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B Proofs for Section 5

B.1 Proof of Proposition 5
Let A = 1/K, and recall that the message space for M(m, K) is

Note that the highest message m = m + K is at least A™!. We shall extend the domain
of the allocation and transfer rules to all of RY for notational convenience. The discrete
aggregate allocation sensitivity is

plm) = % 3 Toconla(ms + A, ) — gm).

=1

and the discrete aggregate excess growth is

[1]

(m) = % S Lt + A, m2) — () — St(m).

Now, define
A(m;v) = vp(m) — E(m) — cQ(Sm),
and let A(v) = ming,epr A(m;v).

Lemma 1. For any information structures S and equilibrium 3 of (S, M(m, K)), expected
profit is at least [, \(v)H (dv).

Proof of Lemma 1. The equilibrium hypothesis implies that for all 7,

[ 3 [w(e)atmingms + &b, i) = am)

meM
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— (ti(min{m; + A,m},m_;) — t;(m))] B(m|s)m(ds) <0,

which corresponds to the incentive constraint for deviating to min{m; + A,m}. Summing
across bidders, and dividing by A, we conclude that

/ Z — =(m) — Xt(m)] (m|s)m(ds) < 0.

meM

Hence, expected profit is

/ﬁ§:§n ) — cQ(Em)] B(ms)r(ds)

meM

/Z [(Xt(m) — cQ(Xm) + w(s)p(m) = Z(m) = Xt(m)] f(m|s)7(ds)

meM

/TE: m) — E(m) — cQ(Em)] B(m|s)7(ds)

meM

> /S A(w(s))m(ds)
zLMmmm%

where the last line follows from the mean-preserving spread condition on w(s) and that A
is concave, being the infimum of linear functions. O

Lemma 2. For allm € M,

where
- B N(N —1) Nm

Moreover, for all m > 0, E(m, A)—0as A —0.

Proof of Lemma 2. From Lemma 12, we know that

pu(m) = (gi(ms + A, m_y) mel%m+Am>wmm

B>~

N +1

(qi(mi + A,;m_;) — qi(m)) — N —

v

v
iM= 1= 1=
L] =

B[ =

(gi(m; + Aym_;) — q;(m)) — N(N + 1)A.



Recall that

Also recall that

T ==/

—-Q(Sm).

N A
1 qi(mi +y,m_;)

1 A Ym_; — m; +y =
— Z/y {—Q(Zm—i—y)—l—szryQ(vaLy)} dy

1
A — — —
/y {—(N DX s + ) + S g o + y)] dy

1 _ N—1/A y {@(Zm—i—y)
A JoXm+y | Ym+ty

~Q'(¥m+ y)] dy.

We need to bound the last integral from above. If z is in a non-graded interval, then
— —
Q(z)/r — Q (x) is just 1/x. If z is in a graded interval [a, b], then

‘ﬁ”—@h»=0%“+¢f$°—C%“+4N—DD$fW=NZ%“.

From equation (33), D(a,b) < V7! so that the integrand in this case is at most N/z, and

Sy [Qa+y) — 2y
/y:ow+y[ T4y _Q@Hy)}dyg]\[ y=o(x+y)2dy
A 1 T
_N/yo<x+y_(:c+y)2>dy
—N(log(az—i-A)—i-HLA—log(x)—l).

The derivative with respect to x is

(:HiA_éﬂxf%)Z) :NA<(x+1A)2_x(xiA))

which is clearly negative, so subject to x > Nm, the expression is maximized with x = Nm,
which gives us the lower bound on .



Moreover, as A — 0, N(N + 1)A — 0, and by L’Hopital’s rule,

lim
A—0

1og(Nm+A)+%—log(Nm)—l . 1  Nm 0
A S ASO\Nm+A  (Nm+A)2)

]

Now let us write ZP(m) = Z(m) — v(u(m) — Q(m)), and recall that ' (z) = Z(z) —

v(fi(x) — Q(z)). These are the excess growths for the “premium” transfers ti(m) = ti(m) —
vgi(m) and £ (m) = t;(m) — vg,(m), respectively. We similarly denote by T"(z) = T(x) —
vQ(x) the aggregate premium transfer, and note that 7' " satisfies the differential equation

(N —1 1) ) + %Tﬁ@) == (),

T

with the boundary condition 7" (0) = 0.

Lemma 3. Let L= be an upper bound on |§p| and let Ly be an upper bound on T". Then

1 A . A
=(m) < 5 / = (Sm+ y)dy + E(m) 5 + NLym
Yy
where

Proof of Lemma 3. Recall that T" is Lipschitz with constant L,,. Furthermore, the function
T"(z)(N — 1)/x is Lipschitz on [Nm, co), and

dz x r dx x
N -1 N -1
< L Lr=1L .
S Vm p+(Nm)2 T 1(@)
Using the differential equation for 7",
L AW(Z +1)d
— = (Xm+y)dy
Ao
I (N—l >_p d —p
= — -1 )T (Xm+y)+ —T1 (x dy
A yol 2m+y ( ) dx ( ):c:Eery
_ 1 /A Nob )P sm 4 y)dy + T (Sm + A) — T (Sm)
A Sy \Em 4ty v
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_/ (%T”(Znﬂr&—Ll(m)(A—y)—Tp(Em)_L )dy+T (Em—i—A)

1

A

1, N=1 — . P

ST s 1 ) - (Zm)] ~TP(5m) — (Lam) + L)
%,_/

| Ym+ A
=L(m)

Now, let us write T?(Xm) for the aggregate transfer when the messages are m. Thus,

2P (m) = — Y [(mi+ A,m_;) — t2(m)] — T"(Em) — —Zﬂml_m (m; + A, m_;) — t2(m)]

The lemma follows from combining these two inequalities, with the observation that T?(x) =
TP
T (x) — NLym. O

Lemma 4. For all € > 0, there exists a K such that for all m such that >m > K and for
all 1,

% |2 (m; + A, m_) — T(m)| <.

Proof of Lemma 4. Since lim, T"(z) = —=Z’(c0), we can find a K large enough so that
T () +Ep(oo)‘ < ¢/4 and Lr/K < €/4, and thus ‘dTp(x)/d:v} < €/2. Thus,
when ¥m > K, then using A = K1,

- > LB O (m+y,mey)
X [ti (m; + A, m_;) — (m)] A /y—o om; dy
1 A mi+y d—p

—T" (x)

P
(%
( m+y)+2m+y dx

(Em +y)?

[
Proof of Proposition 5. We first argue that there exists m and a K such that A(m;v) >
inf, cpy A(m/;v) — € for all m € M and v € [v, 7], where

A(m;v) = (v = W)E(Em) — Z'(Sm) + (v - )Q(Zm).

. D B (mi+ Aymy) = B (m)] — TP(Sm) — A Zﬂmizm [ (mi + A, m_y) — T (m)]

T'(Zm + A) — T(Em)} TpEm——Z]ImZ (€5 (m; + A, m_;) —

()|

&

r=Xm+y

(m)]



1 [A 1 [A
Q) -5 [ Qi< 5 [ Q) - )y
y=0 y=0
1 A N-1 N -1
< L Ay =A———
—A/yzoy —dy = A

Combining this inequality with Lemmas 2 and 3, we get that

A(m; v) = (v = w)u(m) = EP(m) + (v — ¢)Q(Xm)

A
> 5 [ (= wsm &) = Z(Em ot ) + (0= QEm+ )] dy
— (0 —v)L(m, A) — DA NQJ - %i(m) — NL,m

-~ D Lo [T ma - A ) = T ()|

> inf A(m';v)
{m/|Em<Em/<Em+A}
~ N-1 A-
(-0 A) -2t S i) - NLm
m

N % > Ly [E (s + A, m_y) — E(m))|.

We can first pick m > 0 so that NL,m < €/2. We can then pick K large enough (and
A small enough) such that the remaining terms in the last two lines sum to less than /2
(where for the first term in the middle line and last line, this follows from Lemmas 2 and
4, respectively). We then conclude that

A(m;v) > inf A(m';v) —e > A(v) — .

m’ER%
Hence, A(v) > A(v) — ¢, and Lemma 1 and Lemma 6 give the result. O

This proof goes through verbatim with the maxmin must-sell mechanism M.

B.2 Proof of Proposition 6

Recall the definition of S(K). Let A = 1/K . We subsequently choose K sufficiently large
(and equivalently A sufficiently small) to attain the desired e. Note that the signal space
can be written

S;={0,A,...,K’°A},

and the highest message is simply A~!. The probability mass function of s; is

) (I —exp(—A))exp(—s;) if s; < AL
filsi) = {exp(—Al) if s; = A~



As a result, s;/A is a censored geometric random variable with arrival rate 1 — exp(—A).
We write f(s) = x¥, fi(s;) for the joint probability, and

Zf {1—exp( —A) ifs;<ATh

otherwise,
s <sZ

for the cumulative distribution. The value function is
1

w(s) = % /{s S sm}_(ES/) exp(—Xs')ds/,

where

o) = {AWAJ if o < A7

A7t otherwise.
An interpretation is that we draw “true” signals s’ for the bidders from S and agent i
observes s; = min{A[A7!s!|, A7} ie., signals above A™! are censored and otherwise
they are rounded down to the nearest multiple of A, and w is the conditional expectation
of w given the noisy observations s. Thus, the distribution of w is a mean-preserving spread
of the distribution of w, so that H is a mean-preserving spread of the distribution of w as
well.

Lemma 5. If s; < A~ for all i, then w(s) only depends on the sum of the signals | = s
and

% I+NA
U)(S) = (1 _ SXII:))((Z_)A))N /:l w(x)p(x - l) exp(—x)dw,

where p(y) is the N — 1-dimensional volume of the set {s € [0, A]N|Ss = y}.

Proof of Lemma 5. First observe that

f(s) = (1 — exp(—=A))N exp(—2s) = (1 — exp(—A))" exp(—1).

Thus
eXp<l) / — / / /
w(s) = w(Xs') exp(—Xs')ds
(1 —exp(—=A))N {s'erRY|ri(s")=s: Vi}
I+NA
= exp(l) — / w(Xs') exp(—Xs")ds'dx
(1 - eXp( A r= s’ERfM(s’):si Vi,Es’:x}
I+NA
= exp(l)A / w(x) exp(—x)/ ds'dzx
( eXp( )) {S/GRﬂ 73 (s, —s:)=0 Vi,Zs’:z}
I+NA
= i S;(p(l)A / w(z) exp(—x)/ ds'dz,
p( )) {S/GRQ\_’\n(s’):O Vi,Zs’:xfl}
where the inner integral is just p(x — ). O



We now abuse notation slightly by writing w(l) for the value when [ = ¥s, and let
y(l) =w(l) —c.

Lemma 6. Ifl > A, then (1) < exp(A)y(l — A).

Proof of Lemma 6. From Lemma 5, we know that

B exp(l) I+NA

10 = el [ ) expl-a)ple — e
B exp(l) I+(N-1)A o B N
= A= exp(oA)" /x:l—A F(x + A)exp(—z — A)p(z — 1+ A)d

exp(l — I+(N-1)A
< el =4) / (x) exp(A) exp(—2)p(x — | + A)da

~ (I —exp(=A))N
= eXp(A)fY(l - A)v

=I-A

where the inequality follows from Lemma 2. O

Lemma 7. If the direct allocation q;(s) is Nash implemented by a participation secure
mechanism, profit is at most

SRS S als) [vEs) - o) m Ay s (1)
)
seS =1 LA

Proof of Lemma 7. This follows from standard revenue equivalence arguments: If we write
Ui(si, s;) for the utility of a signal s; that reports s;, with U;(s;) = U;(s;, $;), then

Us(si) = Uilsi, ) = Us(s)) + > foils-)ai(shy s-0) (v(si + Ts_i) = (s) + Ss4)) -
s_i€5_i

Thus, for s; > A,

si/A—1
Ui(s:) + Y D filsm@(kA =) (f((k + DA+ Bs_) — (kA + Bsy))
k=0 s_;€S_;

The expectation of U;(s;) across s; is therefore bounded below by

SZ/A 1
D) Y akA s) (V((k+ 1A+ Ss_) — (kA + Ts_,))
SES k=0
1 — Fi(s;
=3 F(9)ai(s)(1(Ss + A) — 7(Ss)) e ()5>.
sesS i\Si
The formula then follows from subtracting the bound on bidder surplus from total surplus.

]

Let II denote the maximum of the profit bound (1) across all q. Let IT denote the profit
bound when we set ¢;(s) = 1 and ¢;(s) = 0 for all j # 1.

8



Lemma 8. II < II+ (1 — (1 — exp(—=A")V)7,

Proof of Lemma 8. When signals are all less than A~!, the bidder-independent virtual
value is

1
) — —————(y(I+A)—~(
1) = sy = 0+ 8) = 50)
 exp(-A)
1 —exp(—A)
where the inequality follows from Lemma 6. Thus, the virtual value is maximized pointwise

by allocating with probability one to, say, bidder 1. With probability 1—(1—exp(—A~1))¥,
one of the signals is above A~!, in which case ¥ is an upper bound on the virtual value. [

> (1) (v(D) exp(A) = (1)) = 0,

Lemma 9. lima_,g I <T.

Proof of Lemma 9. Plugging in ¢; = 1, we find that

D=3 falsa) Y [Als)r(Ss) = D Al (Es +A) —(Ss))

S_1€5_1 51€51 si>s1

> falso) Yo [ Als) [9(Es) + ) (v(sh + Tso) — (st + Bso1 + A))

51651 51€51 | sh<s1
= ) falsa)y(Bso).
s—1€S5_1

Using the definition of v, this is

1

~ A ©
1= T})(—A) /y:O /x:oﬁy(x +y)gn-1(x) exp(—y)dxdy

1 S _ min{z,A} i
= TP(—A)/I 7@)/@, gn-1(z — y) exp(—y)dydz

=0 =0

< o |0 [ aveste = oo + 6]

=A =0

Now, observe that

A N-1 N-1
2 —(r—A)
/y:o gn-1(z — y) exp(—y)dy = N1 exp(—x)
A(N — 1)zN—2
< ((N — )1>' exp(—z) = Agn-1(2),
where we have used convexity of 2V~!. Thus,
- < Gy(A)v
< ——— (x)de + ————.
An application of L’Hopital’s rule shows that the last term converges to zero as A — 0 and
A/(1 —exp(—A)) — 1, this implies the lemma. O

9



Proof of Proposition 6. Combining Lemmas 7 and 8, we can pick A sufficiently small so
that IT < IT + €/2 < II + e. This completes the proof of the proposition. O

Note that every step of the proof of Proposition 6 goes through in the must-sell case,
where we replace w with @, and we skip the step in Lemma 8 of proving that the discrete
virtual value is non-negative.

10



C Proofs for Section 6

Proof of Lemma 9. The left-tail assumption could equivalently be stated as: there exists
some @ > 0 and ¢ > 1 such that forall 0 < o <a <@

H0) — v < Gy ()

and if v > ¢,

ff*l(OO —C -1 —1/
H (o) —c < exp(Gy (o) — Gy (o))

The following Lemma 10 implies that if the above two conditions hold for N, they hold for
all N' > N as well. O

Lemma 10. For any N > 1 and N’ > N, there exists @ > 0 such that Gy () — Gy (a!) <
Gyr(a) — Gu() for all0 < o/ < a <@

Proof of Lemma 10. Clearly it suffices to prove the lemma for N’ = N + 1. Let us extend
the definition of Gy to any real number N:

T yN—l
Gy(x —/ e Y dy,
M= LT

where

=0

I'(N) :/ e vy dy.
y
(We have I'(N) = (N — 1)! when N > 1 is an integer.)

By definition, we have
Gy (@) 2N-1
e dr = a.
/z:o I'(N)

Differentiating the above equation with respect to N gives:

oG o) TG [ () |
ON T(N) i on

ie.,

11



where

f(z,N) = N /:0 e " [—2¥ og(z)T(N) + 2V 'TV(N)] da.

We compute:

el (zN‘le—Z[—zN-l log(2)I(N) + ¥ 1(V)]
— (N —1)zN2 /; e [N og(x)I'(N) + VN T(N)] dx)
—e [~ log(2)['(N) + I'(N)] — (N — 1)z /:o e [—xN 1 og(z)T(N) + 2V 71TY(N))] de.

For any 2z < 1, we have

w >e=*[— log(2)T(N) + T'(N)] — (N — 1)=N / ;[ e log(a)T(N) + 2V T (V)] da
—e~*[— log(2)[(N) + ['(N)] — (N — 1)z~ [F(N) (jv—i - ZN]l@g Z) + F'(N)%]
e[~ log(z)[(N) + I'(N)] — % {F(N) % ~log z) + r’(zv)}

_ (ez _ %) [~ log(+)I(N) + /()] — = Lrv).

Since the last line goes to infinity as z goes to zero, for any fixed N > 1 we can choose
z € (0,1] such that 9f(z, N)/0z > 0 for all z € [0,Z] and N € [N, N+1]. Let @ = Gn1(2).
Suppose 0 < o/ < a <@. We have

N+1 (G Ha G/ ~
(Grta @) = Gt ()]~ [GFH(@) — Gyt = ( L )>cuv.

v ON ON

N=N

Since d (ezf(z, N)/F(N)) /dz > 0forall z € [0,z and N € [N, N+1], we have 8G]_v1(oz)/8]/\\7—
aG]_vl(o/ )/ON > 0, which proves the lemma. O

Let us now define
G$(r) = Gy (\/N— lz + N — 1) ;
g5 (x) = VN —1gy (\/N— 1x+N—1> :
To prove Proposition 7, we first need a number of technical results.

Lemma 11. As N goes to infinity, g5 and G$; converge pointwise to ¢ and ®, respectively.

12



Proof of Lemma 11. Note that
95+1(2) = VNgn 1 (VNz + N)

= \/N@N—TNWeXp(—\/Nx — N).

Stirling’s Approximation says that

N!
lim ——————— =
S VE (3)
Moreover, for all N, the ratio inside the limit is greater than 1.
Thus, when N is large, g5, () is approximately

\/—_ (1 + \/—_>Nexp(—\/N:€),

and hence

log(g541(x)) ~ log(1/v2r) 4+ N log (1 + \/Lﬁ) — VN

Using the mean-value formulation of Taylor’s Theorem centered around 0, for every y, there
exists a z € [0,y] such that

Y 1 3
log(1+y)=y—3+ <1+Z)3y.

Plugging in y = x/ V'N, we conclude that

log(¢5.,,(2)) %log(l/\/%)—I—N\/iN— %(%)ZNGL)S ( ~ )3—\/Nx

= log(1/v27) —% o

which converges to log(1/v/2m) — s2? as N goes to infinity, so ¢§.,(x) converges to ¢(z) =
exp(—z?/2)/+/2m. Pointwise convergence of G, to @ follows from Scheffé’s lemma. O

Let us define

o = [Frew(-3)  e<o
g\r) =
\/Lz?(l + z)exp(—z)  otherwise.

Lemma 12. The function §(x)|z| is integrable, and for all N and x, |g5(z)| < g(z).

13



Proof of Lemma 12. Note that

/:ooé<x>|:c|dx=/xioo ¢(z)|z|dr + —= / (14 z)z exp(—z)dz,

which is clearly finite, since the half-normal distribution has finite expectation.
Next, Stirling’s Approximation implies that

o a(2) < j2_ﬂ(1+ m) exp(—v/N1) = gx (@),

Now,

d 1 x
o)) =tog (14 =) < - L

which is clearly zero when x = 0, and

4ol = m—
dedN SN N L T AN+ 2 2N

_ 2N+2/Nz N _ N+2VNz+2?
2NN +2z2 2NN +z)2  2VNWN +2)?

" 2NN +z)?

which is non-positive and strictly negative when z # 0. As a result, gy (x) is increasing in
N when z < 0 and decreasing in N when z > 0. Since it converges to ¢(z) in the limit as
N goes to infinity, we conclude that for z < 0, g5, (z) < gn(z) < ¢(x) = g(z), and for
x>0, g5 (2) < gn(w) < gi(z) = g(x) as desired. O

Lemma 13. As N goes to infinity, 75 converges almost surely to 7 (x) = H=1(®(z)) and
'S, converges pointwise to

e = [ 3w

The latter convergence is uniform on any bounded interval.

Proof of Lemma 13. Note that 7§ (z) = H (G (x)) — c. By Lemma 11, G$(x) converges
to ®(x) pointwise. Thus, if H~! is continuous at ®(x), then as N goes to infinity, we must
have 7§ (z) — H=Y(®(x)) — ¢ =3¢ (x). Since H~! is monotonic, the set of discontinuities
has Lebesgue measure zero, so that the pointwise convergence is almost everywhere.
Pointwise convergence of I'§, follows from almost sure convergence of 7§, combined
with the fact that 7§ is uniformly bounded by [7], so that we can apply the dominated
convergence theorem. Moreover, f%(x) is uniformly Lipschitz continuous across N and z.
As a result, the family {T'C(-)}3_, is uniformly bounded and uniformly equicontinuous. The

conclusion about uniform convergence is then a consequence of the Arzela-Ascoli theorem.
O
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Recall that z* is the largest solution to fgo(x*) = 0 (which may be —o0). Also, let us

define zx so that fi has a graded interval [—v/ N — 1, xy]. (If there is no graded interval
with left end point —/N — 1, then we let xy = —v/N — 1.)

Lemma 14. As N goes to infinity, xn converges to x*.

Proof of Lemma 14. By a change of variables y = (G§)"}(®(z)), we conclude that

. z* (G5~ (@ () R
ey = [ o= [ (o (x)r = TS ((G5) (@)

=—/N—1

This integral must be zero by the definition of z*, so that xy > (G§)~1(®(z*)). Since the
latter converges to x* as N — oo, we conclude liminfy_,, xny > 2*.
Next, recall that xy., solves the equation

TN+1

IS (@ng1) =54 (@n+) / \ﬁeXP(V N(z — xn41)) 954 (2)da
r=—vV N
TN41

= 3541 (@n11) exp(—VNay g — N) / \FGXP(\/NI + N)g§ 4 (@)d
r=—vV N
TN+1 N N N
\/ﬁ(\/_$—i'- )
VN N
(\/N$N+1 + NN+
(N +1)!

e [N 1 1
= UGNy2 —N+1 N+1 JN+1) VN +1
< 7% /| N 1 1

v —= — ,
B N+1""™ N1 1)VN+1

where we have used Lemma 12. The last line converges to zero pointwise, so f%(az ~) must
converge to zero as well. R R

Now, if z = limsupy_,., oy > o*, then since 'Y (z) > T'Y (2*) = 0, we would contradict
our earlier finding that T'C(zy) — 0. Thus, limsupy ., #x < #*, 50 2y must converge to
r* as N goes to co. O

=351 (zn1) exp(—V Nayy, — N) dx

< Eexp(—\/NINH — N)

Lemma 15. For every e > 0, there exists N such that for all N > ]/\\7, there exists an
T € [2* + €, 2% + 2¢] at which 7% is not graded.

Proof of Lemma 15. Suppose not. Then there exist infinitely many N such that for every

z € [7* + 6,2 + 2€], 75,1 (2) = exp(VN(z — )75, (%) for some # > 2* + 2¢. Thus, for
all x < 2* 4 ¢, we conclude that

7%+1($) < V%H(x* +e) < eXp(—\/Ne)ﬁ

15



which converges to zero as N goes to infinity. This implies that liminfy_, fﬁ 41(z*+e) = 0.

But f§+1(x* + €) must be weakly larger than f%H(:E* +€), so
0 =lim inf fgﬂ(x* +¢) > lim inf f%H(x* +e) = fgo(a:* +¢€) >0,
N—oo N—oo

a contradiction. O]
Lemma 16. As N goes to infinity, 55 converges almost surely to

—C _J0 if v < a¥;

/yoo(x) ) ~C . *

yo(x) if x> at.

Proof of Lemma 16. Let x < x*. Since xny — x* by Lemma 14, for N sufficiently large,
xy > (2" 4+ 1) /2. Since 7§ (z) is graded on (—oo, zy], it is graded at x, and
T (@) = exp(VN — Lz — on) Ty (2n)
< exp(VN — 1(x — z¥)/2)7.
The last line clearly converges to zero pointwise. Since 7 (z) > 0 for all N, we conclude
that 7§ (z) — 0.

Now consider z > z* at which 3¢ is continuous. Take € so that > 2* + 2¢ and so that
3¢ is continuous at x* + e. Lemma 15 says that there is a N such that for all N > N ,
there exists a point in [z* + €, * + 2¢| at which the gains function is not graded. Moreover,
since 75 (2* + €) converges to 3% (z* + €), we can pick N large enough and find a constant
7 > 0 such that for N > N, AG(a* +€) > 7.

Now, suppose that 7% is graded at z, with x in a graded interval [a,b]. Then a > x* +¢,
and hence 7§ (a) > 75 (2" + €) > 7. Recall that on [a, b)],

T (2) =5 (a) exp(VN = 1(z — a)).

Since 7% is bounded above by v, it must be that 7§ (a) exp(v/N — 1(b —a)) < 7, so

Thus,
Il —en) <7 (2) < AR +en).

This was true if 7§ (z) is graded at x, but clearly the inequality is also true if it is not
graded at z, in which case 7 (2) = 7§ (z). Now, 75 (z) =3¢ (271G (2))), so

T @7HGR (@ — en))) < TR (2) S F(@THGK (@ + en))).

As N — oo, the left and right hand sides converge to 3¢ (x) from the left and right,
respectively. Since 7 is continuous at z, we conclude that 5§ (z) — 3% (z). The lemma
follows from the fact that the monotonic function 7¢ is continuous almost everywhere. [J
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Proof of Proposition 7. We argue that
Zyis = VN [ T (@)gwan(o) - gv(a))ds
x=0

converges to a positive constant as N goes to infinity. Since this is /N times the difference
between ex ante gains from trade and profit, this proves the result.
To that end, observe that

& Nx

N/2
ZNy1 = \/N/:o An+1(®)(gn41(7) — gn(T))d +/ ﬁgﬂ(x)ggﬂ(x)mdx-

z:f\/N/Z

We claim that the first integral converges to zero as N — oco. Note that gyi1(2) < gn(2)
if and only if x < N. Therefore,

N/2 N2
|m | Ava@ovin@) —ox@)is) < @+OVE [ (o) - gy ()ds

= (T4 c)VN(GNn(N/2) — Gyn11(N/2))
= (0+ )V Ngn41(N/2)

N/2)N exp(—N/2
S e

(N/2)N exp(=N/2)
VN VIEN(NJe)V

exp(—N(log(2) —1/2)),

=(0+¢)

~ (U+c)

@+
=W+c

V2T
where we have again used Stirling’s Approximation between the third-to-last and second-
to-last lines. The last line converges to zero as N goes to infinity.

Now consider the second integral in the formula for Zy ;. By Lemma 12, the integrand
is bounded above in absolute value by the integrable function vg(z)|xz|. Moreover, from
Lemmas 11 and 16, we know that the integrand converges pointwise to 75 (r)é(x)x. The
dominated convergence theorem then implies that as N goes to infinity, Zn converges to

| Ao
which is strictly positive because 7< is strictly increasing.
The proof goes through for the must-sell guarantee, if we replace 7§ with 7. m

To prove Proposition 9, we need a few more intermediate results. Let Gy(7) = Gy(Nz)
be the cumulative distribution for the mean of N independent standard exponential ran-
dom variables. Define Fy(x) = exp(N(1 — x + log(x))). Clearly, Fy(z) is a cumulative
distribution for z € [0, 1], Fx(0) = 0 and F (1) = 1. Finally, define the function Dy(a):

1 ~ :
DN(a) _ {m if o € [0704],
1.1 if a € (0.4, 1).

17



The choices of 0.4 and 1.1 in Dy(«) are arbitrary: any numbers work that are less than
1/2 and more than 1, respectively.

Lemma 17. When N is sufficiently large, In(Gy' (@) < Dg(a) for all N > N and
a € [0,1].

Proof of Lemma 17. We first apply the theory of large deviations to the exponential dis-
tribution. Let A(t) be the logarithmic moment generating function for the exponential

distribution:
e if t > 1;
A(t) = log (/ exp(zt — x) d:v) -~ 1 -
2=0 —log(l—t) ift<l.

Let A*(x) be the Legendre transform of A(t):

teR r—1—loge x>0.

A*(z) = sup{t — A(1)} —{ v=0

Cramér’s theorem (or the Chernoff bound; see Theorem 1.3.12 in Stroock, 2011) then
states that for any NV, B N
G (x) < exp(~NA"(x)) = F(a)

for every z € [0,1]; or equivalently, F ( o) < Gy ( ) for every a € [0, Gn(1)].
By the law of large numbers, when N is sufficiently large, we have G Gn(1) > 0.4 and

1/Gy ( 4) < 1.1 and for all N > N. The claim of the lemma then follows from two cases:
If o € ]0,0.4], then we have

N 1 1
1

fin(Gy (a))SGle(a):@]_Vl(oa) Fy(a) Fy(a)

where we have used the bound uN(x) < N/z (equation (21)), and the facts that Gy(1) >
0.4 when N > N (so F_l( ) < (a) for a < 0.4 < Gy(1)) and that Fy(z) < Fg(z) for
)

all N > N and z € [0,1] (so Fg (a <F ( ) for all ).
If @ € (0.4,1], then

since Gy (a) is increasing in a, and 1/Gy (0.4) < 1.1 when N > N. O

Lemma 18. When N 1is sufficiently large,

/a 1:0 Dy (o) dH (o) < o0

18



Proof of Lemma 18. Since Gy(z) =1 — ij:l gr(x), we have:

N k—1
—1—Zexp —Nzx) $)1)

= (Nx)* Nx)¥
=1—exp(—Nx) (exp(Nw) — Z ( k’!) ) > exp(—Nx)< N!)
k=N
Clearly, there exists an T € (0, 1) such that
— NV
Frar(z) = exp(N + 1)1~ 2))a™ < exp(~ V) T~ < Gy (o)

for all z € [0,7]. We therefore have Dy 1(a) = I/FJ_VIH(Q) < 1/51_\[1((1) for all a € [0, @],
where @ = min{F y,,(7),0.4}. As a result,

/1 Diva(a) dH=(a) g/a = ! / max( o .1) dH(a) < o0
a=0 N+1 @

whenever we have
! 1
/ — / — dwy(z) < oo.
a=0 GN ( T

Finiteness of the last integral follows from part one of the left-tail assumption. O]

Lemma 19. Suppose limy o, yn € (—00,00). Then limy o fiys1 (VNyy + N) = 1.

Proof of Lemma 19. We first argue that for almost every v, ENH(\/Ny + N) tends to 1 as
N — oo. For this we recall £* and z from Lemmas 14-16.

Consider first y < z*. By Lemma 14, for N sufficiently large, the gains function is
graded at y, and hence

N +1

ﬁN+1(\/Ny+ N) = O(O, \/NIN+1 + N) = m
N+1

Since we have already shown that znx — 2* (Lemma 14), we conclude that fiy_ (v Ny-+N)
goes to 1.

Now consider y > z* at which ¢ is continuous. If the gains function is not graded at
y, then fiy_ 1 (V Ny + N) = N/(v/Ny + N). If the gains function is graded at y, then the
length of the graded interval [a,b] 3 ¥ in the central limit units is less than ey = 7/(yv/N)
for some vy > 0 independent of N (see Lemma 16). Since 7 is decreasing (Lemma 3), we

have
N N

VN(y+en)+ N VN(y—en)+ N’

since lim, ~, Ty (VNz+ N) = N/(VNa+ N) and lim~ fiy. (VNz+ N) = N/(VNb+
N). As aresult, fiy, (V' Ny + N) is squeezed to 1 as N goes to infinity.

< ﬁN+1(\/NZ/+ N) <
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We conclude that 7y, (v Ny+N) goes to 1 for y > z* at which A< is continuous. Since
3¢ (y) is a monotone function of y, it is continuous at almost every y, so the convergence
iy — 1 is almost everywhere.

Finally, suppose limy_,o yy = 3y € (—00,00). Choose y" and y” such that y € (v/,y")
and such that

lim fiy,,(VNY + N)=1= lim 7y, (VNy" + N).
N—oo N—oo
When N is sufficiently large, we have yy € (¢/,4"), so
ﬁNH(\/NZ/H +N) < ENH(\/NQN +N) < EN+1<\/N?/ + N).

Taking the limit as N — oo, we conclude limy o fiy 1 (VNyy + N) = 1. O

Proof of Proposition 9. We first prove that
lim Ay(v;H) = v —c (2)
N—o00

for every v € [v,7]. B
Replacing fiy by 1 in equation (18), the definition of Ay (v; H), we have

T (H) + / "Gyt - [ dv=Tix(m + (o / " st dy) - (0 -v)
=TIy(H) — /Uv v dH (V') 4 v.

'=y

Since by Proposition 7 limy_, Iy (H) — ff,:v v'dH (V') — ¢, to prove (2), it suffices to
prove that -

o0

Jim 11 =%y (y)| dwn(y) = 0.
=00 Jy—0

Changing variables, we can rewrite the above equation as:

1

i [ L= TG (@) dH ™ (o) = 0. (3)

N—oo o=

We note that Stieltjes integration with respect to dH () is equivalent to a Lebesgue
integration with respect to the finite measure w on [0,1] satisfying w([s,t)) = H~(t) —
H'(s),0<s<t¢<1,and w({1}) = 0. Part one of the left-tail assumption implies that

w({0}) = lim w((0,0)) = lim H~(a) — H~(0) < lim G ()7 = 0

for some ¢ > 1. Therefore, w({0,1}) = 0.
The central limit theorem implies that limy_, 0 (Gy' (@) —(N—1))/v/N — 1 = ®~(a) for
every a € (0,1). Therefore, Lemma 19 implies limy_,, iy (G (@) = 1 for every a € (0, 1).

o~ ~

Moreover, Lemmas 17 and 18 imply that there exists a N such that for all N > N, the
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integrand |1 — fiy(Gy' ()| in (3) is dominated by 1 + Dg(a) which is integrable with
respect to w. Therefore, equation (3) follows from the dominated convergence theorem,
from which equation (2) follows.

Finally, using the definition of Ay (v; H), we have

R(wi ) < To(H)+ [ s (1+G() din(o) < (=002 [ Dy(a)d ' (a) < o

=0

for all v € [v,7] and N > N , where the last two inequalities follow from Lemmas 17 and
18, respectively. Thus

lim [ Ay(v; H)dH'(v) = / vdH'(v) —
N—oo [y, Vv
follows the dominated convergence theorem using (2).
The proof for the must-sell A\y(v; H) is identical, after replacing 7y (x) with fiy(z) =
(N —1)/z and Iy (H) with IIy(H). O

Lemma 20. Suppose the condition on H in Lemma 10 holds. For any € > 0, there exists
an N such that for all N > N we have

v (z) <An(y) exp(z —y).
for all x >y such that Hn(y) > €.

Proof of Lemma 20. The condition on H implies that the support of H has no gap on [v, 7],
so H~! is continuous on [0, 1]. We can partition [0, 1] into a countable collection of intervals
{[ewi, Bi] : @ € I} such that o; < 3;, and either H~! is strictly increasing on [ay, 3], or H™*
is constant on [y, 3;] (i.e., H has a mass point at v, where v = H~1(p) for all p € [ay, Bi]).
If H! is strictly increasing on [ay, 3;], then

_ _ q—p
)~ B ) < T2F. @)

for any p,q € (ay, 3;) such that p < ¢, since in this case we have H(H '(q)) = ¢ and
H(H '(p)) = p. By continuity of H~! we can extend (4) to any p,q € [ay, ;] such that
p=q

If H~! is constant on [ay, 3], then clearly (4) also holds for any p, ¢ € [a;, 5;] such that
p < q. Since {[a;, B;] : i € I} is a partition of [0, 1], we conclude that (4) holds for any
p,q € [0, 1] such that p < ¢.

With the substitution ¢ = G§(x) and p = G (y), with > y, equation (4) becomes

G5 (x) = GS.(y)

%?f( ) 'YN(y) C

Thus,
5 (x) 1 G{(z) — GS(y)
Nw S TAw T ©



The log-1 Lipschitz condition that we want to prove is equivalent to

ﬁff@) —1/~C =1 nC
) exp(Gy (Gy (1)) — Gy (Gr(y))-

Thus, it is sufficient to show that for large IV,

1 Gf(z) - GK(y)
1+ =5
T (W) C
Both sides are equal to one when x = y, and the derivatives of the left- and right-hand
sides with respect to x are, respectively

< exp(G]_Vl(G%(:U)) — G;,l(G%(y))).

gn(2)
HWC ?
and
91?/(55) —1/~C =1 AC
exp(Gy (Gy (7)) — Gy (GN(y))) (6)

on (G (G5 (@)))
— VN — Lexp(Gy (G5 (2) — G (GSw) = VN — 1.

We now show that (5) is always less than (6). Note that gy attains its maximum when
gN = gn_1, i.e., when x = N — 1, at a value of (N—)iv),_lexp(—(]\f — 1)). Multiplied
by VN — 1, this upper bound converges to ¢(0). Hence, when N is sufficiently large,
g5 () < 2¢(0) for all x. Since 5 (2) > 0, then there is an N large enough such that

K@) 2600)
e =« VN

which proves the lemma. O

Proof of Lemma 10. If v > ¢, then we can take ¢ = v — ¢ in the statement of Lemma 20,
in which case the statement of the Lemma follows immediately.

If v < ¢, then 35 (—v/N — 1) < 0, so that fg(z) is non-positive for x close to —v N — 1.
Hence, there must be a graded interval at the bottom of the form [—vN —1,zy]. By
Lemma 14, zy converges to x*. Moreover, by Lemma 16, 7§ converges almost surely to
5<. Thus, there exists an N such that for all N' > N,3%(zn) > €. If we take € = 3 (z*) /2
in Lemma 20, then there exists a N’ > N so that for all N > N’ the log-1 Lipschitz
condition is satisfied for all x > x 5. This implies that there is exactly one graded interval,
and the conclusion of the Lemma follows. [

Proof of Proposition 10. We first derive the allocation. When v > ¢, we have 2* = —o0

and the gains function 7 is not graded when N is sufficiently large. In this case @g(:c) is
always exactly 1.
When v < ¢, 2* € (—o00,00), and the gains function 7 is single crossing (Section 4.4)

when N is sufficiently large. Then @g(x) = min((zv/N + N)/(zxyV'N 4+ N),1). Since zy
converges to z* as defined by equation (29), @g(:v) converges to 1 as N — oo.
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We now derive the transfer. From Lemma 10, we know that there is at most one graded
interval of the form [—\/N, x|, where zn = —V/Nifv>cand zy > —V/N ifv < c.
Recall that ) N
Ta(r) = [ Extwont)dy
gN(x) y=0

En(@) = fiy(@)0n () = A (Dx (7)) — cQp(2),

Furthermore,

/ : An(W)Gn(y)din(y) = / :o fin ()G (y)dn (y)

. / T A W)y ()G (y))

y=0

= [ a6 - [ Aoy

- / :%(?/)GN(y)dﬁN(y) - / :)TN(y)gN_l(y)dy,

where the last inequality comes from equation (32). Thus,

(@ () = / m A (9) G () g (9) + T () () + / °° D () din (y),
and

[1]]

v(z) = / ; In(y)Gn (y)drin (y) + / :o (An ()G (y) — D (y))diin(y) — cQn(z)
~ [ G ) - [ ()1 - Gxl)dix(y) ~ o@u(o) - Tn(a)

Let us now switch to central limit units.

=¢(2) =En(VN =1z + N - 1)

—/x ?ﬁ(y)G%(y)dﬁ%(y)—/oo W) = GSWNAES (y) — @y () — TS (@)).
y=—VN -

Yy=x

By Lemmas 11 and 13, 75 (y) — 7% (y) = H Y(®(y)) —c and G (y) — ®(y) as N — <.
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Moreover, we have

N—-1 N : _ .
VN —1ldaf(y) = ¢ (N = 1) (m\/N 1+N 1 onVN— 1+N71> — -1 ify=any;

where the mass point on zy is derived by comparing & to the left and right of z, and

zvV/N—1+N-—1 N X ‘
—C e _ \/ﬁ anNVN—1+N—1 - IN\/N71+N71> ifr< TN;
N-—-1(1-

ﬁ if ¢ > N,
which converges to x in both cases.
Define F(x) = limy_,00 VN — 1?2(9&). We have
Flx) = —cx + 75 ()(1 = @(2)) + [ 2, 35 W)(1 — ®(y)) dy x <
—cr =3 (x")®(2") — [, AL @) dy + [[ZAS(W)(1 - 2(y))dy x> 2’
Therefore,

in 75(0) = 525 [ F)ots) iy

N—oo ¢(ZE -0
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D Derivation of Aggregate Transfer for Uniform Dis-
tribution

Suppose the prior H is the standard uniform distribution, so that w(xz) = G (z), and that
c=0.

D.1 Must-sell Case

In the must-sell case, = and T are independent of ¢, so ¢ = 0 is without loss. We have:

NGva) = [ Gxtmaxatdy+ [ FGatantdy - [ =

=2 /OZ Gn(Y)gn-1(y) dy — (1 — Gn-1(2))
=2l — (1 — Gy_1(2)),
N-1

E(z) = - Gn(z) — Gyoy(z) + 1 — 211

—1
gn(y) dy
; ~(Y)

/ Zwvt) v = [ (Ny‘ L Gn(y) — Craly) +1 2ﬁ) gn () dy
—2 | G (9)gn-1(y) dy — G () Gy () + (1 — 2 Gy (2)

— Gy (2)? 2 / " v ()gn () dy — Ga(x)Gya(x) + (1 — 200) Gy (a)

=0

=Gy_1(7)gn(z) — 2 /m an(y)gn—1(y) dy + (1 — 2I) Gy ()

=0

= Gn-1(z)gn(2) — 22N—3(§\27]\_[ I)?()]'V _ 2)!G2N—2(2x) +(1- Qﬁ)GN(x)
= Gy-1(z)gn(z) + 22N3(§\2,]\1 Iﬁ)]'\, ~ )1 (Gn(x) — Gan-2(27))

where the second line follows from integration by parts, the third and fourth lines use
Gy = Gn_1 — gn, the fifth line is a direct computation using the formula for gy in (14),
and the last line follows from

PO 1™ 1 (2N - 3)!
H = _ = — — _ = — 1 — .
- Gn(y)gn-1(y) dy = 3 /yo N (Y)gn-1(y) dy = 5 ( PENIN 1IN = 2)!)
Therefore, when x > 0,
= (V) Gu() — Gan_s(22)

T(iL‘) = GN,1($) +

22N—3 QN(SU)

25



In the central limit normalization, we define

T(z) =T(N — 1+ v/N — 1z).
Lemma 11 shows that Gy (N —14++N — 1z) = ®(z) and gy(N —1++/N — 1z)y/N — 1 —

¢(x) as N — oo, where ® and ¢ are, respectively, the cumulative distribution and density of

a standard Normal; this also implies that Gon_o(2(N —14++VN — 1z)) — (I>($\/_) Finally,
2N-3

using Stirling’s approximation, it is easy to check that (22N 3) vN -1 — —&= 77 as N — oo.

Therefore,

i TC(2) — B(x () — O(xv/2)
W T = 2@+ =y

for a fixed z.

D.2 Can-keep Case

We have shown that the uniform distribution is single-crossing in Section 4.4. Let [0, z*]
denote the graded interval. The cutoff z* satisfies (cf. (28))

GN(Jf*)
2
This equation implies that Gy41(2*) = Gn(2*) — gy11(2*) = gy (%) = Gy(2¥) /2.

Define the constants

C = / o)y (z) do + /fmx)GN(x)gN(x)dx

=0

= gn1(z”). (7)

*

— /:0 exp(r — 2%)Gn (") gn-1(x) dz + /; %GN(x)gN(x) dx

J/

-~

C1

+/Oo Gn(z)gn-1(x) dx + N Nx_lGN@)QN(x)dl"

=x* r=x*
-

Ca

J/

We can simplify the constants as follows:

*

Cy =2 /IO exp(x — 2")Gn(x")gn-1(x) dz
=2GN(z")gn (27)
Cy :2/ Gn(x)gn-1(x) dz

=x*
o0

=1 —Gn_1(2%)? — 2/ * gn(z)gn_1(z) dx
=1 — GN_l(ZL‘*)Q — (2]2\[]\;3) (1 — GQN_Q(QZL'*))
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(2N73)
C :2GN(ZL‘ )gN(fL’*) + 1— GN_1($*)2 N1
Then

© 92N-3

(1 — GQN_2(2I'*))

N-1
v (y) dy

C ceean(@)dy — [Z St (y)dy @ <o
C_ fy:x N-1

C

C

C gn
:{ — [N

and

T > x*

x> x*
=(z) =

—C+ (GN(.T*) — GN(Qf))mﬂ* + (1 — GN_l(Qf*)) r<x
G]\KI)% - C + 1-— GN_1<I)
For x < x*, we have:

/ ' Ewant)dy = / (—

For x > x*, we have:

/w
y=0

(1) gn(y) dy = (—c T NS EA GN_1<x*>> On(a")

v(z*) = Gn(z) T — (1 - Gyoa(z?) o<
— Gn-1(z))

C + GN(l'*)xﬂ* +1-— GNfl(.I’*)

T >x*
C+ Gy

+\/: (GN(?J)N_ !

—— = C+1-Gna(y)
)
Simplifying the second term, we get:

)gN(y) dy .
X =(1-0)(Gn(z) — Gn(z7))

22 [ Gulav(0)dy — Gu(@)Grr(#) - Gyla )Gy e)
=(1 - C)(Gn(z) — Gn(27))

J/

_ 2/: * an () g1 dy + gn ()G -1 (2) — gn ()G w1 ()
(1 - C)(Gn(z) - Gn(a"))
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- %(GW—?(%) — Gan—2(22")) + gn(2)Gn-1(z) — gn(27)G N1 (7).

Therefore, for x < z*, we have:

Tlz) = ( O+l )x* 1= Gyl >) gn ()
For x > x* we have:
T(x)
= GN(x*)Qg — GN71(,1'*)2 + (1 — C)GN($) — (2]2\;\/—_13><G2N2<2x) — G2N2(2£L‘*))] gNl(m) + GN,1($).

Finally, we take the limit as N — oo for the central limit normalization:
T(2) =T(N — 1+ VN — 1a).

Since Gy (z*)/2 = Gny1(z*) by the discussion following equation (7), we must have
(z* = (N —=1))/VN =1 = —o0, Gy(2*) — 0, and gn(z*) — 0 as N — oco. Moreover,
by equation (7), NGy(2*)/z* = 2Ngn1(2*) /2" = 2gn(2*) — 0 as N — co. Substituting
these into the expressions of C' and T" and simplify as in the must-sell case, we get

—=C () — O(xV/2)

Jim T(e) = @) + =~ =205
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