B Proofs for Section 5

B.1 Proof of Proposition 5

Let $\Delta = 1/K$, and recall that the message space for $\mathcal{M}(m, K)$ is

$$M_i = \{m, m + \Delta, \ldots, m + K\}.$$

Note that the highest message $\overline{m} = m + K$ is at least Δ^{-1}. We shall extend the domain of the allocation and transfer rules to all of \mathbb{R}^N for notational convenience. The discrete aggregate allocation sensitivity is

$$\mu(m) = \frac{1}{\Delta} \sum_{i=1}^{N} \mathbb{I}_{m_i < \overline{m}}(q_i(m_i + \Delta, m_{-i}) - q_i(m)),$$

and the discrete aggregate excess growth is

$$\Xi(m) = \frac{1}{\Delta} \sum_{i=1}^{N} \mathbb{I}_{m_i < \overline{m}}(t_i(m_i + \Delta, m_{-i}) - t_i(m)) - \Sigma t(m).$$

Now, define

$$\lambda(m; v) = v\mu(m) - \Xi(m) - c\overline{Q}(\Sigma m),$$

and let $\lambda(v) = \min_{m \in M} \lambda(m; v)$.

Lemma 1. For any information structures \mathcal{S} and equilibrium β of $(\mathcal{S}, \mathcal{M}(m, K))$, expected profit is at least $\int_{V} \lambda(v)H(dv)$.

Proof of Lemma 1. The equilibrium hypothesis implies that for all i,

$$\int_{\mathcal{S}} \sum_{m \in M} [w(s)(q_i(\min\{m_i + \Delta, \overline{m}\}, m_{-i}) - q_i(m))$$
which corresponds to the incentive constraint for deviating to \(\min \{m_i + \Delta, \bar{m}\}\). Summing across bidders, and dividing by \(\Delta\), we conclude that

\[
\int_s \sum_{m \in M} [w(s)\mu(m) - \Xi(m) - \Sigma t(m)] \beta(m|s)\pi(ds) \leq 0.
\]

Hence, expected profit is

\[
\int_s \sum_{m \in M} [\Sigma t(m) - cQ(\Sigma m)] \beta(m|s)\pi(ds)
\geq \int_s \sum_{m \in M} [\Sigma t(m) - cQ(\Sigma m) + w(s)\mu(m) - \Xi(m) - \Sigma t(m)] \beta(m|s)\pi(ds)
= \int_s \sum_{m \in M} [w(s)\mu(m) - \Xi(m) - cQ(\Sigma m)] \beta(m|s)\pi(ds)
\geq \int_s \lambda(w(s))\pi(ds)
\geq \int_V \lambda(v)H(dv),
\]

where the last line follows from the mean-preserving spread condition on \(w(s)\) and that \(\lambda\) is concave, being the infimum of linear functions. \(\square\)

Lemma 2. For all \(m \in M\),

\[
\mu(m) \geq \frac{1}{\Delta} \int_0^\Delta \pi(\Sigma m + y)dy - \hat{L}(m, \Delta),
\]

where

\[
\hat{L}(m, \Delta) = N(N + 1)\Delta + \frac{N(N - 1)}{\Delta} \left(\log(Nm + \Delta) + \frac{Nm}{N\bar{m} + \Delta} - \log(Nm) - 1 \right).
\]

Moreover, for all \(m > 0\), \(\hat{L}(m, \Delta) \to 0\) as \(\Delta \to 0\).

Proof of Lemma 2. From Lemma 12, we know that

\[
\mu(m) = \sum_{i=1}^N \frac{1}{\Delta} (q_i(m_i + \Delta, m_{-i}) - q_i(m)) - \sum_{i=1}^N \mathbb{1}_{m_i = \bar{m}} \frac{1}{\Delta} (q_i(m_i + \Delta, m_{-i}) - q_i(m))
\geq \sum_{i=1}^N \frac{1}{\Delta} (q_i(m_i + \Delta, m_{-i}) - q_i(m)) - N \frac{N + 1}{\bar{m}}
\geq \sum_{i=1}^N \frac{1}{\Delta} (q_i(m_i + \Delta, m_{-i}) - q_i(m)) - N(N + 1)\Delta.
\]
Recall that

$$\mu(x) = \frac{N-1}{x} Q(x) + \overline{Q}(x).$$

Also recall that

$$\frac{\partial q_i(m)}{\partial m_i} = \frac{\Sigma m_i}{(\Sigma m)^2} \overline{Q}((\Sigma m) + \frac{m_i}{\Sigma m} \overline{Q}'((\Sigma m)),$$

Thus,

$$\sum_{i=1}^{N} \frac{1}{\Delta} (q_i(m_i + \Delta, m_{-i}) - q_i(m))$$

$$= \frac{1}{\Delta} \sum_{i=1}^{N} \int_{y=0}^{\Delta} \frac{\partial q_i(m_i + y, m_{-i})}{\partial m_i} dy$$

$$= \frac{1}{\Delta} \sum_{i=1}^{N} \int_{y=0}^{\Delta} \left[\frac{\Sigma m_i}{(\Sigma m + y)^2} \overline{Q}((\Sigma m + y) + \frac{m_i + y}{\Sigma m + y} \overline{Q}'((\Sigma m + y)) \right] dy$$

$$= \frac{1}{\Delta} \int_{y=0}^{\Delta} \left[\frac{(N-1)\Sigma m}{(\Sigma m + y)^2} \overline{Q}((\Sigma m + y) + \frac{\Sigma m + Ny}{\Sigma m + y} \overline{Q}'((\Sigma m + y)) \right] dy$$

$$= \frac{1}{\Delta} \int_{y=0}^{\Delta} \overline{Q}(\Sigma m + y) dy - \frac{N-1}{\Delta} \int_{y=0}^{\Delta} \frac{y}{\Sigma m + y} \left[\frac{\overline{Q}(\Sigma m + y)}{\Sigma m + y} - \overline{Q}'(\Sigma m + y) \right] dy.$$

We need to bound the last integral from above. If x is in a non-graded interval, then $Q(x)/x - \overline{Q}'(x)$ is just $1/x$. If x is in a graded interval $[a, b]$, then

$$\frac{Q(x)}{x} - \overline{Q}'(x) = \frac{C(a, b)}{N} + \frac{D(a, b)}{x^N} - \frac{C(a, b)}{N} + (N-1) \frac{D(a, b)}{x^N} = \frac{ND(a, b)}{x^N}.$$

From equation (33), $D(a, b) \leq x^{N-1}$, so that the integrand in this case is at most N/x, and

$$\int_{y=0}^{\Delta} \frac{y}{x+y} \left[\frac{Q(x+y)}{x+y} - \overline{Q}'(x+y) \right] dy \leq N \int_{y=0}^{\Delta} \frac{y}{(x+y)^2} dy$$

$$= N \int_{y=0}^{\Delta} \left(\frac{1}{x+y} - \frac{x}{(x+y)^2} \right) dy$$

$$= N \left(\log(x+\Delta) + \frac{x}{x+\Delta} - \log(x) - 1 \right).$$

The derivative with respect to x is

$$N \left(\frac{1}{x+\Delta} - \frac{1}{x} + \frac{\Delta}{(x+\Delta)^2} \right) = N\Delta \left(\frac{1}{(x+\Delta)^2} - \frac{1}{x(x+\Delta)} \right)$$

which is clearly negative, so subject to $x \geq Nm$, the expression is maximized with $x = Nm$, which gives us the lower bound on μ. 3
Moreover, as $\Delta \to 0$, $N(N+1)\Delta \to 0$, and by L'Hôpital's rule,
\[
\lim_{\Delta \to 0} \left(\log(Nm + \Delta) + \frac{Nm}{Nm + \Delta} - \log(Nm) - 1 \right) = \lim_{\Delta \to 0} \left(\frac{1}{Nm + \Delta} - \frac{Nm}{(Nm + \Delta)^2} \right) = 0.
\]

Now let us write $\Xi_p(m) = \Xi(m) - v(\mu(m) - Q(m))$, and recall that $\Xi^p(x) = \Xi(x) - v(\bar{u}(x) - \bar{Q}(x))$. These are the excess growths for the “premium” transfers $t^p_i(m) = t_i(m) - vq_i(m)$ and $\bar{t}^p_i(m) = \bar{t}_i(m) - v\bar{q}_i(m)$, respectively. We similarly denote by $T^p(x) = T(x) - v\bar{Q}(x)$ the aggregate premium transfer, and note that T^p satisfies the differential equation
\[
\left(\frac{N-1}{x} - 1 \right) T^p(x) + \frac{d}{dx} T^p(x) = \Xi^p(x),
\]
with the boundary condition $T^p(0) = 0$.

Lemma 3. Let L_Ξ be an upper bound on $|\Xi^p|$ and let L_T be an upper bound on T^p. Then
\[
\Xi^p(m) \leq \frac{1}{\Delta} \int_{y=0}^{\Delta} \Xi^p(\Sigma m + y)dy + L(m) \frac{\Delta}{2} + N L_p m
\]
\[
- \frac{1}{\Delta} \sum_i I_{m_i=m} [\bar{t}^p_i(m_i + \Delta, m_{-i}) - \bar{t}^p_i(m)],
\]
where
\[
\bar{L}(m) = \left(1 + \frac{N-1}{Nm} \right) L_p + \frac{N-1}{(Nm)^2} L_T.
\]

Proof of Lemma 3. Recall that T^p is Lipschitz with constant L_p. Furthermore, the function $T^p(x)(N-1)/x$ is Lipschitz on $[Nm, \infty)$, and
\[
\left| \frac{d}{dx} \left(\frac{N-1}{x} T^p(x) \right) \right| = \left| \frac{N-1}{x} \frac{d}{dx} T^p(x) - \frac{N-1}{x^2} T^p(x) \right|
\]
\[
\leq \frac{N-1}{Nm} L_p + \frac{N-1}{(Nm)^2} L_T = L_1(m).
\]

Using the differential equation for T^p,
\[
\frac{1}{\Delta} \int_{y=0}^{\Delta} \Xi^p(\Sigma m + y)dy
\]
\[
= \frac{1}{\Delta} \int_{y=0}^{\Delta} \left[\left(\frac{N-1}{\Sigma m + y} - 1 \right) T^p(\Sigma m + y) + \frac{d}{dx} T^p(x) \bigg|_{x=\Sigma m+y} \right] dy
\]
\[
= \frac{1}{\Delta} \left[\int_{y=0}^{\Delta} \left(\frac{N-1}{\Sigma m + y} - 1 \right) T^p(\Sigma m + y)dy + T^p(\Sigma m + \Delta) - T^p(\Sigma m) \right]
\]

...
Now, let us write $T^p(\Sigma m)$ for the aggregate transfer when the messages are m. Thus,

$$
\Xi^p(m) = \frac{1}{\Delta} \sum_{i=1}^{N} \left[t^p_i (m_i + \Delta, m_{-i}) - t^p_i (m) \right] - T^p(\Sigma m) - \frac{1}{\Delta} \sum_{i=1}^{N} \| t^p_i (m_i + \Delta, m_{-i}) - t^p_i (m) \|
$$

$$
= \frac{1}{\Delta} \sum_{i=1}^{N} \left[\bar{t}^p_i (m_i + \Delta, m_{-i}) - t^p_i (m) \right] - T^p(\Sigma m) - \frac{1}{\Delta} \sum_{i=1}^{N} \| t^p_i (m_i + \Delta, m_{-i}) - t^p_i (m) \|
$$

$$
\leq \frac{1}{\Delta} \left[\frac{\Sigma m + N \Delta}{(\Sigma m + \Delta)} T^p(\Sigma m + \Delta) - T^p(\Sigma m) \right] - T^p(\Sigma m) - \frac{1}{\Delta} \sum_{i=1}^{N} \| t^p_i (m_i + \Delta, m_{-i}) - t^p_i (m) \|.
$$

The lemma follows from combining these two inequalities, with the observation that $T^p(x) = T^p(x) - NL_v m$.

Lemma 4. For all $\epsilon > 0$, there exists a K such that for all m such that $\Sigma m > K$ and for all i,

$$
\frac{1}{\Delta} | \bar{t}^p_i (m_i + \Delta, m_{-i}) - t^p_i (m) | < \epsilon.
$$

Proof of Lemma 4. Since $\lim_{x \to \infty} T^p(x) = -\Xi^p(\infty)$, we can find a K large enough so that for $x > K$, $| T^p(x) + \Xi^p(\infty) | < \epsilon/4$ and $L_T/K < \epsilon/4$, and thus $| dT^p(x)/dx | < \epsilon/2$. Thus, when $\Sigma m > K$, then using $\Delta = K^{-1}$,

$$
\frac{1}{\Delta} \left[\bar{t}^p_i (m_i + \Delta, m_{-i}) - t^p_i (m) \right] = \frac{1}{\Delta} \int_{y=0}^{\Delta} \frac{\partial \bar{t}^p_i (m_i + y, m_{-i})}{\partial m_i} dy
$$

$$
= \frac{1}{\Delta} \int_{y=0}^{\Delta} \left[\frac{\Sigma m_i - y}{(\Sigma m + y)^2} \bar{T}^p(\Sigma m + y) + \frac{m_i + y}{\Sigma m + y} \frac{d\bar{T}^p(x)}{dx} \right]_{x=\Sigma m+y} dy
$$

$$
\leq \frac{L_T}{K} + \frac{\epsilon}{2}
$$

$$
< \epsilon.
$$

Proof of Proposition 5. We first argue that there exists \bar{m} and a K such that $\lambda(m; v) \geq \inf_{m' \in \mathbb{R}^N} \lambda(m'; v) - \epsilon$ for all $m \in M$ and $v \in [\bar{v}, \bar{v}]$, where

$$
\lambda(m; v) = (v - \bar{v})\bar{\pi}(\Sigma m) - \Xi^p(\Sigma m) + (v - c)\bar{Q}(\Sigma m).
$$
From Lemma 12, we know that $|\overline{Q}(x + y) - \overline{Q}(x)| \leq y(N - 1)/m$. Thus,
\[
\left| \overline{Q}(x) - \frac{1}{\Delta} \int_{y=0}^{\Delta} \overline{Q}(x + y) dy \right| \leq \frac{1}{\Delta} \int_{y=0}^{\Delta} |\overline{Q}(x + y) - Q(x)| dy \leq \frac{1}{\Delta} \int_{y=0}^{\Delta} y \frac{N - 1}{m} dy = \Delta \frac{N - 1}{2m}.
\]
Combining this inequality with Lemmas 2 and 3, we get that
\[
\lambda(m; v) = (v - \nu)\mu(m) - \Xi'(m) + (v - c)\overline{Q}(\Sigma m)
\geq \frac{1}{\Delta} \int_{y=0}^{\Delta} [(v - \nu)\overline{m}(\Sigma m + \Delta) - \Xi'(\Sigma m + y) + (v - c)\overline{Q}(\Sigma m + y)] dy
- (v - \nu)\hat{L}(m, \Delta) - v\Delta \frac{N - 1}{2m} - \frac{\Delta}{2} \hat{L}(m) - NL_{p} m
- \frac{1}{\Delta} \sum_{i} \|m_{i} = m\| \left| \overline{p}_{i}(m_{i} + \Delta, m_{-i}) - \overline{p}_{i}(m) \right|
\geq \inf_{m' \mid \Sigma m = \Sigma m' = \Sigma m + \Delta} \overline{\lambda}(m'; v)
- (v - \nu)\hat{L}(m, \Delta) - v\Delta \frac{N - 1}{2m} - \frac{\Delta}{2} \hat{L}(m) - NL_{p} m
- \frac{1}{\Delta} \sum_{i} \|m_{i} = m\| \left| \overline{p}_{i}(m_{i} + \Delta, m_{-i}) - \overline{p}_{i}(m) \right|.
\]
We can first pick $m > 0$ so that $NL_{p} m < \epsilon/2$. We can then pick K large enough (and Δ small enough) such that the remaining terms in the last two lines sum to less than $\epsilon/2$ (where for the first term in the middle line and last line, this follows from Lemmas 2 and 4, respectively). We then conclude that
\[
\lambda(m; v) \geq \inf_{m' \in \mathbb{R}_{+}^{N}} \overline{\lambda}(m'; v) - \epsilon \geq \overline{\lambda}(v) - \epsilon.
\]
Hence, $\lambda(v) \geq \overline{\lambda}(v) - \epsilon$, and Lemma 1 and Lemma 6 give the result.

This proof goes through verbatim with the maxmin must-sell mechanism \hat{M}.

B.2 Proof of Proposition 6

Recall the definition of $\tilde{S}(K)$. Let $\Delta = 1/K$. We subsequently choose K sufficiently large (and equivalently Δ sufficiently small) to attain the desired ϵ. Note that the signal space can be written
\[
S_{i} = \{0, \Delta, \ldots, K^{2}\Delta\},
\]
and the highest message is simply Δ^{-1}. The probability mass function of s_{i} is
\[
f_{i}(s_{i}) = \begin{cases} (1 - \exp(-\Delta)) \exp(-s_{i}) & \text{if } s_{i} < \Delta^{-1}; \\ \exp(-\Delta^{-1}) & \text{if } s_{i} = \Delta^{-1}. \end{cases}
\]
As a result, s_i/Δ is a censored geometric random variable with arrival rate $1 - \exp(-\Delta)$. We write $f(s) = \times_{i=1}^{N} f_i(s_i)$ for the joint probability, and

$$F_i(s_i) = \sum_{s'_i \leq s_i} f_i(s'_i) = \begin{cases} 1 - \exp(-s_i - \Delta) & \text{if } s_i < \Delta^{-1}; \\ 1 & \text{otherwise}, \end{cases}$$

for the cumulative distribution. The value function is

$$w(s) = \frac{1}{f(s)} \int_{\{s' \in \mathbb{R}_+^N \mid r(s'_i) = s_i \forall i\}} \overline{\pi}(\Sigma s') \exp(-\Sigma s') ds',$$

where

$$\tau(x) = \begin{cases} \Delta \lceil x/\Delta \rceil & \text{if } x < \Delta^{-1}; \\ \Delta^{-1} & \text{otherwise}. \end{cases}$$

An interpretation is that we draw “true” signals s' for the bidders from \overline{S} and agent i observes $s_i = \min\{\Delta \lceil \Delta^{-1} s'_i \rceil, \Delta^{-1}\}$, i.e., signals above Δ^{-1} are censored and otherwise they are rounded down to the nearest multiple of Δ, and w is the conditional expectation of \overline{w} given the noisy observations s. Thus, the distribution of \overline{w} is a mean-preserving spread of the distribution of w, so that H is a mean-preserving spread of the distribution of w as well.

Lemma 5. If $s_i < \Delta^{-1}$ for all i, then $w(s)$ only depends on the sum of the signals $l = \Sigma s$ and

$$w(s) = \frac{\exp(l)}{(1 - \exp(-\Delta))^N} \int_{x=l}^{l+N\Delta} \overline{w}(x) \rho(x - l) \exp(-x) dx,$$

where $\rho(y)$ is the $N - 1$-dimensional volume of the set $\{s \in [0, \Delta]^N \mid \Sigma s = y\}$.

Proof of Lemma 5. First observe that

$$f(s) = (1 - \exp(-\Delta))^N \exp(-\Sigma s) = (1 - \exp(-\Delta))^N \exp(-l).$$

Thus,

$$w(s) = \frac{\exp(l)}{(1 - \exp(-\Delta))^N} \int_{\{s' \in \mathbb{R}_+^N \mid r_i(s'_i) = s_i \forall i\}} \overline{\pi}(\Sigma s') \exp(-\Sigma s') ds'$$

$$= \frac{\exp(l)}{(1 - \exp(-\Delta))^N} \int_{x=l}^{l+N\Delta} \int_{\{s' \in \mathbb{R}_+^N \mid r_i(s'_i) = s_i \forall i, \Sigma s' = x\}} \overline{\pi}(\Sigma s') \exp(-\Sigma s') ds' dx$$

$$= \frac{\exp(l)}{(1 - \exp(-\Delta))^N} \int_{x=l}^{l+N\Delta} \overline{w}(x) \exp(-x) \int_{\{s' \in \mathbb{R}_+^N \mid r_i(s'_i - s_i) = 0 \forall i, \Sigma s' = x\}} ds' dx$$

$$= \frac{\exp(l)}{(1 - \exp(-\Delta))^N} \int_{x=l}^{l+N\Delta} \overline{w}(x) \exp(-x) \int_{\{s' \in \mathbb{R}_+^N \mid r_i(s'_i - s_i) = 0 \forall i, \Sigma s' = l\}} ds' dx,$$

where the inner integral is just $\rho(x - l)$.

\[\Box\]
We now abuse notation slightly by writing $w(l)$ for the value when $l = \Sigma s$, and let $\gamma(l) = w(l) - c$.

Lemma 6. If $l > \Delta$, then $\gamma(l) \leq \text{exp}(\Delta)\gamma(l - \Delta)$.

Proof of Lemma 6. From Lemma 5, we know that

$$\gamma(l) = \frac{\text{exp}(l)}{(1 - \text{exp}(-\Delta))^{N}} \int_{x=l}^{l+N\Delta} \gamma(x) \text{exp}(-x) \rho(x - l)dx$$

$$= \frac{\text{exp}(l)}{(1 - \text{exp}(-\Delta))^{N}} \int_{x=l-\Delta}^{l+(N-1)\Delta} \gamma(x + \Delta) \text{exp}(-x - \Delta) \rho(x - l + \Delta)dx$$

$$\leq \frac{\text{exp}(l - \Delta)}{(1 - \text{exp}(-\Delta))^{N}} \int_{x=l-\Delta}^{l+(N-1)\Delta} \gamma(x) \text{exp}(\Delta) \text{exp}(-x) \rho(x - l + \Delta)dx$$

$$= \text{exp}(\Delta)\gamma(l - \Delta),$$

where the inequality follows from Lemma 2. \qed

Lemma 7. If the direct allocation $q_i(s)$ is Nash implemented by a participation secure mechanism, profit is at most

$$\sum_{s \in S} f(s) \sum_{i=1}^{N} q_i(s) \left[\gamma(\Sigma s) - \frac{1 - F_i(s)}{f_i(s)}(\gamma(\Sigma s + \Delta) - \gamma(\Sigma s)) \right]. \quad (1)$$

Proof of Lemma 7. This follows from standard revenue equivalence arguments: If we write $U_i(s_i, s'_i)$ for the utility of a signal s_i that reports s'_i, with $U_i(s_i) = U_i(s_i, s_i)$, then

$$U_i(s_i) \geq U_i(s_i, s'_i) = U_i(s'_i) + \sum_{s_{-i} \in S_{-i}} f_{-i}(s_{-i}) q_i(s'_i, s_{-i}) \left(\gamma(s_i + \Sigma s_{-i}) - \gamma(s'_i + \Sigma s_{-i}) \right).$$

Thus, for $s_i \geq \Delta$,

$$U_i(s_i) \geq U_i(0) + \sum_{k=0}^{s_i/\Delta-1} \sum_{s_{-i} \in S_{-i}} f_{-i}(s_{-i}) q_i(k\Delta, s_{-i}) \left(\gamma((k + 1)\Delta + \Sigma s_{-i}) - \gamma(k\Delta + \Sigma s_{-i}) \right).$$

The expectation of $U_i(s_i)$ across s_i is therefore bounded below by

$$\sum_{s \in S} f(s) \sum_{k=0}^{s_i/\Delta-1} q_i(k\Delta, s_{-i}) \left(\gamma((k + 1)\Delta + \Sigma s_{-i}) - \gamma(k\Delta + \Sigma s_{-i}) \right)$$

$$= \sum_{s \in S} f(s) q_i(s) \frac{\gamma(\Sigma s + \Delta) - \gamma(\Sigma s)}{\gamma(\Sigma s + \Delta) - \gamma(\Sigma s))} \frac{1 - F_i(s_i)}{f_i(s_i)}.$$

The formula then follows from subtracting the bound on bidder surplus from total surplus. \qed

Let Π denote the maximum of the profit bound (1) across all q. Let $\bar{\Pi}$ denote the profit bound when we set $q_i(s) = 1$ and $q_j(s) = 0$ for all $j \neq 1$.

8
Lemma 8. $\Pi \leq \tilde{\Pi} + (1 - (1 - \exp(-\Delta^{-1}))^N)v$.

Proof of Lemma 8. When signals are all less than Δ^{-1}, the bidder-independent virtual value is

$$\gamma(l) - \frac{1}{\exp(\Delta) - 1} (\gamma(l + \Delta) - \gamma(l))$$

$$\geq \gamma(l) - \frac{\exp(-\Delta)}{1 - \exp(-\Delta)} (\gamma(l) \exp(\Delta) - \gamma(l)) = 0,$$

where the inequality follows from Lemma 6. Thus, the virtual value is maximized pointwise by allocating with probability one to, say, bidder 1. With probability $1 - (1 - \exp(-\Delta^{-1}))^N$, one of the signals is above Δ^{-1}, in which case v is an upper bound on the virtual value.

Lemma 9. $\lim_{\Delta \to 0} \tilde{\Pi} \leq \Pi$.

Proof of Lemma 9. Plugging in $q_1 = 1$, we find that

$$\tilde{\Pi} = \sum_{s_{-1} \in S_{-1}} f_{-1}(s_{-1}) \sum_{s_1 \in S_1} \left[f_1(s_1) \gamma(\Sigma s) - \sum_{s'_1 > s_1} f_1(s'_1) (\gamma(\Sigma s + \Delta) - \gamma(\Sigma s)) \right]$$

$$= \sum_{s_{-1} \in S_{-1}} f_{-1}(s_{-1}) \sum_{s_1 \in S_1} \left[f_1(s_1) \left(\gamma(\Sigma s) + \sum_{s'_1 < s_1} (\gamma(s'_1 + \Sigma s_{-1}) - \gamma(s'_1 + \Sigma s_{-1} + \Delta)) \right) \right]$$

$$= \sum_{s_{-1} \in S_{-1}} f_{-1}(s_{-1}) \gamma(\Sigma s_{-1}).$$

Using the definition of γ, this is

$$\tilde{\Pi} = \frac{1}{1 - \exp(-\Delta)} \int_{y=0}^{\Delta} \int_{x=0}^{\infty} \tilde{\gamma}(x+y) g_{N-1}(x) \exp(-y) dxdy$$

$$= \frac{1}{1 - \exp(-\Delta)} \int_{x=0}^{\infty} \tilde{\gamma}(x) \int_{y=0}^{\min\{x,\Delta\}} g_{N-1}(x-y) \exp(-y) dydx$$

$$\leq \frac{1}{1 - \exp(-\Delta)} \left[\int_{x=\Delta}^{\infty} \tilde{\gamma}(x) \int_{y=0}^{\Delta} g_{N-1}(x-y) \exp(-y) dydx + G_N(\Delta)\tilde{v} \right].$$

Now, observe that

$$\int_{y=0}^{\Delta} g_{N-1}(x-y) \exp(-y) dy = \frac{x^{N-1} - (x - \Delta)^{N-1}}{(N-1)!} \exp(-x)$$

$$\leq \frac{\Delta(N-1)x^{N-2}}{(N-1)!} \exp(-x) = \Delta g_{N-1}(x),$$

where we have used convexity of x^{N-1}. Thus,

$$\tilde{\Pi} \leq \frac{\Delta}{1 - \exp(-\Delta)} \int_{x=0}^{\infty} \tilde{\gamma}(x) g_{N-1}(x) dx + \frac{G_N(\Delta)\tilde{v}}{1 - \exp(-\Delta)}.$$

An application of L'Hôpital's rule shows that the last term converges to zero as $\Delta \to 0$ and $\Delta/(1 - \exp(-\Delta)) \to 1$, this implies the lemma. □
Proof of Proposition 6. Combining Lemmas 7 and 8, we can pick Δ sufficiently small so that $\Pi \leq \tilde{\Pi} + \epsilon/2 \leq \Pi + \epsilon$. This completes the proof of the proposition.

Note that every step of the proof of Proposition 6 goes through in the must-sell case, where we replace w with \hat{w}, and we skip the step in Lemma 8 of proving that the discrete virtual value is non-negative.
Proof of Lemma 9. The left-tail assumption could equivalently be stated as: there exists some $\alpha > 0$ and $\varphi > 1$ such that for all $0 \leq \alpha' < \alpha \leq \overline{\alpha}$

$$H^{-1}(\alpha) - v \leq G_N^{-1}(\alpha)^\varphi$$

and if $v > c$,

$$\frac{H^{-1}(\alpha) - c}{H^{-1}(\alpha') - c} \leq \exp(G_N^{-1}(\alpha) - G_N^{-1}(\alpha')).$$

The following Lemma 10 implies that if the above two conditions hold for N, they hold for all $N' > N$ as well.

Lemma 10. For any $N \geq 1$ and $N' > N$, there exists $\overline{\alpha} > 0$ such that $G_N^{-1}(\alpha) - G_N^{-1}(\alpha') \leq G_N^{-1}(\alpha) - G_N^{-1}(\alpha')$ for all $0 \leq \alpha' < \alpha \leq \overline{\alpha}$.

Proof of Lemma 10. Clearly it suffices to prove the lemma for $N' = N + 1$. Let us extend the definition of G_N to any real number N:

$$G_N(x) = \int_{y=0}^{x} e^{-y} y^{N-1} \frac{1}{\Gamma(N)} dy,$$

where

$$\Gamma(N) = \int_{y=0}^{\infty} e^{-y} y^{N-1} dy.$$

(We have $\Gamma(N) = (N-1)!$ when $N \geq 1$ is an integer.)

By definition, we have

$$\int_{x=0}^{G_N^{-1}(\alpha)} e^{-x} x^{N-1} \frac{1}{\Gamma(N)} dx = \alpha.$$

Differentiating the above equation with respect to N gives:

$$\frac{\partial G_N^{-1}(\alpha)}{\partial N} e^{-G_N^{-1}(\alpha)} G_N^{-1}(\alpha)^{N-1} \frac{1}{\Gamma(N)} + \int_{x=0}^{G_N^{-1}(\alpha)} e^{-x} \frac{\partial}{\partial N} \left(\frac{x^{N-1}}{\Gamma(N)} \right) dx = 0.$$

i.e.,

$$\frac{\partial G_N^{-1}(\alpha)}{\partial N} = \frac{\Gamma(N) e^{G_N^{-1}(\alpha)}}{G_N^{-1}(\alpha)^{N-1}} \left(- \int_{x=0}^{G_N^{-1}(\alpha)} e^{-x} \frac{\partial}{\partial N} \left(\frac{x^{N-1}}{\Gamma(N)} \right) dx \right)$$

$$= \frac{e^{G_N^{-1}(\alpha)}}{\Gamma(N) G_N^{-1}(\alpha)^{N-1}} \int_{x=0}^{G_N^{-1}(\alpha)} e^{-x} \left[-x^{N-1} \log(x) \Gamma(N) + x^{N-1} \Gamma'(N) \right] dx$$

$$= \frac{e^{G_N^{-1}(\alpha)}}{\Gamma(N)} f(G_N^{-1}(\alpha), N),$$
where

\[f(z, N) = \frac{1}{z^{N-1}} \int_{x=0}^{z} e^{-x} [-x^{N-1} \log(x) \Gamma(N) + x^{N-1} \Gamma'(N)] \, dx. \]

We compute:

\[
\frac{\partial f(z, N)}{\partial z} = \frac{1}{z^{2(N-1)}} \left(z^{N-1} e^{-z} [-z^{N-1} \log(z) \Gamma(N) + z^{N-1} \Gamma'(N)]
- (N-1)z^{N-2} \int_{x=0}^{z} e^{-x} [-x^{N-1} \log(x) \Gamma(N) + x^{N-1} \Gamma'(N)] \, dx \right)
\]

\[= e^{-z} [- \log(z) \Gamma(N) + \Gamma'(N)] - (N-1)z^{-N} \int_{x=0}^{z} e^{-x} [-x^{N-1} \log(x) \Gamma(N) + x^{N-1} \Gamma'(N)] \, dx. \]

For any \(z \leq 1 \), we have

\[
\frac{\partial f(z, N)}{\partial z} \geq e^{-z} [- \log(z) \Gamma(N) + \Gamma'(N)] - (N-1)z^{-N} \int_{x=0}^{z} [-x^{N-1} \log(x) \Gamma(N) + x^{N-1} \Gamma'(N)] \, dx
\]

\[= e^{-z} [- \log(z) \Gamma(N) + \Gamma'(N)] - (N-1)z^{-N} \left[\Gamma(N) \left(\frac{z}{N^2} - \frac{z \log z}{N} \right) + \Gamma'(N) \frac{z^N}{N} \right]
\]

\[= e^{-z} [- \log(z) \Gamma(N) + \Gamma'(N)] - \frac{N-1}{N} \left[\Gamma(N) \left(\frac{1}{N} - \log z \right) + \Gamma'(N) \right]
\]

\[= \left(e^{-z} - \frac{N-1}{N} \right) [- \log(z) \Gamma(N) + \Gamma'(N)] - \frac{N-1}{N^2} \Gamma(N). \]

Since the last line goes to infinity as \(z \) goes to zero, for any fixed \(N \geq 1 \) we can choose \(\bar{z} \in (0, 1] \) such that \(\partial f(z, \bar{N})/\partial z \geq 0 \) for all \(z \in [0, \bar{z}] \) and \(\bar{N} \in [N, N+1] \). Let \(\bar{\alpha} = G_{N+1}(\bar{z}) \).

Suppose \(0 \leq \alpha' < \alpha \leq \bar{\alpha} \). We have

\[
[G_{N+1}^{-1}(\alpha) - G_{N+1}^{-1}(\alpha')] - [G_{N}^{-1}(\alpha) - G_{N}^{-1}(\alpha')] = \int_{\bar{N}=N}^{N+1} \left(\frac{\partial G_{\bar{N}}^{-1}(\alpha)}{\partial \bar{N}} - \frac{\partial G_{\bar{N}}^{-1}(\alpha')}{\partial \bar{N}} \right) \, d\bar{N}.
\]

Since \(d \left(e^{z} f(z, \bar{N}) / \Gamma(\bar{N}) \right) / dz \geq 0 \) for all \(z \in [0, \bar{z}] \) and \(\bar{N} \in [N, N+1] \), we have \(\partial G_{\bar{N}}^{-1}(\alpha)/\partial \bar{N} - \partial G_{\bar{N}}^{-1}(\alpha')/\partial \bar{N} \geq 0 \), which proves the lemma.

Let us now define

\[
G_{N}^{C}(x) = G_{N} \left(\sqrt{N-1} x + N - 1 \right);
\]

\[
g_{N}^{C}(x) = \sqrt{N-1} g_{N} \left(\sqrt{N-1} x + N - 1 \right).
\]

To prove Proposition 7, we first need a number of technical results.

Lemma 11. As \(N \) goes to infinity, \(g_{N}^{C} \) and \(G_{N}^{C} \) converge pointwise to \(\phi \) and \(\Phi \), respectively.
Proof of Lemma 11. Note that
\[g_{N+1}^C(x) = \sqrt{N}g_{N+1}(\sqrt{N}x + N) = \sqrt{N}(\sqrt{N}x + N)^N \frac{N!}{N^N} \exp(-\sqrt{N}x - N). \]

Stirling’s Approximation says that
\[\lim_{N \to \infty} \frac{N!}{\sqrt{2\pi N} \left(\frac{N}{e} \right)^N} = 1. \]

Moreover, for all \(N \), the ratio inside the limit is greater than 1.

Thus, when \(N \) is large, \(g_{N+1}^C(x) \) is approximately
\[\frac{1}{\sqrt{2\pi}} \left(1 + \frac{x}{\sqrt{N}} \right)^N \exp(-\sqrt{N}x), \]
and hence
\[\log(g_{N+1}^C(x)) \approx \log(1/\sqrt{2\pi}) + N \log \left(1 + \frac{x}{\sqrt{N}} \right) - \sqrt{N}x. \]

Using the mean-value formulation of Taylor’s Theorem centered around 0, for every \(y \), there exists a \(z \in [0, y] \) such that
\[\log(1 + y) = y - \frac{y^2}{2} + \frac{1}{(1+z)^3}y^3. \]

Plugging in \(y = x/\sqrt{N} \), we conclude that
\[\log(g_{N+1}^C(x)) \approx \log(1/\sqrt{2\pi}) + N \frac{x}{\sqrt{N}} - N \frac{1}{2} \left(\frac{x}{\sqrt{N}} \right)^2 + N \frac{1}{(1+z)^3} \left(\frac{x}{\sqrt{N}} \right)^3 - \sqrt{N}x \]
\[= \log(1/\sqrt{2\pi}) - \frac{1}{2} x^2 + \frac{1}{(1+z)^3} \frac{x^3}{\sqrt{N}} \]
which converges to \(\log(1/\sqrt{2\pi}) - \frac{1}{2} x^2 \) as \(N \) goes to infinity, so \(g_{N+1}^C(x) \) converges to \(\phi(x) = \exp(-x^2/2)/\sqrt{2\pi} \). Pointwise convergence of \(G_N^C \) to \(\Phi \) follows from Scheffé’s lemma.

Let us define
\[\tilde{g}(x) = \begin{cases} \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right) & \text{if } x < 0; \\ \frac{1}{\sqrt{2\pi}} (1 + x) \exp(-x) & \text{otherwise}. \end{cases} \]

Lemma 12. The function \(\tilde{g}(x)|x| \) is integrable, and for all \(N \) and \(x \), \(|g_N^C(x)| \leq \tilde{g}(x) \).
Proof of Lemma 12. Note that
\[\int_{x=\infty}^{x=-\infty} \tilde{g}(x)|x|dx = \int_{x=\infty}^{0} \phi(x)|x|dx + \frac{1}{\sqrt{2\pi}} \int_{x=0}^{\infty} (1 + x)x \exp(-x)dx, \]
which is clearly finite, since the half-normal distribution has finite expectation.

Next, Stirling’s Approximation implies that
\[g_{N+1}^C(x) \leq \frac{1}{\sqrt{2\pi}} \left(1 + \frac{x}{\sqrt{N}}\right)^N \exp(-\sqrt{N}x) \equiv \tilde{g}_N(x). \]

Now,
\[\frac{d}{dN} \log(\tilde{g}_N(x)) = \frac{d}{dx} \frac{d}{dN} \log(\tilde{g}_N(x)) = \frac{1}{\sqrt{N} + x} - \frac{\sqrt{N}}{2(\sqrt{N} + x)^2} - \frac{1}{2\sqrt{N}}, \]
which is clearly zero when \(x = 0 \), and
\[\frac{d}{dx} \frac{d}{dN} \log(\tilde{g}_N(x)) = \frac{2N + 2\sqrt{N}x}{2\sqrt{N}(\sqrt{N} + x)^2} - \frac{N}{2\sqrt{N}(\sqrt{N} + x)^2} - \frac{N + 2\sqrt{N}x + x^2}{2\sqrt{N}(\sqrt{N} + x)^2} \]
\[= \frac{-x^2}{2\sqrt{N}(\sqrt{N} + x)^2}, \]
which is non-positive and strictly negative when \(x \neq 0 \). As a result, \(\tilde{g}_N(x) \) is increasing in \(N \) when \(x < 0 \) and decreasing in \(N \) when \(x > 0 \). Since it converges to \(\phi(x) \) in the limit as \(N \) goes to infinity, we conclude that for \(x < 0 \), \(g_{N+1}^C(x) \leq \tilde{g}_N(x) \leq \phi(x) = \tilde{g}(x) \), and for \(x > 0 \), \(g_{N+1}^C(x) \leq \tilde{g}_N(x) \leq \tilde{g}(x) \) as desired.

Lemma 13. As \(N \) goes to infinity, \(\hat{\gamma}_N^C \) converges almost surely to \(\hat{\gamma}_\infty^C(x) = H^{-1}(\Phi(x)) \) and \(\hat{\Gamma}_N^C \) converges pointwise to
\[\hat{\Gamma}_\infty^C(x) = \int_{y=-\infty}^{x} \hat{\gamma}_\infty^C(y)\phi(y)dy. \]

The latter convergence is uniform on any bounded interval.

Proof of Lemma 13. Note that \(\hat{\gamma}_N^C(x) = H^{-1}(G_N^C(x)) - c \). By Lemma 11, \(G_N^C(x) \) converges to \(\Phi(x) \) pointwise. Thus, if \(H^{-1} \) is continuous at \(\Phi(x) \), then as \(N \) goes to infinity, we must have \(\hat{\gamma}_N^C(x) \to H^{-1}(\Phi(x)) - c = \hat{\gamma}_\infty^C(x) \). Since \(H^{-1} \) is monotonic, the set of discontinuities has Lebesgue measure zero, so that the pointwise convergence is almost everywhere.

Pointwise convergence of \(\hat{\Gamma}_N^C \) follows from almost sure convergence of \(\hat{\gamma}_N^C \), combined with the fact that \(\hat{\gamma}_N^C \) is uniformly bounded by \(|\tilde{v}| \), so that we can apply the dominated convergence theorem. Moreover, \(\hat{\Gamma}_N^C(x) \) is uniformly Lipschitz continuous across \(N \) and \(x \). As a result, the family \(\{\hat{\Gamma}_N^C(\cdot)\}_{N=2}^{\infty} \) is uniformly bounded and uniformly equicontinuous. The conclusion about uniform convergence is then a consequence of the Arzela-Ascoli theorem.
Recall that x^* is the largest solution to $\hat{\Gamma}^C_\infty(x^*) = 0$ (which may be $-\infty$). Also, let us define x_N so that Γ_N^C has a graded interval $[-\sqrt{N-1}, x_N]$. (If there is no graded interval with left end point $-\sqrt{N-1}$, then we let $x_N = -\sqrt{N-1}$.)

Lemma 14. As N goes to infinity, x_N converges to x^*.

Proof of Lemma 14. By a change of variables $y = (G_N^C)^{-1}(\Phi(x))$, we conclude that

$$\hat{\Gamma}^C_\infty(x^*) = \int_{x = -\infty}^{x^*} \gamma^C_\infty(x) \phi(x) dx = \int_{x = -\sqrt{N-1}}^{(G_N^C)^{-1}(\Phi(x^*))} \gamma^C_N(x) g^C_N(x) dx = \hat{\Gamma}^C_N((G_N^C)^{-1}(\Phi(x^*))).$$

This integral must be zero by the definition of x^*, so that $x_N \geq (G_N^C)^{-1}(\Phi(x^*))$. Since the latter converges to x^* as $N \to \infty$, we conclude $\liminf_{N \to \infty} x_N \geq x^*$.

Next, recall that x_{N+1} solves the equation

$$\hat{\Gamma}^C_{N+1}(x_{N+1}) = \hat{\gamma}^C_{N+1}(x_{N+1}) \int_{x = -\sqrt{N}}^{x_{N+1}} \exp(\sqrt{N}(x - x_{N+1})) g^C_{N+1}(x) dx$$

$$= \hat{\gamma}^C_{N+1}(x_{N+1}) \exp(-\sqrt{N} x_{N+1} - N) \int_{x = -\sqrt{N}}^{x_{N+1}} \exp(\sqrt{N} x + N) g^C_{N+1}(x) dx$$

$$= \hat{\gamma}^C_{N+1}(x_{N+1}) \exp(-\sqrt{N} x_{N+1} - N) \int_{x = -\sqrt{N}}^{x_{N+1}} \frac{\sqrt{N} x + N}{N!} dx$$

$$\leq \bar{v} \exp(-\sqrt{N} x_{N+1} - N) \frac{(\sqrt{N} x_{N+1} + N)^{N+1}}{(N+1)!}$$

$$\leq \bar{v} \hat{g}_{N+2} \left(\sqrt{\frac{N}{N+1}} x_{N+1} - \frac{1}{\sqrt{N+1}} \right) \frac{1}{\sqrt{N+1}}$$

where we have used Lemma 12. The last line converges to zero pointwise, so $\hat{\Gamma}^C_N(x_N)$ must converge to zero as well.

Now, if $z = \limsup_{N \to \infty} x_N > x^*$, then since $\hat{\Gamma}^C_\infty(z) > \hat{\Gamma}^C_\infty(x^*) = 0$, we would contradict our earlier finding that $\hat{\Gamma}^C_N(x_N) \to 0$. Thus, $\limsup_{N \to \infty} x_N \leq x^*$, so x_N must converge to x^* as N goes to ∞. \hfill \square

Lemma 15. For every $\epsilon > 0$, there exists \hat{N} such that for all $N > \hat{N}$, there exists an $x \in [x^* + \epsilon, x^* + 2\epsilon]$ at which π^C_N is not graded.

Proof of Lemma 15. Suppose not. Then there exist infinitely many N such that for every $x \in [x^* + \epsilon, x^* + 2\epsilon]$, $\pi^C_{N+1}(x) = \exp(\sqrt{N}(x - \tilde{x})) \gamma^C_{N+1}(\tilde{x})$ for some $\tilde{x} \geq x^* + 2\epsilon$. Thus, for all $x \leq x^* + \epsilon$, we conclude that

$$\pi^C_{N+1}(x) \leq \pi^C_{N+1}(x^* + \epsilon) \leq \exp(-\sqrt{N\epsilon}) \bar{v}$$
which converges to zero as N goes to infinity. This implies that $\liminf_{N \to \infty} \Gamma_{N+1}^C(x^* + \epsilon) = 0$. But $\Gamma_{N+1}^C(x^* + \epsilon)$ must be weakly larger than $\Gamma_{N+1}^C(x^* + \epsilon)$, so

$$0 = \lim_{N \to \infty} \inf \Gamma_{N+1}^C(x^* + \epsilon) \geq \lim_{N \to \infty} \inf \Gamma_{N+1}^C(x^* + \epsilon) = \Gamma_{\infty}^C(x^* + \epsilon) = 0,$$

a contradiction. \qed

Lemma 16. As N goes to infinity, γ_N^C converges almost surely to

$$\gamma_\infty^C(x) = \begin{cases} 0 & \text{if } x < x^*; \\ \gamma_\infty^C(x) & \text{if } x \geq x^*. \end{cases}$$

Proof of Lemma 16. Let $x < x^*$. Since $x_N \to x^*$ by Lemma 14, for N sufficiently large, $x_N > (x^* + x)/2$. Since $\gamma_N^C(x)$ is graded on $(-\infty, x_N]$, it is graded at x, and

$$\gamma_N^C(x) = \exp(\sqrt{N-1}(x - x_N))\gamma_N^C(x_N) \leq \exp(\sqrt{N-1}(x - x^*)/2)v.$$

The last line clearly converges to zero pointwise. Since $\gamma_N^C(x) \geq 0$ for all N, we conclude that $\gamma_N^C(x) \to 0$.

Now consider $x > x^*$ at which γ_∞^C is continuous. Take ϵ so that $x > x^* + 2\epsilon$ and so that γ_∞^C is continuous at $x^* + \epsilon$. Lemma 15 says that there is a N such that for all $N > N$, there exists a point in $[x^* + \epsilon, x^* + 2\epsilon]$ at which the gains function is not graded. Moreover, since $\gamma_N^C(x^* + \epsilon)$ converges to $\gamma_\infty^C(x^* + \epsilon)$, we can pick N large enough and find a constant $\gamma > 0$ such that for $N > N$, $\gamma_N^C(x^* + \epsilon) \geq \gamma$.

Now, suppose that γ_N^C is graded at x, with x in a graded interval $[a, b]$. Then $a \geq x^* + \epsilon$, and hence $\gamma_N^C(a) \geq \gamma_N^C(x^* + \epsilon) \geq \gamma$. Recall that on $[a, b]$,

$$\gamma_N^C(x) = \gamma_N^C(a) \exp(\sqrt{N-1}(x - a)).$$

Since γ_N^C is bounded above by \overline{v}, it must be that $\gamma_N^C(a) \exp(\sqrt{N-1}(b - a)) \leq \overline{v}$, so

$$b - a \leq \frac{1}{\sqrt{N-1}} \log \left(\frac{\overline{v}}{\gamma_N^C(a)} \right) \leq \frac{1}{\sqrt{N-1}} \log \left(\frac{\overline{v}}{\gamma} \right) = \epsilon_N.$$

Thus,

$$\gamma_N^C(x - \epsilon_N) \leq \gamma_N^C(x) \leq \gamma_N^C(x + \epsilon_N).$$

This was true if $\gamma_N^C(x)$ is graded at x, but clearly the inequality is also true if it is not graded at x, in which case $\gamma_N^C(x) = \gamma_N^C(x)$. Now, $\gamma_N^C(x) = \gamma_\infty^C(\Phi^{-1}(G_N^C(x)))$, so

$$\gamma_\infty^C(\Phi^{-1}(G_N^C(x - \epsilon_N))) \leq \gamma_N^C(x) \leq \gamma_\infty^C(\Phi^{-1}(G_N^C(x + \epsilon_N))).$$

As $N \to \infty$, the left and right hand sides converge to $\gamma_\infty^C(x)$ from the left and right, respectively. Since γ_∞^C is continuous at x, we conclude that $\gamma_N^C(x) \to \gamma_\infty^C(x)$. The lemma follows from the fact that the monotonic function γ_∞^C is continuous almost everywhere. \qed
Proof of Proposition 7. We argue that
\[Z_{N+1} = \sqrt{N} \int_{x=0}^{\infty} \tau_{N+1}(x)(g_{N+1}(x) - g_N(x))dx \]
converges to a positive constant as \(N \) goes to infinity. Since this is \(\sqrt{N} \) times the difference between ex ante gains from trade and profit, this proves the result.

To that end, observe that
\[Z_{N+1} = \sqrt{N} \int_{x=0}^{N/2} \tau_{N+1}(x)(g_{N+1}(x) - g_N(x))dx + \int_{x=-\sqrt{N}/2}^{\infty} \tau_{N+1}(x) g_{N+1}(x) \frac{Nx}{\sqrt{N}x + N} dx. \]
We claim that the first integral converges to zero as \(N \to \infty \). Note that \(g_{N+1}(x) \leq g_N(x) \) if and only if \(x \leq N \). Therefore,
\[
\left| \sqrt{N} \int_{x=0}^{N/2} \tau_{N+1}(x)(g_{N+1}(x) - g_N(x))dx \right| \leq (\nu + c) \sqrt{N} \int_{x=0}^{N/2} (g_N(x) - g_{N+1}(x))dx
\]
\[
= (\nu + c) \sqrt{N} (G_N(N/2) - G_{N+1}(N/2))
\]
\[
= (\nu + c) \sqrt{N} g_{N+1}(N/2)
\]
\[
= (\nu + c) \sqrt{N} \frac{(N/2)^N \exp(-N/2)}{N!}
\]
\[
\approx (\nu + c) \sqrt{N} \frac{(N/2)^N \exp(-N/2)}{\sqrt{2\pi N} (N/e)^N}
\]
\[
= (\nu + c) \frac{1}{\sqrt{2\pi}} \exp(-N(\log(2) - 1/2)),
\]
where we have again used Stirling’s Approximation between the third-to-last and second-to-last lines. The last line converges to zero as \(N \) goes to infinity.

Now consider the second integral in the formula for \(Z_{N+1} \). By Lemma 12, the integrand is bounded above in absolute value by the integrable function \(\tilde{\tau}_N(x)|x| \). Moreover, from Lemmas 11 and 16, we know that the integrand converges pointwise to \(\tau_{C}^{\infty}(x) \phi(x) \). The dominated convergence theorem then implies that as \(N \) goes to infinity, \(Z_N \) converges to
\[
\int_{x=-\infty}^{\infty} \frac{\tau_{\infty}^{C}(x) \phi(x)}{\tau_{\infty}^{C}(x)} dx,
\]
which is strictly positive because \(\tau_{\infty}^{C} \) is strictly increasing.

The proof goes through for the must-sell guarantee, if we replace \(\tau_N^{C} \) with \(\gamma_N^{C} \).

To prove Proposition 9, we need a few more intermediate results. Let \(\overline{G}_N(x) = G_N(Nx) \) be the cumulative distribution for the mean of \(N \) independent standard exponential random variables. Define \(\overline{F}_N(x) = \exp(N(1 - x + \log(x))) \). Clearly, \(\overline{F}_N(x) \) is a cumulative distribution for \(x \in [0, 1] \), \(\overline{F}_N(0) = 0 \) and \(\overline{F}_N(1) = 1 \). Finally, define the function \(D_N(\alpha) \):
\[
D_N(\alpha) = \begin{cases}
\frac{1}{\overline{F}_N(\alpha)} & \text{if } \alpha \in [0, 0.4]; \\
1.1 & \text{if } \alpha \in (0.4, 1].
\end{cases}
\]
The choices of 0.4 and 1.1 in $D_N(\alpha)$ are arbitrary: any numbers work that are less than $1/2$ and more than 1, respectively.

Lemma 17. When \hat{N} is sufficiently large, $\bar{\mu}_N(G_N^{-1}(\alpha)) \leq D_{\hat{N}}(\alpha)$ for all $N \geq \hat{N}$ and $\alpha \in [0, 1]$.

Proof of Lemma 17. We first apply the theory of large deviations to the exponential distribution. Let $\Lambda(t)$ be the logarithmic moment generating function for the exponential distribution:

$$\Lambda(t) = \log \left(\int_{x=0}^{\infty} \exp(xt - x) \, dx \right) = \begin{cases} \infty & \text{if } t \geq 1; \\ -\log(1-t) & \text{if } t < 1. \end{cases}$$

Let $\Lambda^*(x)$ be the Legendre transform of $\Lambda(t)$:

$$\Lambda^*(x) = \sup_{t \in \mathbb{R}} \{ xt - \Lambda(t) \} = \begin{cases} \infty & x \leq 0, \\ x - 1 - \log x & x > 0. \end{cases}$$

Cramér’s theorem (or the Chernoff bound; see Theorem 1.3.12 in Stroock, 2011) then states that for any N,

$$G_N(x) \leq \exp(-N\Lambda^*(x)) = \overline{F}_N(x)$$

for every $x \in [0, 1]$; or equivalently, $\overline{F}_N^{-1}(\alpha) \leq G_N^{-1}(\alpha)$ for every $\alpha \in [0, \overline{G}_N(1)]$.

By the law of large numbers, when \hat{N} is sufficiently large, we have $\overline{G}_N(1) \geq 0.4$ and $1/\overline{G}_N^{-1}(0.4) \leq 1.1$ and for all $N \geq \hat{N}$. The claim of the lemma then follows from two cases:

If $\alpha \in [0, 0.4]$, then we have

$$\bar{\mu}_N(G_N^{-1}(\alpha)) \leq \frac{N}{G_N^{-1}(\alpha)} = \frac{1}{\overline{G}_N^{-1}(\alpha)} \leq \frac{1}{\overline{F}_N^{-1}(\alpha)} = D_{\hat{N}}(\alpha),$$

where we have used the bound $\bar{\mu}_N(x) \leq N/x$ (equation (21)), and the facts that $\overline{G}_N(1) \geq 0.4$ when $N \geq \hat{N}$ (so $\overline{F}_N^{-1}(\alpha) \leq \overline{G}_N^{-1}(\alpha)$ for $\alpha \leq 0.4 \leq \overline{G}_N(1)$) and that $\overline{F}_N(x) \leq \overline{F}_{\hat{N}}(x)$ for all $N \geq \hat{N}$ and $x \in [0, 1]$ (so $\overline{F}_{\hat{N}}^{-1}(\alpha) \leq \overline{F}_N^{-1}(\alpha)$ for all α).

If $\alpha \in (0.4, 1]$, then

$$\bar{\mu}_N(G_N^{-1}(\alpha)) \leq \frac{1}{G_N^{-1}(\alpha)} \leq \frac{1}{G_N^{-1}(0.4)} \leq 1.1 = D_{\hat{N}}(\alpha),$$

since $\overline{G}_N^{-1}(\alpha)$ is increasing in α, and $1/\overline{G}_N^{-1}(0.4) \leq 1.1$ when $N \geq \hat{N}$.

Lemma 18. When N is sufficiently large,

$$\int_{\alpha=0}^{1} D_N(\alpha) \, dH^{-1}(\alpha) < \infty.$$
Proof of Lemma 18. Since \(G_N(x) = 1 - \sum_{k=1}^{N} g_k(x) \), we have:

\[
\overline{G}_N(x) = 1 - \sum_{k=1}^{N} \exp(-Nx) \frac{(Nx)^{k-1}}{(k-1)!} \\
= 1 - \exp(-Nx) \left(\exp(Nx) - \sum_{k=N}^{\infty} \frac{(Nx)^k}{k!} \right) \geq \exp(-Nx) \frac{(Nx)^N}{N!}.
\]

Clearly, there exists an \(\bar{x} \in (0,1) \) such that

\[
\overline{F}_{N+1}(x) = \exp((N + 1)(1 - x))x^{N+1} \leq \exp(-Nx) \frac{(Nx)^N}{N!} \leq \overline{G}_N(x)
\]

for all \(x \in [0, \bar{x}] \). We therefore have \(D_{N+1}(\alpha) = 1/\overline{F}_{N+1}^{-1}(\alpha) \leq 1/\overline{G}_N^{-1}(\alpha) \) for all \(\alpha \in [0, \bar{\alpha}] \), where \(\bar{\alpha} = \min\{\overline{F}_{N+1}(\bar{x}), 0.4\} \). As a result,

\[
\int_{\alpha=0}^{1} D_{N+1}(\alpha) \, dH^{-1}(\alpha) \leq \int_{\alpha=0}^{\bar{\alpha}} \frac{1}{\overline{G}_N^{-1}(\alpha)} \, dH^{-1}(\alpha) + \int_{\alpha=\bar{\alpha}}^{1} \max \left(\frac{1}{\overline{F}_{N+1}^{-1}(\bar{x})}, 1.1 \right) \, dH^{-1}(\alpha) < \infty
\]

whenever we have

\[
\int_{\alpha=0}^{1} \frac{1}{\overline{G}_N^{-1}(\alpha)} \, dH^{-1}(\alpha) = \int_{x=0}^{\infty} \frac{N}{x} \, d\hat{w}_N(x) < \infty.
\]

Finiteness of the last integral follows from part one of the left-tail assumption.

Lemma 19. Suppose \(\lim_{N \to \infty} y_N \in (-\infty, \infty) \). Then \(\lim_{N \to \infty} \overline{\mu}_{N+1}(\sqrt{N}y_N + N) = 1 \).

Proof of Lemma 19. We first argue that for almost every \(y_0 \), \(\overline{\mu}_{N+1}(\sqrt{N}y_N + N) \) tends to 1 as \(N \to \infty \). For this we recall \(x^* \) and \(x_N \) from Lemmas 14–16.

Consider first \(y < x^* \). By Lemma 14, for \(N \) sufficiently large, the gains function is graded at \(y \), and hence

\[
\overline{\mu}_{N+1}(\sqrt{N}y + N) = C(0, \sqrt{N}x_N + N) = \frac{N + 1}{\sqrt{N}x_N + N}.
\]

Since we have already shown that \(x_N \to x^* \) (Lemma 14), we conclude that \(\overline{\mu}_{N+1}(\sqrt{N}y + N) \) goes to 1.

Now consider \(y > x^* \) at which \(\hat{\gamma}_C^y \) is continuous. If the gains function is not graded at \(y \), then \(\overline{\mu}_{N+1}(\sqrt{N}y + N) = N/(\sqrt{N}y + N) \). If the gains function is graded at \(y \), then the length of the graded interval \([a, b] \ni y \) in the central limit units is less than \(\epsilon_N = \bar{\gamma}/(\gamma \sqrt{N}) \) for some \(\gamma > 0 \) independent of \(N \) (see Lemma 16). Since \(\overline{\mu} \) is decreasing (Lemma 3), we have

\[
\frac{N}{\sqrt{N}(y + \epsilon_N) + N} \leq \overline{\mu}_{N+1}(\sqrt{N}y + N) \leq \frac{N}{\sqrt{N}(y - \epsilon_N) + N},
\]

since \(\lim_{z \nearrow a} \overline{\mu}_{N+1}(\sqrt{N}z + N) = N/(\sqrt{N}a + N) \) and \(\lim_{z \searrow b} \overline{\mu}_{N+1}(\sqrt{N}z + N) = N/(\sqrt{N}b + N) \). As a result, \(\overline{\mu}_{N+1}(\sqrt{N}y + N) \) is squeezed to 1 as \(N \) goes to infinity.
We conclude that \(\bar{\mu}_{N+1}(\sqrt{N}y + N) \) goes to 1 for \(y > x^* \) at which \(\hat{\gamma}_C^\infty \) is continuous. Since \(\hat{\gamma}_C^\infty(y) \) is a monotone function of \(y \), it is continuous at almost every \(y \), so the convergence \(\bar{\mu}_N \to 1 \) is almost everywhere.

Finally, suppose \(\lim_{N \to \infty} y_N = y \in (-\infty, \infty) \). Choose \(y' \) and \(y'' \) such that \(y \in (y', y'') \) and such that
\[
\lim_{N \to \infty} \bar{\mu}_{N+1}(\sqrt{N}y' + N) = 1 = \lim_{N \to \infty} \bar{\mu}_{N+1}(\sqrt{N}y'' + N).
\]
When \(N \) is sufficiently large, we have \(y_N \in (y', y'') \), so
\[
\bar{\mu}_{N+1}(\sqrt{N}y'' + N) \leq \bar{\mu}_{N+1}(\sqrt{N}y_N + N) \leq \bar{\mu}_{N+1}(\sqrt{N}y' + N).
\]
Taking the limit as \(N \to \infty \), we conclude \(\lim_{N \to \infty} \bar{\mu}_{N+1}(\sqrt{N}y_N + N) = 1. \)

Proof of Proposition 9. We first prove that
\[
\lim_{N \to \infty} \lambda_N(v; H) \to v - c
\]
for every \(v \in [\underline{v}, \overline{v}] \).

Replacing \(\bar{\mu}_N \) by 1 in equation (18), the definition of \(\lambda_N(v; H) \), we have
\[
\Pi_N(H) + \int_{y=0}^{\infty} G_N(y) \, d\hat{w}_N(y) - \int_{v=v}^{\overline{v}} d\nu = \Pi_N(H) + \left(\overline{v} - \int_{y=0}^{\infty} g_N(y) \hat{w}_N(y) \, dy \right) - (\overline{v} - v)
\]
\[
= \Pi_N(H) - \int_{v'=v}^{\overline{v}} v' \, dH(v') + v.
\]
Since by Proposition 7 \(\lim_{N \to \infty} \Pi_N(H) \to \int_{v'=v}^{\overline{v}} v' \, dH(v') - c \), to prove (2), it suffices to prove that
\[
\lim_{N \to \infty} \int_{y=0}^{\infty} |1 - \bar{\mu}_N(y)| \, d\hat{w}_N(y) = 0.
\]
Changing variables, we can rewrite the above equation as:
\[
\lim_{N \to \infty} \int_{\alpha=0}^{1} |1 - \bar{\mu}_N(G_N^{-1}(\alpha))| \, dH^{-1}(\alpha) = 0.
\]

We note that Stieltjes integration with respect to \(dH^{-1}(\alpha) \) is equivalent to a Lebesgue integration with respect to the finite measure \(\omega \) on \([0, 1]\) satisfying \(\omega([s, t]) = H^{-1}(t) - H^{-1}(s) \), \(0 \leq s \leq t \leq 1 \), and \(\omega(\{1\}) = 0 \). Part one of the left-tail assumption implies that
\[
\omega(\{0\}) = \lim_{\alpha \to 0} \omega([0, \alpha]) = \lim_{\alpha \to 0} H^{-1}(\alpha) - H^{-1}(0) \leq \lim_{\alpha \to 0} G_N^{-1}(\alpha)^\varphi = 0
\]
for some \(\varphi > 1 \). Therefore, \(\omega(\{0, 1\}) = 0 \).

The central limit theorem implies that \(\lim_{N \to \infty} (G_N^{-1}(\alpha) - (N - 1)/\sqrt{N - 1}) = \Phi^{-1}(\alpha) \) for every \(\alpha \in (0, 1) \). Therefore, Lemma 19 implies \(\lim_{N \to \infty} \bar{\mu}_N(G_N^{-1}(\alpha)) = 1 \) for every \(\alpha \in (0, 1) \). Moreover, Lemmas 17 and 18 imply that there exists a \(\tilde{N} \) such that for all \(N \geq \tilde{N} \), the
integrand $|1 - \overline{\mu}_N(G_N^{-1}(\alpha))|$ in (3) is dominated by $1 + D_N(\alpha)$ which is integrable with respect to ω. Therefore, equation (3) follows from the dominated convergence theorem, from which equation (2) follows.

Finally, using the definition of $\overline{\lambda}_N(v; H)$, we have

$$\overline{\lambda}_N(v; H) \leq \overline{\Pi}_N(H) + \int_{y=0}^{\infty} \overline{\mu}_N(y)(1 + G_N(y)) d\hat{\omega}_N(y) \leq (\overline{c} - c) + 2 \int_{x=0}^{1} D_N(\alpha) dH^{-1}(\alpha) < \infty,$$

for all $v \in [v, \overline{v}]$ and $N \geq \hat{N}$, where the last two inequalities follow from Lemmas 17 and 18, respectively. Thus

$$\lim_{N \to \infty} \int_V \overline{\lambda}_N(v; H) dH'(v) = \int_V v dH'(v) - c$$

follows the dominated convergence theorem using (2).

The proof for the must-sell $\hat{\lambda}_N(v; H)$ is identical, after replacing $\overline{\mu}_N(x)$ with $\hat{\mu}_N(x) = (N - 1)/x$ and $\overline{\Pi}_N(H)$ with $\hat{\Pi}_N(H)$.

Lemma 20. Suppose the condition on H in Lemma 10 holds. For any $\epsilon > 0$, there exists an \hat{N} such that for all $N > \hat{N}$, we have

$$\hat{\gamma}_N(x) \leq \hat{\gamma}_N(y) \exp(x - y).$$

for all $x \geq y$ such that $\hat{\gamma}_N(y) \geq \epsilon$.

Proof of Lemma 20. The condition on H implies that the support of H has no gap on $[y, \overline{v}]$, so H^{-1} is continuous on $[0, 1]$. We can partition $[0, 1]$ into a countable collection of intervals $\{[\alpha_i, \beta_i] : i \in I\}$ such that $\alpha_i < \beta_i$, and either H^{-1} is strictly increasing on $[\alpha_i, \beta_i]$, or H^{-1} is constant on $[\alpha_i, \beta_i]$ (i.e., H has a mass point at v, where $v = H^{-1}(p)$ for all $p \in [\alpha_i, \beta_i]$). If H^{-1} is strictly increasing on $[\alpha_i, \beta_i]$, then

$$H^{-1}(q) - H^{-1}(p) \leq \frac{q - p}{C}. \tag{4}$$

for any $p, q \in (\alpha_i, \beta_i)$ such that $p \leq q$, since in this case we have $H(H^{-1}(q)) = q$ and $H(H^{-1}(p)) = p$. By continuity of H^{-1} we can extend (4) to any $p, q \in [\alpha_i, \beta_i]$ such that $p \leq q$.

If H^{-1} is constant on $[\alpha_i, \beta_i]$, then clearly (4) also holds for any $p, q \in [\alpha_i, \beta_i]$ such that $p \leq q$. Since $\{[\alpha_i, \beta_i] : i \in I\}$ is a partition of $[0, 1]$, we conclude that (4) holds for any $p, q \in [0, 1]$ such that $p < q$.

With the substitution $q = G_N^C(x)$ and $p = G_N^C(y)$, with $x > y$, equation (4) becomes

$$\hat{\gamma}_N^C(x) - \hat{\gamma}_N^C(y) \leq \frac{G_N^C(x) - G_N^C(y)}{C}.$$

Thus,

$$\frac{\hat{\gamma}_N^C(x)}{\hat{\gamma}_N^C(y)} \leq 1 + \frac{1}{\hat{\gamma}_N^C(y)} \frac{G_N^C(x) - G_N^C(y)}{C}.$$
The log-1 Lipschitz condition that we want to prove is equivalent to
\[
\frac{\dot{\gamma}_N^C(x)}{\dot{\gamma}_N^C(y)} \leq \exp(G_N^{-1}(G_N^C(x)) - G_N^{-1}(G_N^C(y))).
\]
Thus, it is sufficient to show that for large \(N \),
\[
1 + \frac{1}{\gamma_N^C(y)} \frac{G_N^C(x) - G_N^C(y)}{C} \leq \exp(G_N^{-1}(G_N^C(x)) - G_N^{-1}(G_N^C(y))).
\]
Both sides are equal to one when \(x = y \), and the gains function \(g_N \) is not graded when \(x \geq \hat{N} \), the log-1 Lipschitz condition that we want to prove is equivalent to
\[
\frac{g_N^C(x)}{\gamma_N^C(y)C}.
\]
and
\[
\frac{g_N^C(x)}{g_N(G_N^{-1}(G_N^C(x)))} \exp(G_N^{-1}(G_N^C(x)) - G_N^{-1}(G_N^C(y)))
\]
\[
= \sqrt{N-1} \exp(G_N^{-1}(G_N^C(x)) - G_N^{-1}(G_N^C(y))) \geq \sqrt{N-1}.
\]
We now show that (5) is always less than (6). Note that \(g_N \) attains its maximum when \(g_N = g_{N-1} \), i.e., when \(x = N - 1 \), at a value of \(\frac{(N-1)^{N-1}}{(N-1)!} \exp(-(N-1)) \). Multiplied by \(\sqrt{N-1} \), this upper bound converges to \(\phi(0) \). Hence, when \(N \) is sufficiently large, \(g_N^C(x) \leq 2\phi(0) \) for all \(x \). Since \(\dot{\gamma}_N^C(z) > 0 \), there is a \(N \) large enough such that
\[
\frac{g_N^C(x)}{\gamma_N^C(y)C} \leq \frac{2\phi(0)}{\epsilon C^2} \leq \sqrt{N-1}
\]
which proves the lemma. \(\square \)

Proof of Lemma 10. If \(\underline{\nu} > c \), then we can take \(\epsilon = \underline{\nu} - c \) in the statement of Lemma 20, in which case the statement of the Lemma follows immediately.

If \(\underline{\nu} < c \), then \(\dot{\gamma}_N^C(-\sqrt{N-1}) < 0 \), so that \(F_N^C(x) \) is non-positive for \(x \) close to \(-\sqrt{N-1} \). Hence, there must be a graded interval at the bottom of the form \([-\sqrt{N-1}, x_N] \). By Lemma 14, \(x_N \) converges to \(x^* \). Moreover, by Lemma 16, \(\tilde{\gamma}_N^C \) converges almost surely to \(\tilde{\gamma}_\infty^C \). Thus, there exists an \(\hat{N} \) such that for all \(N > \hat{N} \), \(\dot{\gamma}_N^C(x_N) \geq \epsilon \). If we take \(\epsilon = \dot{\gamma}_\infty^C(x^*)/2 \) in Lemma 20, then there exists a \(\hat{N}' \geq \hat{N} \) so that for all \(N > \hat{N}' \), the log-1 Lipschitz condition is satisfied for all \(x \geq x_N \). This implies that there is exactly one graded interval, and the conclusion of the Lemma follows. \(\square \)

Proof of Proposition 10. We first derive the allocation. When \(\underline{\nu} > c \), we have \(x^* = -\infty \) and the gains function \(\tilde{\gamma} \) is not graded when \(N \) is sufficiently large. In this case \(Q_N^C(x) \) is always exactly 1.

When \(\underline{\nu} < c \), \(x^* \in (-\infty, \infty) \), and the gains function \(\tilde{\gamma} \) is single crossing (Section 4.4) when \(N \) is sufficiently large. Then \(Q_N^C(x) = \min((x\sqrt{N} + N)/(x_N\sqrt{N} + N), 1) \). Since \(x_N \) converges to \(x^* \) as defined by equation (29), \(Q_N^C(x) \) converges to 1 as \(N \to \infty \).
We now derive the transfer. From Lemma 10, we know that there is at most one graded interval of the form \([-\sqrt{N}, x_N]\), where \(x_N = -\sqrt{N}\) if \(y > c\) and \(x_N > -\sqrt{N}\) if \(y < c\).

Recall that

\[
\Xi_N(x) = \frac{1}{g_N(x)} \int_{y=0}^{x} \Xi_N(y)g_N(y) \, dy,
\]

\[
\Xi_N(x) = \overline{\mu}_N(x)\overline{w}_N(x) - \overline{\lambda}_N(\overline{w}_N(x)) - c\overline{Q}_N(x),
\]

\[
\overline{\lambda}_N(\overline{w}_N(x)) = \int_{y=0}^{\infty} \overline{\gamma}_N(y)g_{N-1}(y) \, dy + \int_{y=x}^{\infty} \overline{\mu}_N(y)G_N(y)d\overline{\lambda}_N(y) - \int_{y=x}^{\infty} \mu_N(y)d\overline{\lambda}_N(y)
\]

\[
= \int_{y=0}^{\infty} \overline{\gamma}_N(y)g_{N-1}(y) \, dy + \int_{y=0}^{\infty} \mu_N(y)g_N(y)G_N(y)d\overline{\lambda}_N(y) + \mu_N(x)\overline{w}_N(x) + \int_{y=x}^{\infty} \overline{w}_N(y)d\overline{\mu}_N(y).
\]

Furthermore,

\[
\int_{y=0}^{\infty} \overline{\mu}_N(y)G_N(y)d\overline{\lambda}_N(y) = \int_{y=0}^{\infty} \overline{\mu}_N(y)G_N(y)d\overline{\gamma}_N(y)
\]

\[
= -\int_{y=0}^{\infty} \overline{\gamma}_N(y)d(\overline{\mu}_N(y)G_N(y))
\]

\[
= -\int_{y=0}^{\infty} \overline{\gamma}_N(y)G_N(y)d\overline{\mu}_N(y) - \int_{y=0}^{\infty} \overline{\gamma}_N(y)\overline{\mu}_N(y)G_N(y) \, dy
\]

\[
= -\int_{y=0}^{\infty} \overline{\gamma}_N(y)G_N(y)d\overline{\mu}_N(y) - \int_{y=0}^{\infty} \overline{\gamma}_N(y)g_{N-1}(y) \, dy,
\]

where the last inequality comes from equation (32). Thus,

\[
\overline{\lambda}_N(\overline{w}_N(x)) = -\int_{y=0}^{\infty} \overline{\gamma}_N(y)G_N(y)d\overline{\mu}_N(y) + \overline{\mu}_N(x)\overline{w}_N(x) + \int_{y=x}^{\infty} \overline{w}_N(y)d\overline{\mu}_N(y),
\]

and

\[
\Xi_N(x) = \int_{y=0}^{x} \overline{\gamma}_N(y)G_N(y)d\overline{\mu}_N(y) + \int_{y=x}^{\infty} (\overline{\gamma}_N(y)G_N(y) - \overline{w}_N(y))d\overline{\mu}_N(y) - c\overline{Q}_N(x)
\]

\[
= \int_{y=0}^{x} \overline{\gamma}_N(y)G_N(y)d\overline{\mu}_N(y) - \int_{y=x}^{\infty} \overline{\gamma}_N(y)(1 - G_N(y))d\overline{\mu}_N(y) - c(\overline{Q}_N(x) - \overline{\mu}_N(x))
\]

Let us now switch to central limit units.

\[
\Xi_N^C(x) = \Xi_N(\sqrt{N} - 1x + N - 1)
\]

\[
= \int_{y=-\sqrt{N}}^{x} \overline{\gamma}_N^C(y)G_N^C(y)d\overline{\mu}_N^C(y) - \int_{y=x}^{\infty} \overline{\gamma}_N^C(y)(1 - G_N^C(y))d\overline{\mu}_N^C(y) - c(\overline{Q}_N^C(x) - \overline{\mu}_N^C(x)).
\]

By Lemmas 11 and 13, \(\overline{\gamma}_N^C(y) \rightarrow \overline{\gamma}_\infty^C(y) = H^{-1}(\Phi(y)) - c\) and \(G_N^C(y) \rightarrow \Phi(y)\) as \(N \rightarrow \infty\).
Moreover, we have
\[
\sqrt{N - 1} d\mu_N^C(y) = \begin{cases}
0 & \text{if } y < x_N; \\
(N - 1) \left(\frac{N-1}{x_N \sqrt{N-1+N-1}} - \frac{N}{x_N \sqrt{N-1+N-1}} \right) & \text{if } y = x_N; \\
-(N - 1) \frac{N-1}{(y \sqrt{N-1+N-1})^2} dy & \text{if } y > x_N,
\end{cases}
\]
where the mass point on x_N is derived by comparing μ_N^C to the left and right of x_N, and
\[
\sqrt{N - 1}(\bar{Q}_N(x) - \bar{\mu}_N^C(x)) = \begin{cases}
\sqrt{N - 1} \left(\frac{x\sqrt{N-1+N-1}}{x_N \sqrt{N-1+N-1}} - \frac{N}{x_N \sqrt{N-1+N-1}} \right) & \text{if } x < x_N; \\
\sqrt{N - 1} \left(1 - \frac{N-1}{x \sqrt{N-1+N-1}} \right) & \text{if } x > x_N,
\end{cases}
\]
which converges to x in both cases.

Define $F(x) = \lim_{N \to \infty} \sqrt{N - 1} \Xi_N^C(x)$. We have
\[
F(x) = \begin{cases}
-cx + \gamma^C_\infty(x^*)(1 - \Phi(x^*)) + \int_{y=x^*}^{\infty} \gamma^C_\infty(y)(1 - \Phi(y)) dy & x < x^*; \\
-cx - \gamma^C_\infty(x^*)\Phi(x^*) - \int_{y=x^*}^{x} \gamma^C_\infty(y)\Phi(y) dy + \int_{y=x}^{\infty} \gamma^C_\infty(y)(1 - \Phi(y)) dy & x > x^*.
\end{cases}
\]

Therefore,
\[
\lim_{N \to \infty} T_N^C(x) = \frac{1}{\phi(x)} \int_{y=0}^{x} F(y)\phi(y) dy.
\]
\[\square\]
D Derivation of Aggregate Transfer for Uniform Distribution

Suppose the prior H is the standard uniform distribution, so that $\hat{w}(x) = G_N(x)$, and that $c = 0$.

D.1 Must-sell Case

In the must-sell case, $\hat{\Xi}$ and \hat{T} are independent of c, so $c = 0$ is without loss. We have:

$$\hat{\lambda}(G_N(x)) = \int_{y=0}^{\infty} G_N(y)g_{N-1}(y) \, dy + \int_{y=0}^{\infty} \frac{N-1}{y} G_N(y)g_N(y) \, dy - \int_{y=x}^{\infty} \frac{N-1}{y} g_N(y) \, dy$$

$$= 2 \int_{y=0}^{\infty} G_N(y)g_{N-1}(y) \, dy - (1 - G_{N-1}(x))$$

$$= 2\hat{\Pi} - (1 - G_{N-1}(x)),$$

$$\hat{\Xi}(x) = \frac{N-1}{x} G_N(x) - G_{N-1}(x) + 1 - 2\hat{\Pi}.$$

Next,

$$\int_{y=0}^{x} \hat{\Xi}(y)g_N(y) \, dy = \int_{y=0}^{x} \left(\frac{N-1}{y} G_N(y) - G_{N-1}(y) + 1 - 2\hat{\Pi} \right) g_N(y) \, dy$$

$$= 2 \int_{y=0}^{x} G_N(y)g_{N-1}(y) \, dy - G_N(x)G_{N-1}(x) + (1 - 2\hat{\Pi})G_N(x)$$

$$= G_{N-1}(x)^2 - 2 \int_{y=0}^{x} g_N(y)g_{N-1}(y) \, dy - G_N(x)G_{N-1}(x) + (1 - 2\hat{\Pi})G_N(x)$$

$$= G_{N-1}(x)g_N(x) - 2 \int_{y=0}^{x} g_N(y)g_{N-1}(y) \, dy + (1 - 2\hat{\Pi})G_N(x)$$

$$= G_{N-1}(x)g_N(x) - \frac{(2N-3)!}{2^{2N-3}(N-1)!(N-2)!} G_{2N-2}(2x) + (1 - 2\hat{\Pi})G_N(x)$$

$$= G_{N-1}(x)g_N(x) + \frac{(2N-3)!}{2^{2N-3}(N-1)!(N-2)!} (G_N(x) - G_{2N-2}(2x))$$

where the second line follows from integration by parts, the third and fourth lines use $G_N = G_{N-1} - g_N$, the fifth line is a direct computation using the formula for g_N in (14), and the last line follows from

$$\hat{\Pi} = \int_{y=0}^{\infty} G_N(y)g_{N-1}(y) \, dy = \frac{1}{2} - \int_{y=0}^{\infty} g_N(y)g_{N-1}(y) \, dy = \frac{1}{2} \left(1 - \frac{(2N-3)!}{2^{2N-3}(N-1)!(N-2)!} \right).$$

Therefore, when $x > 0$,

$$\hat{T}(x) = G_{N-1}(x) + \frac{\left(\frac{2N-3}{N-1} \right) G_N(x) - G_{2N-2}(2x)}{g_N(x)}.$$
In the central limit normalization, we define
\[\hat{T}^C(x) = \hat{T}(N - 1 + \sqrt{N - 1}x). \]
Lemma 11 shows that \(G_N(N - 1 + \sqrt{N - 1}x) \rightarrow \Phi(x) \) and \(g_N(N - 1 + \sqrt{N - 1}x) \rightarrow \phi(x) \) as \(N \rightarrow \infty \), where \(\Phi \) and \(\phi \) are, respectively, the cumulative distribution and density of a standard Normal; this also implies that \(G_{2N-2}(2(N - 1 + \sqrt{N - 1}x)) \rightarrow \Phi(\sqrt{2}x) \). Finally, using Stirling’s approximation, it is easy to check that \((\frac{2N-3}{2N-3} \sqrt{N - 1}) \rightarrow 1/\sqrt{\pi} \) as \(N \rightarrow \infty \). Therefore,
\[
\lim_{N \to \infty} \hat{T}^C(x) = \Phi(x) + \frac{\Phi(x) - \Phi(\sqrt{2}x)}{\sqrt{\pi} \phi(x)}
\]
for a fixed \(x \).

D.2 Can-keep Case

We have shown that the uniform distribution is single-crossing in Section 4.4. Let \([0, x^*] \) denote the graded interval. The cutoff \(x^* \) satisfies (cf. (28))
\[
\frac{G_N(x^*)}{2} = g_{N+1}(x^*).
\]
(7)

This equation implies that \(G_{N+1}(x^*) = G_N(x^*) - g_{N+1}(x^*) = g_{N+1}(x^*) = G_N(x^*)/2 \).

Define the constants
\[
C = \int_{x=0}^{\infty} \pi(x)g_{N-1}(x) \, dx + \int_{x=0}^{\infty} \pi(x)G_N(x)g_N(x) \, dx
\]
\[
= \int_{x=0}^{x^*} \exp(x - x^*)G_N(x^*)g_{N-1}(x) \, dx + \int_{x=0}^{x^*} N \frac{G_N(x)}{x} g_N(x) \, dx
\]
\[
+ \int_{x=x^*}^{\infty} G_N(x)g_{N-1}(x) \, dx + \int_{x=x^*}^{\infty} \frac{N-1}{x} G_N(x)g_N(x) \, dx
\]
\[= C_1 + C_2 \]

We can simplify the constants as follows:
\[
C_1 = 2 \int_{x=0}^{x^*} \exp(x - x^*)G_N(x^*)g_{N-1}(x) \, dx
\]
\[= 2G_N(x^*)g_N(x^*)
\]
\[
C_2 = 2 \int_{x=x^*}^{\infty} G_N(x)g_{N-1}(x) \, dx
\]
\[= 1 - G_{N-1}(x^*)^2 - 2 \int_{x=x^*}^{\infty} g_N(x)g_{N-1}(x) \, dx
\]
\[= 1 - G_{N-1}(x^*)^2 - \frac{(2N-3)}{2N-3} (1 - G_{2N-2}(2x^*))
\]

26
\[\begin{align*}
C &= 2G_N(x^*)g_N(x^*) + 1 - G_{N-1}(x^*)^2 - \frac{(2N-3)(N-1)}{22N-3} (1 - G_{2N-2}(2x^*)).
\end{align*} \]

Then
\[
\lambda(G_N(x)) = C - \int_{y=x}^{\infty} \mu(y)g_N(y) \, dy
\]
\[
= \begin{cases}
C - \int_{y=x}^{x^*} \frac{N}{x^*} g_N(y) \, dy - \int_{y=x^*}^{\infty} \frac{N-1}{y} g_N(y) \, dy & x \leq x^* \\
C - \int_{y=x}^{\infty} \frac{N-1}{y} g_N(y) \, dy & x > x^*
\end{cases}
\]
\[
= \begin{cases}
C - (G_N(x^*) - G_N(x)) \frac{N}{x^*} - (1 - G_{N-1}(x^*)) & x \leq x^* \\
C - (1 - G_{N-1}(x)) & x > x^*
\end{cases}
\]

and
\[
\Xi(x) = \begin{cases}
G_N(x) \frac{N}{x^*} - C + (G_N(x^*) - G_N(x)) \frac{N}{x^*} + (1 - G_{N-1}(x^*)) & x \leq x^* \\
- C + G_N(x^*) \frac{N}{x^*} + 1 - G_{N-1}(x^*) & x > x^*
\end{cases}
\]

For \(x \leq x^* \), we have:
\[
\int_{y=0}^{x} \Xi(y)g_N(y) \, dy = \int_{y=0}^{x} \left(-C + G_N(x^*) \frac{N}{x^*} + 1 - G_{N-1}(x^*)\right) g_N(y) \, dy
\]
\[
= \left(-C + G_N(x^*) \frac{N}{x^*} + 1 - G_{N-1}(x^*)\right) G_N(x).
\]

For \(x > x^* \), we have:
\[
\int_{y=0}^{x} \Xi(y)g_N(y) \, dy = \left(-C + G_N(x^*) \frac{N}{x^*} + 1 - G_{N-1}(x^*)\right) G_N(x^*)
\]
\[
+ \int_{x^*}^{x} \left(G_N(y) \frac{N-1}{y} - C + 1 - G_{N-1}(y)\right) g_N(y) \, dy.
\]

Simplifying the second term, we get:
\[
X = (1 - C)(G_N(x) - G_N(x^*))
\]
\[
+ 2 \int_{y=x^*}^{x} G_N(y)g_{N-1}(y) \, dy - (G_N(x)G_{N-1}(x) - G_N(x^*)G_{N-1}(x^*))
\]
\[
= (1 - C)(G_N(x) - G_N(x^*))
\]
\[
- 2 \int_{y=x^*}^{x} g_N(y)g_{N-1}(y) \, dy + g_N(x)G_{N-1}(x) - g_N(x^*)G_{N-1}(x^*)
\]
\[
= (1 - C)(G_N(x) - G_N(x^*))
\]
\[-\frac{(2N-3)}{22N-3}(G_{2N-2}(2x) - G_{2N-2}(2x^*)) + g_N(x)G_{N-1}(x) - g_N(x^*)G_{N-1}(x^*). \]

Therefore, for \(x \leq x^* \), we have:

\[\bar{T}(x) = \left(-C + G_N(x^*) \frac{N}{x^*} + 1 - G_{N-1}(x^*) \right) \frac{G_N(x)}{g_N(x)}. \]

For \(x > x^* \) we have:

\[T(x) = \left[G_N(x^*)^2 \frac{N}{x^*} - G_{N-1}(x^*)^2 + (1 - C)G_N(x) - \frac{(2N-3)}{22N-3}(G_{2N-2}(2x) - G_{2N-2}(2x^*)) \right] \frac{1}{g_N(x)} + G_{N-1}(x). \]

Finally, we take the limit as \(N \to \infty \) for the central limit normalization:

\[T^C(x) = T(N - 1 + \sqrt{N - 1}x). \]

Since \(G_N(x^*)/2 = G_{N+1}(x^*) \) by the discussion following equation (7), we must have \((x^* - (N - 1))/\sqrt{N - 1} \to -\infty \), \(G_N(x^*) \to 0 \), and \(g_N(x^*) \to 0 \) as \(N \to \infty \). Moreover, by equation (7), \(NG_N(x^*)/x^* = 2Ng_{N+1}(x^*)/x^* = 2g_N(x^*) \to 0 \) as \(N \to \infty \). Substituting these into the expressions of \(C \) and \(\bar{T} \) and simplify as in the must-sell case, we get

\[\lim_{N \to \infty} T^C(x) = \Phi(x) + \frac{\Phi(x) - \Phi(x\sqrt{2})}{\sqrt{\pi}} \phi(x). \]

References