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Abstract

A single unit of a good is sold to a group of bidders. The seller knows the
expectation of each bidder’s value and a bound on the support of values, but the
seller does not know the correlation structure or bidders’ (common prior) beliefs. We
construct a strong maxmin solution (Brooks and Du, 2020), consisting of

• a maxmin mechanism that maximizes minimum profit across all correlation and
information structures and all equilibria, and

• a minmax correlation and information structure that minimizes maximum profit
across all mechanisms and equilibria.

The maxmin mechanism has the feature that bidders with relatively low expected val-
ues are excluded from the auction, while bidders with high expected values participate
in a “proportional auction”: Bidders submit non-negative real numbers, interpreted
as the share of the good demanded by each bidder. The seller fills the demands if
possible, and otherwise the good is rationed proportional to the bids. We describe
a class of transfer rules that, together with the proportional allocation, complete a
maxmin mechanism. This class of auctions generalizes those described by Brooks and
Du (2020).
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1 Introduction

This paper studies the design of profit-maximizing mechanisms for the sale of goods when
there is ambiguity about both the distribution of bidders’ values and bidders’ higher order
beliefs. Specifically, we consider a setting where there is a fixed set of bidders for a single
unit of a good. The seller of the good designs the auction to maximize profit. The bidders’
values and higher-order beliefs about values are described by a common-prior information
structure. The seller does not know the information structure. Rather, all the seller knows is
the expectation of each bidder’s value and that there is a common upper bound on bidders’
values. We assume the seller wants to maximize his worst-case profit across information
structures consistent with this knowledge.

For this environment, we characterize a set of strong maxmin solutions (Brooks and Du,
2020a). Each strong maxmin solution is a triple of a mechanism, an information structure,
and a strategy profile for the bidders, such that: the strategies are an equilibrium for the
mechanism and information structure; for this information structure, the mechanism and
equilibrium maximize profit among all mechanisms and equilibria; and for this mechanism,
the information structure and equilibrium minimize profit among all information structures
and equilibria, where the information structure satisfies the aforementioned bounds on
values and the known expected value for each bidder. Thus, the first and second components
of the strong maxmin solution are a “max-min” mechanism and a “min-max” information
structure: the mechanism maximizes minimum profit across all information structures and
equilibria, subject to the constraint on the mechanism that an equilibrium exists at the min-
max information. Similarly, the information structure minimizes maximum profit across
all mechanisms and equilibria, subject to constraint on the information structure that an
equilibrium exists at the max-min mechanism. We refer the profit at the equilibrium in the
strong maxmin solution as the profit guarantee.1

We study a particular class of strong maxmin solutions that have the following struc-
ture:2 Both the signals in the information structure and the actions in the mechanism are
non-negative real numbers. In addition, the bidders’ strategies are “truthful” (or “obedi-
ent”), in that with probability one, each bidder sends a action equal to their signal. In
other words, the mechanism is a direct mechanism on the information structure, and the
information structure is a Bayes correlated equilibrium (Bergemann and Morris, 2016) of
the mechanism. Thus, the solution satisfies the “double revelation principle” as described
in Brooks and Du (2020a). In addition, the ex ante distribution of bidders’ signals is
independent exponential with an arrival rate normalized to one, and only local incentive
constraints bind at the profit-maximizing direct mechanism.3

Within this class, we identify a particular information structure which is a worst-case
for the seller. First, for bidders whose expected values are below a cutoff, their signals are
completely uninformative (and in fact we could have specified information so that these

1Brooks and Du (2020a,b) have extended discussions on the virtues of this approach to modeling infor-
mationally robust auction design.

2In a discrete setting, Brooks and Du (2020b) show that this structure is without loss of generality.
Similar structure arises in the common-value setting in Brooks and Du (2020a).

3As we discuss below, these are equivalent properties.
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bidders do not even receive signals). These bidders are always excluded from the allocation.
For the remaining “included” bidders, interim expected values depend on a weighted sum of
the included bidders’ signals. These weights are a parameter of the information structure,
and they are chosen to match the known mean of each bidder’s value. When the weighted
sum is above a cutoff (which we normalize to be equal to one), all included bidders’ expected
values are at the upper bound on the value. Otherwise, the bidders’ interim expected values
are exponential functions of the weighted sum. This information structure has the critical
feature that whenever the weighted sum of signals is less than one, the seller is indifferent
between not allocating the good and allocating to each of the included bidders.

For strong maxmin solutions of the aforementioned class and with this constituent in-
formation structure, we have two main results. Theorem 1 gives sufficient conditions on
a mechanism for it to complete a strong maxmin solution. Theorem 2 then constructs a
mechanism that satisfies the sufficient conditions. The conditions concern (i) the sensitivity
of each bidder’s allocation to their own action and (ii) the excess growth of each bidder’s
transfer, i.e., the difference between the sensitivity of the bidder’s transfer with respect to
their own action and the transfer itself. The condition (i) depends on the same weights
which parameterize the information structure. In particular, a bidder’s allocation sensitiv-
ity must be weakly less than their weight, and it must be equal to their weight when the
weighted sum of actions is less than one. With respect to (ii), the transfer rule must have a
particular aggregate excess growth, which is pinned down by the choice of allocation rule.

In general, there are many allocation rules that satisfy condition (i), and holding fixed
the allocation rule, there are many transfer rules satisfying the excess growth equation. The
solution we construct in Theorem 2 has a weighted proportional allocation: The aggregate
allocation is equal to the minimum of the weighted sum and 1, and each bidder’s individual
allocation is proportional to their weighted action.4 Finally, we show constructively that
the excess growth equation always has a solution, as long as the allocation satisfies the
sufficient condition.

An important special case is when the model is symmetric, so that all bidders have the
same expected value. In this case, we find that the min-max information structure is one
in which bidders have pure common values, meaning that the bidders’ values are perfectly
correlated. At a high level, the degree of correlation in bidders’ values has two effects: On
the one hand, the more positively correlated are bidders’ values, the lower is the efficient
surplus. On the other hand, positive correlation reduces bidders’ private information about
the good, which in principle could lead to lower information rents. In the event, the tradeoff
is resolved unambiguously in favor of more correlation, and information rents are derived
from the bidders’ partial and differential information about their common value.

Thus, all bidders have the same weight, and the information structure is exactly that
described by Brooks and Du (2020a). Moreover, there is a max-min mechanism that is
a proportional auction, which consists of the previously described proportional allocation,
and also a proportional transfer, in which the aggregate transfer depends only on the sum
of the signals, and each bidder’s individual transfer is proportional to their action. An
equivalent interpretation is that there is a constant price per unit that depends only on

4Under a change of units, where each bidder’s action is scaled up by their weight, this is the same
proportional allocation as identified in Brooks and Du (2020a).
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the aggregate action. A key takeaway from this paper is that proportional auctions, which
were originally motivated in an environment when values are common, are robustly optimal
even when values are non-common and the correlation structure is ambiguous.5

In addition to these main theorems, we consider three further topics. First, we consider
what happens to the profit guarantee when the number of bidders grows large. When
all bidders have the same expected value, the profit guarantee converges to that expected
value, which is the efficient surplus when all values are perfectly correlated (as they are
in the min-max information). Second, we use our characterizations to show an intuitive
comparative static, that the profit guarantee is non-decreasing in the bidders’ expected
values. Finally, we discuss and give examples of other max-min mechanisms with non-
proportional allocation rules.

As a final topic for this introduction, we discuss the related literature. First and fore-
most, our model can be viewed as a variant of Brooks and Du (2020a). In that paper,
bidders have a pure common value that follows a known distribution. In contrast, we allow
for non-common values and asymmetry across bidders. At the same time, we only constrain
the mean of each bidder’s value, and we endogenize the correlation structure according to
the worst-case criterion. The structure of the solution shares much of the structure of
that in Brooks and Du (2020a), and many of the proofs and analytical techniques carry
over. Also related is Brooks and Du (2020b), which shows that there exist “approximate”
strong maxmin solutions, consisting of finite mechanisms and information structures, and
where all equilibria on the pair have profit that is close to the limit profit guarantee. These
approximate strong maxmin solutions exist in a fairly general class of environments, includ-
ing the one considered here. Moreover, the approximate maxmin mechanism and minmax
information structure have much of the same structure as the strong maxmin solutions
we construct in the present paper, including one-dimensional signals and actions and the
signals are iid censored geometric. Brooks and Du (2020b) also develop a methodology for
computing approximate strong maxmin solutions via linear programming. The results of
this paper were motivated by such simulations.

He and Li (2020) consider a model of auction design when there is a known marginal
distribution of each bidder’s value, which is the same for all bidders, but the correlation
structure is unknown. Che (2020) considers a similar model but where only the mean of
each bidder’s value is known. Both papers further assume that each bidder knows their own
value. These papers find that as the number of bidders grows large, revenue in the truthful
equilibrium of the second-price auction converges to the expectation of a single bidder’s
value. Relative to He and Li (2020) and Che (2020), we drop the hypothesis that bidders
know their own values and we also assume that the seller only knows the expected value.
Even so, the seller can still obtain the same asymptotic profit guarantee using proportional
auctions, regardless of which equilibrium is played. We also completely characterize max-
min auctions with a finite number of bidders within the space of all auctions, both in the
symmetric case that they consider as well as when bidders have different expected values.

5Indeed, as we argue below, even when bidders have different expected values, the seller could still run
a proportional auction and obtain the same profit guarantee as in the symmetric model with the average
of the expected values. Thus, asymmetry in expected values benefits the seller relative to the symmetric
model with the same average expected value.
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More broadly, our work is related to the literature on max-min auction design, including
Chung and Ely (2007), Brooks (2013), Bergemann et al. (2016), Carrasco et al. (2018), Du
(2018), Chen and Li (2018), and Yamashita and Zhu (2018).

The rest of this paper has the following structure: Section 2 describes our mathematical
framework and solution concept. Section 3 gives an informal overview of our results in the
special case when there are two bidders. Section 4 exposits our main results. Section 6
presents extensions and applications of the model. Section 7 is a conclusion. Omitted
proofs are in the Appendix.

2 Model

There are N bidders for a single unit of a good. The bidders are indexed by i � 1, . . . , N .
Bidder i has a value vi P r0, 1s, and has quasilinear preferences over probability of receiving
the good q and and a transfer to the seller t, represented by the utility index viq � t.
The values are uncertain; all that is known is that the expectation of bidder i’s value ispvi P p0, 1q. Without loss, we assume that bidders are ordered so that pv1 ¥ pv2 ¥ � � � ¥ pvN .

While unknown to the seller, the distribution of bidders’ values and the bidders’ beliefs
are described by an information structure, which consists of the following objects: For each
bidder i, there is a measurable space of signals Si, with S � �N

i�1. In addition, there is a
distribution π P ∆pSq, and an interim expected value function w : S Ñ r0, 1sN , such that
for all i, »

sPS

wipsqπpdsq � pvi. (1)

We denote the information structure by I � pS, π, wq. An equivalent representation of
an information structure I � pS, π, wq is a joint distribution σ P ∆pS � t0, 1uNq whose
marginal over S is π and»

sPB

wipsqπpdsq �

»
ps,vqPB�t0,1uN

vi σpds, dvq, (2)

for every measurable subset B � S and every bidder i.
The seller of the good chooses a mechanism. This consists of measurable action spaces

Ai for each i and allocation and transfer rules. Let A � �N
i�1Ai. The allocation rule is a

function q : AÑ RN
� such that for all a P A,

Σqpaq � q1paq � � � � � qNpaq ¤ 1.

The transfer rule is a function t : AÑ R. We denote the mechanism byM � pA, q, tq. We
say that the mechanism is participation secure if for every i, there exists an action 0 P Ai
such that tip0, a�iq � 0 for all a�i P A�i.

A mechanism and information structure together define a simultaneous-move Bayesian
game pM, Iq. Bidder i’s strategies in this game are measurable mappings βi : Si Ñ ∆pAiq.
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A profile of strategies β is identified with a mapping β : S Ñ ∆pAq, where βpsq is simply
the product measure �N

i�1βipsiq. Bidder i’s expected utility under the strategy profile β is

Uipβq �

»
sPS

»
aPA

pwipsqqipaq � tipaqq βpda|sqπpdsq

(where we suppress the dependence of the utility on the mechanism and information struc-
ture). The strategy profile β is a (Bayes Nash) equilibrium if Uipβq ¥ Uipβ

1
i, β�iq for all i

and strategies β1i. The set of equilibria is denoted BpM, Iq.
Profit of the seller under the strategy profile β is

ΠpM, I, βq �
»
sPS

»
aPA

Σtpaqβpda|sqπpdsq.

The solution concept employed in this paper is the strong maxmin solution (Brooks and
Du, 2020a), which is a triple pM, I, βq that satisfies the following conditions:

1. For all M1 and β1 P BpM1, Iq, ΠpM, I, βq ¥ ΠpM1, I, β1q;

2. For all I 1 and β1 P BpM, I 1q, ΠpM, I, βq ¤ ΠpM, I 1, β1q;

3. β P BpM, Iq.

Thus, the mechanismM in the solution (the max-min mechanism) guarantees the seller a
profit of at least ΠpM, I, βq across all information structures and all equilibria, while the
information structure I in the solution (the min-max information structure) guarantees
that the seller earns a profit of at most ΠpM, I, βq across all mechanisms and all equilibria.
We call ΠpM, I, βq the profit guarantee of the strong maxmin solution pM, I, βq

As discussed in Brooks and Du (2020a), the strong maxmin solution can be inter-
preted as an equilibrium-selection-invariant Nash equilibrium: Consider the simultaneous
move game between seller and Nature, where the seller chooses the mechanism and Na-
ture chooses the information structure. If no equilibrium exists, both players’ payoffs are
�8. Otherwise, there is a fixed equilibrium selection rule. Suppose BpM, Iq � H. Then
pM, Iq is a Nash equilibrium of the mechanism design/information design game for all
equilibrium selection rules if and only if there exists a β such that pM, I, βq is a strong
maxmin solution.

Finally, given a function f : RN Ñ RN , we say that f is own-right-differentiable if for
every i, the limit

∇ifpxi, x�iq � lim
εÓ0

fipxi � ε, x�iq � fipxi, x�iq

ε

exists and is finite at every x. We let ∇fpxq denote the vector whose ith element is ∇ifpxq.
We also denote by ∇ � fpxq �

°N
i�1∇ifpxq.
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3 An illustration of the results

In this section we give an intuitive and heuristic derivation of our results.
We start from the double revelation principle, namely the max-min mechanism is a

profit maximizing direct mechanism on the min-max information structure, and the min-
max information structure is a profit minimizing correlated equilibrium on the max-min
mechanism. Thus we look for a strong maxmin solution pM, I, βq where the signal space
and the action space coincide and are normalized to be S � A � RN

� , and β is the truth-
telling strategy profile. We can operationalize the double revelation principle by optimizing
the following Lagrangian for the seller and Nature’s respective problems:

Lpq, t, σ;α, γ, λq �
Ņ

i�1

»
A�t0,1uN

tipaqσpda, dvq

�
Ņ

i�1

»
A�t0,1uN

αipaiq rvi∇iqpaq �∇itpaqsσpda, dvq

�

»
A

γpaq r1� Σqpaqs da

�
Ņ

i�1

»
A�t0,1uN

λipviq rµipdviq � σpda, dvqs

(3)

where µi P ∆pt0, 1uq, µipt1uq � pvi and µipt0uq � 1 � pvi. Clearly, the marginal distribution
of σ on vi is µi (enforced by the fourth line in (3)) if and only if the ex ante expected value
for i in σ is pvi.

For a given information structure σ the seller maximizes the profit over direct mechanism
pq, tq, subject to the constraint that there is no incentive to deviate locally from truth-telling
(ai � si) in the mechanism given a realized signal si drawn according σ. This constrained
maximization problem is equivalent to maximizing the Lagrangian in equation (3) over
pq, tq, where αipaiq ¥ 0 is the multiplier on the local incentive constraint, and γpaq ¥ 0
is the multiplier on the feasibility constraint for the allocation. For a fixed information
structure σ, the fourth line in the Lagrangian is a constant and is in fact zero.

On the other hand, for a given mechanism pq, tq Nature minimizes the profit over Bayes
correlated equilibrium σ, which satisfies local incentive constraints (the second line in (3))
as well as the constraints that the marginal of σ over vi is µi (the fourth line in (3), where
λipviq is the multiplier). This constrained minimization problem is equivalent to minimizing
the Lagrangian in equation (3) over σ; the third line is a constant for a fixed allocation q
and is in fact zero given an optimal γ multiplier (since γpxq ¡ 0 only if Σqpxq � 1).

Thus, a strong maxmin solution is equivalent to a saddle point pq, t, σq where pq, tq
maximizes the Lagrangian given σ while σ minimizes the Lagrangian given pq, tq.

For the seller’s profit maximization problem, the derivatives in the second line of (3)
must be interpreted as left-derivatives, since the multiplier αipaiq is non-negative, so the
corresponding local incentive constraint is the limit of»

A�i�t0,1uN

�
vi
qipai, a�iq � qipai � ε, a�iq

ε
�
tipai, a�iq � tipai � ε, a�iq

ε

�
σpda, dvq ¥ 0
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as ε × 0. On the other hand, for Nature’s profit minimization problem, a non-negative
multiplier αipaiq corresponds to the local incentive constraint»

A�i�t0,1uN

�
vi
qipai � ε, a�iq � qipai, a�iq

ε
�
tipai � ε, a�iq � tipai, a�iq

ε

�
σpda, dvq ¤ 0

as ε× 0, so the derivatives in the second line of (3) must be interpreted as right-derivatives.
In our heuristic discussion we will assume the subtle distinction between left and right
derivatives are immaterial; see Brooks and Du (2020b) for a formal argument.

For the seller’s profit maximization problem, let us suppose for simplicity that the given
informaiton structure σ has a differentiable density hpaq for the marginal distribution over
a. Collecting the terms involving ti in (3), we have»

A�t0,1uN
tipaqσpda, dvq �

»
A�t0,1uN

αipaiq∇itpaqσpda, dvq

�

»
A

tipaqhpaqda�

»
A

αipaiq∇itpaqhpaqda

�

»
A

tipaqhpaqda�

»
A

tipaq
B

Bai
rαipaiqhpaqsda,

where we integrated by parts in the second line and assumed that tip0, a�iq � 0 for all a�i.
The first order condition for maximizing the Lagrangian with respect to tipaq is

hpaq � �
B

Bai
rαipaiqhpaqs, (4)

which must hold for all i and a P A. This is obviously equivalent to

αipaiq �

³8
a1i�ai

hpa1i, a�iqda
1
i

hpaq
.

Thus, the signals must be independently distributed (since the hazard rate of i’s signal
distribution does not depend on others’ signals), and moreover the multiplier on the local
incentive constraint must be the inverse hazard rate of the signal distribution.

Following the convention in Brooks and Du (2020a,b), we set hereafter

αipaiq � 1

for all i and ai P Ai, which implies independent, exponential distribution:

hpaq � expp�Σaq.
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The terms involving qi in (3) are»
A�t0,1uN

vi∇iqpaqσpda, dvq �

»
A

γpaqqipaqda

�

»
A

wipaq∇iqpaqhpaqda�

»
A

γpaqqipaqda

�

�
�

»
A

qipaq
B

Bai
rwipaqhpaqsda

�
�

»
A

γpaqqipaqda

�

»
A

qipaqrwipaq �∇iwpaqshpaqda�

»
A

γpaqqipaqda

where in the second line wi is the interim expected value (cf. equation (2)), the third line
follows from integration by parts (assuming qip0, a�iq � 0), and the fourth line follows since
h is exponential. Clearly, wipaq�∇iwpaq is bidder i’s virtual value at signal profile a. Thus,
the first order condition for maximizing the Lagrangian with respect to qipaq is

wipaq �∇iwpaq ¤ γpaq{hpaq, (5)

which holds for all i and a P A. If an optimal allocation is positive for bidder i at a
(qipaq ¡ 0), then the above condition must hold with an equality, i.e., bidder i must have
the highest virtual value. Moreover, an optimal Σqpaq   1 only if the multiplier γpaq is
zero, i.e., all virtual values wipaq �∇iwpaq ¤ 0.

Turning to Nature’s profit minimization problem for a given mechanism pq, tq, the terms
involving σ in (3) are»

A�t0,1uN

�
Σtpaq �∇ � tpaq � v �∇q �

¸
i

λipviq

�
σpda, dvq.

Thus, the first order condition for minimizing the Lagrangian with respect to σpda, dvq is

Σtpaq �∇ � tpaq � v �∇qpaq �
¸
i

λipviq ¥ 0 (6)

which must hold all a P A and v P t0, 1uN . Moreover, the support of an optimal σ must be
concentrated on pa, vq for which (6) holds with an equality.

In summary, one can interpret the transfer tipaq as a multiplier on the constraint (4),
the allocation qipaq as a multiplier on the constraint (5), and the probability σpda, dvq
as a multiplier on the constraint (6). The necessary conditions for pq, t, σq to constitute
a strong maxmin solution is complementary slackness : First, all of these constraints are
satisfied; moreover, qipaq ¡ 0 only if constraint (5) binds, γpaq ¡ 0 only if Σqpaq � 1, and
σpda, dvq ¡ 0 only if constraint (6) binds. In Theorem 1 we will prove that complementary
slackness is also sufficient for strong maxmin solution.

3.1 Symmetric expected value

We first observe that when all expected values are the same (pv1 � pv2 � � � � � pvN), the
strong maxmin solution for the common, binary value special case of Brooks and Du (2020a)
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satisfies the complementary slackness conditions and is hence a strong maxmin solution in
the present setting with a known expected value.

In the min-max information structure I of Brooks and Du (2020a), signals are indepen-
dently and exponentially distributed, the interim value is common for all i:

wipsq �

#
exppΣs� 1{ηq Σs   1{η,

1 Σs ¥ 1{η,
(7)

where the parameter η P R� ensures that the interim value has the correct expectation:»
S

wpsq expp�Σsqds � pvi.
The max-min mechanism M of Brooks and Du (2020a) is the proportional auction:

qipaq �

#
ηai Σa   1{η,
ai
Σa

Σa ¥ 1{η,
tipaq � qipaq � T pΣaq,

T pxq �

#
0 x � 0,

1
gN pxq

³x
y�0

ΞpyqgNpyqdy x ¡ 0,

(8)

where gNpxq �
xN�1e�x

pN�1q!
is the density for the random variable Σs, and Ξ will be specified

in equation (9).
The proportional auctionM maximizes profit on the information structure I, since all

bidders have the same virtual value wipsq�∇iwipsq which is 0 in the low region (Σs   1{η)
and 1 in the high region (Σs ¥ 1{η), so condition (5) is always binding. Moreover the
proportional allocation q fully allocates the good on the high region where the common
virtual value is 1. Thus, the complementary slackness between constraint (5) and allocation
q is satisfied.

As discussed in the introduction, it is intuitive that a common value information struc-
ture is the worst case information structure when only the expected value is known. Indeed,
I minimizes the profit on the proportional auctionM, which is a consequence of the com-
plementary slackness between the constraint (6) and the information structure underlying
the interim value w. Applying the explicit formula in (8), it is easy to verify

∇ � tpaq � Σtpaq � ΞpΣaq.

Since wipaq P p0, 1q on the low region and wipaq � 1 on the high region, we must have
condition (6) bind for all v P t0, 1uN when a is in the low region, but bind only for v � 1
when a is in the low region.6 This uniquely pins down Ξ:

ΞpΣaq � ∇ � qpΣaq �
Ņ

i�1

λip1q, (9)

6We use 1 (respectively, 0) to denote a vector v where vi � 1 (respectively, vi � 0) for every i.

10



for all a P A, where using (8) it is easy to see that ∇ � qpaq depends only on Σa and is
Nη on the low region and N�1

Σa
on the high region. Moreover, since ∇iqpaq � η on the low

region, condition (6) will bind for all v P t0, 1uN and a in the low region if

λip1q � λip0q � η.

Finally, condition (6) holds for all v P t0, 1uN for a in the high region since it is easy to
check that qipaq ¤ η on the high region.

3.2 Asymmetric expected value

Now suppose we have asymmetric expected values pvi. We posit that in the general case the
signal/action space is still divided into a low region and a high region, where the bidders’
virtual values are all tied and are zero on the low region and one on the high region.

As before, we must have condition (6) bind for all v P t0, 1uN when a is in the low
region, but bind only for v � 1 when a is in the high region, since we need wipaq P p0, 1q
to induce a virtual value of zero on the low region, and wipaq � 1 to induce a virtual value
of one on the high region. Exactly as in the symmetric case, this complementary slackness
implies

∇ � tpaq � Σtpaq � ∇ � qpaq �
Ņ

i�1

λip1q,

for every a P A,
∇iqpaq � λip1q � λip1q � ηi

for a in the low region, and
∇iqpaq ¤ ηi

for a in the high region.
Since the virtual value of every bidder is 1 on the high region, by complementary

slackness we must have Σqpaq � 1 on the high region. If the allocation q is continuous,
then we must also have Σqpaq � 1 on the boundary between high and low regions; since
qipaq � ηiai on the low region, by the continuity of q such a boundary must be defined by
η � a � 1. Thus, the low region is the set of a such that η � a ¤ 1, and the high region is the
set of a such that η � a ¥ 1.

Finally, solving the differential equation wipaq �∇iwpaq � 0 gives

wipaq � Cpa�iq exppaiq

on the low region of η � a ¤ 1. Together with the boundary condition that wipaq � 1 when
η � a � 1, we get

wipaq �

#
exp

�
η�a�1
ηi

	
η � a   1,

1 η � a ¥ 1.

Thus, the complementary slackness conditions let us derive information structure and mech-
anisms that naturally generalize those from the common value model. Our Theorem 1 shows
that these characterize a set of strong maxmin solutions.
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4 Strong maxmin solutions

4.1 Minmax information

We construct an information structure as follows. Let Si � R� for all i, and let

πpdsq � expp�Σsqds (10)

i.e., the signals are independent and exponentially distributed random variables with an
arrival rate of 1. The interim value function has the following form: Fix parameters η P RN

� .
Then define

wipsq �

$''&''%
mintpexppη � s� 1qq1{ηi , 1u if ηi ¡ 0;

0 if ηi � 0 and η � s   1;
pvi³

tsPS|η�s¥1u expp�Σsqds
if ηi � 0 and η � s ¥ 1.

(11)

A preliminary result is that there exists a vector η such that (1) is satisfied:

Lemma 1. There exists a η P RN
� such that for π and w defined by (10) and (11), I �

pS, π, wq is a well-defined information structure. In particular, it satisfies the moment
conditions (1)

Proof. Let η P R� such that» 8

s1�0

mintpexppηs1 � 1qq1{η, 1u expp�s1qds1 ¥ pv1.

Such a η exists because as η Ñ 8, the integrand converges monotonically pointwise to 1,
so the Dominated Convergence Theorem converges monotonically to 1, which is strictly
greater than the right-hand side.

Now, let us define the mapping Gi : r0, ηsN Ñ R according to

Gipηq �

$&%
³
sPRN�

min
!
pexppη � s� 1q1{ηi , 1

)
expp�Σsqds if ηi ¡ 0;³

tsPRN� |η�i�s�i¥1
expp�Σs�iqds�i if ηi � 0.

Note that Gi is continuous and strictly increasing in ηi for ηi ¡ 0. Moreover, the Dominated
Convergence Theorem implies that

lim
ηiÑ0

Gipηi, η�iq � Gip0, η�iq,

so that Gi is continuous at ηi � 0.
Define the mapping F : r0, ηsN Ñ r0, ηsN as follows: For fixed η P r0, ηsN , we define

Fipηq as the solution η1i P r0, ηs to

Gipη
1
i, η�iq � max tpvi, Gip0, η�iqu . (12)
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Note Gipηq is strictly increasing in ηi, so if a solution to (12) exists, it is unique. Moreover,
Gi is increasing in η�i, so from how we have defined η, there exists a η1i ¡ 0 that satisfies
(12) as an equality if and only if Gip0, η�iq is weakly less than pvi. Otherwise, the unique
solution is η1i � 0.

Since the left-hand side of (12) is strictly increasing in η1i, the Implicit Function Theorem
in Kumagai (1980) implies that Fipηq is continuous. The Brouwer Fixed-Point Theorem
then implies that F has a fixed point, which necessarily solves the system (12).

We next claim that for any η that is a fixed point of F . Moreover, ηi � 0 if and only if»
tsPRN� |η�s¥1u

expp�Σsqds ¥ pvi. (13)

For if this condition is satisfied and ηi ¡ 0, then Gipηq is strictly greater than the left-hand
side of (13), which is in turn weakly greater than Gip0, η�iq. Thus, Gipηq is strictly greater
than both terms on the right-hand side of (12), which contradicts the hypothesis that η
satisfies (12). (Note that Gip0q � 0, so there must be at least one i for which ηi ¡ 0.)

Finally, we can define w according to any fixed point of F . Clearly, wi satisfies (1) for
all i such that ηi ¡ 0. And since (13) is satisfied for any i such that ηi � 0, wipsq P r0, 1s
for all s, and also satisfies (1).

Throughout the rest of our analysis, we fix a η as in Lemma 1.

4.2 Characterization of maxmin mechanisms

Our main theorem will characterize maxmin mechanisms of a particular form. For a vi P
t0, 1u, let us define

λipviq �
1

N

»
tsPRN� |η�s¥1u

expp�Σsqds� pIvi�1 � pviqηi (14)

and

λpvq �
Ņ

i�1

λipviq.

We will consider maxmin mechanisms for which the space of actions is Ai � R�.
Given an own-right-differentiable allocation rule, let us define

Ξpa; qq � ∇ � qpaq � λp1q.

Our main theorem is the following:

Theorem 1. Suppose that M � pA, q, tq satisfying the following conditions:

1. Ai � R� for all i;

2. q is own-right-differentiable, qip0, a�iq � 0, ∇iqpaq is right-continuous in ai and
∇qpaq ¥ 0 for all a.
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3. ∇qpaq � η if η � a   1, ∇qpaq ¤ η if η � a ¥ 1, and Σqpaq � 1 if η � a ¥ 1.

4. t is own-right-differentiable, t and ∇t are bounded, tip0, a�iq � 0 for all i and a�i,
and for all a,

∇ � tpaq � Σtpaq � Ξpa; qq.

Define β to be the truthful strategy profile such that βiptsiu|siq � 1 for all i and si. Then
pM, I, βq is a strong maxmin solution. Moreover, the profit guarantee of this solution is

Π �

»
tsPRN� |η�s¥1u

expp�Σsqds.

A leading example of an allocation satisfying the hypotheses of Theorem 1 is the pro-
portional allocation:

qipaq �
ηiai

mint1, η � au
. (15)

Conditions 1 and 2 and the first part of condition 3 clearly hold for the above allocation
rule. For the second part of condition 3, we calculate that whenever η � a ¥ 1,

∇iqpaq �
ηipη�i � a�iq

pη � aq2
¤ ηi,

since η�i�a�i
η�a

¤ 1.
For any allocation rule q that satisfies the hypotheses of Theorem 1, there is a canonical

way to define the transfer as follows. Let Z denote the set of permutations of t1, . . . , Nu
with a typical element ζ. We denote by

rζ ¤ ks � tj | ζpjq ¤ ku,

and analogously define rζ ¡ ks. Next, let

τζ,kpa; qq �

»
RN�k
�

Ξparζ¤ks, xrζ¡ks; qq expp�Σxrζ¡ksqdxrζ¡ks, (16)

and

ξipa; qq �
1

N !

¸
ζPZ

�
τζ,ζpiqpa; qq � τζ,ζpiq�1pa; qq

�
. (17)

Finally, define the transfer rule:

tipaq � exppaiq

» ai

xi�0

ξipxi, a�i; qq expp�xiqdxi. (18)

We have the following second main result:
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Theorem 2. There exists a q that satisfies conditions 1–3 of Theorem 1. For any such q,
let t be defined by (16)–(18), and let M � pA, q, tq. Then pM, I, βq is a strong maxmin
solution. In particular, a strong maxmin solution exists.

In the symmetric case where pv1 � pv2 � � � � � pvN , we clearly have η1 � η2 � � � � � ηN .
In this case the allocation rule in (15) defines the proportional auction. Let us also define
the proportional transfer rule:

tipaq � qipaq � T pΣaq,

T pxq �

#
0 if x � 0,

1
gN pxq

³x
y�0

Ξpy; qqgNpyqdy if x ¡ 0,

(19)

where gNpxq �
xN�1e�x

pN�1q!
. Brooks and Du (2020a) show that the hypotheses of Theorem 1

are satisfied for the above mechanism pq, tq; hence we have

Corollary 1. Suppose pv1 � pv2 � � � � � pvN . Let M � pA, q, tq be the proportional auction
where Ai � R�, q is given by (15) and t is given by (19). Then pM, I, βq is a strong
maxmin solution.

5 Proof of Theorems 1 and 2

5.1 Proof of Theorem 1

Proposition 1. I is a well-defined information structure. For all mechanisms M and
equilibria β of pM, Iq, ΠpM, I, βq ¤ Π.

Proof of Proposition 1. Fix an incentive compatible and individually rational direct mech-
anism pq, tq and define

Uipsi, s
1
iq �

»
S�i

pwipsi, s�iqqips
1
i.s�iq � tips

1
i, s�iqqexpp�Σs�iqds�i,

and Uipsiq � Uipsi, siq. Incentive compatibility says that for all i, si, and s1i,

Uipsiq ¥ Uipsi, s
1
iq � Uips

1
iq �

»
S�i

pwipsi, s�iq � wips
1
i, s�iqqqips

1
i, s�iq expp�Σs�iqds�i.

and individual rationality says that Uipsiq ¥ 0. Thus, for all ∆ ¥ 0,

Ui �

»
Si

Uipsiq expp�siqdsi

¥

»
tsPS|si¥∆u

rUipsi �∆q � pwipsi, s�iq � wipsi �∆, s�iqqqipsi �∆, s�iqqs expp�Σsqds

� expp�∆q

�
Ui �

»
S

pwipsi �∆, s�iq � wipsqqqipsq expp�Σsqds



.
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Rearranging, we have

Ui ¥
1

expp∆q � 1

»
S

pwipsi �∆, s�iq � wipsqqqipsq expp�Σsqds.

Since total surplus is

Ņ

i�1

»
S

wipsqqipsq expp�Σsqds,

we conclude that an upper bound on profit is

Ņ

i�1

»
S

�
wipsq �

1

expp∆q � 1
pwipsi �∆, s�iq � wipsqqq

�
qipsq expp�Σsqds.

To apply the Dominated Convergence Theorem and take ∆ Ñ 0, we just need to show that
the discrete derivative is bounded:

max
sPS

1

expp∆q � 1
pwipsi �∆, s�iq � wipsqqq

¤ max
tsPS|η�s¤1u

1

expp∆q � 1
pexpppη � sq{ηi �∆q � expppη � sq{ηiq

� max
tsPS|η�s¤1u

expppη � sq{ηiq

� expp1{ηiq.

Thus, the limit of the profit upper bound as ∆ Ñ 0 is

Ņ

i�1

»
S

rwipsq �∇iwipsqs qipsq expp�Σsqds

�

»
tsPS|η�s¥1u

Ņ

i�1

qipsq expp�Σsqds

¤

»
tsPS|η�s¥1u

expp�Σsqds � Π.

Proposition 2. Suppose that M satisfies the hypotheses of Theorem 1. Then for any
information structure I and equilibrium β of pM, Iq, ΠpM, I, βq ¥ Π.

Lemma 2. Suppose that M satisfies the hypotheses of Theorem 1. Then for any informa-
tion structure I and equilibrium β of pM, Iq,»

S

»
A

�
wpsq �∇qpaq �∇ � tpaq

�
βpda|sqπpdsq ¤ 0. (20)
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Proof of Lemma 2. For all ∆ ¡ 0, the fact that β is an equilibrium implies that»
S

»
A

Ņ

i�1

rwipsqpqipai �∆, a�iq � qipaqq � ptipai �∆q � tipaqqsβpda|sqπpdsq ¤ 0.

Since ∇iq and ∇it are bounded, we conclude that the integrand in left-hand side of the
preceding inequality is bounded by K∆βpda|sqπpdsq for some constant K. We can divide
through by ∆. The limit of the left-hand side as ∆ Ñ 0 must be non-positive as well.
Finally, the Dominated Convergence Theorem implies that the limit is precisely the left-
hand side of (20).

Proof of Proposition 2. First we show that

λpvq �
Ņ

i�1

λipviq ¤ v �∇qpaq � Ξpa; qq (21)

for all v P t0, 1uN and a P A. When η � a   1, we have ∇ � qpaq � η, Ξpa; qq � �λp0q, and
λip1q � λip0q�ηi for every i, so (21) clearly holds with an equality for all v P t0, 1uN . When
η � a ¥ 1, (21) holds with an equality for v � 1 since Ξpa; qq � 1 �∇qpaq � λp1q; as each vi
changes from 1 to 0, the left-hand side of (21) is decreased by ηi, while the right-hand side
of (21) is decreased by ∇iqpaq which is assumed to be less than ηi; inductively this implies
that (21) holds for all v P t0, 1uN .

Now fix an information structure I � pS, π, wq and equilibrium β of pM, Iq. Equation
(21) implies

Ņ

i�1

�
wipsqλip1q � p1� wipsqqλip0q

�
¤ wpsq �∇qpaq � Ξpa; qq

for all s P S and a P A. Moreover, from Lemma 2, we know that (20) must be satisfied. As
a result,»

S

»
A

Σtpaqβpda|sqπpdsq ¥

»
S

»
A

�
Σtpaq � wpsq �∇qpaq �∇ � tpaq

�
βpda|sqπpdsq

�

»
S

»
A

�
wpsq �∇qpaq � Ξpa; qq

�
βpda|sqπpdsq

¥

»
S

»
A

Ņ

i�1

�
p1� wipsqqλip0q � wipsqλip1q

�
βpda|sqπpdsq.

From (1), we conclude that this is at least

Ņ

i�1

�
p1� pviqλip0q � pviλip1q� � Π

as desired.
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Proposition 3. Suppose that M satisfies the hypotheses of Theorem 1. Then the truthful
strategy profile β is an equilibrium of pM, Iq.

Proof of Proposition 3. We first derive an expression for the interim expected transfer in
terms of the allocation (equation (24)). Define the individual excess growth as

ξjpaq � ∇jtpaq � tjpaq.

With the assumption that tjp0, a�jq � 0, the above equation is equivalent to

tjpaq � exppajq

» aj

sj�0

ξjpsj, a�jq expp�sjqdsj. (22)

Therefore, we can write the interim expected transfer of bidder i in pM, Iq as

tipaiq �

»
A�i

tipai, s�iq expp�Σs�iqds�i

�

»
A�i

exppaiq

» ai

si�0

ξipsi, s�iq expp�siqdsi expp�Σs�iqds�i.

Since tj is bounded in equation (22), it must be that» 8

sj�0

ξjpsj, s�jq expp�sjqdsj � 0 (23)

for all j and s�j. Hence, we can rewrite the interim expected transfer as

tipaiq � �

»
A�i

exppaiq

» 8

si�ai

ξipsi, s�iq expp�siqdsi expp�Σs�iqds�i

� �

»
A

ξipai � si, s�iq expp�Σsqds

� �

»
A

�
ξipai � si, s�iq � Σξ�ipai � si, s�iq

�
expp�Σsqds

� �

»
A

Ξipai � si, s�i; qq expp�Σsqds,

where we applied equation (23) to each j � i in the third line, and used the assumption of
Σξ � Ξ in the fourth line.

Using the definition of Ξ, we get

tipaiq � �

»
tη�s�ηiai¥1u

�
∇ � qpai � si, s�iq � λp1q

�
e�Σsds�

»
tη�s�ηiai 1u

�
�λp0q

�
e�Σs ds

� �

»
tη�s�ηiai¥1u

p∇ � qpai � si, s�iq � Σηq e�Σsds� λp0q,

where in the second line we used the fact that λp1q � Ση � λp0q, and tη � s� ηiai ¥ 1u is a
shorthand for ts P S | η � s� ηiai ¥ 1u.
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Integrating by parts, we have»
tη�s�ηiai¥1u

∇ � qpai � si, s�iqe
�Σsds

�
Ņ

j�1

»
A�j

» 8

sj�
p1�ηisi�η�j �s�jq

�

ηj

∇jqpai � si, s�iqe
�Σs dsj ds�j

�

»
A�i

�
� qi

�
ai �

p1� ηiai � η�i � s�iq
�

ηi
, s�i



e
�

p1�ηiai�η�i�s�iq
�

ηi
�Σs�i

�

» 8

si�
p1�ηiai�η�i�s�iq

�

ηi

qipai � si, s�iqe
�Σsdsi

�
ds�i

�
¸
j�i

»
A�j

�
� qj

�
ai � si,

p1� ηiai � η�j � s�jq
�

ηj
, s�i�j



e
�

p1�ηiai�η�j �s�jq
�

ηj
�Σs�j

�

» 8

sj�
p1�ηiai�η�j �s�jq

�

ηj

qjpai � si, s�iqe
�Σsdsj

�
ds�j

��

»
A�i

qi

�
ai �

p1� ηiai � η�i � s�iq
�

ηi
, s�i



e
�

p1�ηiai�η�i�s�iq
�

ηi
�Σs�ids�i

�
¸
j�i

»
A�j

p1� ηiai � η�j � s�jq
�e

�
p1�ηiai�η�j �s�jq

�

ηj
�Σs�j

ds�j �

»
tη�s�ηiai¥1u

e�Σsds,

where in the last line, we used the facts that qj

�
ai � si,

p1�ηiai�η�j �s�jq
�

ηj
, s�i�j

	
� p1 �

ηiai � η�j � s�jq
� and

°N
j�1 qjpai � si, s�iq � 1 whenever η � s� ηiai ¥ 1.

Therefore, we have the following expression for the interim expected transfer:

tipaiq �

»
A�i

qi

�
ai �

p1� ηiai � η�i � s�iq
�

ηi
, s�i



e
�

p1�ηiai�η�i�s�iq
�

ηi
�Σs�ids�iloooooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooooon

X

�
¸
j�i

»
A�j

p1� ηiai � η�j � s�jq
�e

�
p1�ηiai�η�j �s�jq

�

ηj
�Σs�j

ds�jloooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon
Y

(24)

�

»
η�s�ηiai¥1

p1� Σηqe�Σsdslooooooooooooooomooooooooooooooon
Z

�λp0q.

Next, we show there is no incentive to locally deviate from truthtelling (equation (25)).
We calculate

BX

Bai
�

»
tη�i�s�i�ηiai¥1u

∇iqpai, s�iqe
�Σs�ids�i

�

»
tη�i�s�i�ηiai 1u

p1� η�i � s�iqe
�

1�ηiai�η�i�s�i
ηi

�Σs�ids�i,
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where we used the fact that qi

�
ai �

p1�ηiai�η�i�s�iq
�

ηi
, s�i

	
� 1�η�i �s�i if η�i �s�i�ηiai   1.

Likewise,

BY

Bai
�
¸
j�i

� »
tη�j �s�j�ηiai 1u

p�ηiqe
�

1�ηiai�η�j �s�j
ηj

�Σs�j
ds�j

�

»
tη�j �s�j�ηiai 1u

p1� ηiai � η�j � s�jqe
�

1�ηiai�η�j �s�j
ηj

�Σs�j ηi
ηj
ds�j

�

and

BZ

Bai
�
B

Bai

�»
A�i

�» 8

si�
p1�ηiai�η�i�s�iq

�

ηi

p1� Σηqe�sidsi

�
e�Σs�ids�i

�

�

»
tη�i�s�i�ηiai 1u

p1� Σηqe
�

1�ηiai�η�i�s�i
ηi

�Σs�ids�i.

In the expression for BY
Bai

, we change the variables from s�j � ps�i�j, siq to s�i �

ps�i�j, sjq by leaving s�i�j unchanged and defining sj �
1�ηiai�ηisi�η�i�j �s�i�j

ηj
. This change

of variable implies: »
tη�j �s�j�ηiai 1u

p�ηiqe
�

1�ηiai�η�j �s�j
ηj

�Σs�j
ds�j

�

»
tη�i�s�i�ηiai 1u

p�ηjqe
�

1�ηiai�η�i�s�i
ηi

�Σs�ids�i

and »
tη�j �s�j�ηiai 1u

p1� ηiai � η�j � s�jqe
�

1�ηiai�η�j �s�j
ηj

�Σs�j ηi
ηj
ds�j

�

»
tη�i�s�i�ηiai 1u

ηjsje
�

1�ηiai�η�i�s�i
ηi

�Σs�ids�i.

Combining the above expressions of BX
Bai

, BY
Bai

and BZ
Bai

with equation (24), we get

t
1
ipaiq �

»
tη�i�s�i�ηiai¥1u

∇iqpai, s�iqe
�Σs�ids�i

�

»
tη�i�s�i�ηiai 1u

ηie
�

1�ηiai�η�i�s�i
ηi

�Σs�ids�i (25)

�

»
A�i

∇iqpai, s�iqwipai, s�iqe
�Σs�ids�i,

where in the second equality we used the fact that ∇iqpai, s�iq � ηi and wipai, s�iq �

e
ηiai�η�i�s�i�1

ηi if η�i � s�i � ηiai   1, and wipai, s�iq � 1 if η�i � s�i � ηiai ¥ 1.
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Finally, suppose a bidder receives a signal si in I; by bidding s1i instead of si inM, his
interim expected transfer is changed by

tips
1
iq � tipsiq �

» s1i

ai�si

t
1
ipaiqdai

�

»
A�i

» s1i

ai�si

∇iqpai, s�iqwipai, s�iqdai e
�Σs�ids�i

¥

»
A�i

» s1i

ai�si

∇iqpai, s�iqwipsi, s�iqdai e
�Σs�ids�i

�

»
A�i

pqips
1
i, s�iq � qipsi, s�iqqwipsi, s�iqe

�Σs�ids�i

where we applied (25) and exchanged the order of integration in the second line, and the
inequality in the third line follows because ∇iqpai, s�iq ¥ 0 and wipai, s�iq increases with
ai. This shows that the truthtelling β is an equilibrium of pM, Iq.

Proof of Theorem 1. Fix a tuple pM, I, βq that satisfies the hypotheses of Theorem 1.
Proposition 1 implies condition 1 for pM, I, βq to be a strong maxmin solution, Proposition
2 implies condition 2, and Proposition 3 implies condition 3.

5.2 Proof of Theorem 2

Lemma 3. Suppose that q satisfies the hypotheses of Theorem 1. Then»
A

Ξpa; qq expp�Σaqda � 0.

Proof of Lemma 3. The paragraph following equation (21) implies that

Ņ

i�1

�
wipaqλip1q � p1� wipaqqλip0q

�
� wpaq �∇qpaq � Ξpa; qq

for all a P A, since wpaq � 1 whenever η � a ¥ 1.
The ex ante expectation of Ξ is therefore the sum over i of the integrals»

A

wipaq∇iqipaq expp�Σaqda� pviλip1q � p1� pviqλip0q.
Integrating by parts and using the fact that qip0, a�iq � 0 and the definition of λ, this is»

A�i

�»
Ai

pwipaq �∇iwpaqqqipaq expp�aiqdai



expp�Σa�iqda�i �

Π

N
.
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Summing across i, we get»
A

Ņ

i�1

pwipaq �∇iwpaqqqipaq expp�Σaqda

�

»
taPA|η�a¥1u

Ņ

i�1

qipaq expp�Σaqda� Π � 0,

since wipaq �∇iwpaq � 0 when η � a   1, and Σqpaq � 1 when η � a ¥ 1.

Proof of Theorem 2. We show that condition 4 of Theorem 1 is satisfied. Equation (18)
implies that

ξipa; qq � ∇itpaq � tipaq

for all a P A. Given the definition of ξipa; qq in (17), ∇ � tpaq � Σtipaq � Ξpa; qq follows by
telescoping the summation over i for each fixed permutation ζ and noticing that τζ,Npa; qq �
Ξpa; qq and τζ,0pa; qq � 0 (by Lemma 3). Finally, to show that t is bounded, by equation
(18) and the fact that Ξ is bounded it suffices to show that» 8

xi�0

ξipxi, a�i; qq expp�xiqdxi � 0,

for every a�i P A�i. The above equation follows from the definition of ξ in (17) since it is
easy to see that » 8

xi�0

τζ,ζpiqpxi, a�i; qq expp�xiqdxi � τζ,ζpiq�1pai, a�i; qq,

where the right-hand side does not depend on ai.

6 Discussion

In this section, we discuss three further topics: What happens as the number of bidders
grows large, how the profit guarantee varies with the bidders’ expected values, and the set
of maxmin mechanisms.

6.1 The many-bidder limit

Consider the symmetric model, in which all bidders have the same expected value, equal
to pv1. What happens to the profit guarantee as we take the number of bidders to infinity?
Theorem 2 shows that for every N , the min-max information structure has pure common
values. In fact it is the min-max information structure for the pure common value model in
which all bidders have a value of 0 with probability 1�pv1 and a value of 1 with probabilitypv1. Proposition 7 of Brooks and Du (2020a) shows that as the number of bidders grows
large, optimal profit in this information structure converges to the expected value, which ispv1. A fortiori, in the present model where we only know each bidder’s expected value, the
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profit guarantee must also converge to pv1. Since the model is symmetric, this asymptotic
guarantee is obtained by proportional auctions.

Note that this bound is unimprovable: Clearly, it is always possible for Nature to pick
an information structure such that bidders’ values are perfectly correlated, in which case
the efficient surplus is pv1. For such an information structure, optimal profit can never be
greater than pv1, so this is an upper bound on the profit guarantee.

This finding is closely related to results of He and Li (2020) and Che (2020). Both of
these papers consider max-min auction design when the correlation between bidders values
is ambiguous. In contrast to the present paper, they assume that values are private, i.e.,
every bidder has perfect information about his own value. He and Li (2020) assume a fixed
and symmetric marginal distribution of each bidder’s interim expected value, whereas Che
(2020) only constrains the expectation of each bidder’s value (as in the present paper).
These papers conclude that the truthful equilibrium of the second price auction asymptot-
ically attains the optimal profit of pv1.7 In comparison, the proportional auctions have the
same asymptotic profit guarantee, but this guarantee is attained in all equilibria and even
if values are not private.

6.2 Varying expected values

Suppose that the mechanism pq, tq is a maxmin mechanism for the profile of expected valuespv � ppv1, . . . , pvNq. We may ask, how would this mechanism perform if instead the expected
values changed to pv1? As previously observed in Brooks and Du (2020a,b), there is a simple
way to bound the performance of the mechanism as we change the expected values. Careful
examination of the proof of Proposition 2 shows that the argument goes through when the
expected values are pv1, but we arrive at the lower bound on profit

Ņ

i�1

�
p1� pv1iqλip0q � pv1iλip1q� , (26)

where λ is defined by (14) using pv. This expression is a continuous and linear function ofpv1. Thus, the profit guarantee for pq, tq varies smoothly as we vary pv.
This argument has a further implication for how the profit guarantee varies with pv.

Suppose pq, tq is the maxmin mechanism with value multiplier λ. Now suppose that the
expected values increase to pv1 ¥ pv. Since λip1q ¥ λip0q for each i, it must be that the
lower bound on profit in pq, tq is higher at expected values pv1 than at pv. A fortiori, maxmin

7A subtle difference is that He and Li (2020) use the second-price auction without reserve price, whereas
Che (2020) uses a random reserve price.
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profit at pv1 must be greater than (26).8 We therefore conclude that the profit guarantee is
non-decreasing in pv.

The value multiplier λ plays a similar role in the common value case studied in Brooks
and Du (2020a). In that setting as well, λ is a non-decreasing of the common value, so that
the profit guarantee is non-decreasing in the distribution of the common value in the sense
of first-order stochastic dominance. More broadly, we conjecture that the profit guarantee
is non-decreasing in the value distribution.

6.3 Other maxmin auctions

In the discussion preceding Theorem 2, we constructed a particular strong maxmin solution
in which the mechanism has the weighted proportional form, and the transfer is given by
(16)–(18). As Corollary 1 shows, there are generally other solutions to the excess growth
equation, and in fact the proportional transfer is a distinct solution to that defined by
(16)–(18). Moreover, there also exist strong maxmin solution with distinct allocation rules.
In fact, the argument in Theorem 2 shows that as long as the allocation rule q satisfies
conditions 2 and 3 of Theorem 1, then the transfer rule defined by (16)–(18) will complete
a mechanism that is part of a strong maxmin solution.

An example of such an allocation is the following Shapley rule: Each bidder submits a
message ai. Bidders are then randomly ordered, with all orders being equally likely. Let
us denote by ik the kth bidder in the realized order. Then bidder ik’s allocation is equal to

min

#
ηiai,max

#
1�

¸
k1 k

ηik1aik1 , 0

++
.

In words, each bidder i “requests” ηiai units of the good. Bidders are “served” in order,
and a bidder either receives the lesser of their request and the remaining amount of the
good. Clearly, if η � a   1, then all bidders demands are met, regardless of the order, and
∇q � η. If η � a ¥ 1, then under every order, some bidder will not receive their demanded
amount. When this happens, the bidder’s allocation is insensitive to their action. Hence,
for every action profile, ∇qpaq ¤ η.

It is interesting to note that when all ηi’s are the same the Shapley allocation is part
of a maxmin mechanism in the common value model. This was shown by Bergemann,
Brooks, and Morris (2016) when there are two bidders, and generalized to many bidders in
an early working paper version of Brooks and Du (2020a) (available from the authors upon
request). It is also an immediate corollary of Theorem 1, since the information structure
I in Theorem 1 is a common value information structure when all ηi’s are the same.

8To make this statement rigorous, we need to show that the mechanism pq, tq has an equilibrium at the
min-max information structure for pv1. A minor complication is that the action and signal spaces are non-
compact. It is straightforward to compactify the signal space in the min-max information structure, since
the interim expected value is constant when η � s ¥ 1. The max-min auction is only slightly more subtle,
since the proportional rule used in Theorem 2 is not continuous at infinity (although the transfer rule is
continuous at infinity). However, as we observe in Section 6.3, there are other max-min allocations that
satisfy the hypotheses of Theorem 1 and are continuous at infinity, so that equilibrium existence follows
immediately from the results of Milgrom and Weber (1985).
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Another example is the “consistent” rule of Aumann and Maschler (1985), which re-
duces to the Shapley rule when N � 2 but differs for N ¡ 2. In particular, if we let
fipd1, . . . , dNq denote the share of agent i under the consistent rule when there is a unit
surplus to be divided among the N agents, and each agent i demands di. As shown by
Aumann and Maschler, Bfipdq{Bdi P t0, 1{2, 1u. Thus, if we define the allocation rule
qipaq � fipη1a1, . . . , ηNaNq, then ∇iqpa P t0, ηi{2, ηiu, as required by Theorem 1.

Brooks and Du (2020a) also shows that when the distribution of the value does not have
an atom at the top, we select for the proportional rule as the unique max-min allocation
when actions are sufficiently large. Whether it is possible to select for the proportional
allocation in the present setting is an interesting question for future work.

7 Conclusion

This paper has considered optimal auction design according to a notion of profit maxi-
mization that is robust to both the bidders’ information and the correlation between their
values. In contrast to prior work on informationally-robust auction design, we have as-
sumed that bidders have arbitrary interdependent values, with the only restriction being
that each bidder’s valuation for the good has a known expectation. We have constructed
an information structure that minimizes maximum equilibrium profit. We have also char-
acterized and constructed mechanisms that maximize minimum equilibrium profit across
all information structures. These statements remain true regardless of how an equilibrium
is selected.

In previous work, we identified the novel class of proportional auctions. We showed
that these mechanisms are max-min optimal when bidders have common values. A no-
table conclusion of the present paper is that proportional auctions continue to be max-min
mechanisms when bidders have arbitrary interdependent values, as long as all bidders have
the same expected value. This is a strong argument in favor of the robust optimality of
proportional auctions.

More broadly, we have characterized maxmin mechanisms when bidders are asymmetric.
The maxmin allocation rules are essentially the same as those in the symmetric case, except
that we weight each bidder’s action. In extreme cases, bidders are given zero weight, in
which case they are excluded from the auction altogether. Otherwise, this is merely a
change of units for actions. The transfer rules are different. For example, the proportional
transfer is no longer part of a maxmin mechanism, even under a change of units. An
important direction for future work is to identify simple and tractable maxmin transfer
rules when bidders are asymmetric.
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