[− log(z)Γ(N) + Γ′(N)]− N − 1

N

[
Γ(N)

(
1

N
− log z

)
+ Γ′(N)

]
=

(
e−z − N − 1

N

)
[− log(z)Γ(N) + Γ′(N)]− N − 1

N2
Γ(N).

Since the last line goes to infinity as z goes to zero, for any fixed N ≥ 1 we can choose
z ∈ (0, 1] such that ∂f(z, N̂)/∂z ≥ 0 for all z ∈ [0, z] and N̂ ∈ [N,N+1]. Let α = GN+1(z).

Suppose 0 ≤ α′ < α ≤ α. We have

[G−1
N+1(α)−G−1

N+1(α′)]− [G−1
N (α)−G−1

N (α′)] =

∫ N+1

N̂=N

(
∂G−1

N̂
(α)

∂N̂
−
∂G−1

N̂
(α′)

∂N̂

)
dN̂.

Since d
(
ezf(z, N̂)/Γ(N̂)

)
/dz ≥ 0 for all z ∈ [0, z] and N̂ ∈ [N,N+1], we have ∂G−1

N̂
(α)/∂N̂−

∂G−1

N̂
(α′)/∂N̂ ≥ 0, which proves the lemma.

Let us now define

GC
N(x) = GN

(√
N − 1x+N − 1

)
;

gCN(x) =
√
N − 1 gN

(√
N − 1x+N − 1

)
.

To prove Proposition 7, we first need a number of technical results.

Lemma 11. As N goes to infinity, gCN and GC
N converge pointwise to φ and Φ, respectively.

12



Proof of Lemma 11. Note that

gCN+1(x) =
√
NgN+1(

√
Nx+N)

=
√
N

(
√
Nx+N)N

N !
exp(−

√
Nx−N).

Stirling’s Approximation says that

lim
N→∞

N !
√

2πN
(
N
e

)N = 1.

Moreover, for all N , the ratio inside the limit is greater than 1.
Thus, when N is large, gCN+1(x) is approximately

1√
2π

(
1 +

x√
N

)N
exp(−

√
Nx),

and hence

log(gCN+1(x)) ≈ log(1/
√

2π) +N log

(
1 +

x√
N

)
−
√
Nx.

Using the mean-value formulation of Taylor’s Theorem centered around 0, for every y, there
exists a z ∈ [0, y] such that

log(1 + y) = y − y2

2
+

1

(1 + z)3
y3.

Plugging in y = x/
√
N , we conclude that

log(gCN+1(x)) ≈ log(1/
√

2π) +N
x√
N
−N 1

2

(
x√
N

)2

+N
1

(1 + z)3

(
x√
N

)3

−
√
Nx

= log(1/
√

2π)− 1

2
x2 +

1

(1 + z)3

x3

√
N
,

which converges to log(1/
√

2π)− 1
2
x2 as N goes to infinity, so gCN+1(x) converges to φ(x) =

exp(−x2/2)/
√

2π. Pointwise convergence of GC
N to Φ follows from Scheffé’s lemma.

Let us define

g̃(x) =

{
1√
2π

exp
(
−x2

2

)
if x < 0;

1√
2π

(1 + x) exp(−x) otherwise.

Lemma 12. The function g̃(x)|x| is integrable, and for all N and x, |gCN(x)| ≤ g̃(x).
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Proof of Lemma 12. Note that∫ ∞
x=−∞

g̃(x)|x|dx =

∫ 0

x=−∞
φ(x)|x|dx+

1√
2π

∫ ∞
x=0

(1 + x)x exp(−x)dx,

which is clearly finite, since the half-normal distribution has finite expectation.
Next, Stirling’s Approximation implies that

gCN+1(x) ≤ 1√
2π

(
1 +

x√
N

)N
exp(−

√
Nx) ≡ g̃N(x).

Now,

d

dN
log(g̃N(x)) = log

(
1 +

x√
N

)
− 1

2

x√
N + x

− x

2
√
N
,

which is clearly zero when x = 0, and

d

dx

d

dN
log(g̃N(x)) =

1√
N + x

−
√
N

2(
√
N + x)2

− 1

2
√
N

=
2N + 2

√
Nx

2
√
N(
√
N + x)2

− N

2
√
N(
√
N + x)2

− N + 2
√
Nx+ x2

2
√
N(
√
N + x)2

=
−x2

2
√
N(
√
N + x)2

,

which is non-positive and strictly negative when x 6= 0. As a result, g̃N(x) is increasing in
N when x < 0 and decreasing in N when x > 0. Since it converges to φ(x) in the limit as
N goes to infinity, we conclude that for x < 0, gCN+1(x) ≤ g̃N(x) ≤ φ(x) = g̃(x), and for
x > 0, gCN+1(x) ≤ g̃N(x) ≤ g̃1(x) = g̃(x) as desired.

Lemma 13. As N goes to infinity, γ̂CN converges almost surely to γ̂C∞(x) = H−1(Φ(x)) and

Γ̂CN converges pointwise to

Γ̂C∞(x) =

∫ x

y=−∞
γ̂C∞(y)φ(y)dy.

The latter convergence is uniform on any bounded interval.

Proof of Lemma 13. Note that γ̂CN(x) = H−1(GC
N(x))− c. By Lemma 11, GC

N(x) converges
to Φ(x) pointwise. Thus, if H−1 is continuous at Φ(x), then as N goes to infinity, we must
have γ̂CN(x)→ H−1(Φ(x))− c = γ̂C∞(x). Since H−1 is monotonic, the set of discontinuities
has Lebesgue measure zero, so that the pointwise convergence is almost everywhere.

Pointwise convergence of Γ̂CN follows from almost sure convergence of γ̂CN , combined
with the fact that γ̂CN is uniformly bounded by |v|, so that we can apply the dominated

convergence theorem. Moreover, Γ̂CN(x) is uniformly Lipschitz continuous across N and x.

As a result, the family {Γ̂CN(·)}∞N=2 is uniformly bounded and uniformly equicontinuous. The
conclusion about uniform convergence is then a consequence of the Arzela-Ascoli theorem.
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Recall that x∗ is the largest solution to Γ̂C∞(x∗) = 0 (which may be −∞). Also, let us

define xN so that Γ
C

N has a graded interval [−
√
N − 1, xN ]. (If there is no graded interval

with left end point −
√
N − 1, then we let xN = −

√
N − 1.)

Lemma 14. As N goes to infinity, xN converges to x∗.

Proof of Lemma 14. By a change of variables y = (GC
N)−1(Φ(x)), we conclude that

Γ̂C∞(x∗) =

∫ x∗

x=−∞
γ̂C∞(x)φ(x)dx =

∫ (GC
N )−1(Φ(x∗))

x=−
√
N−1

γ̂CN(x)gCN(x)dx = Γ̂CN
(
(GC

N)−1(Φ(x∗))
)
.

This integral must be zero by the definition of x∗, so that xN ≥ (GC
N)−1(Φ(x∗)). Since the

latter converges to x∗ as N →∞, we conclude lim infN→∞ xN ≥ x∗.
Next, recall that xN+1 solves the equation

Γ̂CN+1(xN+1) = γ̂CN+1(xN+1)

∫ xN+1

x=−
√
N

exp(
√
N(x− xN+1))gCN+1(x)dx

= γ̂CN+1(xN+1) exp(−
√
NxN+1 −N)

∫ xN+1

x=−
√
N

exp(
√
Nx+N)gCN+1(x)dx

= γ̂CN+1(xN+1) exp(−
√
NxN+1 −N)

∫ xN+1

x=−
√
N

√
N

(
√
Nx+N)N

N !
dx

≤ v exp(−
√
NxN+1 −N)

(
√
NxN+1 +N)N+1

(N + 1)!

= vgCN+2

(√
N

N + 1
xN+1 −

1√
N + 1

)
1√
N + 1

≤ vg̃

(√
N

N + 1
xN+1 −

1√
N + 1

)
1√
N + 1

,

where we have used Lemma 12. The last line converges to zero pointwise, so Γ̂CN(xN) must
converge to zero as well.

Now, if z = lim supN→∞ xN > x∗, then since Γ̂C∞(z) > Γ̂C∞(x∗) = 0, we would contradict

our earlier finding that Γ̂CN(xN)→ 0. Thus, lim supN→∞ xN ≤ x∗, so xN must converge to
x∗ as N goes to ∞.

Lemma 15. For every ε > 0, there exists N̂ such that for all N > N̂ , there exists an
x ∈ [x∗ + ε, x∗ + 2ε] at which γCN is not graded.

Proof of Lemma 15. Suppose not. Then there exist infinitely many N such that for every
x ∈ [x∗ + ε, x∗ + 2ε], γCN+1(x) = exp(

√
N(x − x̃))γ̂CN+1(x̃) for some x̃ ≥ x∗ + 2ε. Thus, for

all x ≤ x∗ + ε, we conclude that

γCN+1(x) ≤ γCN+1(x∗ + ε) ≤ exp(−
√
Nε)v
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which converges to zero asN goes to infinity. This implies that lim infN→∞ Γ
C

N+1(x∗+ε) = 0.

But Γ
C

N+1(x∗ + ε) must be weakly larger than Γ̂CN+1(x∗ + ε), so

0 = lim inf
N→∞

Γ
C

N+1(x∗ + ε) ≥ lim inf
N→∞

Γ̂CN+1(x∗ + ε) = Γ̂C∞(x∗ + ε) > 0,

a contradiction.

Lemma 16. As N goes to infinity, γCN converges almost surely to

γC∞(x) =

{
0 if x < x∗;

γ̂C∞(x) if x ≥ x∗.

Proof of Lemma 16. Let x < x∗. Since xN → x∗ by Lemma 14, for N sufficiently large,
xN > (x∗ + x)/2. Since γCN(x) is graded on (−∞, xN ], it is graded at x, and

γCN(x) = exp(
√
N − 1(x− xN))γ̂CN(xN)

≤ exp(
√
N − 1(x− x∗)/2)v.

The last line clearly converges to zero pointwise. Since γCN(x) ≥ 0 for all N , we conclude
that γCN(x)→ 0.

Now consider x > x∗ at which γ̂C∞ is continuous. Take ε so that x > x∗+ 2ε and so that

γ̂C∞ is continuous at x∗ + ε. Lemma 15 says that there is a N̂ such that for all N > N̂ ,
there exists a point in [x∗+ ε, x∗+ 2ε] at which the gains function is not graded. Moreover,

since γ̂CN(x∗ + ε) converges to γ̂C∞(x∗ + ε), we can pick N̂ large enough and find a constant

γ > 0 such that for N > N̂ , γ̂CN(x∗ + ε) ≥ γ.

Now, suppose that γCN is graded at x, with x in a graded interval [a, b]. Then a ≥ x∗+ε,
and hence γ̂CN(a) ≥ γ̂CN(x∗ + ε) ≥ γ. Recall that on [a, b],

γCN(x) = γ̂CN(a) exp(
√
N − 1(x− a)).

Since γ̂CN is bounded above by v, it must be that γ̂CN(a) exp(
√
N − 1(b− a)) ≤ v, so

b− a ≤ 1√
N − 1

log

(
v

γ̂CN(a)

)
≤ 1√

N − 1
log

(
v

γ

)
= εN .

Thus,

γ̂CN(x− εN) ≤ γCN(x) ≤ γ̂CN(x+ εN).

This was true if γCN(x) is graded at x, but clearly the inequality is also true if it is not
graded at x, in which case γCN(x) = γ̂CN(x). Now, γ̂CN(x) = γ̂C∞(Φ−1(GC

N(x))), so

γ̂C∞(Φ−1(GC
N(x− εN))) ≤ γCN(x) ≤ γ̂C∞(Φ−1(GC

N(x+ εN))).

As N → ∞, the left and right hand sides converge to γ̂C∞(x) from the left and right,
respectively. Since γ̂C∞ is continuous at x, we conclude that γCN(x) → γ̂C∞(x). The lemma
follows from the fact that the monotonic function γ̂C∞ is continuous almost everywhere.
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Proof of Proposition 7. We argue that

ZN+1 =
√
N

∫ ∞
x=0

γN+1(x)(gN+1(x)− gN(x))dx

converges to a positive constant as N goes to infinity. Since this is
√
N times the difference

between ex ante gains from trade and profit, this proves the result.
To that end, observe that

ZN+1 =
√
N

∫ N/2

x=0

γN+1(x)(gN+1(x)− gN(x))dx+

∫ ∞
x=−

√
N/2

γCN+1(x)gCN+1(x)
Nx√
Nx+N

dx.

We claim that the first integral converges to zero as N →∞. Note that gN+1(x) ≤ gN(x)
if and only if x ≤ N . Therefore,∣∣∣∣∣√N

∫ N/2

x=0

γN+1(x)(gN+1(x)− gN(x))dx

∣∣∣∣∣ ≤ (v + c)
√
N

∫ N/2

x=0

(gN(x)− gN+1(x))dx

= (v + c)
√
N(GN(N/2)−GN+1(N/2))

= (v + c)
√
NgN+1(N/2)

= (v + c)
√
N

(N/2)N exp(−N/2)

N !

≈ (v + c)
√
N

(N/2)N exp(−N/2)√
2πN(N/e)N

= (v + c)
1√
2π

exp(−N(log(2)− 1/2)),

where we have again used Stirling’s Approximation between the third-to-last and second-
to-last lines. The last line converges to zero as N goes to infinity.

Now consider the second integral in the formula for ZN+1. By Lemma 12, the integrand
is bounded above in absolute value by the integrable function vg̃(x)|x|. Moreover, from
Lemmas 11 and 16, we know that the integrand converges pointwise to γC∞(x)φ(x)x. The
dominated convergence theorem then implies that as N goes to infinity, ZN converges to∫ ∞

x=−∞
γC∞(x)φ(x)xdx,

which is strictly positive because γC∞ is strictly increasing.
The proof goes through for the must-sell guarantee, if we replace γCN with γ̂CN .

To prove Proposition 9, we need a few more intermediate results. Let GN(x) = GN(Nx)
be the cumulative distribution for the mean of N independent standard exponential ran-
dom variables. Define FN(x) = exp(N(1 − x + log(x))). Clearly, FN(x) is a cumulative
distribution for x ∈ [0, 1], FN(0) = 0 and FN(1) = 1. Finally, define the function DN(α):

DN(α) =

{
1

F
−1
N (α)

if α ∈ [0, 0.4];

1.1 if α ∈ (0.4, 1].
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The choices of 0.4 and 1.1 in DN(α) are arbitrary: any numbers work that are less than
1/2 and more than 1, respectively.

Lemma 17. When N̂ is sufficiently large, µN(G−1
N (α)) ≤ DN̂(α) for all N ≥ N̂ and

α ∈ [0, 1].

Proof of Lemma 17. We first apply the theory of large deviations to the exponential dis-
tribution. Let Λ(t) be the logarithmic moment generating function for the exponential
distribution:

Λ(t) = log

(∫ ∞
x=0

exp(xt− x) dx

)
=

{
∞ if t ≥ 1;

− log(1− t) if t < 1.

Let Λ∗(x) be the Legendre transform of Λ(t):

Λ∗(x) = sup
t∈R
{xt− Λ(t)} =

{
∞ x ≤ 0,

x− 1− log x x > 0.

Cramér’s theorem (or the Chernoff bound; see Theorem 1.3.12 in Stroock, 2011) then
states that for any N ,

GN(x) ≤ exp(−NΛ∗(x)) = FN(x)

for every x ∈ [0, 1]; or equivalently, F
−1

N (α) ≤ G
−1

N (α) for every α ∈ [0, GN(1)].

By the law of large numbers, when N̂ is sufficiently large, we have GN(1) ≥ 0.4 and

1/G
−1

N (0.4) ≤ 1.1 and for all N ≥ N̂ . The claim of the lemma then follows from two cases:
If α ∈ [0, 0.4], then we have

µN(G−1
N (α)) ≤ N

G−1
N (α)

=
1

G
−1

N (α)
≤ 1

F
−1

N (α)
≤ 1

F
−1

N̂ (α)
= DN̂(α),

where we have used the bound µN(x) ≤ N/x (equation (21)), and the facts that GN(1) ≥
0.4 when N ≥ N̂ (so F

−1

N (α) ≤ G
−1

N (α) for α ≤ 0.4 ≤ GN(1)) and that FN(x) ≤ F N̂(x) for

all N ≥ N̂ and x ∈ [0, 1] (so F
−1

N̂ (α) ≤ F
−1

N (α) for all α).
If α ∈ (0.4, 1], then

µN(G−1
N (α)) ≤ 1

G
−1

N (α)
≤ 1

G
−1

N (0.4)
≤ 1.1 = DN̂(α),

since G
−1

N (α) is increasing in α, and 1/G
−1

N (0.4) ≤ 1.1 when N ≥ N̂ .

Lemma 18. When N is sufficiently large,∫ 1

α=0

DN(α) dH−1(α) <∞.
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Proof of Lemma 18. Since GN(x) = 1−
∑N

k=1 gk(x), we have:

GN(x) = 1−
N∑
k=1

exp(−Nx)
(Nx)k−1

(k − 1)!

= 1− exp(−Nx)

(
exp(Nx)−

∞∑
k=N

(Nx)k

k!

)
≥ exp(−Nx)

(Nx)N

N !
.

Clearly, there exists an x ∈ (0, 1) such that

FN+1(x) = exp((N + 1)(1− x))xN+1 ≤ exp(−Nx)
(Nx)N

N !
≤ GN(x)

for all x ∈ [0, x]. We therefore have DN+1(α) = 1/F
−1

N+1(α) ≤ 1/G
−1

N (α) for all α ∈ [0, α],
where α = min{FN+1(x), 0.4}. As a result,∫ 1

α=0

DN+1(α) dH−1(α) ≤
∫ α

α=0

1

G
−1

N (α)
dH−1(α)+

∫ 1

α=α

max

(
1

F
−1

N+1(α)
, 1.1

)
dH−1(α) <∞

whenever we have ∫ 1

α=0

1

G
−1

N (α)
dH−1(α) =

∫ ∞
x=0

N

x
dŵN(x) <∞.

Finiteness of the last integral follows from part one of the left-tail assumption.

Lemma 19. Suppose limN→∞ yN ∈ (−∞,∞). Then limN→∞ µN+1(
√
NyN +N) = 1.

Proof of Lemma 19. We first argue that for almost every y, µN+1(
√
Ny+N) tends to 1 as

N →∞. For this we recall x∗ and xN from Lemmas 14–16.
Consider first y < x∗. By Lemma 14, for N sufficiently large, the gains function is

graded at y, and hence

µN+1(
√
Ny +N) = C(0,

√
NxN+1 +N) =

N + 1√
NxN+1 +N

.

Since we have already shown that xN → x∗ (Lemma 14), we conclude that µN+1(
√
Ny+N)

goes to 1.
Now consider y > x∗ at which γ̂C∞ is continuous. If the gains function is not graded at

y, then µN+1(
√
Ny + N) = N/(

√
Ny + N). If the gains function is graded at y, then the

length of the graded interval [a, b] 3 y in the central limit units is less than εN = v/(γ
√
N)

for some γ > 0 independent of N (see Lemma 16). Since µ is decreasing (Lemma 3), we
have

N√
N(y + εN) +N

≤ µN+1(
√
Ny +N) ≤ N√

N(y − εN) +N
,

since limz↗a µN+1(
√
Nz+N) = N/(

√
Na+N) and limz↘b µN+1(

√
Nz+N) = N/(

√
Nb+

N). As a result, µN+1(
√
Ny +N) is squeezed to 1 as N goes to infinity.
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We conclude that µN+1(
√
Ny+N) goes to 1 for y > x∗ at which γ̂C∞ is continuous. Since

γ̂C∞(y) is a monotone function of y, it is continuous at almost every y, so the convergence
µN → 1 is almost everywhere.

Finally, suppose limN→∞ yN = y ∈ (−∞,∞). Choose y′ and y′′ such that y ∈ (y′, y′′)
and such that

lim
N→∞

µN+1(
√
Ny′ +N) = 1 = lim

N→∞
µN+1(

√
Ny′′ +N).

When N is sufficiently large, we have yN ∈ (y′, y′′), so

µN+1(
√
Ny′′ +N) ≤ µN+1(

√
NyN +N) ≤ µN+1(

√
Ny′ +N).

Taking the limit as N →∞, we conclude limN→∞ µN+1(
√
NyN +N) = 1.

Proof of Proposition 9. We first prove that

lim
N→∞

λN(v;H)→ v − c (2)

for every v ∈ [v, v].
Replacing µN by 1 in equation (18), the definition of λN(v;H), we have

ΠN(H) +

∫ ∞
y=0

GN(y) dŵN(y)−
∫ v

ν=v

dν = ΠN(H) +

(
v −

∫ ∞
y=0

gN(y)ŵN(y) dy

)
− (v − v)

= ΠN(H)−
∫ v

v′=v

v′ dH(v′) + v.

Since by Proposition 7 limN→∞ΠN(H) →
∫ v
v′=v

v′ dH(v′) − c, to prove (2), it suffices to
prove that

lim
N→∞

∫ ∞
y=0

|1− µN(y)| dŵN(y) = 0.

Changing variables, we can rewrite the above equation as:

lim
N→∞

∫ 1

α=0

|1− µN(G−1
N (α))| dH−1(α) = 0. (3)

We note that Stieltjes integration with respect to dH−1(α) is equivalent to a Lebesgue
integration with respect to the finite measure ω on [0, 1] satisfying ω([s, t)) = H−1(t) −
H−1(s), 0 ≤ s ≤ t ≤ 1, and ω({1}) = 0. Part one of the left-tail assumption implies that

ω({0}) = lim
α→0

ω([0, α)) = lim
α→0

H−1(α)−H−1(0) ≤ lim
α→0

G−1
N (α)ϕ = 0

for some ϕ > 1. Therefore, ω({0, 1}) = 0.
The central limit theorem implies that limN→∞(G−1

N (α)−(N−1))/
√
N − 1 = Φ−1(α) for

every α ∈ (0, 1). Therefore, Lemma 19 implies limN→∞ µN(G−1
N (α)) = 1 for every α ∈ (0, 1).

Moreover, Lemmas 17 and 18 imply that there exists a N̂ such that for all N ≥ N̂ , the
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integrand |1 − µN(G−1
N (α))| in (3) is dominated by 1 + DN̂(α) which is integrable with

respect to ω. Therefore, equation (3) follows from the dominated convergence theorem,
from which equation (2) follows.

Finally, using the definition of λN(v;H), we have

λN(v;H) ≤ ΠN(H)+

∫ ∞
y=0

µN(y)(1+GN(y)) dŵN(y) ≤ (v−c)+2

∫ 1

α=0

DN̂(α) dH−1(α) <∞,

for all v ∈ [v, v] and N ≥ N̂ , where the last two inequalities follow from Lemmas 17 and
18, respectively. Thus

lim
N→∞

∫
V

λN(v;H) dH ′(v) =

∫
V

v dH ′(v)− c

follows the dominated convergence theorem using (2).

The proof for the must-sell λ̂N(v;H) is identical, after replacing µN(x) with µ̂N(x) =

(N − 1)/x and ΠN(H) with Π̂N(H).

Lemma 20. Suppose the condition on H in Lemma 10 holds. For any ε > 0, there exists
an N̂ such that for all N > N̂ , we have

γ̂N(x) ≤ γ̂N(y) exp(x− y).

for all x ≥ y such that γ̂N(y) ≥ ε.

Proof of Lemma 20. The condition on H implies that the support of H has no gap on [v, v],
so H−1 is continuous on [0, 1]. We can partition [0, 1] into a countable collection of intervals
{[αi, βi] : i ∈ I} such that αi < βi, and either H−1 is strictly increasing on [αi, βi], or H−1

is constant on [αi, βi] (i.e., H has a mass point at v, where v = H−1(p) for all p ∈ [αi, βi]).
If H−1 is strictly increasing on [αi, βi], then

H−1(q)−H−1(p) ≤ q − p
C

. (4)

for any p, q ∈ (αi, βi) such that p ≤ q, since in this case we have H(H−1(q)) = q and
H(H−1(p)) = p. By continuity of H−1 we can extend (4) to any p, q ∈ [αi, βi] such that
p ≤ q.

If H−1 is constant on [αi, βi], then clearly (4) also holds for any p, q ∈ [αi, βi] such that
p ≤ q. Since {[αi, βi] : i ∈ I} is a partition of [0, 1], we conclude that (4) holds for any
p, q ∈ [0, 1] such that p < q.

With the substitution q = GC
N(x) and p = GC

N(y), with x > y, equation (4) becomes

γ̂CN(x)− γ̂CN(y) ≤ GC
N(x)−GC

N(y)

C
.

Thus,

γ̂CN(x)

γ̂CN(y)
≤ 1 +

1

γ̂CN(y)

GC
N(x)−GC

N(y)

C
.
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The log-1 Lipschitz condition that we want to prove is equivalent to

γ̂CN(x)

γ̂CN(y)
≤ exp(G−1

N (GC
N(x))−G−1

N (GC
N(y))).

Thus, it is sufficient to show that for large N ,

1 +
1

γ̂CN(y)

GC
N(x)−GC

N(y)

C
≤ exp(G−1

N (GC
N(x))−G−1

N (GC
N(y))).

Both sides are equal to one when x = y, and the derivatives of the left- and right-hand
sides with respect to x are, respectively

gCN(x)

γ̂CN(y)C
, (5)

and

gCN(x)

gN(G−1
N (GC

N(x)))
exp(G−1

N (GC
N(x))−G−1

N (GC
N(y))) (6)

=
√
N − 1 exp(G−1

N (GC
N(x))−G−1

N (GC
N(y))) ≥

√
N − 1.

We now show that (5) is always less than (6). Note that gN attains its maximum when

gN = gN−1, i.e., when x = N − 1, at a value of (N−1)N−1

(N−1)!
exp(−(N − 1)). Multiplied

by
√
N − 1, this upper bound converges to φ(0). Hence, when N is sufficiently large,

gCN(x) ≤ 2φ(0) for all x. Since γ̂CN(z) > 0, then there is an N large enough such that

gCN(x)

γ̂CN(y)C
≤ 2φ(0)

εC
≤
√
N − 1

which proves the lemma.

Proof of Lemma 10. If v > c, then we can take ε = v − c in the statement of Lemma 20,
in which case the statement of the Lemma follows immediately.

If v < c, then γ̂CN(−
√
N − 1) < 0, so that Γ̂CN(x) is non-positive for x close to −

√
N − 1.

Hence, there must be a graded interval at the bottom of the form [−
√
N − 1, xN ]. By

Lemma 14, xN converges to x∗. Moreover, by Lemma 16, γCN converges almost surely to

γC∞. Thus, there exists an N̂ such that for all N > N̂ , γ̂CN(xN) ≥ ε. If we take ε = γ̂C∞(x∗)/2

in Lemma 20, then there exists a N̂ ′ ≥ N̂ so that for all N > N̂ ′, the log-1 Lipschitz
condition is satisfied for all x ≥ xN . This implies that there is exactly one graded interval,
and the conclusion of the Lemma follows.

Proof of Proposition 10. We first derive the allocation. When v > c, we have x∗ = −∞
and the gains function γ is not graded when N is sufficiently large. In this case Q

C

N(x) is
always exactly 1.

When v < c, x∗ ∈ (−∞,∞), and the gains function γ is single crossing (Section 4.4)

when N is sufficiently large. Then Q
C

N(x) = min((x
√
N + N)/(xN

√
N + N), 1). Since xN

converges to x∗ as defined by equation (29), Q
C

N(x) converges to 1 as N →∞.
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We now derive the transfer. From Lemma 10, we know that there is at most one graded
interval of the form [−

√
N, xN ], where xN = −

√
N if v > c and xN > −

√
N if v < c.

Recall that

TN(x) =
1

gN(x)

∫ x

y=0

ΞN(y)gN(y) dy,

ΞN(x) = µN(x)ŵN(x)− λN(ŵN(x))− cQN(x),

λN(ŵN(x)) =

∫ ∞
y=0

γN(y)gN−1(y)dy +

∫ ∞
y=0

µN(y)GN(y)dŵN(y)−
∫ ∞
y=x

µN(y)dŵN(y)

=

∫ ∞
y=0

γN(y)gN−1(y)dy +

∫ ∞
y=0

µN(y)GN(y)dŵN(y) + µN(x)ŵN(x) +

∫ ∞
y=x

ŵN(y)dµ̂N(y).

Furthermore,∫ ∞
y=0

µN(y)GN(y)dŵN(y) =

∫ ∞
y=0

µN(y)GN(y)dγ̂N(y)

= −
∫ ∞
y=0

γ̂N(y)d(µN(y)GN(y))

= −
∫ ∞
y=0

γ̂N(y)GN(y)dµN(y)−
∫ ∞
y=0

γ̂N(y)µ(y)gN(y)dy

= −
∫ ∞
y=0

γ̂N(y)GN(y)dµN(y)−
∫ ∞
y=0

γN(y)gN−1(y)dy,

where the last inequality comes from equation (32). Thus,

λN(ŵN(x)) = −
∫ ∞
y=0

γ̂N(y)GN(y)dµN(y) + µN(x)ŵN(x) +

∫ ∞
y=x

ŵN(y)dµN(y),

and

ΞN(x) =

∫ x

y=0

γ̂N(y)GN(y)dµN(y) +

∫ ∞
y=x

(γ̂N(y)GN(y)− ŵN(y))dµN(y)− cQN(x)

=

∫ x

y=0

γ̂N(y)GN(y)dµN(y)−
∫ ∞
y=x

γ̂N(y)(1−GN(y))dµN(y)− c(QN(x)− µN(x))

Let us now switch to central limit units.

ΞC
N(x) = ΞN(

√
N − 1x+N − 1)

=

∫ x

y=−
√
N

γ̂CN(y)GC
N(y)dµCN(y)−

∫ ∞
y=x

γ̂CN(y)(1−GC
N(y))dµCN(y)− c(QC

N(x)− µCN(x)).

By Lemmas 11 and 13, γ̂CN(y)→ γ̂C∞(y) = H−1(Φ(y))−c and GC
N(y)→ Φ(y) as N →∞.
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Moreover, we have

√
N − 1dµCN(y) =


0 if y < xN ;

(N − 1)
(

N−1
xN
√
N−1+N−1

− N
xN
√
N−1+N−1

)
→ −1 if y = xN ;

−(N − 1) N−1
(y
√
N−1+N−1)2

dy → −dy if y > xN ,

where the mass point on xN is derived by comparing µCN to the left and right of xN , and

√
N − 1(Q

C

N(x)− µCN(x)) =


√
N − 1

(
x
√
N−1+N−1

xN
√
N−1+N−1

− N
xN
√
N−1+N−1

)
if x < xN ;

√
N − 1

(
1− N−1

x
√
N−1+N−1

)
if x > xN ,

which converges to x in both cases.

Define F (x) = limN→∞
√
N − 1 Ξ

C

N(x). We have

F (x) =

{
−cx+ γ̂C∞(x∗)(1− Φ(x∗)) +

∫∞
y=x∗

γ̂C∞(y)(1− Φ(y)) dy x < x∗

−cx− γ̂C∞(x∗)Φ(x∗)−
∫ x
y=x∗

γ̂C∞(y)Φ(y) dy +
∫∞
y=x

γ̂C∞(y)(1− Φ(y)) dy x > x∗
.

Therefore,

lim
N→∞

T
C

N(x) =
1

φ(x)

∫ x

y=0

F (y)φ(y) dy.
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D Derivation of Aggregate Transfer for Uniform Dis-

tribution

Suppose the prior H is the standard uniform distribution, so that ŵ(x) = GN(x), and that
c = 0.

D.1 Must-sell Case

In the must-sell case, Ξ̂ and T̂ are independent of c, so c = 0 is without loss. We have:

λ̂(GN(x)) =

∫ ∞
y=0

GN(y)gN−1(y) dy +

∫ ∞
y=0

N − 1

y
GN(y)gN(y) dy −

∫ ∞
y=x

N − 1

y
gN(y) dy

= 2

∫ ∞
y=0

GN(y)gN−1(y) dy − (1−GN−1(x))

= 2Π̂− (1−GN−1(x)),

Ξ̂(x) =
N − 1

x
GN(x)−GN−1(x) + 1− 2Π̂.

Next,∫ x

y=0

Ξ̂(y)gN(y) dy =

∫ x

y=0

(
N − 1

y
GN(y)−GN−1(y) + 1− 2Π̂

)
gN(y) dy

= 2

∫ x

y=0

GN(y)gN−1(y) dy −GN(x)GN−1(x) + (1− 2Π̂)GN(x)

= GN−1(x)2 − 2

∫ x

y=0

gN(y)gN−1(y) dy −GN(x)GN−1(x) + (1− 2Π̂)GN(x)

= GN−1(x)gN(x)− 2

∫ x

y=0

gN(y)gN−1(y) dy + (1− 2Π̂)GN(x)

= GN−1(x)gN(x)− (2N − 3)!

22N−3(N − 1)!(N − 2)!
G2N−2(2x) + (1− 2Π̂)GN(x)

= GN−1(x)gN(x) +
(2N − 3)!

22N−3(N − 1)!(N − 2)!
(GN(x)−G2N−2(2x))

where the second line follows from integration by parts, the third and fourth lines use
GN = GN−1 − gN , the fifth line is a direct computation using the formula for gN in (14),
and the last line follows from

Π̂ =

∫ ∞
y=0

GN(y)gN−1(y) dy =
1

2
−
∫ ∞
y=0

gN(y)gN−1(y) dy =
1

2

(
1− (2N − 3)!

22N−3(N − 1)!(N − 2)!

)
.

Therefore, when x > 0,

T̂ (x) = GN−1(x) +

(
2N−3
N−1

)
22N−3

GN(x)−G2N−2(2x)

gN(x)
.
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In the central limit normalization, we define

T̂C(x) = T̂ (N − 1 +
√
N − 1x).

Lemma 11 shows that GN(N−1+
√
N − 1x)→ Φ(x) and gN(N−1+

√
N − 1x)

√
N − 1→

φ(x) as N →∞, where Φ and φ are, respectively, the cumulative distribution and density of
a standard Normal; this also implies that G2N−2(2(N−1+

√
N − 1x))→ Φ(x

√
2). Finally,

using Stirling’s approximation, it is easy to check that
(2N−3

N−1 )
22N−3

√
N − 1 → 1√

π
as N → ∞.

Therefore,

lim
N→∞

T̂C(x) = Φ(x) +
Φ(x)− Φ(x

√
2)√

π φ(x)

for a fixed x.

D.2 Can-keep Case

We have shown that the uniform distribution is single-crossing in Section 4.4. Let [0, x∗]
denote the graded interval. The cutoff x∗ satisfies (cf. (28))

GN(x∗)

2
= gN+1(x∗). (7)

This equation implies that GN+1(x∗) = GN(x∗)− gN+1(x∗) = gN+1(x∗) = GN(x∗)/2.
Define the constants

C =

∫ ∞
x=0

γ(x)gN−1(x) dx+

∫ ∞
x=0

µ(x)GN(x)gN(x) dx

=

∫ x∗

x=0

exp(x− x∗)GN(x∗)gN−1(x) dx+

∫ x∗

x=0

N

x∗
GN(x)gN(x) dx︸ ︷︷ ︸

C1

+

∫ ∞
x=x∗

GN(x)gN−1(x) dx+

∫ ∞
x=x∗

N − 1

x
GN(x)gN(x) dx︸ ︷︷ ︸

C2

We can simplify the constants as follows:

C1 =2

∫ x∗

x=0

exp(x− x∗)GN(x∗)gN−1(x) dx

=2GN(x∗)gN(x∗)

C2 =2

∫ ∞
x=x∗

GN(x)gN−1(x) dx

=1−GN−1(x∗)2 − 2

∫ ∞
x=x∗

gN(x)gN−1(x) dx

=1−GN−1(x∗)2 −
(

2N−3
N−1

)
22N−3

(1−G2N−2(2x∗))
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C =2GN(x∗)gN(x∗) + 1−GN−1(x∗)2 −
(

2N−3
N−1

)
22N−3

(1−G2N−2(2x∗)).

Then

λ(GN(x)) = C −
∫ ∞
y=x

µ(y)gN(y) dy

=

{
C −

∫ x∗
y=x

N
x∗
gN(y) dy −

∫∞
y=x∗

N−1
y
gN(y) dy x ≤ x∗

C −
∫∞
y=x

N−1
y
gN(y) dy x > x∗

=

{
C − (GN(x∗)−GN(x))N

x∗
− (1−GN−1(x∗)) x ≤ x∗

C − (1−GN−1(x)) x > x∗

and

Ξ(x) =


GN(x)N

x∗
− C + (GN(x∗)−GN(x))N

x∗
+ (1−GN−1(x∗)) x ≤ x∗

= −C +GN(x∗)N
x∗

+ 1−GN−1(x∗)

GN(x)N−1
x
− C + 1−GN−1(x) x > x∗

For x ≤ x∗, we have:∫ x

y=0

Ξ(y)gN(y) dy =

∫ x

y=0

(
−C +GN(x∗)

N

x∗
+ 1−GN−1(x∗)

)
gN(y) dy

=

(
−C +GN(x∗)

N

x∗
+ 1−GN−1(x∗)

)
GN(x).

For x > x∗, we have:∫ x

y=0

Ξ(y)gN(y) dy =

(
−C +GN(x∗)

N

x∗
+ 1−GN−1(x∗)

)
GN(x∗)

+

∫ x

x∗

(
GN(y)

N − 1

y
− C + 1−GN−1(y)

)
gN(y) dy︸ ︷︷ ︸

X

.

Simplifying the second term, we get:

X =(1− C)(GN(x)−GN(x∗))

+ 2

∫ x

y=x∗
GN(y)gN−1(y)dy − (GN(x)GN−1(x)−GN(x∗)GN−1(x∗))

=(1− C)(GN(x)−GN(x∗))

− 2

∫ x

y=x∗
gN(y)gN−1(y)dy + gN(x)GN−1(x)− gN(x∗)GN−1(x∗)

=(1− C)(GN(x)−GN(x∗))
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−
(

2N−3
N−1

)
22N−3

(G2N−2(2x)−G2N−2(2x∗)) + gN(x)GN−1(x)− gN(x∗)GN−1(x∗).

Therefore, for x ≤ x∗, we have:

T (x) =

(
−C +GN(x∗)

N

x∗
+ 1−GN−1(x∗)

)
GN(x)

gN(x)
.

For x > x∗ we have:

T (x)

=

[
GN(x∗)2N

x∗
−GN−1(x∗)2 + (1− C)GN(x)−

(
2N−3
N−1

)
22N−3

(G2N−2(2x)−G2N−2(2x∗))

]
1

gN(x)
+GN−1(x).

Finally, we take the limit as N →∞ for the central limit normalization:

T
C

(x) = T (N − 1 +
√
N − 1x).

Since GN(x∗)/2 = GN+1(x∗) by the discussion following equation (7), we must have
(x∗ − (N − 1))/

√
N − 1 → −∞, GN(x∗) → 0, and gN(x∗) → 0 as N → ∞. Moreover,

by equation (7), NGN(x∗)/x∗ = 2NgN+1(x∗)/x∗ = 2gN(x∗)→ 0 as N →∞. Substituting
these into the expressions of C and T and simplify as in the must-sell case, we get

lim
N→∞

T
C

(x) = Φ(x) +
Φ(x)− Φ(x

√
2)√

π φ(x)
.
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