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A profit-maximizing seller has a single unit of a good to sell. The bidders have a
pure common value that is drawn from a distribution that is commonly known. The
seller does not know the bidders’ beliefs about the value and thinks that beliefs are
designed adversarially by Nature to minimize profit. We construct a strong maxmin so-
lution to this joint mechanism design and information design problem, consisting of a
mechanism, an information structure, and an equilibrium, such that neither the seller
nor Nature can move profit in their respective preferred directions, even if the devi-
ator can select the new equilibrium. The mechanism and information structure solve
a family of maxmin mechanism design and minmax information design problems, re-
gardless of how an equilibrium is selected. The maxmin mechanism takes the form of
a proportional auction: each bidder submits a one-dimensional bid, the aggregate allo-
cation and aggregate payment depend on the aggregate bid, and individual allocations
and payments are proportional to bids. We report a number of additional properties of
the maxmin mechanisms, including what happens as the number of bidders grows large
and robustness with respect to the prior over the value.

KEYWORDS: Mechanism design, information design, optimal auctions, profit maxi-
mization, common value, information structure, maxmin, Bayes correlated equilibrium,
direct mechanism.

1. INTRODUCTION

1.1. Background and Motivation

WE STUDY THE DESIGN of profit-maximizing mechanisms when the bidders have a pure
common value for the good being sold, but partial and differential information about
that value. Potential applications include the sale of natural resources or financial assets,
where to a first order all bidders have the same preferences over the market value of the
resource or the future cash flows of the asset.

Although common-value auctions have been studied since the early days of auction
theory, relatively little is known about optimal common-value auctions. When bidders’
signals are independent and one dimensional, Bulow and Klemperer (1996) have argued
that a variation of the English auction is optimal when higher signals indicate higher val-
ues and bidders with higher signals have smaller information rents. In the perhaps more
natural case where signals are correlated through the common value, such as in the min-
eral rights model, McAfee, McMillan, and Reny (1989) and McAfee and Reny (1992)
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construct mechanisms that extract virtually all of the surplus by having the bidders bet on
other bidders’ information. While the full-surplus extracting mechanisms are of signifi-
cant theoretical interest, there are a number of reasons why they may not be practically
useful, including that the designer may not know exactly how information is correlated,
and the optimal mechanism may be too complicated for bidders to use.

This discussion points to some conceptual challenges in optimal auction design. First,
optimal mechanisms vary widely with the model of bidders’ information, for example,
whether and how signals are correlated. At the same time, it may be difficult to determine,
either through measurement or introspection, which model of information is empirically
relevant, and, hence, which of the potentially optimal mechanisms is appropriate. More-
over, relatively little is known about how bidders would behave in optimal mechanisms if
the model is misspecified, which raises the question of whether Bayesian optimal mecha-
nisms should be used in the presence of such model uncertainty. Note that these problems
also arise in non-common-value auction design. When values are private, these concerns
are partially allayed by the broad consensus that the independent private value model is a
useful benchmark. In contrast, when values are common, there is no comparably canoni-
cal model.

To address these issues, we model a seller who knows the distribution of the common
value but regards bidders’ beliefs and higher-order beliefs about the value as ambigu-
ous. These beliefs are modeled as a common-prior information structure. The seller is
concerned about model misspecification, and believes that the information structure is
chosen adversarially by Nature to minimize equilibrium profit.

1.2. Main Results

This joint mechanism design and information design problem is not a standard zero-
sum game, as a given mechanism and information structure need not have a unique equi-
librium. What is the resulting profit level when there are multiple equilibria or, for that
matter, if no equilibrium exists? We address the issues of equilibrium multiplicity and
existence by employing a new solution concept: A strong maxmin solution is a triple of a
mechanism, an information structure, and an equilibrium strategy profile, with the prop-
erty that neither the sellers nor Nature can move equilibrium profit in their preferred
directions by changing the mechanism or information structure, respectively, even if the
deviator can select the equilibrium. In other words, holding the information structure
fixed, the mechanism and equilibrium maximize profit, and holding the mechanism fixed,
the information structure and equilibrium minimize profit. Moreover, these statements
remain true regardless of how an equilibrium is selected. The solution has an associ-
ated profit guarantee, which is expected profit in the constituent equilibrium. The profit
guarantee is both a tight lower bound on equilibrium profit for the mechanism across all
information structures and a tight upper bound on equilibrium profit for the information
structure across all mechanisms.

One can interpret the strong maxmin solution in terms of a class of games between the
seller (who chooses the mechanism to maximize profit) and an adversarial Nature (who
chooses the information structure to minimize profit). Each game in the class is associated
with a fixed rule for selecting a bidder equilibrium. A strong maxmin solution corresponds
to a strategy profile that is a Nash equilibrium of the game between seller and Nature for
all bidder-equilibrium selection rules.

Our main result (Theorem 1) is the construction of a strong maxmin solution.
The maxmin mechanism is what we term a proportional auction: Bidders submit one-
dimensional bids. The aggregate allocation and the aggregate transfer depend only on
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the aggregate bid, and individual allocations and transfers are proportional to bids.1 In
benchmark cases, the aggregate allocation is linearly increasing in the aggregate bid until
it hits 1 and is constant thereafter. An interpretation is that bids are “demands” for a
quantity of the good, which are completely filled when the aggregate demand is less than
the available supply, and otherwise the good is rationed proportionally. Bidders pay a
constant price per unit that depends only on the aggregate bid.

In the minmax information structure, bidders’ signals are independent and identically
distributed (i.i.d.) draws from the standard exponential distribution, and the expectation
of the value given the signals depends only on the aggregate signal. Finally, in equilibrium,
each bidder submits a bid that is equal to their signal.

When the number of bidders is large, the profit guarantee is approximately the entire
ex ante gains from trade, that is, the expectation of the value under the prior minus the
cost of production (or zero if the expected value is less than the cost). The guarantee also
seems to be a substantial share of surplus even when the number of bidders is small. For
example, when there are two bidders, the value is standard uniform, and production is
costless, the maxmin proportional auction guarantees the seller at least 56 percent of the
expected value as profit.

Before presenting our main theorem, we give a heuristic derivation of the solution.
First, the minmax information structure is constructed so that the seller is indifferent
between a wide range of mechanisms. In particular, the seller is indifferent between all
mechanisms with the same aggregate allocation, and whenever the optimal mechanism
rations the good, the seller is indifferent between allocating and not allocating.

The mechanism is then constructed to be a profit maximizing direct mechanism on the
minmax information structure with the additional property that the optimal profit at the
minmax information is minimum equilibrium profit across all information structures. Im-
portantly, messages in the maxmin mechanism are “normalized” to be signals in the min-
max information structure. We refer to this as the double revelation principle: The maxmin
mechanism is a profit-maximizing direct mechanism on the minmax information struc-
ture, and the minmax information structure is a profit-minimizing correlated equilibrium
on the maxmin mechanism. The existence of a solution of this form is a nontrivial result,
and it does not follow from the standard revelation arguments.

The requirement that profit be minimized at the minmax information structure reduces
to a pair of differential equations involving the mechanism’s allocation and transfer rules.
The first equation pins down the divergence of the allocation rule, which we refer to as
the aggregate allocation sensitivity. The second differential equation, which we refer to as
profit-incentive alignment, links ex post profit to the bidders’ local incentives. In particu-
lar, it pins down the difference between the divergence of the transfers and the aggre-
gate transfer, which we term the aggregate excess growth. The proportional auction solves
these two equations and also satisfies the revelation constraints at the minmax informa-
tion structure.

In the definition of a strong maxmin solution, the profit guarantee is only compared with
profit in other equilibria, where we hold fixed the mechanism and vary the information
structure, or vice versa. It is possible that there are other strong maxmin solutions with
different profit guarantees, but this can only happen if either the seller or Nature cannot

1Proportional auctions can be viewed as a generalization of the Tullock contest, which corresponds to the
case where the good is always allocated and the aggregate transfer is linear in the aggregate bid. The closest
real-world auctions that we can find are the “voucher auctions” used to privatize Soviet state assets in the 1990s
(Krishna (2009), p. 184).
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deviate to the objects we construct because it would result in a game with no equilibria. A
distinct but related concern is that minor modifications to the maxmin mechanism, such
as discretizing or bounding the message space, would lead to qualitatively new equilibria
that dramatically change the profit guarantee.

We address these questions of uniqueness and robustness of the strong maxmin solution
in the following manner. A strong maxmin solution is finitely approximable if there are
finite mechanisms and finite information structures with associated profit guarantees that
are arbitrarily close to the solution’s profit guarantee. We show that our solution is finitely
approximable (Theorem 3). Moreover, any finitely approximable solution must have the
same value (Theorem 4). In fact, the approximating finite mechanisms are simply discrete
proportional auctions, and the finite information structures correspond to finite partitions
of signals in the minmax information structure. If we restrict the seller and Nature to finite
mechanisms and information structures, respectively, then these approximations attain
the sup-inf and inf-sup of profit, regardless of the equilibrium selection rule (Corollary 1).
Thus, the strong maxmin solution we construct is a limit of ε equilibria of the zero-sum
game in which the seller and Nature choose finite mechanisms and finite information
structures, respectively.

As a last topic, we consider the behavior of maxmin proportional auctions as the num-
ber of bidders grows large and the value distribution and cost are held fixed. In the many-
bidder limit, the optimal profit guarantee converges to the ex ante gains from trade. This
generalizes a result of Du (2018) to the case where there may not be common knowledge
of gains from trade. Moreover, this limit obtains even if the good is always sold, and at
the same optimal rate of O(1/

√
N). Finally, we show that the profit guarantee converges

to the ex ante gains from trade even if the prior is misspecified.
The maxmin modeling approach allows us to identify new mechanisms with desirable

theoretical properties that hold uniformly across information structures and equilibria.
There is a conceptual tension, however, between the extreme ambiguity aversion of the
seller and the common knowledge of the information structure among the agents. In par-
ticular, why does the seller not simply ask the agents to report the information structure,
and use these reports to further improve the mechanism? In our view, the information
structure and Bayes Nash equilibrium are an as-if description of behavior, which we hope
is a reasonable approximation. We do not want to interpret these objects literally as some-
thing that either the seller or the bidders could fully articulate. The maxmin mechanism
does not require the bidders to report higher-order beliefs, nor does the seller need to
specify a model of beliefs in order to compute the maxmin mechanism. In that sense, it
is consistent with real-world limitations on knowledge and communication.2 That being
said, the assumption of large ambiguity is as extreme as the assumption that the seller
knows the information structure exactly. We view it as a benchmark and a starting point
for future work on informationally-robust optimal mechanisms. We return to this point in
the conclusion of the paper.

1.3. Related Literature

This paper lies at the intersection of the literatures on mechanism design and informa-
tion design. We build on the seminal paper of Myerson (1981) on optimal auction design,

2To be sure, some features of the information structure are relatively easy to express, such as first-order
expectations, but we are skeptical as to whether real-world bidders or auction designers can describe the fine
details of higher-order beliefs.
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and the subsequent work by Bulow and Klemperer (1996). We also draw heavily from the
literature on informationally robust predictions (Bergemann and Morris (2013, 2016)).

The most closely related papers are Du (2018) and Bergemann, Brooks, and Morris
(2016). Du (2018) solves our maxmin mechanism design problem in the limit as the num-
ber of bidders goes to infinity and the production cost is zero. Specifically, Du constructs
a sequence of mechanisms and associated lower bounds on profit that converge to the ex-
pected surplus in the many-bidder limit. The mechanisms from Du (2018) do not achieve
the optimal profit guarantee when the number of bidders is finite and more than 1.3 In
contrast, Bergemann, Brooks, and Morris (2016) construct what is essentially a strong
maxmin solution for the special case of two bidders and two possible values. Interestingly,
the minmax information structure they identify coincides with the one we construct, but
the maxmin mechanisms are different. We discuss this further in Section 5.

Chung and Ely (2007), Yamashita (2018), and Chen and Li (2018) also study maxmin
mechanism design when the seller does not know the information structure but when val-
ues are private and when the seller preferred equilibrium is selected. In contrast, we focus
on a common value environment. Other conceptually related studies of robust mechanism
design are Neeman (2003), Brooks (2013), Yamashita (2015), Carroll (2017), Bergemann,
Brooks, and Morris (2019), and the literature on algorithmic mechanism design (e.g.,
Hartline and Roughgarden (2009)).

The rest of the paper proceeds as follows. Section 2 describes our model and solution
concept. Section 3 informally derives the strong maxmin solution. Section 4 presents the
main result. Section 5 discusses uniqueness of the profit guarantee. Section 6 explores
the many-bidder limit. Section 7 is a conclusion. Appendix A appears at the end of the
article and Appendices B–D are provided in the Supplemental Material (Brooks and Du
(2021)).

2. MODEL

2.1. Primitives

A seller has a unit of a good that can be sold to N ≥ 2 bidders. The bidders have
a pure common value for the good v, which is distributed according to the cumulative
distribution function H on R+ = [0�∞). The support of H, denoted V , is assumed to
be bounded, with v and v denoting the minimum and maximum, respectively. We also
assume that v < v.4

Bidders’ preferences over probabilities of receiving the good, qi, and the amount they
pay for it, ti, are represented by the state-dependent utility index vqi − ti.

The good costs c ≥ 0 to produce. The seller’s profit from the profiles of allocations q=
(q1� � � � � qN) and transfers t = (t1� � � � � tN) is

∑N

i=1(ti − cqi). We assume that the expected
value is strictly larger than c.5

For technical reasons, we assume that the left tail of H is not too thin. To state the
precise condition, we need the following definition: For a cumulative distribution F on R,
the associated quantile function is

F−1(α)= min
{
x | F(x)≥ α}

�

3Du (2018) also solves the present problem in the case of one bidder. With one bidder and binary values,
our model reduces to that of Carrasco, Luz, Kos, Messner, Monteiro, and Moreira (2018).

4If not, then the value is common knowledge and the seller can easily extract all of the gains from trade.
5Otherwise, the solution is trivial: It is possible that bidders have no information, in which case the seller

prefers to keep the good, and the profit guarantee is zero.
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Because F is increasing and right-continuous, the set of values with cumulative probability
higher than α is closed, so this minimum is well defined. Now let GN denote the distri-
bution of the sum of N independent draws from the exponential distribution with unit
arrival rate, also known as an Erlang distribution, which is a special case of the Gamma
distribution. (This object features prominently in our analysis and is given explicitly in
equation (15) below.) The first part of the left-tail assumption is that there exist ε > 0 and
ϕ> 1 such that, for all x ∈ [0� ε],

H−1
(
GN(x)

) − v≤ xϕ�
The second part of the left-tail assumption is that if v > c, then there exists an ε > 0 such
that, for all x′�x ∈ [0� ε] such that x′ < x,

H−1
(
GN(x)

) − c
H−1

(
GN

(
x′)) − c ≤ exp

(
x− x′)�

These assumptions are satisfied if there is a mass point at v (which impliesH−1(GN(x))=
v for x sufficiently small) or if H has a density that is bounded away from zero around v.6

2.2. Information

Fix cumulative distributions F1 and F2. Recall that F1 is a mean-preserving spread of
F2 if there exist a probability space and random variables X1 and X2 such that X1 has
distribution F1, X2 has distribution F2, and E[X1|X2] =X2. Equivalently, for all x ∈R,∫ x

y=−∞

(
F1(y)− F2(y)

)
dy ≥ 0� (1)

with equality when x= ∞ (Blackwell and Girshick (1954), Rothschild and Stiglitz (1970)).
An information structure S consists of (i) a measurable set Si of signals for each bidder

i, (ii) a joint distribution π ∈ �(S), where S =×N

i=1 Si, and (iii) a function w : S→ R such
that H is a mean-preserving spread of the distribution of w(s). For a profile of signals s,
w(s) represents the interim expectation of v conditional on s.7

2.3. Mechanisms

A mechanism M consists of measurable sets of messagesMi for each i and measurable
mappings qi : M → [0�1] and ti : M → R for each i, where M =×N

i=1Mi is the set of

6If v > c and H has a density h(v)≥ b > 0 for v ∈ [v� v+ ε′], then

dH−1(GN(x)
)

dx
= gN(x)

h
(
H−1(GN(x)

)) ≤ gN(x)

b
�

d log
(
H−1(GN(x)

) − c)
dx

= gN(x)(
H−1(GN(x)

) − c) · h(
H−1(GN(x)

)) ≤ gN(x)

(v− c)b
whenever GN(x) ≤H(v+ ε′), where gN is the density for GN . As is evident from the formula for gN in (14)
below, gN(x)→ 0 at a rate of x (or faster) as x→ 0. Thus, there exists an ε > 0 such that for every x ∈ [0� ε],
H−1(GN(x))−v≤ xϕ for ϕ ∈ (1�2) and d(log(H−1(GN(x))−c))/dx≤ 1. This implies the left-tail assumption.

7Thus, our notion of an information structure does not fully specify the correlation structure between s and
v. Since the interim expectation is the key object in our analysis, this formulation simplifies notation.
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message profiles, such that
∑N

i=1 qi(m) ≤ 1. For technical reasons, we assume that ti is
bounded below (although it may be negative).

We further restrict attention to mechanisms that satisfy a condition we call participation
security: For every i, there exists 0 ∈Mi such that vqi(0�m−i) − ti(0�m−i) ≥ 0 for every
v ∈ V and every m−i ∈M−i. By sending this message, bidder i is assured a nonnegative
payoff ex post, no matter what messages are sent by the other bidders.

2.4. Equilibrium

A mechanism M and an information structure S comprise a game of incomplete infor-
mation. A (behavioral) strategy for bidder i is a transition kernel βi : Si → �(Mi). A profile
of strategies β= (β1� � � � �βN) is identified with a transition kernel that associates to each
s ∈ S the product measure β1(s1)× · · · ×βN(sN) on �(M).

Given a strategy profile β, bidder i’s payoff is

Ui(M�S�β)=
∫
S

∫
M

(
w(s)qi(m)− ti(m)

)
β(dm|s)π(ds)�

Note that since w, q, and −t are all bounded above, this integral is always well defined.
A strategy profile β is a (Bayes Nash) equilibrium if for all i and strategies β′

i,

Ui(M�S�β)≥Ui

(
M�S�

(
β′
i�β−i

))
�

The set of equilibria is denoted by B(M�S). Expected profit is

Π(M�S�β)=
∫
S

∫
M

N∑
i=1

(
ti(m)− cqi(m)

)
β(dm|s)π(ds)�

2.5. Solution Concept

We will shortly introduce the solution concept employed in this paper. This concept
is motivated by the following simultaneous-move game between seller and Nature: Fix
a measurable set X . Define M(X) to be the set of participation-secure mechanisms in
which each bidder’s message space is of the form Mi ∪ {1� � � � �ki} for some measurable
Mi ⊆ X and some nonnegative integer ki. Similarly define S(X) to be the set of infor-
mation structures where signal spaces are of the form Si ∪ {1� � � � �ki} for some measur-
able Si ⊆X and some nonnegative integer ki.8 Let B(X) denote the set of all selections
from the equilibrium correspondence B on the subset of M(X) × S(X) for which an
equilibrium exists. Given a selection β∗ ∈ B(X), we define the game G(X�β∗) where
seller and Nature simultaneously choose actions in M(X) and S(X). The seller’s payoff is
Π(M�S�β∗(M�S)) and Nature’s payoff is −Π(M�S�β∗(M�S)) if B(M�S) �= ∅, and
both parties’ payoffs are minus infinity if B(M�S)= ∅.

By fixing the equilibrium selection, we have formulated the joint mechanism design and
information design problem as a standard non-cooperative game. A Nash equilibrium of
this game (M�S) is nontrivial if a bidder equilibrium exists for the game (M�S). Such
an equilibrium can be understood as a pair of an informationally robust mechanism and

8The finitely many extra messages and signals allow us to add messages to direct revelation mechanisms in
order to make them participation secure. This construction is used in the proof of Proposition 1.



1320 B. BROOKS AND S. DU

a worst-case informational environment, which rationalize one another as optimal, given
the equilibrium selection rule.9

A concern with this modeling approach is that whether (M�S) is a Nash equilibrium
may depend on the particular equilibrium selection rule. This motivates us to consider
pairs (M�S), which are nontrivial Nash equilibria for all selections β∗.10 As Proposi-
tion 1 below shows, this notion of a “selection-invariant” nontrivial Nash equilibrium is
equivalent to the following solution concept:

A strong maxmin solution is a triple (M�S�β) of a mechanism, an information struc-
ture, and a strategy profile, with profit Π =Π(M�S�β), such that the following condi-
tions are satisfied:

C1. For any mechanism M′ and any equilibrium β′ of (M′�S), Π ≥Π(M′�S�β′).
C2. For any information structure S ′ and any equilibrium β′ of (M�S ′), Π ≤
Π(M�S ′�β′).

C3. Strategy β is an equilibrium of (M�S).
We refer to Π as the profit guarantee of the solution.11

C1 and C2 say that the seller and Nature cannot improve their payoff by deviating, even
if the deviator selects the equilibrium. C3 says that the profit guarantee is not vacuous,
and there exists an equilibrium at which Π is attained. In fact, the definition implies that
for a strong maxmin solution (M�S�β), all equilibria of (M�S) result in the same profit.

The following result connects the strong maxmin solution to Nash equilibria of the
previously defined non-cooperative game.

PROPOSITION 1: Fix a pair (M�S). Then the following statements are equivalent:
(i) There exist strategies β such that (M�S�β) is a strong maxmin solution.

(ii) There exists an X such that (M�S) is a nontrivial Nash equilibrium of G(X�β∗) for
all β∗ ∈ B(X).

The proof is a straightforward application of the revelation principles for mechanism
design and information design, and is relegated to the Appendix.

The main result of our paper is the construction of a strong maxmin solution. Proposi-
tion 1 shows that we can equivalently interpret this solution as a Nash equilibrium of the
game between seller and Nature, regardless of how we select an equilibrium.12 How we
should model equilibrium selection depends on a number of considerations. On the one
hand, β∗ could select the profit-minimizing equilibrium if the seller is concerned for ro-
bustness with respect to equilibrium selection. On the other hand, the literature on partial
implementation typically assumes that the mechanism designer can use their prominence

9By assuming that the payoff from bidder-equilibrium nonexistence is minus infinity, we implicitly restrict
the seller to only consider mechanisms for which an equilibrium exists on S , and correspondingly for Nature.
We can view this as capturing a belief of the seller that the information structure S is possible, and that they
must ensure the mechanism is well behaved in that environment.

10Many mechanisms with multiple equilibria can be perturbed to select a particular equilibrium, with a
negligible effect on profit. For this reason, it is not surprising that Nash equilibrium payoffs in G(X�β∗) are in-
variant to β∗. Nonetheless, the equilibrium selection rule could have a significant impact on which mechanisms
and information structures are part of Nash equilibria.

11This definition nominally depends on qualifiers over all mechanisms and information structures, which
are of course not well defined. However, it is clearly without loss to restrict attention to the set of incentive
compatible and participation-secure direct mechanisms on S and truthful equilibria in C1, and to restrict
attention to Bayes correlated equilibria on M and obedient strategies in C2.

12This invariance criterion is reminiscent of Govindan and Wilson (2009), who study sequential equilibrium
outcomes that are invariant to the extensive form representation of the underlying reduced normal form.
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to coordinate bidders on the designer’s preferred equilibrium. It is therefore normatively
appealing that the solution we construct does not depend on additional assumptions about
equilibrium selection.

3. A ROAD MAP TO THE SOLUTION

We rigorously construct a strong maxmin solution at the beginning of Section 4, and
Theorem 1 verifies that the construction is indeed a solution. This section gives an infor-
mal derivation. To be clear, our purpose is to develop intuition, and the proof of Theo-
rem 1 does not depend on the present discussion.

3.1. The Structure of the Solution

The strong maxmin solution we construct is denoted (M�S�β). The high level struc-
ture is as follows. Signals in the information structure and messages in the mechanism
are elements ofMi = Si = [0�∞). In addition, the equilibrium strategies specify that each
bidder send a message that is equal to their signal: for all i and si, βi(si) puts probability
one on si. Thus, a common language is used for signals and messages. One interpreta-
tion is that the maxmin mechanism M is a direct mechanism on the minmax information
structure S , whereby a message is a “report” of which signal a bidder received, and bid-
ders report truthfully in equilibrium. An equally valid interpretation is that S is a Bayes
correlated equilibrium (BCE) on M, whereby a signal is a “recommendation” of a message
to send, and in equilibrium, bidders obey their recommendations.

If we held the information structure fixed and maximized profit across mechanisms and
equilibria, then the well known revelation principle (Myerson (1981)) says that it is with-
out loss of generality to restrict attention to direct mechanisms. Similarly, if the mech-
anism were fixed and we minimized profit across information structures and equilibria,
then it is without loss to restrict attention to BCE, which is a kind of revelation principle
for games (Bergemann and Morris (2013, 2016)). In the present model, both the mecha-
nism and the information structure are endogenous, so the standard revelation arguments
do not apply.13 It is therefore a non-trivial result that there exists a solution that admits
the same normalization. We refer to this as the double revelation principle.

3.2. The Minmax Information Structure

We next describe the rest of the minmax information structure S , from which we sub-
sequently derive the maxmin mechanism. First, signals in S turn out to be independently
distributed. This is intuitive, for if signals were correlated, the seller could extract surplus
by having bidders make bets about others’ beliefs, similar to the full-surplus extracting
mechanisms mentioned in the Introduction (although it may not be possible to extract
the entire surplus).

Given independence, the rest of the form of S can be understood using the celebrated
revenue-equivalence formula of Myerson (1981), suitably adapted to the common value

13Holding information fixed, any mechanism M and equilibrium β have an equivalent direct mechanism
M′ in which truth-telling is an equilibrium. But M′ may have other equilibria with no counterpart in M, and
our solution concept considers how profit varies across all equilibria. Similarly, replacing a given information
structure and equilibrium with the corresponding direct information may lead to a qualitatively different set
of equilibria.
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setting. Let us suppose that the marginal distribution of each signal si admits a density fi.
Revenue equivalence says that expected profit is, up to a constant, the expectation of the
virtual value of the bidder who receives the good. When the value function is differentiable
and the signal profile is s, the virtual value of bidder i is14�15

ψi(s)=w(s)− c− 1 − Fi(si)
fi(si)

∂w(s)

∂si
�

where Fi is the cumulative distribution of bidder i’s signal. Thus, the virtual value is equal
to the gains from trade minus an information rent. The latter is the product of the inverse
hazard rate, which is the relative measure of types who receive an information rent when
si is allocated the good, and ∂w(s)/∂si, which quantifies bidder i’s private information.

Among independent-signal information structures, it is without loss of generality to
normalize the signals to be exponential with a unitary arrival rate,16 Fi(x)= 1 − exp(−x).
As a result, the inverse hazard rate is constant and equal to 1, and drops out of the virtual
value formula.

The remaining degree of freedom is the value function w(s). To develop intuition for
the minmax value function, we may ask, which value function would be worst for the
seller? Drawing on experience from zero-sum games, we might suspect that the worst case
would be associated with indifference between lots of mechanisms. This would roughly
mean that S is hard to respond to, in that while lots of mechanisms perform reasonably
well, no mechanism stands out as exceptional.

In fact, there is a class of value functions that make the seller indifferent as to who is
allocated the good for every signal profile, namely those of the form w(s)=w(Σs), where
Σs = s1 + · · · + sN is the aggregate signal.17 (We maintain this convention for the sum of a
vector’s elements throughout the paper.) As a result, the interim expected value is equally
sensitive to all signals, and all bidders have the same virtual value of w(Σs)− c−w′(Σs).

We are still free to choose the particular function of the aggregate signal. An important
variant of our model, discussed in Section 4.3, is the must-sell case, where the good has
to be sold with probability 1. This is in contrast to the general can-keep case, where the
seller can withhold the good. Note that Σs has the Erlang cumulative distribution GN

introduced in Section 2 and that gN denotes the associated density.18 All bidders have the
same virtual value, so profit is∫ ∞

x=0

(
w(x)− c −w′(x)

)
gN(x)dx� (2)

This formula assumes that transfers are set so that the bidder with the lowest signal re-
ceives a payoff of zero, which maximizes revenue subject to local incentive compatibil-

14In the classic formulation of Myerson (1981), bidder i’s virtual value is their value minus the inverse
hazard rate. We obtain this formula if there are bidder-specific values wi(s) and signals are normalized so that
wi(s) = si , in which case the partial derivative is identically 1. The formula reported here is a special case of
one that appears in Bulow and Klemperer (1996).

15Our formal arguments in Section 4 sidestep the direct calculation of virtual values, to avoid technical
complications associated with whether there is an integral representation for the bidders’ indirect utilities.

16Given any w and F1� � � � �FN , an equivalent information structure would be one with i.i.d. exponential
signals and the value function w(F−1

1 (1 − exp(−s1))� � � � �F
−1
N (1 − exp(−sN))).

17We hope we do not create confusion by using the same notation for the interim value as a function of the
signal profile and as a function of the aggregate signal.

18Both GN and gN have closed-form expressions, given as equations (14) and (15) below.
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FIGURE 1.—Value functions and virtual value functions when N = 2, v∼U[0�1], and c = 0.

ity and participation security (since the latter implies that interim payoffs are nonnega-
tive). Note that the expectation of w(x) must equal the ex ante expected value under H.
Thus, to minimize profit, the value function should maximize the expected slope. This
is achieved by the fully revealing value function ŵ(x) = H−1(GN(x)), where H−1 is the
quantile function for H. This value function matches aggregate signals and values co-
monotonically, so that their percentiles are perfectly correlated. It is fully revealing in
that there is no uncertainty about the value, conditional on the join of the bidders’ in-
formation. It is intuitive that ŵ minimizes profit, since it maximizes the bidders’ private
information about the value. Figure 1 illustrates the fully revealing value and virtual value
functions when N = 2, c = 0, and v is standard uniform, so that ŵ(x)=G2(x).

For some value distributions, ŵ is also the minmax value function when the seller can
keep the good. This is not the case for the uniform distribution. The right-hand panel of
Figure 1 shows that the virtual value is strictly negative when the aggregate signal is low, so
that the seller strictly prefers to withhold the good. The seller can be made strictly worse
off by adding noise to the bidders’ information so that the seller is indifferent between
selling and not selling. This requires that the virtual value is zero, that is, w(x) − c −
w′(x) = 0. Equivalently, the gains function γ(x) = w(x)− c (for interim expected gains
from trade) is of the form kexp(x) for some k ∈ R+.

In the uniform example, we can replace the fully revealing gains function γ̂(x)= ŵ(x)−
c on an interval [0�x∗] with an exponential segment to obtain

γ(x)=
{
γ(0)exp(x) if x≤ x∗�
γ̂(x) if x > x∗�

We choose γ(0) and x∗ so thatH remains a mean-preserving spread of the distribution of
the interim expected value and so that the exponential curve connects continuously with
the fully revealing gains function. This is the black curve in Figure 1, which is the minmax
gains function when the seller can keep the good.

More generally, the sign of the fully revealing virtual value might switch back and forth,
and there could be many exponential segments. In Section 4.1, we describe a general
procedure that transforms the fully revealing gains function so that the resulting virtual
value is everywhere nonnegative. We refer to this as grading the gains function, meaning
we decrease the derivative of the gains function so that it does not grow faster than expo-
nential. The graded gains and value functions are denoted by γ and w, respectively, and
the resulting information structure is S . Proposition 2 shows that profit on S is at most

Π =
∫ ∞

x=0
γ(x)gN−1(x)dx� (3)
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This formula can be obtained from (2) via integration by parts, using the fact that
dgN(x)/dx= gN−1(x)− gN(x). The term Π+ c denotes the largest posted price at which
all bidders would be willing to purchase the good, which is the expectation of the value
given a signal si = 0. Thus, Π is exactly optimal profit on S , and a posted price is an
optimal mechanism (although it is not a maxmin mechanism).

3.3. Sufficient Conditions for an Optimal Profit Guarantee

We now derive a maxmin mechanism M from S . At first glance, it seems that we do
not learn very much from the requirement that M maximize profit on S , because so many
mechanisms are optimal. However, we learn a great deal from the requirements that (i)
S and β minimize equilibrium profit on M, and (ii) minimum profit is Π, as we now
explain.

Fix a mechanism M with message space Mi = Si for all i. As reviewed in the Introduc-
tion, the problem of minimizing profit in M across information structures and equilibria
is equivalent to minimizing profit across BCE.19 We briefly review this solution concept.
An outcome of M is a joint distribution over values and message profiles σ ∈ �(V ×M)
such that the marginal distribution of v is H. The associated profit is the expectation of
Σ(t − c q) under σ . A BCE is an outcome that is obedient: for all i and mi, mi is a best
response in Mi to the distribution of (v�m−i) under σ and conditional on mi. An out-
come σ is consistent with an information structure S and strategies β if there exists a kernel
K : S→ �(V ) such that w(s) is the expectation of V under the measure K(dv|s) and

σ(dv�dm)=
∫
S

π(ds)β(dm|s)K(dv|s)�

that is, σ is the marginal on values and messages obtained by integrating out signals.
Note that if σ is consistent with S and β, then they have the same expected profit. It is a
result of Bergemann and Morris (2013, 2016) that an outcome is a BCE if and only if it is
consistent with some S and equilibrium β.20 A fortiori, minimum profit across all BCE is
equal to minimum profit across all information structures and equilibria.

Let us therefore examine the problem of minimizing profit in M across BCE. It turns
out that the only obedience constraints that are relevant for our problem are those asso-
ciated with local obedience, namely, that for all i and mi,21∫

V ×M−i

(
v
∂qi(mi�m−i)

∂mi

− ∂ti(mi�m−i)
∂mi

)
σ(dv�dm−i|mi)= 0�

The problem of minimizing profit subject to the constraint on the marginal distribution of
v and local obedience is an infinite-dimensional linear program, for which the associated

19Note that we do not make explicit use of BCE in Section 4 and in the proof of Theorem 1. Nonetheless,
these ideas are at work “under the hood.”

20Strictly speaking, our setup differs from that of Bergemann and Morris in that there are infinitely many
states and actions, and we use a different notion of an information structure. The equivalence in our setting
can be shown by analogous arguments (although we do not provide such an argument as part of our informal
derivation).

21This is suggested by the fact that only local incentive constraints were used in the revenue equivalence
argument that motivated S .
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Lagrangian is

L
(
σ� {αi}�λ

) =
N∑
i=1

∫
V ×M

(
ti(m)− cqi(m)

)
σ(dv�dm)

+
N∑
i=1

∫
V ×M

αi(mi)

(
v
∂qi(m)

∂mi

− ∂ti(m)

∂mi

)
σ(dv�dm)

+
∫
V ×M

λ(v)
(
H(dv)− σ(dv�dm))� (4)

This Lagrangian has three terms: profit induced by the BCE, the sum of local obedi-
ence constraints times their corresponding multipliers (the functions αi), and the sum of
marginal constraints times their corresponding multipliers (the function λ).

Requirement (i) above is equivalent to saying that an outcome that is consistent with
(S�β), denoted by σ , minimizes (4). The key properties of σ are that messages are i.i.d.
standard exponential and w(Σm) is the conditional expectation of v givenm. A necessary
condition for σ to be the profit-minimizing BCE is that for all (v�m),

N∑
i=1

[
ti(m)− cqi(m)+ αi(mi)

(
v
∂qi(m)

∂mi

− ∂ti(m)

∂mi

)]
− λ(v)≥ 0� (5)

with the constraint holding as an equality for (v�m) in the support of σ .
We motivated (5) by treating (q� t) as fixed and σ as endogenous. But evaluated at the

putative minimizer σ , equation (5) becomes a constraint on the maxmin allocation and
transfer rules, involving the as-yet unspecified multipliers λ and {αi}.

In fact, the correct multipliers can be deduced from (i) and (ii). Based on the envelope
theorem, we can guess that λ(v) is the derivative of minimum profit in the maxmin mech-
anism with respect to the prior probability of v. From (ii), this should coincide with the
derivative of Π with respect to the probability of v, denoted λ(v). If not, then by making
v either more or less likely, we could make minimum profit from the maxmin mechanism
increase faster than Π. The function λ has an explicit formula given in equation (18)
below, and we will shortly use the fact that λ is concave.22

As for the multipliers on local obedience, there is an even simpler answer: αi(mi)= 1
for all i and mi. This is suggested by the fact that (4) is very similar to the Lagrangian for
the linear program of maximizing profit given S , where we fix σ = σ and optimize over
(qi� ti), and obedience is reinterpreted as incentive compatibility. As is well known, local
incentive constraints bind at the solution, and the optimal multiplier on local incentive
compatibility is the inverse hazard rate, which we have normalized to 1.

Substituting in these multipliers and letting Q(m)= Σq(m) denote the aggregate allo-
cation, equation (5) reduces to, for all (v�m),

∇ · t(m)−Σt(m)≤ v∇ · q(m)− λ(v)− cQ(m)� (6)

22For each v, the optimal λ(v) must satisfy (5) with equality for some m. As a result, λ is the minimum of a
collection of linear functions, indexed by m.
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where ∇· is the divergence operator and the constraint holds with equality on the support
of σ , namely, pairs (v�m) such that v = ŵ(Σm).23 For a fixed m, the value v = ŵ(Σm)
must minimize the right-hand side of (6), and since λ is concave and, hence, right-
differentiable, it must be that

∇ · q(m)= λ′(
ŵ(Σm)

)
� (7)

We refer to the left-hand side of (7) as the aggregate allocation sensitivity. In fact, λ
′
(ŵ(x))

can be computed in closed form, and we denote it by μ(x). When the value function is
fully revealing, μ(x)= (N − 1)/x, and on an interval where the value function is graded,
μ is a constant that depends on the endpoints of the interval. The exact formula is given
in equation (17) below.

Substituting (7) into (6), we obtain the following condition on transfers:

∇ · t(m)−Σt(m)= ŵ(Σm)μ(Σm)− λ(ŵ(Σm)) − cQ(m)� (8)

The left-hand side of (8) is the aggregate excess growth, that is, the difference between how
fast the bidders’ transfers grow in their own messages relative to exponential growth. We
refer to equation (8) as profit-incentive alignment, since it links ex post profit, Σ(t − cq),
to the bidders’ local incentive constraints, v∇ · q− ∇ · t. This ensures that as long as bids
are locally optimal, profit cannot fall below Π.

We have been using the profit-minimization program to derive necessary conditions
on a maxmin mechanism. But as we argue in Proposition 3, these conditions are actually
sufficient for a mechanism to guarantee profit of at least Π.24 Specifically, if a mechanism
is such that the aggregate allocation sensitivity is μ, and the aggregate excess growth and
the aggregate allocation satisfy (8), then profit is at least Π in all information structures
and all equilibria. The proof is essentially an application of weak duality.

3.4. Construction of a Maxmin Mechanism

The last step is to construct a mechanism that satisfies (7) and (8), and such that truth-
telling is an equilibrium at S . Note that the latter condition is logically separate from the
profit lower bound of Proposition 3.

Let us start with the allocation. Consider the case with two bidders. In the must-sell
case, we have Q(m) = 1, so q2(m1�m2) = 1 − q1(m1�m2), and the aggregate allocation
sensitivity reduces to

∂q1(m1�m2)

∂m1
− ∂q1(m1�m2)

∂m2
= 1
m1 +m2

� (9)

Now consider a level curve wherem1 +m2 = x. We can then view the left-hand side of (9)
as the total derivative of q1 with respect to m1 along the parametric curve m2(m1)= x−
m1, so that integrating both sides, we obtain q1(m1�m2)=m1/x+C(x) for some function
C(·). In order to have q1 ∈ [0�1], we must have C(x)= 0, so the allocation probability is
simply the bidder’s share of the aggregate bid.

23Recall that w(Σm) is just the conditional expectation of v. It may be that w(Σm) is not even in the support
ofH . It is always the case, however, that ŵ(Σm) is in the support of the conditional distribution of v given Σm.

24This is true as long as local incentive compatibility (25) is satisfied in any equilibrium. See Lemma 8 below.
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More generally, equation (7) is satisfied by the proportional allocation rule

qi(m)=

⎧⎪⎨⎪⎩
1
N
Q(0) if Σm= 0�

mi

Σm
Q(Σm) if Σm> 0�

(10)

where the aggregate allocation Q is a function of the aggregate bid and is chosen so that
induced aggregate allocation sensitivity is μ:

∇ · q(m)= N − 1
Σm

Q(Σm)+Q′
(Σm)= μ(Σm)�

In equation (16), we give the explicit solution to this differential equation.
This leaves the transfers. Since Q has been specified, we can denote by Ξ the target

aggregate excess growth, which is equal to the right-hand side of (8) and just depends
on the aggregate bid. Any solution to (8) must be associated with an apportionment of Ξ
among the bidders. Indeed, given such an apportionment, it is straightforward to integrate
a bidder’s excess growth to obtain the implied transfer (see also the discussion in footnote
30).

At first glance, there seems to be tremendous flexibility in how we divide the aggregate
excess growth. The danger lurking here is that there is no guarantee, for an arbitrary
solution of (8), that an equilibrium exists on any information structure, let alone S . As a
result, the profit lower bound implicit in (8) may be vacuous.

It turns out that there is a subtle connection between the incentive compatibility of β
and boundedness of the transfers. In particular, given that the allocation is q and that
transfers satisfy (8), boundedness implies incentive compatibility, and they are equivalent
whenN = 2. Some obvious solutions to (8), such as equal sharing of the excess growth, re-
sult in transfers that sometimes diverge to minus infinity asmi grows large.25 We comment
further on this connection in the proof of Proposition 4 and in footnote 30.

Thus, the last step to complete the strong maxmin solution is the construction of a
bounded transfer rule that satisfies (8). These conditions are satisfied by the proportional
transfer rule26

ti(m)=

⎧⎪⎨⎪⎩
1
N
T(0) if Σm= 0�

mi

Σm
T(Σm) if Σm> 0�

(11)

25Equal sharing means that ∂ti(m)/∂mi − ti(m) = Ξ(Σm)/N . Together with the boundary condition
ti(0�m−i) = 0, this implies the transfer rule ti(m) = exp(mi)

∫ mi
x=0Ξ(x + Σm−i)exp(−x)dx/N . Since the ex

ante expectation of Ξ is zero (Lemma 11), it must be that
∫ ∞
x=0Ξ(x+ Σm−i)exp(−x)dx is zero on average

across m−i . But this integral is nonconstant (and generally strictly decreasing in m−i), so sometimes it must be
positive and sometimes negative, in which case the transfer tends to ±∞ as mi → ∞.

26This functional form is suggested by the fact that the aggregate excess growth only depends on the aggre-
gate bid, and as we have seen with the allocation rule, the divergence of a proportional rule is similarly only a
function of the aggregate bid.
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where T(x) is the aggregate transfer

T(x)=
⎧⎨⎩vQ(0) if x= 0�

1
gN(x)

∫ x

y=0
Ξ(y)gN(y)dy if x > 0�

(12)

Note that with this functional form for the transfers, when Σm> 0, (8) reduces to(
N − 1
x

− 1
)
T(x)+ T ′

(x)=Ξ(x)�

It is easily verified that (12) satisfies this differential equation, so that profit-incentive
alignment is satisfied.

In addition, boundedness of the transfers is equivalent to boundedness of T(x). Us-
ing l’Hôpital’s rule and the fact that the ex ante expectation of Ξ is zero (established in
Lemma 11), we conclude that

lim
x→∞

T(x)= lim
x→∞

Ξ(x)

N − 1
x

− 1
= − lim

x→∞
Ξ(x)� (13)

We show below that Ξ is bounded as x→ ∞, thus verifying that the transfers are also
bounded.

Finally, by construction, participation security is satisfied with mi = 0. Moreover, we
show below that Ξ(x) is bounded as x → 0 when Q(0) = 0, and it is approximately
(N − 1)/x when Q(x) = 1. Thus, a similar calculation as (13) shows that limx→0 T(x) =
vQ(x). As a result, transfers are continuous at 0 and profit-incentive alignment is satisfied
everywhere.

We refer to the mechanism comprised of q and t as a proportional auction. A key feature
of this mechanism that makes it informationally robust is that it equalizes ex post profit
and aggregate ex post local incentives across lots of message profiles. In particular, all
message profiles that have the same aggregate message also have the same revenue, cost,
and divergences of the allocation and transfer rules, so that they all contribute equally
to the weighted sum of profit and local incentives. Thus, just as S induces indifference
on the part of the seller as to how to allocate the good, M induces indifference on the
part of Nature, as to which message profiles should be played among those with a given
aggregate message.

The optimal aggregate allocation and aggregate transfer functions are plotted for the
uniform example in Figure 2. Theorem 1 shows that the proportional auction M, the
additive-exponential information structure S , and the truthful strategies β together com-
prise a strong maxmin solution.

4. A STRONG MAXMIN SOLUTION

We now formally construct and characterize a strong maxmin solution. We first com-
pletely construct the solution in Section 4.1. We then present our main theorem in Sec-
tion 4.2, which asserts that the constructed triple is indeed a strong maxmin solution. The
proof immediately follows. Sections 4.3 and 4.4 discuss two special cases, when the good
must be sold and when the value distribution is single crossing, respectively.
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FIGURE 2.—The minmax aggregate allocation and aggregate transfer rules for mi ∈ [0�5], when N = 2,
v∼U[0�1], and c = 0.

4.1. Construction of the Solution

4.1.1. Minmax Information

The minmax information structure S is defined as follows. The bidders have signal
spaces Si = [0�∞) and the signal distribution is π(ds)= exp(−Σs)ds. That is, signals are
independent draws from the exponential distribution with arrival rate 1.

The aggregate signal x= Σs has a probability density function

gN(x)= xN−1

(N − 1)! exp(−x) (14)

and cumulative distribution function

GN(x)= 1 −
N∑
n=1

gn(x)� (15)

The value function is defined according to the following grading procedure. Recall that
ŵ(x)=H−1(GN(x)) is the fully revealing value function and that γ̂(x)= ŵ(x)− c is the
fully revealing gains function. Let

�̂(x)=
∫ x

y=0
γ̂(y)gN(y)dy�

Also let

E(x)=
∫ x

y=0
exp(y)gN(y)dy�

which is strictly increasing and, hence, it has a continuous inverse E−1. Let cav(̂� ◦ E−1)

denote the smallest concave function that is everywhere above �̂ ◦ E−1. We then set �=
cav(̂� ◦E−1) ◦E, and define

γ(x)= 1
gN(x)

d

dx
�(x)�
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where the derivative is taken from the right. We further define w(x)= γ(x)+ c. We refer
to γ and w as the graded gains function and the graded value function, respectively.27

4.1.2. Maxmin Mechanism

We next construct the maxmin mechanism M. The message space is Mi = [0�∞).
We define a graded interval to be an interval [a�b] with a < b such that �(x)= �̂(x) for

x ∈ {a�b} and �(x) > �̂(x) for x ∈ (a�b). As discussed in Section 3, the allocation and
transfers are proportional, satisfying (10) and (11). The aggregate allocation function is
given by28

Q(x)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if x= 0 and [0� b] is a graded interval for some b > 0�

C(a�b)
x

N
+D(a�b) 1

xN−1

if x ∈ [a�b], where [a�b] is a graded interval and a > 0�
1 otherwise

(16)

and

C(a�b)=Nb
N−1 − aN−1

bN − aN � D(a�b)= b− a
bN − aN a

N−1bN−1�

The corresponding aggregate allocation sensitivity is

μ(x)=
⎧⎨⎩C(a�b) if x ∈ [a�b)�where [a�b] is a graded interval�
N − 1
x

otherwise�
(17)

The aggregate transfer T is defined as follows. First, define

λ(v)=Π +
∫ ∞

x=0
μ(x)GN(x)dŵ(x)−

∫ v

ν=v
μ

(
G−1
N

(
H(ν)

))
dν� (18)

where Π is the profit guarantee defined in (3) and

Ξ(x)=μ(x)ŵ(x)− λ(ŵ(x)) − cQ(x)� (19)

The aggregate transfer is then given by (12).

27This procedure is evocative of “ironing” in Myerson (1981) and concavification in Kamenica and
Gentzkow (2011). Grading is used to construct the bidders’ information that minimizes the seller’s profit, sub-
ject to the seller being always willing to allocate the good and subject to a mean-preserving spread constraint.
In Myerson (1981), ironing is used to construct the mechanism that maximizes the seller’s profit, subject to
global incentive compatibility. In Kamenica and Gentzkow (2011), concavification is used to construct a re-
ceiver’s information to maximize a sender’s payoff, subject to a mean-preserving spread constraint. We can
find no tight link between these problems beyond the very high-level connection of optimization subject to
monotonicity and/or mean-preserving spread constraints.

28The functional form of Q on a graded interval [a�b] can be derived from the hypotheses that Q(a) =
Q(b)= 1 and that the aggregate allocation sensitivity is constant for all message profiles m with a≤ Σm≤ b.
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FIGURE 3.—Objects used in the construction of the solution when N = 2, a value that is uniform on
[0�0�95] ∪ [3�95�4], and c = 0�2. Overbars correspond to the can-keep case and carets correspond to the
must-sell case discussed in Section 4.3.

4.1.3. Strategies

Finally, let βi be the truthful strategy in the mechanism M under the information struc-
ture S : For all i and si, βi(si) puts probability one on si. This completes the construction
of the solution.

4.1.4. Illustration

Various objects in the construction are illustrated in Figure 3 for an example in which
N = 2, the value is uniformly distributed on [0�0�95] ∪ [3�95�4], and c = 0�2.

The top row depicts the construction of the gains function: From left to right are the
gains functions, integrated gains functions, and rescaled integrated gains functions. The
fully revealing versions are in light gray and the graded versions are in black. There are
two graded intervals, which are denoted [0�x1] and [x2�x3].

The middle row shows the aggregate allocation sensitivity, value multiplier, and aggre-
gate excess growth. Again, fully revealing objects are in gray and graded counterparts are
in black (see Section 4.3 for the discussion of the fully revealing objects).

The bottom row shows the optimal aggregate allocation and transfer functions.
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4.2. Main Result

The main result of the paper is the following.

THEOREM 1: (M�S�β) is a strong maxmin solution with a profit guarantee of Π.

The theorem follows from Propositions 2–4. Proposition 2 shows that S is a well de-
fined information structure for which equilibrium profit is at mostΠ. Proposition 3 shows
that M is a well defined mechanism for which equilibrium profit is at least Π. Finally,
Proposition 4 shows that β is an equilibrium of (M�S).

4.2.1. Upper Bound on Profit for S
We first establish C1 in the definition of a strong maxmin solution.

PROPOSITION 2: S is a well defined information structure. For all mechanisms M and
equilibria β of (M�S), Π(M�S�β)≤Π.

We first argue that S is in fact an information structure consistent with the value distri-
bution H.

LEMMA 1: The gains function γ is a well defined and increasing function. The distribution
H is a mean-preserving spread of the distribution of w(Σs).

PROOF: Since � ◦ E−1 is a concave function, it is continuously differentiable at all but
countably many points, and we can extend the derivative by right continuity. Since E is
also differentiable, we conclude that � has a right derivative as well. We can therefore
define γ as specified.

We next argue that γ(x) is continuous. Since � ◦ E−1 is concave, its right derivative is
monotonically decreasing. If the right derivative of � ◦E−1 had a downward discontinuity
at x, which corresponds to a concave kink in � ◦ E−1, it would have to occur at a point
where � and �̂ coincide (since � ◦ E−1 is linear on graded intervals where the two func-
tions differ). This implies that �̂ ◦E−1 also has a concave kink at x, which contradicts the
monotonicity of γ̂. Thus, we conclude that � ◦ E−1 has a continuous right derivative, so
that γ is continuous.

We next argue that γ is increasing. From continuity of γ, it suffices to show that γ is
increasing on graded intervals and on nongraded intervals. If x is such that there is an
interval [x�x + ε) on which � coincides with �̂, then their right derivatives at x must
coincide as well, so that γ(x)= γ̂(x), where the latter is increasing. In addition, if [a�b]
is a graded interval and x ∈ [a�b), then γ has an exponential shape, as

d

dx
�(x)= d

dz

(
�
(
E−1(z)

))∣∣
z=E(x)E

′(x)= �̂(b)− �̂(a)
E(b)−E(a) exp(x)gN(x)�

The (positive) constant is pinned down from the fact that �(x) coincides with �̂(x) at the
endpoints of the graded interval. Thus, γ is increasing on graded intervals as well.

We next show that the distribution of γ̂(Σs) is a mean-preserving spread of the distri-
bution of γ(Σs). The lemma then follows from the observation that the distribution of
γ̂(Σs)+ c is H and w(Σs)= γ(Σs)+ c.
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Let F and F̂ denote the cumulative distributions of γ(x) and γ̂(x), respectively, where
x ∼ GN . Since γ and γ̂ are both increasing, for all α ∈ [0�1], γ(G−1

N (α)) = F
−1
(α) and

γ̂(G−1
N (α))= F̂−1(α). From the change of variables y =GN(x), we conclude that∫ α

y=0

(
F

−1
(y)− F̂−1(y)

)
dy =

∫ G−1
N (α)

x=0

(
γ(x)− γ̂(x))gN(x)dx

= �(
G−1
N (α)

) − �̂(
G−1
N (α)

) ≥ 0�

where the last line comes from the definition of �. Theorem 3.8 of Sriboonchita, Wong,
Dhompongsa, and Nguyen (2009) therefore implies that F̂ second-order stochastically
dominates F . Moreover, it must be that �(∞)= �̂(∞), since otherwise min{�(x)� �̂(∞)}◦
E−1 would be a smaller concave function that dominates �̂ ◦E−1. Thus, F and F̂ have the
same mean, and we conclude that F̂ is a mean-preserving spread of F . Q.E.D.

Next, we establish a key property of the graded gains function.

LEMMA 2: For all x� y ∈ R+ with y ≥ x, γ(y)≤ γ(x)exp(y − x).

PROOF: Since � ◦E−1 is concave, its derivative

γ
(
E−1(z)

)
gN

(
E−1(z)

)
E′(E−1(z)

) = γ
(
E−1(z)

)
exp

(
E−1(z)

)
is decreasing. Hence, γ(x)exp(−x) is decreasing, which implies the result. Q.E.D.

We can now complete the proof of Proposition 2.

PROOF OF PROPOSITION 2: From Lemma 1, we know that S is well defined. To com-
plete the proof, we show that Π is an upper bound on profit.

By the revelation principle, it suffices to verify that Π is an upper bound on revenue
for every incentive compatible and interim individually rational direct mechanism (q� t)
(since participation security implies that interim payoffs are nonnegative). Fix such a
mechanism. Let us write

Ui

(
si� s

′
i

) =
∫
S−i

(
w(si +Σs−i)qi

(
s′i� s−i

) − ti
(
s′i� s−i

))
exp(−Σs−i) ds−i

and Ui(si)=Ui(si� si). Incentive compatibility implies that for all i, si, and s′i,

Ui(si)≥Ui

(
si� s

′
i

) =Ui

(
s′i
) +

∫
S−i

(
γ(si +Σs−i)− γ(

s′i +Σs−i
))
qi

(
s′i� s−i

)
exp(−Σs−i) ds−i

and individual rationality implies that Ui(si)≥ 0. Thus, for all �> 0,

Ui =
∫
Si

Ui(si)exp(−si) dsi

≥
∫

{s∈S|si≥�}

[
Ui(si −�)+ (

γ(Σs)− γ(Σs−�))qi(si −�� s−i)]exp(−Σs)ds
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= exp(−�)
∫

{s∈S|si≥�}

[
Ui(si −�)+ (

γ(Σs)− γ(Σs−�))qi(si −�� s−i)]
× exp

(−(Σs−�))ds
= exp(−�)

(
Ui +

∫
S

(
γ(Σs+�)− γ(Σs))qi(si� s−i)exp(−Σs)ds

)
�

Rearranging, we have

Ui ≥ 1(
exp(�)− 1

) ∫
S

(
γ(Σs+�)− γ(Σs))qi(si� s−i)exp(−Σs)ds�

Now let

Q(x)= 1
gN(x)

∫
{s∈S|Σs=x}

N∑
i=1

qi(s)exp(−Σs)ds

be the expected probability of allocating the good conditional on Σs = x. Then

N∑
i=1

Ui ≥ 1(
exp(�)− 1

) ∫ ∞

x=0

(
γ(x+�)− γ(x))Q(x)gN(x)dx�

Since total surplus is ∫ ∞

x=0
γ(x)Q(x)gN(x)dx�

we conclude that an upper bound on profit is∫ ∞

x=0

(
γ(x)− γ(x+�)− γ(x)

exp(�)− 1

)
Q(x)gN(x)dx�

By Lemma 2, the term multiplying Q(x) is positive, and since Q(x)≤ 1, profit is bounded
above by∫ ∞

x=0

(
γ(x)− γ(x+�)− γ(x)

exp(�)− 1

)
gN(x)dx=

∫ ∞

x=0
γ(x)

(
gN(x)+ gN(x)− gN(x−�)

exp(�)− 1

)
dx�

where gN(x) = 0 if x < 0. The term in brackets converges pointwise for all positive x to
gN(x) + g′

N(x) = gN−1(x) as � → 0. To apply the dominated convergence theorem, all
that remains is to present an integrable bounding function, which is done in Lemma 16 in
Appendix A. As a result, as �→ 0, the profit bound converges to Π. Q.E.D.

This argument is closely related to that of Myerson (1981), but we have used the spe-
cial structure of S to sidestep the nontrivial technical question of whether the envelope
theorem holds for the problem maxs′i Ui(si� s

′
i) (cf. Milgrom and Segal (2002)).
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4.2.2. Lower Bound on Profit for M
The next result establishes C2 in the definition of a strong maxmin solution.

PROPOSITION 3: M is a well defined mechanism. For all information structures S and
equilibria β of (M�S), Π(M�S�β)≥Π.

The first step toward proving Proposition 3 is the following.

LEMMA 3: The aggregate allocation sensitivity μ is decreasing. As a result, λ is concave.

PROOF: On a nongraded interval, μ(x) = (N − 1)/x, which is decreasing, and on a
graded interval [a�b], μ(x)= C(a�b). The fact that μ is decreasing across graded inter-
vals then follows from the definition of C(a�b) and the well known inequality

N − 1
N

1
b

(
bN − aN) ≤ bN−1 − aN−1 ≤ N − 1

N

1
a

(
bN − aN)

(Hardy, Littlewood, and Pólya (1934), equation (2.15.2)).
Concavity of λ then follows from the fact μ is decreasing and equation (18). Q.E.D.

We next verify that M is well defined.

LEMMA 4: M is a well defined mechanism, has bounded aggregate transfers T , and satis-
fies participation security.

PROOF: Three properties need to be verified: Feasibility of the allocation rule, exis-
tence and boundedness of the transfers, and participation security.

Clearly, Q(x)≥ 0, since the constants C(a�b) and D(a�b) are positive. We now argue
that Q(x) ≤ 1. This is clearly true at the endpoints of a graded interval. Moreover, on a
graded interval [a�b],

Q
′
(x)= C(a�b)

N
− (N − 1)

D(a�b)

xN
�

which is increasing. Thus, Q is convex on [a�b] and Q(x)≤ max{Q(a)�Q(b)} = 1.29

To show that T is well defined and finite, we first show that λ defined in (18) is bounded.
The last integral in (18) is bounded above by∫ v

v=v
μ

(
G−1
N

(
H(v)

))
dv=

∫ ∞

y=0
μ(y)ŵ(dy)� (20)

From the first part of the left-tail assumption, there exists ε > 0 such that if x≤ ε, (ŵ(x)−
v)/xϕ ≤ 1 for some ϕ> 1. If the value function is not graded at x, μ(x)= (N − 1)/x, and
if x is in a graded interval [a�b], then

μ(x)= C(a�b)= bN − baN−1

bN − aN
N

b
≤ N

b
≤ N

x
� (21)

29We thank a referee for suggesting this argument.
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Thus, if x≤ ε, we can plug in the bound and integrate by parts to obtain∫ ∞

y=0
μ(y)ŵ(dy)≤

∫ ∞

y=0

N

y
ŵ(dy)=

∫ ε

y=0

N

y2

(
ŵ(y)− v)dy +

∫ ∞

y=ε

N

y2

(
ŵ(y)− v)dy

≤N
∫ ε

y=0
yϕ−2 dy +

∫ ∞

y=ε

N

y2 (v− v)dy

=N 1
ϕ− 1

εϕ−1 +Nv− v
ε
�

Hence, the last integral in the definition of λ(v) is bounded. The middle integral is simply
the expectation of the last integral across lower bounds v ∼H, so we conclude that λ(v)
is bounded.

Since λ is bounded and μ(x)≤N/x, Ξ(x) goes to infinity as x→ 0 at a rate no faster
than 1/x, so Ξ(x)gN(x) is integrable on [0�∞). This shows that T in (12) is well defined.
Moreover, equation (12) clearly shows that T is continuous at x > 0, so to show that T is
bounded, it suffices to show that limx→∞ T(x) <∞ and limx→0 T(x) <∞.

Lemma 11 in Appendix A and l’Hôpital’s rule imply that

lim
x→∞

T(x)= lim
x→∞

Ξ(x)gN(x)

gN−1(x)− gN(x) = lim
x→∞

Ξ(x)

N − 1
x

− 1
= λ(v)+ c <∞�

since limx→∞μ(x)= 0 by (21) and limx→∞Q(x)= 1 by Lemma 13 in Appendix A.
For x→ 0, we again apply l’Hôpital’s rule to obtain

lim
x→0

T(x)= lim
x→0

Ξ(x)gN(x)

gN−1(x)− gN(x) = lim
x→0

Ξ(x)
x

N − 1

1 − x

N − 1

= vQ(0) <∞�

where we use the fact that λ and Q are bounded, and Lemma 15 in Appendix A shows
that there is either a graded interval at 0, in which case limx→0 ŵ(x)μ(x)

x
N−1 = 0 = vQ(0),

or there is a nongraded interval at 0, in which case limx→0 ŵ(x)μ(x)
x

N−1 = v= vQ(0).
Thus, T is bounded. The above argument also shows that T is continuous at x = 0 as

well.
Finally, participation security follows from the definition of T , which implies that

ti(0�m−i)= vqi(0�m−i). Q.E.D.

We now develop the lower bound on profit in M.

LEMMA 5: At all m �= 0, qi(m) is right-differentiable in mi and ∇ · q(m)= μ(Σm).
PROOF: Suppose m �= 0. For the right differentiability of qi, it suffices to show that

Q(x) is right-differentiable at every x > 0. There are three cases.
Case 1. There exists an ε > 0 such that [x�x+ ε] is a subset of a graded interval. From

the formula of Q in (16) it is immediate that Q is right-differentiable at x and, in fact,

Q
′
(x)= μ(x)− N − 1

x
Q(x)� (22)
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Case 2. There exists an ε > 0 such that �(y)= �̂(y) for all y ∈ [x�x+ ε]. ThenQ(y)= 1
and μ(y) = (N − 1)/y for all y ∈ [x�x + ε], so Q is again right-differentiable at x, and
equation (22) again holds.

Case 3. For every ε > 0, there exist x′�x′′ ∈ (x�x+ ε] such that x′ is not graded and x′′ is
graded: �(x′)= �̂(x′) and �(x′′) > �̂(x′′). This implies that Q(x)= 1, for otherwise x is in
the interior of a graded interval and we are in Case 1. Let {xn} be a sequence converging
to x from the right. We will show that for every ε > 0, there exists an n such that for all
n≥ n, we have ∣∣∣∣Q(xn)−Q(x)

xn − x
∣∣∣∣ ≤ ε� (23)

that is, the Q is right-differentiable at x, and Q
′
(x) = 0. This again implies (22), since

μ(x)= (N − 1)/x by (17).
Given ε > 0, choose ε′ > 0 so that

N − 1
x

− N − 1
x+ ε′

(
1 − 2(N − 1)

x
ε′

)
≤ ε� N − 1

x+ ε′ − N − 1
x

≥ −ε�

By assumption, there exists an x′ ∈ (x�x+ ε′] at which the gains function is not graded.
Choose n so that xn ∈ [x�x′] for all n≥ n.

Consider any n≥ n. Suppose xn is graded and Q(xn) < 1 (for otherwise (23) is trivial).
Let [a�b] be the graded interval containing xn. We have x < a < xn < b≤ x′ ≤ x+ ε′: we
have b≤ x′ because x′ is not graded and x < a because there are other nongraded points
in (x�xn]. Since Q(a)=Q(x)= 1, we have

Q(xn)−Q(x)
xn − x = xn − a

xn − x
Q(xn)−Q(a)

xn − a = xn − a
xn − xQ

′
(y)= xn − a

xn − x
(
μ(y)− N − 1

y
Q(y)

)
for some y ∈ (a�xn) by the mean value theorem and equation (22) applied to the graded
interval [a�b]. Equation (22) also implies thatQ

′
(z)≤ 2(N−1)

x
for any z ∈ [a�b], so |Q(y)−

1| ≤ 2(N−1)
x
ε′, and since bothμ(y) and (N−1)/y are in the interval ((N−1)/b� (N−1)/a),

we have

−ε≤ N − 1
x+ ε′ − N − 1

x
≤ Q(xn)−Q(x)

xn − x ≤ N − 1
x

− N − 1
x+ ε′

(
1 − 2(N − 1)

x
ε′

)
≤ ε�

which proves (23).
Finally, it is easy to check that ∇ · q(m) = μ(Σm) by applying the product rule and

equation (22) to the definition of q. Q.E.D.

LEMMA 6: The ex ante expectation of λ(v) is Π:∫ v

v=v
λ(v)H(dv)=

∫ ∞

x=0
λ
(
ŵ(x)

)
gN(x)dx=Π�

PROOF: The first equality follows from the change of variables v = ŵ(x) =
H−1(GN(x)). For the second equality, it suffices to show that the middle integral in (18)
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is equal to the ex ante expectation of the last integral, which using (20) and Tonelli’s
theorem is ∫ ∞

x=0

∫ x

y=0
gN(y)dyμ(x)ŵ(dx)=

∫ ∞

x=0
μ(x)GN(x)ŵ(dx)� Q.E.D.

LEMMA 7: For every m �= 0, ti(m) is right-differentiable with respect to mi, and

∇ · t(m)−Σt(m)=Ξ(Σm)�
PROOF: We first prove that ti(m) is right-differentiable with respect to mi at m �= 0. By

Lemma 5, it suffices to show that T is right-differentiable at every x > 0, and for that it
suffices to show that Ξ is right-continuous at every x > 0.

To that end, first note that μ is right-continuous at every x > 0. This is clear from the
definition of μ in equation (17) when x is the left endpoint or in the interior of a graded
interval, or when x is the left endpoint or in the interior of a nongraded interval. The only
other case is when x is a limit point both of graded points and of nongraded points. In
this case, μ(x) is defined to be (N − 1)/x by (17), and for any sequence {xn} converging
to x from the right, μ(xn) converges to μ(x) = (N − 1)/x: The reason is that for any
ε > 0, there exists a nongraded point x′ ∈ (x�x+ ε). Hence, when n is sufficiently large,
xn ∈ [x�x′] so μ(xn) ∈ [(N − 1)/(x+ ε)� (N − 1)/x], as μ is decreasing from Lemma 3.

Next we prove right continuity ofΞ at x > 0. SinceQ(x) is right-continuous at all x > 0
by the proof of Lemma 5, the obstacle to right continuity of Ξ(x) can only come from
μ(x)ŵ(x) or λ(ŵ(x)). If ŵ is discontinuous at x > 0, then �̂ has a convex kink at x, so x
must be in the interior of a graded interval [a�b]. Since μ is continuous (in fact, constant)
in (a�b),Ξ is continuous at x, as the discontinuity inμ(y)ŵ(y) at y = x is exactly canceled
by the discontinuity in λ(ŵ(y)) at y = x (recall that λ(ŵ(y))= C + ∫ y

z=0μ(z)dŵ(z) for a
constant C). On the other hand, if ŵ is continuous at x > 0, then Ξ is right-continuous at
x, because μ is right-continuous there by the previous paragraph. We conclude that Ξ is
right-continuous and, hence, T is right-differentiable, at x > 0.

Finally, interpreting d/dx as the right derivative, we have d
dx
(gN(x)T(x))= gN(x)Ξ(x),

so (
N − 1
x

− 1
)
T(x)+ T ′

(x)=Ξ(x)� (24)

which proves the lemma, since by the product rule, ∇ · t(m) = N−1
Σm
T(Σm) + T

′
(Σm).

Q.E.D.

LEMMA 8: For any information structure S and equilibrium β of (M�S),∫
S

∫
M

(
w(s)∇ · q(m)− ∇ · t(m))β(dm|s)π(ds)≤ 0� (25)

This result says that in any equilibrium, local upward deviations must not be attractive.
If a bidder were to marginally increase all of the messages they send in equilibrium, the
change in payoff would be∫

S

∫
M

(
w(s)

∂

∂mi

qi(m)− ∂

∂mi

ti(m)

)
β(dm|s)π(ds)≤ 0�
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Summing across i gives (25). A technical complication is that the allocation sensitivity
may blow up as the aggregate bid goes to zero, so that deriving this constraint as a limit of
nonlocal deviations is not trivial. We resolve this technical complication by appealing to
the second part of the left-tail assumption; a detailed proof can be found in Appendix A.

We now complete the proof of Proposition 3.

PROOF OF PROPOSITION 3: We have already argued in Lemma 4 that M is well de-
fined. To complete the proof, it suffices to show that profit in any equilibrium in any
information structure is at least Π. This is established in two steps.

Step 1. For any v and x,

λ(v)= λ(ŵ(x)) −
∫ ŵ(x)

ν=v
μ

(
G−1
N

(
H(ν)

))
dν

≤ λ(ŵ(x)) − (
ŵ(x)− v)μ(x)

= vμ(x)−Ξ(x)− cQ(x)�
where the second line follows from the fact that μ is decreasing (Lemma 3), and the third
line follows from the definition of Ξ.

Step 2. Fix an information structure S . Profit in an equilibrium β of (M�S) is∫
S

∫
M

[
T(Σm)− cQ(Σm)]β(dm|s)π(ds)�

By Lemma 8, this is at least∫
S

∫
M

[
w(s)∇ · q(m)− (∇ · t(m)−Σt(m)) − cQ(Σm)]β(dm|s)π(ds)

=
∫
S

∫
M

[
w(s)μ(Σm)−Ξ(Σm)− cQ(Σm)]β(dm|s)π(ds)

≥
∫
S

λ
(
w(s)

)
π(ds)

≥
∫
V

λ(v)H(dv)�

The second line follows from Lemmas 5 and 7; the third line follows from Step 1; the last
inequality uses concavity of λ (Lemma 3), the fact that H is a mean-preserving spread
of the distribution of w(s), and Jensen’s inequality. The final integral is equal to Π by
Lemma 6. Q.E.D.

4.2.3. Truth-Telling Equilibrium

We now come to the last condition for (M�S�β) to be a strong maxmin solution.

PROPOSITION 4: The truthful strategies β are an equilibrium of the game (M�S).

PROOF: Let

Ui

(
mi�m

′
i

) =
∫
M−i

[
w(mi +Σm−i)qi

(
m′
i�m−i

) − ti
(
m′
i�m−i

)]
exp(−Σm−i) dm−i
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denote the interim expected utility from reportingm′
i when the true signal ismi and others

report truthfully. We will show that the difference Ui(mi�mi)−Ui(mi�m
′
i) is nonnegative

for all i, mi, and m′
i.

We first derive a convenient expression for the interim expected transfer,30∫
M−i
ti
(
m′
i�m−i

)
exp(−Σm−i) dm−i

=
∫ ∞

x=0

m′
i

m′
i + x

T
(
m′
i + x

)
gN−1(x)dx

= −
∫ ∞

x=0

(
N − 1
m′
i + x

gN(x)− gN−1(x)

)
T

(
m′
i + x

)
dx

= −
∫ ∞

x=0

((
N − 1
m′
i + x

− 1
)
T

(
m′
i + x

) + T ′(
m′
i + x

))
gN(x)dx

= −
∫ ∞

x=0
Ξ

(
m′
i + x

)
gN(x)dx�

where the first equality is from the definition of t and the fact that m−i = 0 occurs with
zero probability; the second rearranges the formula for (m′

igN−1(x))/(m
′
i + x); the third

is obtained by integrating
∫
T(m′

i + x)g′
N(x)dx by parts and the fact that T is bounded

(Lemma 4); and the fourth substitutes using equation (24).
We next compute the interim expected payoff from the allocation:∫

M−i
w(mi +Σm−i)qi

(
m′
i�m−i

)
exp(−Σm−i) dm−i

=
∫ ∞

x=0
w(mi + x) m′

i

m′
i + x

Q
(
m′
i + x

)
gN−1(x)dx

30The final expression for the interim transfer substantiates the claim in Section 3 that boundedness of the
transfers is a sufficient condition for incentive compatibility of q on S . We can rewrite the transfer as

ti(m)= exp(mi)

(
ti(0�m−i)+

∫ mi

x=0
ξi(x�m−i)exp(−x)dx

)
�

where ξi(m) = ∂ti(m)/dmi − ti(m) is bidder i’s individual excess growth and Σξ = Ξ (cf. (8)). Since
qi(0�m−i) = 0 for m−i �= 0, we restrict attention to ti(0�m−i) = 0. Boundedness of i’s transfer then implies
that ∫ ∞

x=0
ξi(x�m−i)exp(−x)dx= 0 (26)

for m−i �= 0, in which case we can rewrite

ti(m)= −
∫ ∞

x=0
ξi(mi + x�m−i)exp(−x)dx�

But if we take the expectation of ξi(mi +x�m−i) over m−i , equation (26), combined with Σξ=Ξ, implies that
the interim transfer is exactly as given. Moreover, when N = 2, this identity holds only if (26) holds as well. For
more than two bidders, incentive compatibility of q on S is equivalent to, for all i and mi ,

∫
M−i (ξi(mi�m−i)−

Ξ(mi�m−i))exp(−Σm−i) dm−i = 0.
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=
∫ ∞

x=0
w(mi + x)

(
Q

(
m′
i + x

) − x

m′
i + x

Q
(
m′
i + x

))
gN−1(x)dx

=
∫ ∞

x=0
w(mi + x)

(
Q

(
m′
i + x

) − x

N − 1
(
μ

(
m′
i + x

) −Q′(
m′
i + x

)))
gN−1(x)dx

=
∫ ∞

x=0
w(mi + x)

(
Q

(
m′
i + x

)
gN−1(x)− (

μ
(
m′
i + x

) −Q′(
m′
i + x

))
gN(x)

)
dx

=
∫ ∞

x=0

(
w(mi + x)

(
Q

(
m′
i + x

)
gN−1(x)−μ(

m′
i + x

)
gN(x)

)
dx

−Q(
m′
i + x

)
d
(
w(mi + x)gN(x)

))
=

∫ ∞

x=0

[
Q

(
m′
i + x

)
gN(x)

(
w(mi + x)dx−w(mi + dx)

)
−μ(

m′
i + x

)
w(mi + x)gN(x)dx

]
�

The first equality is the definition of q and the fact that m−i = 0 has zero probability; the
second rearranges the term m′

i/(m
′
i + x); the third substitutes in using (22); the fourth

rearranges terms; the fifth integrates
∫
Q

′
(m′

i + x)w(mi + x)gN(x)dx by parts; and the
last equality applies the product rule (and the fact that g′

N = gN−1 − gN) and rearranges
terms.

We now use these expressions to compute the interim expected loss from deviating:

Ui(mi�mi)−Ui

(
mi�m

′
i

)
=

∫ ∞

x=0

(
Q(mi + x)−Q(

m′
i + x

))
gN(x)

(
w(mi + x)dx−w(mi + dx)

)
+

∫ ∞

x=0

[(
μ

(
m′
i + x

) −μ(mi + x)
)
w(mi + x)+Ξ(mi + x)−Ξ(

m′
i + x

)]
gN(x)dx�

Observe that

Ξ(mi + x)−Ξ(
m′
i + x

)
= μ(mi + x)ŵ(mi + x)−μ(

m′
i + x

)
ŵ

(
m′
i + x

) − λ(ŵ(mi + x)
) + λ(ŵ(

m′
i + x

))
− c(Q(mi + x)−Q(

m′
i + x

))
= μ(mi + x)ŵ(mi + x)−μ(

m′
i + x

)
ŵ

(
m′
i + x

) −
∫ mi+x

y=m′
i+x
μ(y)ŵ(dy)

− c(Q(mi + x)−Q(
m′
i + x

))
=

∫ mi+x

y=m′
i+x
ŵ(y)μ(dy)− c(Q(mi + x)−Q(

m′
i + x

))
=

∫ mi+x

y=m′
i+x
w(y)μ(dy)− c(Q(mi + x)−Q(

m′
i + x

))
�
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The first equality uses the definition ofΞ, equation (19); the second uses the definition of
λ, equation (18); the third is integration by parts; and the last equality uses the fact that
μ(y) is constant on the interior of graded intervals, so that the measure μ(dy) assigns
zero mass to the points where ŵ �=w.

Substituting this last expression into the loss from deviating, we obtain

Ui(mi�mi)−Ui

(
mi�m

′
i

)
=

∫ ∞

x=0

(
Q(mi + x)−Q(

m′
i + x

))
gN(x)

((
w(mi + x)− c)dx−w(mi + dx)

)
+

∫ ∞

x=0

((
μ

(
m′
i + x

) −μ(mi + x)
)
w(mi + x)+

∫ mi+x

y=m′
i+x
w(y)μ(dy)

)
gN(x)dx�

Lemma 2 implies that the measure(
w(mi + x)− c)dx−w(mi + dx)= γ(mi + x)dx− γ(mi + dx)

is nonnegative and its support consists of the nongraded intervals, on which Q(mi + x)=
1 ≥Q(m′

i + x), so that the first integral is nonnegative. The second integral is also non-
negative, because w is increasing, so∫ mi+x

y=m′
i+x
w(y)μ(dy)≥w(mi + x)

(
μ(mi + x)−μ(

m′
i + x

))
�

We conclude that Ui(mi�mi)≥Ui(mi�m
′
i), as desired. Q.E.D.

Theorem 1 follows immediately from Propositions 2, 3, and 4.

4.3. The Must-Sell Case

We now discuss the variant of our model where the good must be sold. All of our tools
still apply and almost immediately give us the solution.

A must-sell mechanism is a mechanism for which Σq(m)= 1 for allm. A must-sell strong
maxmin solution is a triple (M�S�β) satisfying C1, C2, and C3 in Section 2.5, but where
M is a must-sell mechanism and C1 only has to hold for M′ that are must-sell mecha-
nisms.

Let Ŝ be the information structure where signals are i.i.d. standard exponential and the
value function is ŵ. Also let M̂ be the proportional auction with allocation

q̂i(m)=

⎧⎪⎨⎪⎩
1
N

if Σm= 0�
mi

Σm
if Σm> 0

and transfers

t̂i(m)=

⎧⎪⎨⎪⎩
1
N
T̂(Σm) if Σm= 0�

mi

Σm
T̂ (Σm) if Σm> 0�
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We define λ̂, Ξ̂, and T̂ according to analogous formulae as those for λ, Ξ, and T , using
ŵ, μ̂(x)= (N − 1)/x, and Q̂(x)= 1 in place of w, μ, and Q. Let

Π̂ =
∫ ∞

x=0
γ̂(x)gN−1(x)dx� (27)

Finally, let β̂= β.

THEOREM 2: (M̂� Ŝ� β̂) is a must-sell strong minmax solution with a profit guarantee of
Π̂.

PROOF: The proof of Proposition 2 goes through with γ̂ in place of γ, except that we do
not need to invoke Lemma 2 (which does not hold for the fully-revealing gains function)
to conclude that the profit upper bound is maximized by setting Q(x) = 1. Instead, the
conclusion follows directly from the must-sell assumption, so that (27) is an upper bound
on profit in Ŝ .

The proof of Proposition 3 remains valid with γ̂ in place of γ. (In the proof of Lemma 7,
μ̂ is continuous everywhere, in particular where ŵ is discontinuous).

Proposition 4 also goes through, with the only modification being that the last term
in the deviation payoff involving Q disappears, so that again we do not need to invoke
Lemma 2. Thus, the mechanism M̂ guarantees the seller at least Π̂ in any equilibrium,
and β̂ is an equilibrium of the game (M̂� Ŝ). Q.E.D.

It is sometimes possible to use the formulae for μ̂ and Q̂ to simplify the must-sell ag-
gregate transfer. For example, Appendix D.1 shows that when v is standard uniform,

T̂ (x)=GN−1(x)+

(
2N − 3
N − 1

)
22N−3

GN(x)−G2N−2(2x)
gN(x)

�

When N = 2, this further simplifies to T̂ (x)= (1 − (1 − e−x)/x)/2. We shall describe the
many-bidder limit of this formula in Section 6.

4.4. Single-Crossing Distributions

We now discuss a class of distributions for which the maxmin aggregate allocation is
relatively simple. The distributionH is single crossing if there is a cutoff x such that �̂◦E−1

is convex on [0�x] and concave on [x�∞). When the gains function is differentiable, this
is equivalent to saying that γ̂(x)− γ̂′(x) is single crossing from below at x=E−1(x). This
is in a sense a counterpart to the regular case of Myerson (1981), under which the seller
only has an incentive to ration the good when signals are a below a cutoff.

If H is single crossing, then there is a single graded interval, denoted [0�x∗], on which
Q(x) = xC(0�x∗)/N = x/x∗ (since D(0�x∗) = 0). The maxmin allocation is therefore
qi(mi�m−i)=mi/max{x∗�Σm}. We can interpret mi as bidder i’s demand for the good in
units where the aggregate supply is x∗. The allocation rule simply says that the bidders get
their demands if the aggregate demand is feasible, and the good is rationed proportionally
otherwise.
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The uniform distribution is single crossing for all N . To see this, observe that the fully-
revealing gains function is γ̂(x)=GN(x)− c, so γ̂(x)− γ̂′(x)=GN(x)− c− gN(x). This
is −c when x= 0, and its derivative is

2gN(x)− gN−1(x)=
(

2x
N − 1

− 1
)
gN−1(x)�

so that γ̂(x) − γ̂′(x) is decreasing for x < (N − 1)/2 and increasing otherwise, which
implies that it crosses zero once, from below. Thus, γ = γ(0)exp(x) on [0�x∗] and it is
fully revealing above x∗. For these segments to meet continuously, it must be that γ(0)=
exp(−x∗)(GN(x

∗)− c). This implies that x∗ is the unique positive solution to31

∫ x∗

x=0

(
GN(x)− c)gN(x)dx= exp

(−x∗)(GN

(
x∗) − c)∫ x∗

x=0
exp(x)gN(x)dx� (28)

Maxmin profit is

Π =
∫ x∗

x=0
γ(0)exp(x)gN−1(x)dx+

∫ ∞

x=x∗

(
GN(x)− c)gN−1(x)dx�

while maxmin profit among must-sell mechanisms is only

Π̂ =
∫ ∞

x=0

(
GN(x)− c)gN−1(x)dx�

This example is continued in Section 6. We also give an explicit formula for T in Ap-
pendix D.2 when c = 0.

5. UNIQUENESS AND FINITE APPROXIMABILITY

We have constructed a particular strong maxmin solution. We know for a fact that there
are others (and we will comment further on this shortly). However, as we now show, any
sufficiently well behaved solution must have the same profit guarantee of Π. As part of
developing this result, we will show that the mechanism M and information structure S
can both be approximated with finite objects that guarantee profit arbitrarily close to Π.
A further implication of this result is that M and S are limits of ε equilibria of stan-
dard zero-sum games, where the seller and Nature choose finite mechanisms and finite
information structures, respectively. These results provide additional foundations for the
strong maxmin solution that we construct.

Let us say that a mechanism is finite if Mi is finite for all i. Finite message sets can be
identified with subsets of N, so that the set of finite mechanisms exists and is denoted by
MF . Similarly, an information structure is finite if Si is finite for all i, and SF is the set of
finite information structures.

A strong maxmin solution (M�S�β) with profit guarantee Π is finitely approximable if
for any ε > 0, the following statements hold:

31Both sides of (28) are zero at x∗ = 0, and the difference between the left and right has a derivative with
respect to x∗ that has the same sign as GN(x

∗)− c− gN(x∗), which, as we have argued, is single crossing from
below.
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(i) There exists MF ∈ MF such that for any information structure S ′ and equilibrium
β′ of (MF�S ′), Π(MF�S ′�β′)≥Π − ε.

(ii) There exists SF ∈ SF such that for any mechanism M′ and equilibrium β′ of
(M′�SF), Π(M′�SF�β′)≤Π + ε.

In other words, a solution is finitely approximable if there are finite mechanisms and
finite information structures that guarantee profit close to Π for the seller and Nature,
respectively.

THEOREM 3: The solution (M�S�β) is finitely approximable.

The theorem follows from two propositions, whose proofs are given in Appendix B.
Given a nonnegative real number m and a positive integer K, let M(m�K) be the mech-
anism where each bidder’s message space is {m+ l/K|l = 0� � � � �K2}, the allocations are
the restriction of q to this message space, and transfers are given by ti(m)= ti(m)−Lpm,
where Lp is a Lipschitz constant for the premium aggregate transfer T − vQ.32

The purpose of the discount Lpm is to satisfy participation security, since

ti(m�m−i)= m

m+Σm−i
T (m+Σm−i)−Lpm

≤ m

m+Σm−i

(
vQ(m+Σm−i)+Lp(m+Σm−i)

) −Lpm

≤ m

m+Σm−i
vQ(m+Σm−i)�

As a result, mi = m guarantees a nonnegative ex post payoff. An interpretation is that
M(m�K) is a discrete proportional auction, where allocation and transfers are propor-
tional, and, in addition, every bidder receives a small subsidy of Lpm.

PROPOSITION 5: For all ε > 0, there existm and K such that for any information structure
S and equilibrium β of (M(m�K)�S), Π(M(m�K)�S�β)≥Π − ε.

Next, given a positive integer K, let S(K) be the information structure derived from
S by coarsening each bidder’s information, so that instead of observing si, bidder i only
observes the element of the partition{[0�K−1)� [K−1�2K−1)� � � � � [K −K−1�K)� [K�∞)

}
that contains si.

PROPOSITION 6: For all ε > 0, there exists a K such that for every mechanism M and
equilibrium β of (M�S(K)), Π(M�S(K)�β)≤Π + ε.

Thus, the solution we constructed is finitely approximable, and the finite approxima-
tions are natural discrete analogues of their counterparts in the strong maxmin solution.
The proofs of these propositions follow the arguments in Section 4, adapted to the dis-
crete setting. We note that analogous statements of Theorem 3 and other results of this
section hold for the must-sell case. This is discussed further in Appendix B.

We now present our uniqueness result.

32The Lipschitz continuity of T
p = T − vQ is established in the proof of Lemma 14.
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THEOREM 4: Every finitely approximable strong maxmin solution has a profit guarantee
of Π.

PROOF: If a strong maxmin solution has value Π and is finitely approximable, then for
any ε > 0, there exists MF ∈ MF such that expected profit in any information structure
and equilibrium is at least Π − ε. In particular, for any K, there exists an equilibrium of
(MF�S(K)) (since both are finite) in which profit is at least Π − ε. By Proposition 6,
there is a K such that profit in this equilibrium is at most Π + ε. This shows that Π − ε≤
Π + ε. As ε was arbitrary, we conclude that Π ≤Π. The reverse inequality follows from
an analogous argument, using a finite approximation SF and M(m�K). Q.E.D.

An additional implication of Theorem 3 is that the finite approximations of M and S
are approximate solutions of a large family of maxmin mechanism design and minmax
information design problems, parametrized by the equilibrium selection rule.

COROLLARY 1: Fix an arbitrary selection β∗(M�S) from the (nonempty) equilibrium cor-
respondence B on MF × SF . Then

sup
M∈MF

inf
S∈SF

Π
(
M�S�β∗(M�S)

) = inf
S∈SF

sup
M∈MF

Π
(
M�S�β∗(M�S)

) =Π�

Moreover, the sup-inf is attained by the discrete proportional auctions M(m�K), and the
inf-sup is attained by the information structures S(K).

This result provides an additional foundation for proportional auctions, as limits of ε
equilibria of zero-sum games where we fix the equilibrium selection rule.

Corollary 1 can be strengthened in the following manner. The reason for appealing to
finite approximations is to ensure the existence of an equilibrium for a suitably large class
of alternative mechanisms or information structures. Let us say that an information struc-
ture S is regular if for all M ∈ MF , the game (M�S) has an equilibrium. A mechanism
M is regular if for all S ∈ SF , the game (M�S) has an equilibrium.

Due to the noncompactness of the signal space, we do not know whether S is regular.
However, it is easy to regularize S by adding an infinite signal and defining w(∞)= v, so
that w is continuous at infinity. The extended information structure S∗

is regular, since
for any finite mechanism, the associated Bayesian game satisfies the sufficient conditions
in Milgrom and Weber (1985). One can also extend the arguments of Section 4.2 to show
that equilibrium profit is at most Π. As a result, if the domain of the infimum in Corol-
lary 1 is a set of regular information structures that contain S∗

, then the inf-sup is attained
by S∗

.
It is an open question whether or not M can be regularized by a similar technique.33

The difficulty is how to define the allocation and transfer at infinity. There are, however,
other mechanisms that are regular and have the same profit lower bound. In particular, an

33Proposition 5 shows that it is possible to approximate M with finite mechanisms, which are necessarily
regular. In fact, it can be shown that the variant of M where bids are capped at some m> 0 is regular, and
similar steps as in the proof of Proposition 5 can be used to show that it has a profit lower bound that converges
to Π as m→ ∞.
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earlier version of this paper constructed a maxmin mechanism with the same proportional
allocation and the transfer

ti(m)= vqi(m)+ 1
N!

∑
ζ∈Z

∫ ∞

x=0

(
Ξ
p
(Σmζ<ζ(i) + x)−Ξp

(Σmζ≤ζ(i) + x)
)
gN−ζ(i)+1(x)dx�

where Ξ
p
(x)=Ξ(x)− v(μ(x)−Q(x)), Z is the set of permutations of {1� � � � �N}, mζ≤k

is the subvector of messages m{j|ζ(j)≤k}, and mζ<k is the subvector m{j|ζ(j)<k}. This transfer
rule is continuous at infinity. If the allocation is extended so that the good is equally
shared between bidders who submit infinite bids and transfers are extended via continuity,
then the resulting mechanism is regular. Indeed, with a finite information structure, the
resulting Bayesian game is payoff secure and upper semicontinuous, so that the existence
of an equilibrium follows from Reny (1999). More details can be found in our working
paper (Brooks and Du (2019)).

In addition to the solutions we have described, there may be other solutions to the
allocation sensitivity and excess growth equations. Indeed, when the support ofH is {0�1},
distinct allocation and transfer rules are constructed by Bergemann, Brooks, and Morris
(2016). As discussed in Section 3, however, the allocation rule is unique in the must-
sell case when N = 2 and the support of H is convex, and when we restrict attention
to continuous allocation rules and one-dimensional bids. There may also be more exotic
solutions, such as mechanisms that explicitly elicit belief hierarchies. The characterization
of the set of strong maxmin solutions is an interesting topic for future work.

6. MAXMIN AUCTIONS IN THE MANY-BIDDER LIMIT

6.1. Profit Comparison

In this section, we further explore the properties of the maxmin proportional auctions
and the optimal profit guarantee. We begin with a comparison of mechanisms for the
standard uniform distribution with c = 0, for which the optimal profit guarantee was com-
puted in Section 4.4. In Figure 4, we have plotted the optimal guarantee for N ranging
from 1 to 30.34 The can-keep and must-sell guarantees are denoted by the dots and circles,
respectively.

For comparison, the gray dots denote the profit guarantee of the first-price auction, as
computed by Bergemann, Brooks, and Morris (2017), which is (N − 1)/(4N − 2). Also,
the solid black line denotes the best guarantee from a posted price mechanism, which is
1/8 and is obtained with a price of 1/4.35

A striking feature of this picture is that the optimal profit guarantee increases in N and
appears to be converging toward 0.5. The latter is the ex ante expected value, which is ob-
viously an upper bound on profit in any mechanism. In fact, as N goes to infinity, the op-
timal profit guarantee converges to the expected surplus. This remarkable fact is implied
by the earlier result of Du (2018), who constructed a particular sequence of mechanisms
and profit guarantees (the diamonds) which converge to the expected value. A fortiori,
the optimal profit guarantee must converge as well.

The rest of this section explores and extends this result. We generalize the bound to
positive production costs, in which case the correct limit profit guarantee is the ex ante

34A similar figure previously appeared in Du (2018).
35The worst-case information is a public signal indicating whether the value is above or below 1/2.
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FIGURE 4.—Comparing maxmin mechanisms to other mechanisms.

gains from trade. The optimal rate of convergence is characterized. We also show that the
limit is attained even with must-sell mechanisms, and perhaps most surprisingly, we argue
that the same limit holds even if the distribution of the value is incorrectly specified. As an
illustration, the triangles in Figure 4 denote a profit guarantee for the maxmin auction that
is calibrated to an exponentially distributed value, but when the value is actually standard
uniform.36 Finally, we describe the limiting maxmin aggregate allocation and transfer.

6.2. Information and Welfare in the Many-Bidder Limit

We now proceed formally. As a preliminary step, we address the left-tail assumption on
the value distribution introduced in Section 2, which were only assumed for a single N ,
whereas we now take N to infinity. It turns out, however, that no additional assumption
is needed.

LEMMA 9: If the left-tail assumption holds for N , it also holds for any N ′ >N .

Proofs for all results of this section are provided in Appendix C.
We now denote the optimal profit guarantees for the can-keep and must-sell models

by ΠN(H) and Π̂N(H), respectively, emphasizing their dependence on the number of
bidders and the distribution of the value. The production cost is held fixed when we vary
N and H.

A simple upper bound on the profit guarantee that holds for all N is the ex ante gains
from trade. For if the bidders have no information about the value, the best the seller can
do is make a take-it-or-leave-it offer at a price equal to the ex ante expected value. We
now show that this upper bound is tight.

PROPOSITION 7: In the limit as N goes to infinity, the profit guarantees ΠN(H) and
Π̂N(H) converge to the ex ante gains from trade at a rate of 1/

√
N .

36In Section 2, we assumed that the support of H is bounded, which is violated by the exponential distribu-
tion. In this calculation, we have taken the limit of the formulae for bounded distributions. We suspect that our
results extend to unbounded distributions as long as the right tail is not too heavy.
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Here is a sketch of the argument. Recall that under the minmax information, the
aggregate signal is a sufficient statistic for the value. Let us change the units of each
bidder’s signal according to37 sCi = (si − (N − 1)/N)/

√
N − 1, where the “C” denotes

a central limit normalization. The centered aggregate signal x = ΣsC = (Σs − (N −
1))/

√
N − 1 has cumulative distribution GC

N(x) = GN(
√
N − 1x + N − 1) and density

gCN(x) = √
N − 1gN(

√
N − 1x+N − 1). We can correspondingly center the value func-

tion as wC
N(x)=wN(

√
N − 1x+N − 1), where we now emphasize the dependence on N .

The centered gains function γCN is defined analogously.
The Lindeberg–Lévy theorem implies that the distribution of the centered aggregate

signal converges to a standard Normal with distribution � and density φ. We argue in
Appendix C that the normalized fully-revealing gains function converges almost surely to
γ̂C∞(x) =H−1(�(x)) − c, which is just a change of units from γ̂N , and the graded gains
function converges almost surely to

γC∞(x)=
{

0 if x < x∗�
H−1

(
�(x)

) − c if x≥ x∗�

where x∗ is the largest x such that

0 =
∫ x

y=−∞
γ̂C∞(y)φ(y)dy� (29)

(Note that x∗ is −∞ if v−c > 0 with probability 1.) Thus, in the limit, there is only grading
at the bottom, and then only if the gains from trade may be negative.

With this normalization, the hazard rate of each bidder’s signal becomes
√
N − 1, so

that each bidder’s virtual value is

γCN(x)− 1√
N − 1

d

dx
γCN(x)�

Since γCN is bounded, information rents go to zero at a rate of 1/
√
N − 1. Note that only

the bidder who is allocated the good gets an information rent. Thus, total bidder surplus
goes to zero at a rate of 1/

√
N − 1. At the same time, it is always weakly optimal for the

seller to allocate the good, so that profit converges to the ex ante gains from trade.
This sketch glosses over significant technical complications. The convergence of the

gains function is only almost everywhere, and along the sequence of minmax information
structures, the hazard rate and the graded gains function are both changing. The formal
proof deals with these issues by working directly with the integral for the difference be-
tween ex ante gains from trade and profit, scaled up by

√
N − 1. This sequence converges

to a positive constant, thus establishing the proposition.

6.3. Robustness to the Prior

We have assumed that the seller does not know the information structure, but does
know the value distribution exactly. There is clear tension here. It turns out, however,
that our results are robust to misspecification of the prior, as we now explain.

37This central limit normalization is obviously asymptotically equivalent to the more conventional normal-
ization, (si − 1)/

√
N . The normalization with

√
N − 1 turns out to be much more analytically convenient, for

example, in the proof of Lemma 12.
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Suppose that the seller runs the maxmin proportional auction for the prior H, denoted
MN(H). Let λN(v;H) denote the associated optimal multipliers given by (18). The proof
of Proposition 3 establishes that a lower bound on profit is the expectation of λN(v;H).
In that argument, the prior H only appears at the last step as a mean-preserving spread
of the distribution of w(s). As a result, even if the prior is some H ′ �=H, we still obtain a
lower bound on profit, which is the expectation of λN(v;H) under H ′. Since λN(v;H) is
bounded and continuous, the change in the profit guarantee is small as long as H is close
to H ′ in the weak-∗ topology.

PROPOSITION 8: Fix a distribution H ′ with support contained in [v� v]. In any equilibrium
of MN(H) for any information structure where the value distribution is H ′, expected profit is
at least

ΠN

(
H�H ′) =

∫ v

v=v
λN(v;H)H ′(dv)�

which is a linear and weak-∗ continuous function of H ′.

Thus, when the prior is only slightly misspecified, the loss in the profit guarantee is
small. If the prior is badly misspecified, the loss may be substantial, but when the number
of bidders is large, the loss from misspecification vanishes.

PROPOSITION 9: Fix a distributionH ′ with support contained in [v� v]. AsN goes to infin-
ity, ΠN(H�H

′) converges to the ex ante gains from trade under H ′.

Note that this limiting profit guarantee need not be positive, in which case the optimal
profit guarantee is zero and it is better to shut down production.

When c ≤ v, this result follows from Propositions 7 and 8. To see why, consider what
would happen if the seller ran MN(H), but the true prior puts probability 1 on a particular
value v ∈ [v� v]. Proposition 8 says that profit must be at least λN(v;H). At the same
time, profit in this counterfactual cannot be greater than v − c, which is the efficient
surplus, so λN(v;H)≤ v− c. But Proposition 7 says that expected profit guarantee under
H converges to the ex ante gains from trade, which is only possible if λN(v;H) converges
to v− c for H-almost all v.

This argument establishes Proposition 9 ifH ′ is absolutely continuous with respect toH
and there is common knowledge of (ex post) gains from trade. The result is much stronger.
In Appendix C, we show that λN(v) converges pointwise to v − c for all v ∈ [v� v], even
when there is not common knowledge of gains from trade.

Analogues of Propositions 8 and 9 also hold for the must-sell model. The necessary
modifications to the proof are minor, as explained in Appendix C.

6.4. Limiting Allocation and Transfer

As a last topic, we present two descriptions of the limiting maxmin allocation and trans-
fer. For this section, we focus on a relatively simple case when the value distribution is
asymptotically single crossing. In particular, we assume there exists a C > 0 such that for
all a�b ∈ [v� v] such that a ≤ b, H(b)−H(a) ≥ C(b− a).38 In addition, we assume that
v �= c.

38This is equivalent to assuming that the absolutely continuous part of H has a density that is bounded away
from zero on [v� v].
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LEMMA 10: Suppose that the above stated conditions hold. Then there exists an N̂ such
that for allN > N̂ , if v > c, there are no graded intervals, and if v < c, γCN has a single graded
interval of the form [−√

N − 1�xN].

Let us next define

Q
C

N(x)=QN(x
√
N − 1 +N − 1)� T

C

N(x)= TN(x
√
N − 1 +N − 1)�

PROPOSITION 10: Under the conditions preceding Lemma 10, for all x ∈ R,
limN→∞Q

C

N(x)= 1 and

lim
N→∞

T
C

N(x)= 1
φ(x)

∫ x

y=−∞
F(y)φ(y)dy�

where

F(x)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−cx+ γ̂C∞
(
x∗)(1 −�(

x∗)) +
∫ ∞

y=x∗
γ̂C∞(y)

(
1 −�(y))dy

if x < x∗�

−cx− γ̂C∞
(
x∗)�(

x∗) −
∫ x

y=x∗
γ̂C∞(y)�(y)dy +

∫ ∞

y=x
γ̂C∞(y)

(
1 −�(y))dy

if x > x∗�

where γ̂C∞(x)=H−1(�(x))− c and x∗ is the largest solution to equation (29).

The limits for the must-sell mechanism are the same as those in Proposition 10, substi-
tuting x∗ = −∞.

Thus, under the central limit normalization, the good is asymptotically always allocated.
One might have guessed that in this limit the aggregate transfer would be equal to the
expected value under the minmax information, but Proposition 10 shows that this is not
the case.

In some cases, the formula for the limit transfer simplifies substantially. The running
uniform example does not satisfy the hypotheses of Lemma 10, since v= c = 0. Nonethe-
less, in Appendix D.2, it is shown that there is no grading in the limit, and

lim
N→∞

T
C

N(x)=�(x)+ �(x)−�(x√2)√
πφ(x)

�

We get a somewhat different perspective on the limit when we use a law of large num-
bers normalization, in which signals are i.i.d. exponential with arrival rateN . Let us define

Q
L

N(x)=QN(Nx)� T
L

N(x)= TN(Nx)�

PROPOSITION 11: Under the conditions preceding Lemma 10, for all x ∈ R,

lim
N→∞

Q
L

N(x)=
{

1 if x∗ = −∞�

min{x�1} otherwise
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and

lim
N→∞

T
L

N(x)=
{

max{v� c} if x < 1�
v if x > 1�

PROOF: The limit of the transfer follows from Proposition 10 and computations using
l’Hôpital’s rule for limx→−∞ limN→∞ T

C

N(x) and limx→∞ limN→∞ T
C

N(x).
For the allocation, if v < c, then there is a finite N̂ such that Q

L

N = min{Nx/
(xN

√
N − 1 +N − 1)�1} for all N > N̂ . Since xN → x∗, we conclude that Q

L

N converges
to min{x�1}. If v > c, then there is a finite N̂ such that Q

L

N(x)= 1 for all N > N̂ . Q.E.D.

Thus, rationing persists in the limit under the law of large numbers normalization when
the gains from trade might be negative. However, the aggregate transfer pushes the ag-
gregate bid to 1, so that in equilibrium, the good will almost always be allocated.

7. CONCLUSION

This paper has studied the canonical auction design problem when values are common.
The novelty is to use an informationally robust criterion for measuring auction perfor-
mance. The spirit of the exercise is to identify mechanisms that are less vulnerable to
misspecification of information and behavior, and are therefore more viable in a practical
setting, where a designer may be unwilling or unable to commit to a specific description
of information.

The literature to which we contribute has previously shown that it is possible to obtain
nontrivial profit guarantees across all information structures and equilibria, even with
simple mechanisms like the first-price auction (Bergemann, Brooks, and Morris (2017)).
It has also shown that there are mechanisms whose profit guarantees are unimprovable
when the number of bidders is large (Du (2018)). Our marginal contribution is to es-
tablish, in a rich class of environments, the precise limit of what can be attained. We
have also developed new methodology for the characterization of maxmin mechanisms,
namely the double revelation principle and the critical conditions on the aggregate alloca-
tion sensitivity and the aggregate excess growth. Finally, we have shown that the optimal
guarantee can be attained with the relatively simple class of proportional auctions, which
are parametrized by just the aggregate allocation and aggregate transfer as functions of
the aggregate bid. The analysis also indicates that simple aggregate allocation rules that
increase linearly until the available supply is exhausted can perform well.

To our knowledge, proportional auctions are new to the literature, and we are un-
aware of instances where these auctions have been used in practice. We therefore view
our contribution as normative. Our model stays within the Bayesian mechanism design
framework, broadly defined, but also allows us to remedy conceptual and practical limi-
tations associated with having to commit to a specific information structure. To be sure,
this approach introduces new conceptual issues: Why should the bidders have common
knowledge of the information structure, while the seller does not? Why does the seller
not simply induce the bidders to reveal the information structure and then run the opti-
mal mechanism for the environment they report? This is clearly a theoretical possibility,
but it runs contrary to our primary motivation, which is to identify mechanisms with desir-
able welfare properties that remain feasible when we respect the designer and the agents’
limited ability to articulate higher-order beliefs. We have not imposed such constraints
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explicitly. To us, the value of the model is not just in its assumptions, but also in the form
of the results: mechanisms that have desirable welfare properties but also feature a sim-
ple bidding interface and rule set, so that they remain feasible in the face of additional
practical constraints. As for the common prior among the agents, this is obviously a strong
assumption, but we find it relatively palatable as an as-if description of agents’ behavior,
as long as it does not need to be explicitly communicated by the bidders and it is not a
necessary input to compute the optimal mechanism.

Nonetheless, it is true that in distancing ourselves from the untenable assumptions of
the standard model, we have taken an equally extreme and implausible position, which
is that the designer puts no restrictions on information except for the value distribution
and the existence of a common prior. Verily, the truth must lie somewhere in between.
Auction designers may be willing to rule out some models without committing themselves
to a single description of the world. We expect the theory to become even more useful as
we explore the middle ground between these two extremes by incorporating reasonable
restrictions on beliefs into the informationally robust mechanism design problem.

APPENDIX A: OMITTED PROOFS FOR SECTION 4

PROOF OF PROPOSITION 1: (i) =⇒ (ii). Suppose (M�S�β) is a strong maxmin solu-
tion with profit guarantee Π. Let X be the disjoint union of {Mi}Ni=1 and {Si}Ni=1. Clearly,
M ∈ M(X) and S ∈ S(X). We will argue that (M�S) is a nontrivial Nash equilibrium of
G(X�β∗) for every β∗ ∈ B(X). Fix a selection β∗. By C3, B(M�S) is nonempty, so that
the seller and Nature’s payoffs from (M�S) are finite. Moreover, C1 and C2 imply that all
equilibria of (M�S) have the same profit, which isΠ. The payoffs from (M�S) are there-
fore (Π�−Π), Clearly, neither party can profit by deviating so that the resulting game has
no bidder equilibria, so we restrict attention to deviations that result in an equilibrium.
For any M′ ∈ M(X) such that B(M′�S) �= ∅, C1 implies thatΠ(M′�S�β∗(M′�S))≤Π,
and for any S ′ ∈ S with B(M�S ′) �= ∅, C2 implies that Π(M�S ′�β∗(M�S ′))≥Π. Thus,
(M�S) is a nontrivial Nash equilibrium.

(ii) =⇒ (i). Suppose that (M�S) ∈ M(X) × S(X) is a nontrivial Nash equilibrium
of G(X�β∗) for all β∗ ∈ B(X). Fix β ∈ B(M�S). We claim that (M�S�β) is a strong
maxmin solution with profit guarantee Π =Π(M�S�β). C3 is immediate. We now show
C1. Fix any M′ and equilibrium β′ of (M′�S). Then by the revelation principle, there
is an incentive compatible direct mechanism on S for which truth-telling is an equilib-
rium. Since M′ is participation secure, bidders’ payoffs must all be nonnegative, so we
can extend the direct mechanism by adding a participation-secure message, so that if any
bidder sends the participation-secure message, the seller keeps the good and all transfers
are zero. Call this mechanism M′′, and observe that M′′ ∈ M(X) (since by construc-
tion M(X) contains all participation mechanisms with message spaces Si plus an addi-
tional message). Since a bidder’s payoff from this participation-secure message is zero,
the truthful strategies β′′ are an equilibrium. Now fix a selection β∗ for which the truthful
equilibrium β′′ is selected on (M′′�S) and β is selected on (M�S). Then since (M�S)
is a Nash equilibrium of G(X�β∗), we conclude that

Π
(
M′�S�β′) =Π(

M′′�S�β′′)
=Π(

M′′�S�β∗(M′′�S
))

≤Π(
M�S�β∗(M�S)

)
=Π(M�S�β)=Π�
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This proves C1. C2 follows by an analogous argument, where we use the well known
fact that for any S ′ and equilibrium of (M�S ′), there is a BCE S ′′ that, together with
the obedient strategies, induces the same profit. Moreover, this BCE, using the message
space of M as the signal space, is necessarily in S(X). Q.E.D.

LEMMA 11: The ex ante expectation of Ξ is zero:∫ ∞

x=0
Ξ(x)gN(x)dx= 0�

PROOF: Using the formula for Ξ in equation (19) and Lemma 6, it suffices to show
that

Π =
∫ ∞

x=0

[
μ(x)ŵ(x)− cQ(x)]gN(x)dx� (30)

From (22), note that∫ ∞

x=0

(
μ(x)−Q(x))gN(x)dx=

∫ ∞

x=0

(
Q

′
(x)+

(
N − 1
x

− 1
)
Q(x)

)
gN(x)dx

=
∫ ∞

x=0

(
Q

′
(x)gN(x)+ (

gN−1(x)− gN(x)
)
Q(x)

)
dx

=
∫ ∞

x=0

d

dx

(
gN(x)Q(x)

)
dx= 0� (31)

since gN(0)Q(0)= 0 and gN(x)Q(x) goes to zero as x→ ∞. Thus, (30) is equivalent to

Π =
∫ ∞

x=0

(
ŵ(x)− c)μ(x)gN(x)dx�

Using γ̂(x)= ŵ(x)− c and the formula for Π in (3), we see that the above equation is
equivalent to ∫ ∞

x=0
γ(x)gN−1(x)dx=

∫ ∞

x=0
γ̂(x)μ(x)gN(x)dx� (32)

When �(x)= �̂(x), we have γ(x)= γ̂(x) and μ(x)= (N−1)/x, so μ(x)gN(x)= gN−1(x)
and the two integrands are exactly equal. On the other hand, over a graded interval [a�b],∫ b

x=a
γ̂(x)μ(x)gN(x)dx= C(a�b)(̂�(b)− �̂(a))

= C(a�b)(�(b)− �(a))
= C(a�b)

∫ b

x=a
γ(x)gN(x)dx

=
∫ b

x=a
γ(x)gN−1(x)dx�
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where the third equality follows from γ(x) = γ(a)exp(x − a), and the fourth equality
follows from the fact that for n≥ 1,∫ b

x=a
γ(x)gn(x)dx= γ(a)exp(−a)x

n

n!
∣∣∣∣b
x=a

= γ(a)exp(−a)b
n − an
n! �

Q.E.D.

LEMMA 12: For all x > 0, |Q′
(x)| ≤ (N − 1)/x, and if Σm= x, then∣∣∣∣ 1

�

(
qi(mi +��m−i)− qi(m)

)∣∣∣∣ ≤ N + 1
x

�

PROOF: Note that on a graded interval,

Q
′
(x)= C(a�b)

N
− (N − 1)D(a�b)

xN
�

This is at most 1/x when we replace C(a�b) with the bound in equation (21) and set
D(a�b)= 0. Moreover, since C(a�b)≥ 0 and

D(a�b)= bN − abN−1

bN − aN aN−1 ≤ aN−1 ≤ xN−1� (33)

we conclude that Q
′
(x) is at least −(N − 1)/x, so |Q′

(x)| ≤ (N − 1)/x.
Next observe that∣∣∣∣ 1

�

(
qi(mi +��m−i)− qi(m)

)∣∣∣∣
=

∣∣∣∣ 1
�

(
mi +�
Σm+�Q(Σm+�)− mi

Σm
Q(m)

)∣∣∣∣
=

∣∣∣∣ 1
�

(
mi

Σm+�
(
Q(Σm+�)−Q(Σm)) + �

Σm+�Q(Σm+�)

+
(

mi

Σm+� − mi

Σm

)
Q(m)

)∣∣∣∣
≤

∣∣∣∣mi

�

Q(Σm+�)−Q(m)
Σm+�

∣∣∣∣ +
∣∣∣∣Q(Σm+�)
Σm+�

∣∣∣∣ +
∣∣∣∣ mi

Σm(Σm+�)Q(Σm)
∣∣∣∣

≤ mi

�

�
N − 1
x

Σm+� + 2
Σm

≤ N + 1
x

�

where the last line follows from the facts that Q
′
(x)≤ (N − 1)/x and Q(x)≤ 1. Q.E.D.

LEMMA 13: As x→ ∞, Q(x)→ 1.

PROOF: For each x ∈ R+, either x is not graded, in which case Q(x) = 1, or x is
in a graded interval [a�b], in which case |Q(x) − 1| ≤ N−1

a
(b − a) since Q(a) = 1 and
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|Q′
(x)| ≤ N−1

a
by Lemma 12. But the length of a graded interval [a�b] is bounded above

by a constant C = log(v)− log(γ(0)) since

v≥ γ(b)= γ(a)exp(b− a)≥ γ(0)exp(b− a)�
So |Q(x) − 1| ≤ N−1

x−C C when x is in a graded interval [a�b]. We conclude that
limx→∞Q(x)= 1. Q.E.D.

For proving Lemma 8, it is convenient to decompose ti(m) into a “base” component
of vqi(m) (whose derivative may be unbounded around 0) and a “premium” compo-
nent of tpi (m) = ti(m) − vqi(m) (whose derivative is bounded; see Lemma 14 below).
Let Ξ

p
(x)=Ξ(x)− v(μ(x)−Q(x)) and

T
p
(x)= T(x)− vQ(x)= 1

gN(x)

(∫ x

y=0
Ξ(y)gN(y)dy − vQ(x)gN(x)

)
= 1
gN(x)

∫ x

y=0
Ξ
p
(y)gN(y)dy�

where the last equality follows from d
dx
(Q(x)gN(x)) = (μ(x) − Q(x))gN(x) by the rea-

soning leading to (31). Since both Q and T are right-differentiable (Lemmas 5 and 7), so
is T

p
, and it is easy to verify the differential equation(

N − 1
x

− 1
)
T
p
(x)+ d

dx
T
p
(x)=Ξp

(x)� (34)

LEMMA 14: The ratio

t
p

i (mi +��m−i)− tpi (m)
�

is bounded over all m ∈M and �> 0.

PROOF: First, we show that Ξ
p

is bounded. Given that ŵ(x) is bounded above and
μ(x) is decreasing from Lemma 3, it suffices to show that lim supx→0(ŵ(x)− v)/x <∞.
This is a direct implication of the first part of the left-tail assumption, since xϕ < x for x
sufficiently small.

Next suppose Σm> 0. Since tpi (m) is right-continuous at m, we have∣∣∣∣∂tpi (m)∂mi

∣∣∣∣ =
∣∣∣∣ Σm−i
(Σm)2T

p
(Σm)+ mi

Σm

dT
p

dx
(Σm)

∣∣∣∣ ≤
∣∣∣∣Tp(Σm)Σm

∣∣∣∣ +
∣∣∣∣dTpdx (Σm)

∣∣∣∣�
We argue that the right-hand side of the above equation is bounded over allm �= 0, which
implies the boundedness of (tpi (mi+��m−i)− tpi (m))/�. Since T

p
satisfies equation (34),

and Ξ
p

and T
p

are bounded, it suffices to show that T
p
(x)/x is bounded. This follows

from l’Hôpital’s rule:

lim
x→0

T
p
(x)

x
= lim

x→0

∫ x

y=0
Ξ
p
(y)gN(y)dy

xgN(x)
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= lim
x→0

Ξ
p
(x)gN(x)

gN(x)+ x(gN−1(x)− gN(x)
)

= lim
x→0

Ξ
p
(x)

1 + x((N − 1)/x− 1
)

= −λ(v)+ (v− c)Q(0)
N

� (35)

Finally, for m = 0, we note (tpi (��0) − t
p

i (0))/� = T
p
(�)/� and again appeal to the

boundedness of T
p
(x)/x. Q.E.D.

LEMMA 15: There exists b > 0 such that either [0� b] is a graded interval or [0� b] is a
nongraded interval.

PROOF: Case 1: v ≤ c. If there were no graded interval at zero, then we would have
γ(0)= γ̂(0)= v− c ≤ 0. Lemma 2 then implies that for all x≥ 0, γ(x)≤ γ(0)exp(x)≤ 0,
so that γ has a nonpositive expectation. This contradicts Lemma 1, which implies that the
expectation of γ equals the expectation of v− c under H, and the hypothesis that the ex
ante gains from trade is strictly positive.

Case 2: v > c. The second part of the left-tail assumption says there exists an ε > 0 such
that

γ̂
(
x′)

exp
(
x′) ≥ γ̂(x)

exp(x)

for all 0 ≤ x′ ≤ x≤ ε. Thus, �̂ ◦E−1 is concave on the interval [0�E(ε)], so that if a subset
[a�b] of [0�E(ε)] is not graded, then [0� a] is not graded as well. The claim of the lemma
follows since either [0�E(ε)] is a subset of a graded interval or there exists a nongraded
interval that starts at zero. Q.E.D.

PROOF OF LEMMA 8: Fix an information structure S and an equilibrium β of (M�S).
Let us rewrite equation (25) as∫

S

∫
M

[(
w(s)− v)∇ · q(m)− ∇ · tp(m)]β(dm|s)π(ds)≤ 0�

Equation (35) implies that ∇ · tp(0)= −λ(v)+ (v− c)Q(0).
Since (tpi (mi +��m−i)− tpi (m))/� is bounded over �≥ 0 (Lemma 14), the dominated

convergence theorem then implies that

lim
�↘0

∫
S

∫
M

t
p

i (mi +��m−i)− tpi (m)
�

β(dm|s)π(ds)=
∫
S

∫
M

∂t
p

i

∂mi

(m)β(dm|s)π(ds)� (36)

We will argue that

lim inf
�↘0

∫
S

∫
M

(
w(s)− v)qi(mi +��m−i)− qi(m)

�
β(dm|s)π(ds)

≥
∫
S

∫
M

(
w(s)− v) ∂qi

∂mi

(m)β(dm|s)π(ds) (37)
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by appealing to Fatou’s lemma: notice that ∂qi
∂mi
(m)= lim�↘0(qi(mi + ��m−i)− qi(m))/�

is well defined when m �= 0 by Lemma 5; for m = 0, the limit is ∂qi
∂mi
(m) = 1

b
if [0� b] is a

graded interval, and ∂qi
∂mi
(m)= ∞ otherwise.

We consider two cases.
Case 1. If there is no grading anywhere (so qi(m) = mi/Σm) or if [0� b] is the only

graded interval for some b > 0 (so qi(m)=mi/max(Σm�b)), then Fatou’s lemma applies
to (37), since qi(mi +��m−i)≥ qi(m) for all m and all �> 0.

Case 2. Let a be the infimum of left endpoints of graded intervals that are strictly posi-
tive (of which there must be at least one if we are not in Case 1); Lemma 15 implies that
a > 0. We claim

qi(mi +��m−i)− qi(m)
�

≥ −(N + 1)
a

(38)

holds for all m and all �> 0, so Fatou’s lemma also applies to (37) in this case.
If Σm ≥ a, then (38) follows from Lemma 12. If Σm+ � ≤ a, then qi(mi + ��m−i) ≥

qi(m) by examining the functional form of q as in Case 1, so (38) again holds.
Now suppose Σm< a and Σm+�> a. Let m′

i = a−Σm−i. Clearly, we have

qi(mi +��m−i)− qi(m)
�

= δqi(mi +��m−i)− qi
(
m′
i�m−i

)
mi +�−m′

i

+(1−δ)qi
(
m′
i�m−i

) − qi(m)
m′
i −mi

for δ = (mi + � − m′
i)/� ∈ (0�1). By applying Lemma 12 to the term following δ and

applying qi(m
′
i�m−i) ≥ qi(m) to the term following 1 − δ, we conclude that (38) again

holds.
Since β is an equilibrium, for any bidder i and any fixed �> 0, we have∫
S

∫
M

((
w(s)− v)qi(mi +��m−i)− qi(m)

�
− t

p

i (mi +��m−i)− tpi (m)
�

)
β(dm|s)π(ds)

≤ 0�

Therefore, equations (36) and (37) imply (25) if we sum across i. Q.E.D.

LEMMA 16: There exists a �̂ such that for all �< �̂ and x ∈R+,

γ(x)

(
gN(x)+ gN(x)− gN(x−�)

exp(�)− 1

)
≤

{
γ(x)

(
gN(x)+ 2

)
if x < 1�

γ(x)
[
gN(x)+ 2gN−1(x)

]
if x≥ 1�

This bounding function is integrable.

PROOF: If x≥ �, then

gN(x)− gN(x−�)
exp(�)− 1

= exp(−x)
(N − 1)!

xN−1 − (x−�)N−1 exp(�)
exp(�)− 1

≤ exp(−x)
(N − 1)!

xN−1 − (x−�)N−1

exp(�)− 1

≤ exp(−x)
(N − 1)!(N − 1)xN−2 �

exp(�)− 1
= gN−1(x)

�

exp(�)− 1
�
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where the second-to-last line follows from convexity of xN−1, so xN−1 − (x − �)N−1 ≤
(N − 1)xN−2�. Since �/(exp(�)− 1)→ 1 as �→ 0, we can take �̂ ≤ 1 small enough so
that for � < �̂, the ratio is less than 2. Also, as long as � < N − 1, gN is increasing for
x ∈ [0��], so that for x in this range,

gN(x)− gN(x−�)
exp(�)− 1

≤ gN(�)

exp(�)− 1
� (39)

This expression converges to zero pointwise forN > 2 and converges to 1 forN = 2. Thus,
we can take � small so that for x < �, the right-hand side of (39) is less than 2.

Integrability follows from the fact that γ(x) is bounded by v. Q.E.D.
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