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Abstract

A central issue for mechanism design is how to identify theoretical environments
that will lead to useful insights about optimal mechanisms. One desideratum is that
the agents’ private information structure should be relatively simple, so that the
corresponding optimal mechanisms are also not overly complex. Another important
criterion is that the resulting optimal mechanisms are portable, meaning that they will
continue to perform well in environments other than the one they were optimized for.
We argue that by focusing on environments that are the most challenging for designer,
the informationally-robust approach will tend to identify information structures and
mechanisms that are both simple and portable. We survey a recent literature that
operationalizes this idea to derive novel mechanisms for a variety of mechanism design
problems. We place this literature in the broader context of robust mechanism de-
sign, and we also discuss weaknesses and shortcomings of the informationally-robust
approach.
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1 A Case for the Worst Case

1.1 Finding the Right Model

Roger Myerson has told the following story. In the late 1970s, he was working on what
eventually became his paper on revenue maximization in auctions. He had realized that
the revelation principle could be used to reduce the problem to a linear program, with
parameters specifying the distribution of values. But the question remained: What do
optimal auctions look like, and how do they depend on the value distribution? To get
some inspiration, Roger took a computational approach. At that time, Northwestern had
a communal mainframe that could run the simplex algorithm. So, at Roger’s request, the
school gave him a $100 budget to buy computer time for his research on optimal auctions.
He decided to try out a few minimalist examples, consisting of two buyers and two possible
values. He coded up three instances of the linear program (on punch cards) and ran
them through the number cruncher, for 25 cents a pop. For the first two simulations, an
astonishing result was that private information seemed to not matter at all for revenue; the
seller was able to do just as well as if they knew the buyers’ values, and there were no private
information. But the third simulation was more challenging for the seller; the presence of
private information was a substantive constraint on how much revenue could be generated.
Of course, in the first two programs, the distribution was such that values were correlated,
and in the third they were independent. As they say, the rest is history. Roger decided
that for his theory, he should develop a general analysis when the bidders have independent
types. This led to a number of insights that hugely influenced the subsequent development
of mechanism design and auction theory, including the revenue equivalence theorem and the
celebrated result that first- and second-price auctions with reserve prices can be rationalized
as optimal auctions. A correlated example appeared at the end of Roger’s paper, illustrating
cases where the theory seemed to lead to a “very strange auction” with peculiar “side bets,”
with the seller sometimes paying money to the buyers (Myerson, 1981). The rest of the
$100 budget was left unspent.

A critical issue that this anecdote highlights is the following: Some models of private
information and preferences seem more useful than others for gaining insight into efficacious
designs for mechanisms. To make progress in mechanism design, we have to somehow
identify the parametric assumptions that generate useful results, while also reconciling the
theory with those cases where the implications are less compelling. That issue, generally
speaking, is the subject of this article. In the anecdote, the specific context was revenue
maximization in private-value auctions. But the issue is much broader and affects all of
mechanism design. For the most part, our discipline follows a relatively ad hoc approach
of specifying particular functional forms for preferences and private information, often
motivated by institutional details. In the formal treatment below, these objects are modeled
jointly as an information structure. In spite of the nominal emphasis on information, an
information structure is actually a description of both the possible ex post preferences the
agents might have as well as their private information thereabout. Given a fixed information
structure, we can analyze mechanisms that are optimal for that environment.



An obvious concern with this approach is that the space of possible information struc-
tures is large and diverse, and an ad hoc approach to exploring that space may miss the
information structures that would be the most insightful. As an alternative, a recent lit-
erature has proposed a more systematic approach for sifting through the myriad possible
environments: We first fix certain payoff relevant aspects of the environment that we think
the designer has a good handle on. Subject to those constraints on fundamentals, we then
focus our attention on the forms of private information that are the most challenging for
the designer. Thus, the agents’ private information about preferences is endogenously de-
termined as the one that provides the greatest opposition to the designer’s goals. The hope
is that this approach will identify environments that will be especially insightful. Over the
course of this article, we will review that literature and what it has achieved so far. We
will also explore higher level reasons for why that approach may or may not succeed in its
aims. The rest of this introduction lays out the main ideas informally, with a mathematical
treatment to follow.

1.2 The Problem in Mechanism Design

We will later consider general purpose mechanism design, but for now, the optimal auc-
tions problem provides a useful and familiar setting in which to develop our central thesis.
Indeed, the independent private value (IPV) model has had such enduring significance for
mechanism design and auction theory, going all the way back to Vickrey (1961), that it
seems fair to hold it up as the gold standard for an information structure that economists
and game theorists consider to be a useful benchmark. This may be due to a combination
of factors, one of which is that the information is expressed in a seemingly natural language,
where the units are just dollars of willingness to pay. This is relatively easy to map into
the human experience, where we regularly compare the value derived from consumption of
a good to its price.

At the same time, we see no reason to favor independence per se on grounds of realism. If
anything, it would seem like an extraordinary coincidence if the values just happened to be
exactly independent. This point has been emphasized by the literature on the full surplus
extraction paradox (Myerson, 1981; Crémer and McLean, 1985, 1988; McAfee et al., 1989;
McAfee and Reny, 1992). And yet, the independent and correlated models differ radically
in the kind of predictions they make for optimal mechanisms and in how they have been
received by economists. In the independent case, the optimal mechanisms seem to have
properties that make them desirable in other non-IPV environments, such as affiliated
values (Engelbrecht-Wiggans, Milgrom, and Weber, 1983; Milgrom and Weber, 1982) and
beyond (Chung and Ely, 2007; Bergemann, Brooks, and Morris, 2017, 2019), even if they
are not exactly optimal for those settings. This has engendered a view that the IPV model
distills fundamental insights about behavior and institutional design that are relevant in
a wide variety of settings. By contrast, the mechanisms rationalized by correlated private
values seem to be much less portable to other environments. The question of how to think
about these strange auctions, and their broader implications for mechanism design, has
confounded game theorists for forty-five years.



So why should the independent case produce natural looking mechanisms that seem to
have a life beyond the model, while the correlated case leads to designs for mechanisms
that seem bizarre and implausible? Both of these models make heavy use of quasilinear
expected utility, both assume that the agents make sophisticated probabilistic assessments
of how others will behave (consistent with a common prior), and in both cases Bayes Nash
equilibrium is employed as the solution concept. One could argue that the payments to
the bidders or extraordinarily large payments to the seller that arise with correlated values
would be difficult to implement in practice. But even with constraints on the sign or size
of payments, “bets” about others’ information would still arise in optimal mechanisms.

In our view, a key issue is not with correlation per se. Rather, the problem is that,
placing ourselves in the shoes of the designer, we do not know which form of correlation is
empirically relevant, meaning the precise probabilistic assessments that the agents maintain
over one another’s private information. Obviously, there is no general correct answer,
and the exact probabilities would inevitably depend on the particular setting. But if we
view a mechanism as a long-lived institution, that is meant to perform well under varied
circumstances and as the situation changes over time, then we should look for it to work
well under lots of different correlation structures.

Now, it seems that there is an easy solution. Why model just one form of correlation?
Why not embrace the fact that there may be different correlation structures, by simply
modeling a larger information structure, that includes all of these possible worlds within
it? And on the mechanism side, we can make that richer as well. Have more actions for
the agents, corresponding to different possibilities for the structure of correlation. Let the
mechanism discover “online” which is the true form of correlation.! In fact, why not go
even further by allowing for the possibility that agents learn their respective values, and
then observe even more information about others’ values? Chung and Ely (2007) have
gone so far as to model mechanism design on the entire universal type space, the infinite
dimensional vector space consisting of all sequences of higher-order beliefs!> And why not
go even further than that, and add in all of the possible correlation devices and conditional
information that is suppressed by the belief hierarchies (Ely and Peski, 2006; Liu, 2009)?

At this point, we must interject and remark on an important interpretational distinction
between the model of the mechanism on the one hand, and the model of the agents’
preferences and information on the other hand. In many real-world settings, the mechanism
is not just a metaphor for a naturally occurring market structure; it is intentionally an
constructed institution. Indeed, auctions and other designed markets are ubiquitous in
our economy. Moreover, there is an abundance of historical instances where the abstract
game-theoretic formalism of a mechanism has been translated into a functioning real-world
institution. Thus, from a normative perspective, the abstract language and rules of a
mechanism represent a genuine practical possibility.

IThis rhetorical point has been made by Borgers (2017), where it is framed as a critique of the worst-
case analysis surveyed in this article. See also Kambhampati (2025) for a distinct approach that considers
lexicographic preferences over possible environments.

2Chung and Ely (2007) consider a subset of the universal type space of Mertens and Zamir (1985) in
which each agent knows their own value. Of course, we might wish to go even more general and allow for
interdependence!



The information structure is, by contrast, a much looser metaphor for reality. Of
course, human beings possess private information, but that information is in reality a
messy, complicated object, that cannot be concisely expressed through natural language.
For example, in real estate, prospective homes have a huge number of characteristics, and
individuals vary in their needs and desires and constraints. An agent’s knows all of the
listing details, tours, market research, introspection, and much much more information that
they exposed to over the course of a home search. A mathematically tractable model of
information is a dramatically simplified artifice, useful for analysis but reflecting reality
only at an atmospheric level of abstraction. A further issue is that even if we are willing
to embrace the information structure as a descriptive theory, it may only be valid as an
implicit representation of the agents’ choices. We should not take the abstract language of
signals in an information structure literally as something that agents are consciously aware
of or could articulate through interaction with a mechanism designed by mathematical
economists.

Returning to the auction problem, suppose we take the information structure to be so
rich that it covers all of the possible correlation structures. Then an optimal mechanism
will so too build in all kinds of elaborate ways for the agents to behave, corresponding to
different optimal mechanisms for different submodels of information. At the very least,
this would consist of all of the possible lotteries, as mappings from others’ information
to dollar amounts, needed to separate agents by their beliefs. If we wished to go even
further and build a “grand” mechanism to cover all environments, then the language would
need to be as rich, abstract, and artificial as that used to describe information structures
themselves. Do we actually believe that human beings would be able to play such an
elaborate mechanism as a designer intends? The burden on the agents to coordinate their
play as intended for “their” information structure would be absolutely mind-boggling. Our
point is that if the model of information is too complex, then the optimal mechanism will
be overly complex as well, so that equilibrium is no longer a compelling prediction for
behavior, and the connection between theory and reality will be lost.

1.3 What are we after?

All of this indicates that if we wish to obtain optimal mechanisms that have a hope of
actually being implemented in a manner that resembles the theory, the information has to
have a relatively simple structure. At the same time, the hope would be to use the theory
of optimal mechanisms to discover designs that have a life beyond the particular model of
information that gave rise to them. At the very least, we would hope that performance of
the mechanism would not degrade precipitously if the environment turns out to be different
from our baseline assumptions. Putting it a bit differently, each information structure has
its own lesson about the right way to align the the agents’ incentives with the designers’
goals, and these lessons are incorporated into the corresponding optimal mechanism. In
our view, a desirable feature of a model of information is that its associated lesson remains
relevant, even if the true model of information turns out to be different.

Framed in this manner, the IPV model seems like a grand success: Each agent only
possesses information about their own value, and not about the values or information



of others. Moreover, this information can be “ordered” in a natural way according to
the values. This orderly structure is reflected in the optimal mechanisms as well, in the
manner in which one-dimensional bids in a first- or second-price auction correspond to
increasing allocation and payments. Moreover, the “lesson” from the IPV model about
how to structure incentives seems relevant well beyond that environment. In particular, an
agent’s value is a measure of the strength of their objections to what the designer wants
to achieve (i.e., rent extraction), where by “objection” we mean refusing to participate in
the mechanism, because the resulting outcome would be too deleterious. But not only can
agents object to the mechanism: they can also behave as if their objections are stronger
than they truly are. A particularly salient special case is pretending that one’s objections
are just slightly stronger than they are in actuality (e.g., behaving as if one’s value is
slightly lower than the true quantity). Optimal mechanisms have to manage the rents that
agents obtain from a combination of being able to object and being able to overrepresent
their objections. In the specific case of IPV with regular distributions, rents are optimally
managed by linking higher priority in the allocation to higher payments. While this simple
structure is exactly optimal only in certain settings, as we mentioned previously, there are
numerous results in the literature arguing for the efficacy of such mechanisms in non-IPV
environments.

By contrast, if we limit our scope to a particular instance of the correlated values
model (as we must to keep the optimal auction manageable in size and complexity), then
the “lesson” is that given heterogeneous probabilistic assessments, the designer can fore-
stall the agents’ from overrepresenting their objections by linking each action to a bespoke
wager about others’ information, where each of these wagers would appear extremely un-
favorable except for a given belief and value. But because the mechanism is tailored to
the specific probabilistic assessments that are hypothesized, they lack portability to other
environments.

1.4 Simplicity and Portability

Thus, in the context of optimal auctions with private values, the independent model seems
to lie at the sweet spot of being simple enough that optimal mechanisms are of a manageable
complexity, while also generating portable insights about how to manage incentives. Now,
one might reasonably object to our use of the word “simple” in such a vague and ill-defined
manner. The truth is that we do not know how to define or quantify “simplicity” in a
general manner. This inability represents a significant methodological obstacle in game
theory and mechanism design, which we will return to at the end of this article. In lieu
of a definition, we will instead take it as a premise that the regular IPV model is simple.
Indeed, there are numerous examples of papers that have tried to generalize the regular IPV
model by identifying sufficient conditions on the information structure so that the same
pattern of equilibrium constraints characterizes the optimal mechanism: Roughly speaking,
the condition is or should imply that private information can be ordered by the strength
of the opposition to the designer’s goals, and that the critical equilibrium constraints are



that agents not be tempted to slightly overrepresent their objections.®> We refer to such

information structures as regular, and we take it as an axiom that regularity is a sufficient
condition for an information structures to be considered “simple.”*

Now, if private-value auctions were the only problem we were interested in, then perhaps
we would declare victory with IPV and call it a day. But mechanism design is much
broader than that. And it is not unfair to say that for most problems of interest, ranging
from multiproduct monopoly, bilateral trade, public goods, and partnership dissolution,
there is no set of assumptions about preferences and information that have achieved the
status of a commonly accepted benchmark, like the IPV model in private-value auctions.
Even within auctions, there are natural alternative payoff environments, such as those
with interdependence and correlation in values, for which there is no satisfying theory of
optimal mechanisms. For example, the mineral rights model of Wilson (1977) strikes many
as a natural metaphor for noisy information about a pure common value, but because the
signals are richly correlated, “strange auctions” like those described by Myerson (1981)
are again optimal and completely neutralize private information (McAfee, McMillan, and
Reny, 1989).

So how do we emulate or improve on the success of IPV in these other domains? And
how do we build productive theories of optimal mechanisms? Going back to the opening
anecdote, we do not see it as a coincidence that the IPV model was both the most chal-
lenging for the designer, among those models considered, and also has proven the most
insightful. Indeed, this brings us to our central thesis: the informational environments
that are most challenging for the designer will tend to lead us to practically useful insights
about mechanism design. Why? Well, it has to do with the twin goals of simplicity and
portability.

To explain our views on simplicity, it is helpful to introduce some concepts. Let us
define the potential of an information structure to be the optimal value of the designer, i.e.,
the designer’s highest payoft across all mechanism and equilibria. We take the potential
as the measure of how challenging the environment is. When values are richly correlated,
the agents know much more than the designer about one another’s values and information.
However, this rich information is actually quite beneficial to the designer, because it allows
the designer to construct wagers about others’ information that represent very different
lotteries to different agents. So, the agents having very complex information may actually
be beneficial to the designer, and lead to a high potential. And yet, it is certainly not
the case that more information for the agents always raises the potential. Indeed, consider
the case of a single buyer: if they knew nothing about their value (except for its prior
distribution), then it would be possible to extract all of the surplus, simply by offering
the good at a posted price equal to the ex ante expected value! Whether more private
information leads to higher or lower potential depends on what form it takes. The cases
that are more challenging for the designer are when private information takes a disciplined
form, that serves to inform the agents of when their objections to the mechanism are
the strongest, and then amplify the constraints on the designer through agents’ ability

3See, e.g., Bulow and Klemperer (1996), Chung and Ely (2007), Pavan, Segal, and Toikka (2014), Chen
and Li (2018), and Yang (2024).
4We recognize that this is a controversial premise, and we will critique it below in Section 5.



to overrepresent their objections. Thus, low (or even minimum) potential seems like a
criterion that will select for relatively simple forms for information.

To discuss portability, we introduce another concept: The guarantee of a mechanism is
the lowest possible value to the designer, across all information structures and equilibria.
The guarantee of a mechanism also isolates a “most challenging” environment, but it is
the most challenging for that particular mechanism. By definition, a mechanism with a
high guarantee must have structure that ensures at least that payoff for the designer, re-
gardless of the environment. In that sense, mechanisms with higher guarantees incorporate
within them more portable methods for aligning the agents’ incentives with the designer’s
objectives.

So, we have two ideas: Information that minimizes the potential will tend to be simple,
and represent the most efficient levering up of agents’ objections, in order to constrain the
designer as much as possible. And mechanisms that maximize the guarantee embody, in a
certain sense, the most portable methods for aligning incentives with the designer’s notion
of welfare. How do these two come together?

We may dualize the mechanism designer’s self into one half that is searching for the
environment that is most challenging, meaning information structures with low potential,
and the other half that is searching for portable mechanisms, meaning those with a favorable
guarantee. This is a sort of zero-sum game that the designer plays against themself, to
systematically and simultaneously explore both sides of a mechanism design problem. Of
course, given an information structure and a mechanism, there is still the matter of which
equilibrium will be played. But setting that aside for the moment, and pursing the analogy
with zero-sum games, a very strong form of solution of this introspective game would be
a saddle point: a potential-minimizing information structure and a guarantee maximizing
mechanism, where the minimum potential is equal to the maximum guarantee. Such a
saddle point would represent a confluence of the ideas we have espoused on simplicity
and portability: The guarantee-maximizing mechanism, meaning the one with the most
“portable” approach to aligning incentives, would also be an optimal mechanism for the
most “challenging” information structure, so that if the latter turned out to have a relatively
simple form for private information, then this would tend to be reflected in the mechanism
as well.

1.5 A Brief Survey

The literature we survey below has shown that for many fundamental problems in mecha-
nism design, such saddle points do exist. Moreover, whether or not a saddle point exists,
there will always exist potential-minimizing information structures that resemble the IPV
model in key ways. In particular, there will always exist a potential minimizing information
that is regular, in the aforementioned generalized sense: private information can be ordered,
in terms of the strength of objections to the designer’s goals, and the key constraints that
pin down the potential are that the agents must not want to behave as if their objections



are slightly stronger than they truly are.® This structure is also reflected in the guarantee
maximizing mechanisms: It is always possible to find a guarantee maximizer in which the
agents’ actions can be interpreted as an expression of the strength of their opposition to the
designer’s goals. The key issue in designing guarantee-maximizing mechanisms is trading
off the value of the implemented outcome to the designer, versus the pressure it places on
the agent to slightly underrepresent their objections. We will refer to a mechanism for
which the guarantee is pinned down by equilibrium constraints of this form as also being
reqular, as a dual notion to that applied to information structures.

Thus, we may concisely express a key conclusion of this literature: there necessarily
exist potential-minimizing information structures and guarantee-maximizing mechanisms
that are regular. This is true at a remarkable level of generality, holding for any set of
outcomes, any set of payoff-relevant states, and any expected utility preferences of the
agents and the designer.®

A further key insight is that both of the programs of potential minimization and guar-
antee maximization can be formulated as linear programs, which lends analytical and com-
putational tractability to the theory. In fact, there is sense in which these programs are
approximate duals of one another, and so that solutions to the potential /guarantee problem
can be viewed as saddle points in the sense of linear programming duality.

Finally, the literature has produced a number of fully worked applications to auctions,
trading mechanisms, and the provision of public goods. These applications have produced
novel designs for mechanisms in their respective settings.

The following sections survey these results in greater detail. We will describe the general
theory and the main results outlined in the preceding paragraphs. We will also provide two
worked examples: one involving a common value auction, and another involving bilateral
trade. These examples will serve to illustrate how the theory can be operationalized to solve
for guarantee-maximizing mechanisms and the potential-minimizing information structures
that rationalize them. Towards the end of the article, we will take a broader view and
cast these results within the broader literature on robust mechanism design. The article
concludes with a critique of the informationally-robust approach, and a discussion of what
we see as the most promising avenues for further development of the theory.

2 A Model of Mechanism Design

We now transition to a more formal analysis, beginning with a mathematical description
of the joint mechanism and information design problem described in the introduction. The

5In the formal statements of these results, we describe approximate potential-minimizing information,
and the regularity condition holds approximately as well. A similar caveat applies to our description of
guarantee-maximizing mechanisms as regular.

6To economists working on mechanism design, this result may seem counterintuitive: “regularity” is
usually conceived of as a property on primitives that implies the aforementioned structure on the critical
equilibrium constraints. Instead, what we are saying is that if we derive the information structure and
mechanism according to the min potential or max guarantee, then we will endogenously arrive at functional
forms that are regular. Thus, the informationally robust analysis is a tool for identifying primitives which
will imply an order on private information or actions, for which local equilibrium constraints are sufficient.



economy consists of a finite number of agents, whom we index by i = 1,..., N, as well as
a mechanism designer. There is some fundamental uncertainty which affects preferences,
which is parametrized by a state of the world, denoted by 6 € ©. The designer is in control
of an outcome w € §2. Both the agents and the designer have expected utility preferences
over states and outcomes, which are represented by a utility index u;(w, #) for agent 7, and
a welfare function w(w, @) for the designer.

The set of states (and other sets we introduce) may be finite or infinite, depending on
the application, though for most of the formal results we describe in this survey, we will
suppose that these sets (and other objects as well) are finite. We comment further on the
finiteness assumption after presenting the rest of the model.

The designer can build a mechanism by which the outcome will be determined. Specifi-
cally, the mechanism consists of, for each agent, a set A; of actions that can be taken in the
mechanism, and a mapping m that associates to each profile of actions a = (ai,...,ay)
a likelihood m(wl|a) that the outcome w will be implemented. The entire mechanism is
denoted by M = (A, m), where A = A; x -+ x Ay is the set of action profiles. The mech-
anism should be thought of as an institution, such as an auction or a market exchange,
erected by the designer. Let M be the set of finite mechanisms.

A subset of mechanisms that will be important in our theory are those that are partic-
ipation secure, meaning that for every agent ¢ there exists a secure action, which we label
as 0 € A;, and for which

Zui(w, @)m(wl0,a_;) =0

w
for every 6 and a_;. Let M be the set of finite participation-secure mechanisms. A
fundamental assumption of the theory is that a participation-secure mechanism exists.

The purpose of the mechanism is to incorporate private information that the agents
have about # into which outcome w is implemented. This private information is described
by an information structure, which consists a set of possible signals \5; for each agent i, and
a joint distribution o € A(S x ©), where S = S; x --- x Sy is the set of signal profiles.
The information structure is finite if S is finite.

An information structure is formally equivalent to a common prior type space in the
sense of Harsanyi (1967), with one caveat: we have built into our definition the common
prior assumption, that differences in beliefs are a result of differences in information. We
will comment more on this assumption in Section 4.

For most of the theory, we hold fixed a prior distribution p € A(©). Thus, the uncer-
tainty of the designer is not about payoff relevant fundamentals of the economy, but only
about the agents’ information. A natural extension of the exercise would be to also include
uncertainty about pu. We discuss this possibility further in Section 4. But for now, we
focus on the case where only information is unknown. Let Z be the set of finite information
structures for which the marginal of o on 6 is p.

Given a finite mechanism and a finite information structure, a (behavioral) strategy
for an agent associates to each signal s; and action a; a likelihood b;(a;|s;). A profile of

strategies b can be identified with a mapping from signal profiles to lotteries over action
profiles, where b(al|s) = [ [, bi(a;|s;).

10



Given a finite mechanism M, finite information structure 7, and strategy profile b, the
ex ante expected utility for agent 7 is

Ui(M,1,b) = Z ui(w, 0)m(wl|a)b(als)o(s, ),

a,s,0,w
and that of the designer is
W(M,I1,b) = Z w(w, O, w)m(w|a)b(a|s)o(s,0).

a,s,0

Finally, b is a (Bayes Nash) equilibrium if U;(M,I,b) is greater than U;(M, I, (b},b_;))
for every agent ¢ and alternative strategy b. Let £(M, I) denote the set of equilibria given
a finite mechanism M and finite information structure I. We further denote by £°(M, I)
the subset of equilibria for which

> wi(w, 0)m(wla)b(als)o(si, s—;,0) =0

a,s_;,0,w

for all ¢+ and s;, i.e., those equilibria that satisfy interim participation constraints.

In this theory, in order to know how a mechanism will perform, we need to specify both
the information structure and the equilibrium being played. A key challenge for the designer
is to determine which information structures will be useful for disciplining the design of the
mechanism. As we argued in the introduction, environments that are especially challenging
for the designer stand out as candidates that may guide us to especially portable designs
for mechanisms. Here, “challenging” is quantified by the best performance that can be
achieved by the designer, which we term the potential.

P(I)= sup sup W(M,I,b). (1)
MeM be€O(M,I)

The most challenging information structure is one that minimizes the potential. We denote
the infimum potential across all finite information structures by

P* = inf P(I).

IeT

Relatedly, we seek mechanism that is portable across information structures. We quan-
tify how portable a mechanism M is by its guarantee, defined as

G(M) =1Ir€1£b€€1(r}\£’I)W(M,],b). (2)

The most portable mechanism is one that maximizes the guarantee. We denote the highest
possible guarantee over participation-secure mechanisms as

G* = sup G(M).

MeMO

Note that we have modeled participation constraints in two different ways for the guar-
antee and the potential; for the latter we have used a standard interim participation con-
straint, while for the former we have used participation security. The latter implies the

11



former: In particular, if M is participation secure, then for any I, any equilibrium of (M, I)
must satisfy interim participation constraints; if not, then an agent could profitably deviate
to the secure action.

The reason for adopting a different approach to participation constraints in the two
problems is that individual rationality is not a property of a mechanism; it is a property of
an equilibrium in a particular mechanism and information structure. But in formulating
the guarantee-maximization problem, we wish to restrict attention to mechanisms in which
agents are willing to participate, regardless of the information structure and equilibrium.
In general, participation security is stronger than the requirement that every information
structure has an equilibrium in which interim participation constraints are satisfied. We
discuss this further with an example in Section 5.

An elementary observation is that G(M) < P([) for any participation-secure mechanism
M and information structure I. The reason is as follows. First, The equilibrium therefore
has an expected welfare for the designer that is less than P(I). Hence, that G(M) (the
worst equilibrium outcome across all I’) must be less than P(I). It immediately follows that
G* < P*. There are cases for which G* < P*, in which case we say there is a duality gap.
The theory is especially powerful when there is no duality gap, so that the max guarantee
is equal to the min potential. In this case, the potential-minimizing information structures
certify that the guarantee-maximizing mechanisms are unimprovable, and vice versa.

An especially strong type of solution would be a saddle point: a pair (M, I) for which
G(M) = P(I). For such a pair, M is necessarily a guarantee-maximizing mechanism (since
no mechanism can have a guarantee higher than P(I), and I is necessarily a potential-
minimizing information structure (since no information structure can have a potential less
than G(M)), and there is no duality gap. Moreover, we will show that saddle points possess
additional mathematical structure that greatly facilitates their characterization.

Notice that we cannot appeal to a conventional minimax theorem for the existence of
a saddle point. This is for a number of reasons: First, given a pair (M,I), we would
consider the worst equilibrium for the designer when computing the guarantee, and the
best equilibrium for the designer when computing the potential. Thus, this game between
a guarantee maximizer and a potential minimizer is not actually zero-sum. Moreover,
even if we fix an equilibrium selection rule, because the set of equilibrium outcomes can
vary in a complicated way with the pair (M, ), we do not know of any linear or convex
structure on equilibrium welfare that would allow us to apply the standard minimax theo-
rems. Nonetheless, in the next section we will give intuitions for its existence and incentive
structure, as well as examples in some concrete problems. Finally, with the restriction to
finite mechanisms and information structures, the action spaces of the guarantee maximizer
and potential minimizer may not be appropriately compact, in order for G* and P* to be
attained exactly.

Now is a good moment to return to the issue of finiteness. In the definitions of a
guarantee and a potential, we have restricted attention to finite mechanisms and finite
information structures, following Brooks and Du (2024, 2025). For the general theory, this
restriction is both conceptually beneficial and analytically convenient. On the conceptual
side, if we allow for infinite mechanisms and information structures, then we would have to
confront the possibility that equilibria do not exist. This is more than a technical concern;
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if a mechanism’s guarantee is only evaluated for those information structures in which an
equilibrium exists, then we may reasonably worry that its guarantee holds only vacuously,
because equilibria do not exist on those information structures which would actually be
the most challenging. More subtly, even if equilibria exist, the set of equilibria may be
unnaturally small due to a controversial exploitation of non-existence of best responses.
This is related to critiques of results on full implementation using integer games that
exploit non-existence of best responses. See Jackson (1992) and Abreu and Matsushima
(1992b) for provocative discussion of these issues. But if the mechanism and information
structure are both finite, then best responses always exist, and such concerns are moot.
On the analytical side, as we will see, finiteness allows us to appeal to the powerful and
elementary theory of finite dimensional linear programming for the main results.

Finiteness is a significant limitation, however, in that the supremum guarantee and
infimum potential may only be achieved in the limit as the number of actions or signals
goes to infinity. This is precisely what happens in the optimal auctions and bilateral
trade examples that we discuss in the next section. It is straightforward to generalize the
definitions of mechanisms and information structures so that each A; and S; is a measurable
set, which may be uncountably infinite. Similarly, we may take strategies to be probability
transition kernels, and generalize our definitions of Bayes Nash equilibrium, guarantees, and
potentials in the obvious way. This is the approach adopted in Brooks and Du (2021b),
and which we informally describe in the examples, where we will construct exact saddle
points for the informationally-robust mechanism design problem. As we will see, not only
does this allow us to exactly attain the maximum guarantee and minimum potential, but
it also permits much cleaner analytical characterization and construction of the guarantee-
maximizing mechanisms and potential-minimizing information structures.

3 Informationally Robust Optimal Mechanism Design

This section surveys the key results in the literature. We begin with the general theory on
the structure of guarantee-maximizing mechanisms and potential-minimizing information
structures. We will conclude with two examples, for which we explicitly construct saddle
points: revenue guarantees in auctions and welfare guarantees in bilateral trade.

3.1 Lagrangian formulation

Following Brooks and Du (2024), to understand the relationship between the min potential
and max guarantee problems, we first invoke the revelation principle two rewrite them as
bilinear saddle point problems. Specifically, to calculate the potential of a finite information
structure I = (S, o), we first apply the revelation principle (Myerson, 1981): it is without
loss to maximize over direct revelation mechanisms on I that are incentive compatible and
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individually rational. Thus, we maximize the following Lagrangian:

LP(S,m,o,a, ) = Z w(w, O)m(wl|s)o(s,0)
s,0,w

+37 ailsilsusle, O)(m(wls) — mlwlshs-)o(s.0) (g

5 o!
1,8} s,0,w

T Z Z Bi(si)ui(w, @)m(w|s)o(s, H).

i s5,0,w

The first line above contains the objective that the designer wants to maximize over
direct revelation mechanisms m : S — A(2); the second line contains the incentive compat-
ible (IC) constraints (with multipliers «;(s}|s;) = 0) where agent ¢ with signal s; does not
want to misreport s;; and the third line contains the individual rationality (IR) constraints
(with multipliers f3;(s;) = 0) where given signal s; agent i’s expected utility from truthful
reporting is non-negative. By the Lagrange multiplier theorem, we have

P(S,0) = min = max L'(S,m,0,af), (4)
where the minimization over o and f tells us which IC and IR constraints are binding for
computing the potential.

Likewise, to calculate the guarantee of a finite mechanism M = (A, m), we apply another
revelation principle: it is without loss to minimize over Bayes correlated equilibria (BCE)
on M. That is, we minimize the following Lagrangian:

LY(A,m,0,0) = Y w(w,O)m(wla)o(a, )

a,l,w

=) aulal]ai)us(w, ) (m(wla)o(a, 0) — m(wlaj, a_;))o(a, 6).

-
i,af a,0,w

(5)

Analogous to the potential Lagrangian, the first line contains the objective that the
designer wants to minimize (to seek a guarantee) over joint distributions o of actions and
states, where the actions are “recommendations” of a hypothetical mediator; the second
line contains the obedience constraints of BCE (with multipliers «;(a}|a;) = 0) where agent
i when recommended to play a; does not want to deviate to a;. We have

G(A,m) = max min LI(A,m,o,q), (6)
az20 ceA(AxO):margg o=p
where now the maximization over « tells us which obedience constraints are binding for
computing the guarantee.
In summary, the minimum potential is given by

. _ . »
}2% P(I) (Sl,g)fez azn(},lﬁnzo m:Sr'ILaAX(Q) L2(S,m, 0,0, ), (7)

and the maximum guarantee is given by

sup G(M)= sup max min LI(A,m,o,q). 8
ME/EO ( ) (A,m)gMU az0 ceA(AXO)margg o=p ( ) ( )
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The optimization problems in (7) and (8) are non-linear (since o, m and « are multiplied
together in LP and LY) and therefore seemingly intractable to solve and obtain insights.
Moreover, while the two Lagrangians seem to contain similar terms for the designer’s ob-
jective and the truthtelling/obedience constraints, the latter appear with opposite signs (a
plus sign in front of a; in LP but a minus sign in front of a; in L9).

3.2 Dual reductions

An important insight into the structure of the solutions to (7) and (8) comes from Brooks
and Du (2025), who show that it is without loss to restrict attention to specific pat-
terns of binding constraints and values for the Lagrange multipliers in the two problems.
Specifically, they develop a “dual reduction” procedure inspired by Myerson (1997) that
simultaneously simplifies mechanism/information structure and the multipliers.

To illustrate how dual reduction works, let us focus on the guarantee maximization
problem. Fix a participation-secure mechanism M = (A, m) and an arbitrary multiplier
a;(a|a;) for LI. Moreover, since LY is not affected by the value of «;(a;]a;), we can without
loss of generality assume that there is a large C' > 0 such that

Zai(aﬂai) =C=>0

for every a; € A;, . .
The dual reduction procedure produces a new (reduced) mechanism M and a new set
of multipliers & for which

min LY(X,m,0,a(C)) = min LI(A,m, o, ). (9)
0eA(X xO):margg o=p 0eA(AXO):margg o=p

Here is how the construction works. The actions in the reduced mechanism are non-
negative integers, where each integer [ > 0 is associated with a particular mized strategy
in the original mechanism M, which we denote by b;(-|). In particular, when agent i plays
the action [ = 0, this results in the mixture that puts probability one on the action 0 € A;
(which we recall was a secure action in the mechanism M), that is, b;(0/0) = 1. The rest
of the mixtures are defined recursively according to
/
Mwumzzﬁ%ﬁ%@m

!
a;

Now define the reduced mechanism M = (X, m) from M so that only these mixed actions
are available to play: the action space for each agent is the non-negative integers

X; ={0,1,2,...},

and

mwm=2mwwﬂmmm
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for all w € Q and x € X. Thus, in the reduced mechanism, agents choose their mixtures,

actions are drawn independently, and then the original mechanism is run.
Finally, define the new multipliers @ according to

C z=ux;+1,

(10)
0 x;#x+1,

a; (C) (wilwi) = {

Now, why does (9) hold? For any 6 € A(X x O), we can define o € A(A x O) such that
o(a,0) = >, 0(x,0) ][, bi(a;|x;); straightforward algebra then shows that LI(X,m, 7, a(C))
LI(A,m, o, «), which proves (9).

In effect, o represents a particular pattern of deviations, where «;(a}|a;) is proportional
to a likelihood of deviating from a; to a}. Every such pattern of deviations implies a lower
bound on the guarantee. The dual reduction simultaneously limits what agents can do
in the mechanism (by restricting them to mixtures in the original mechanism) while also
preserving the ability for the agents to deviate proportional to «, so that the implied lower
bound on the guarantee can only increase.

While M is not a finite mechanism, we can restrict m to X (k) = [ [, Xi(k), where

Xi(k) = {0,1,..., k.

Denoting this restriction as m* and using the same multiplier as in (10), Brooks and Du
(2025) show that

lim min L9(X (k), ", 5,4) = min L9(X, 7, 3,8(C)).
k—0o0 geA(X (k) xO):margg o=p 0eA(X xO):margg o=p

Therefore, we conclude that the maximum guarantee may be computed using multipliers
of the form in (10):

sup G(M) =sup  sup min LI(X(k),m,o,a(C)). (11)
MeMO E,C (X (k),m)eMPO oeA(X (k)xO):margg o=p

What this result means is that in solving for guarantee-maximizing mechanisms, it is
without loss to restrict attention to mechanisms in which the actions can be ordered (as
non-negative integers), the lowest action is secure, and the binding equilibrium constraints
are those associated with deviating from an action to its successor in the sequence. We may
interpret the actions as representing the strength of an agent’s objections to the designer’s
goal, with the secure action 0 representing the strongest objection. And the multipliers &
show that the constraints that matter are those associated with slightly underrepresent-
ing one’s objections. Moreover, it is without loss to take the Lagrange multiplier on the
binding local obedience constraints to be constant. This is what we referred to as a regular
mechanism in the introduction.

Brooks and Du (2025) show that there is an analogous dual reduction procedure for
the information structure, and to compute the minimum potential it is without loss to use
signal space

Xi(k)={0,1,... .k} U {no}
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for some k, and multipliers of the form

/
C x =z —1,

12
0 a #x;—1, (12)

a;(C)(z}|z;) = {

We define oo — 1 = o0, so we are ignoring the IC (and IR) constraint of the type z; = o0.
Brooks and Du (2025) prove that

inf P(I) =inf inf “max  LP(X(k),m,0,a(C),B3(C)). (13)
IeT k.C (X(k),0)e m: X (k)—A(Q)

Given an information structure I and multipliers («, 3), the construction of the dual reduc-
tion I proceeds somewhat differently: Each multiplier is still proportional to the likelihood
of a deviation, where «;(s}|s;) corresponds to mimicking s; when the true signal is s;, and
Bi(s;) corresponds to leaving the mechanism. Now imagine drawing (s,6) from I, and
then propagating these stochastic mimickings and departures. Either an agent leaves the
mechanism in finite time, or they never leave. In the dual reduction, agents simply observe
how long it took them to leave the mechanism (or if they never left). Thus, the signal in
the dual reduction is a garbling of their signal in the original mechanism. Brooks and Du
(2025) show that in the dual reduction, when the signal [ > 0 mimics the signal [ — 1 (or
leaves if [ = 0), this replicates the stochastic deviation (¢, ) in the original information
structure. But now fewer outcomes are implementable in the dual reduction, since the
mechanism can only depend on the departure time, not the true signals. Moreover, if the
reduced signal is a censored by pooling together all departure times above a threshold, as
long as the threshold is sufficiently large, the effect on the potential is negligible.

Brooks and Du (2025) refer to an information structure with this pattern of binding
incentive and participation constraints (&, /3’) as regular. Similar to the mechanism, the
signals in X;(k) are ordered by the strength of their objection to participation; but the
binding constraint is that agents might want to slightly overstate their objections, or to
not participate if they have the strongest objections.

Returning to our discussion from the introduction, we claimed that potential mini-
mization would necessarily lead to information structures that are relatively “simple,” and
that this simple structure would also be reflected in guarantee-maximizing mechanisms.
What we were referring to was precisely these findings, that in maximizing the guarantee
and minimizing the potential, it is without loss to restrict attention to mechanisms and
information structures, respectively, that are regular.

3.3 The Bounding Programs

Thus, it is without loss to restrict attention to the simple pattern of equilibrium constraints
according to (10) and (12). As we noted above, the constant C' can always be made
larger, which corresponds to increasing a;(I|l) or &;(l|l), and scaling up the weight on local
obedience/truthtelling constraints. In the context of the dual reduction of a mechanism,
this would correspond to the actions being more “similar” to each other (since the rate of
switching actions in original mechanism is inversely proportional to C).
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Thus, it is natural to label the actions so that as the multiplier C' becomes larger, the
actions are closer together. This is the approach in Brooks and Du (2024), who consider a
signal/action space S; = A; = X;(k?), where X;(k?) is now normalized as

X;(K*) ={0,1/k,2/k, ..., k}.

As k — o0, X;(k?) converges to R, . Since the space between consecutive signal /action in
X;(k?) is 1/k, we consider C' = k in (10) and (12) so the Lagrangians LP and L involve
discrete derivatives of m and o. Loosely speaking, as k — oo, these discrete derivatives

approximate derivatives of the respective objects.
Substituting (10) and (12) with C' = k into L” and L9 yields:

LY(X (K*),0,m, k) = LP(X (K*), 0,m, a(k), B(k))
=Zw(w,9) (w]z)o(x,d) —I—ZZuleV m(w|x)o(z,0), (14)

z,0,w i x,0w

LI(X (K2),0,m, k) = LI(X (k), 0, m, a(k))
= N ww O)mwlz)o@,0) + 3. Y w(w, 0)Vim(wlz)o(z,6), (1)

z,0,w i x,0w

where

_ S R(f(r ) = flrg = 1/k,2 ) x>0,

vV f(z) = {’g(f(l"i + Uk, x) — f(w5,24)) j i l;,

Thus, the difference in directions in & and & flips the opposing signs of the incentive
constraints in L” and LY and results in similar-looking Lagrangians, albeit with the dis-
tinction of left-hand vs. right-hand derivatives. The two Lagrangians LP(X (k?),0,m,k)
and L9(X (k?), 0, m, k) should be close to each other if k is large and m and o are smooth
functions of x. This statement is made precise in Proposition 6 of Brooks and Du (2024).

Since they are obtained by restricting the problems in (7) and (8), LP(X (k?),0,m, k)
and L9(X (k?),0,m, k) yield upper and lower bounds on the potential and guarantee:

(X(k?),0) = %, LP(X (K, 0,m, k) = P(X(k?),0) (16)

]_3
G(X(k?), m) = min LI(X(E?),o,m, k) < G(X(K*),m), 17
G(X(k%),m) N e (X (%) ) (X(k%),m) (17)

Optimizing these bounds yields the bounding programs:

P(X(k?) = min P(X(K?),0), (18)

ceA(X (k2)x©):margg o=p
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G(X(k?) = m:X(ch%)ai(A(Q) Q(X(k2),m),st:2ui(w,Q)m(w\O,a_i) >0Vi,0,a_,, (19)

G(X(K*) < sup G(M) =G* < P* =inf P(I) < P(X(K?)). (20)
MeMO Iel

The result described in the previous section on dual reductions shows that as k goes to
infinity, G(X (k?)) converges to G* and P(X (k?)) converges to P*. Moreover, solutions to
the bounding program (18) are approximate potential minimizers, in that the potential of
the solution converges to P* as k — co. Similarly, the guarantee of the solution to (19)
converges to G* as k — c0. An important remaining question, though, is whether G* = P*,
that is, whether or not there is a duality gap.

Brooks and Du (2024) show, for a class of problems involving revenue maximization in
multi-good auctions, that as k becomes large, the value of the bounding programs must be
close to one another. This proves that for those problems, the duality gap is zero. To gain
some intuition into this result, observe that LP(X (k?),0,m, k) and LI(X (k?),0,m, k) are
bi-linear functions of ¢ and m, where they live in compact and convex spaces. Therefore,
if LP(X(k*),0,m,k) and LI(X (k?),0,m,k) are close to each other when k is large, then
Sion’s minimax theorem would allow us to switch max and min and would imply that
P(X(k?)) and G(X(k?)) must be close to each other.

Finally, we have

LY(X(K*),m,0,k) Z)\xﬁ (x,0),

where

= Zw(w, )m(w|x) + ZZW(M 0)Vim(wl|z). (21)

w

We call \(x,0) the strategic virtual objective (SVO) for the mechanism (X (k%),m). We
have:

G(X(k*),m) = min LY(X(K*),0,m, k) Z,u mln)\ (x,0). (22)

ceA(X (k)xO):margg o=p

Thus, a mechanism maximizes the guarantee if it maximizes the expected (across states)
lowest (across action profiles) strategic virtual objective. In effect, the strategic virtual
objective represents the designer’s objective, plus extra terms capturing the agents local
incentives to underrepresent their objections to the designer’s goals.

Likewise, using summation by parts, we have

LP(X(k*),0,m, k) nyajw (wlx),

where

Y(z,w) = Z w(w,@)o(z,0) — Z Z ui(w, )V o(z,0), (23)

i 0

19



and

- k(1 ke
V) = "
k(f(@i + 1k, x) = [z, 0-) @ <k
We call v(z,w) the informational virtual objective (IVO) for the information structure
(X (k*),0). We have:

PX(K),0) = max L/(X(K),0.m. k) = 2 maxy(z,w). (24)

An information structure minimizes the potential if it minimizes the expected (across action
profiles) maximum (across outcomes) informational virtual objective. In effect, the infor-
mational virtual objective is the designer’s objective, plus additional terms representing
the agents’ local incentives to overrepresent their objections.

While the strategic virtual objective is a relatively new concept, the informational vir-
tual objective is in fact a generalization of the virtual value introduced in Myerson (1981).
We return to this in the auctions example.

3.4 Saddle Points

Heretofore, we have maintained finiteness of the mechanisms and information structures.
But as we transition to examples, it will be more convenient to work with the continuum
analogue of the programs P(X (k?),0) and G(X (k?),m), so that the max guarantee and
min potential may be attained exactly. In the limit, X (k?) “fills in” the non-negative real
line, and the the discrete derivatives in the bounding programs would become directional
derivatives. By working with the differential form of the bounding program, we can avail
ourselves of the calculus to solve the programs.

All of this sounds quite speculative and lacking in rigor. However, there is an entirely
rigorous way to approach this issue. Suppose we have a candidate saddle point (M, ),
where the action space and signal space are R, (but still taking © and 2 to be finite).
Suppose further that the candidate M = (RY,m) is such that V;m(w|z) exists for all
i and x, where V; = 0/0x;. Then, a necessary condition for equilibrium is that local
upward obedience constraints are satisfied. Weak duality then implies a lower bound on
the guarantee of the mechanism M:

G(M) = G(M) =) u(b) inf A(z, 0)
0
where (cf. equation (21))

Mz, 0) = > w(w, O)m(w|z) + Z > ui(w, ) Vim(wl|x).

Similarly, suppose I is such that the joint distribution over (z, ) is absolutely continuous
in z, so that we may write it as o(z, 0)dx. Suppose further that o(z, ) is differentiable in
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x; for all #. Then, as local downward truthtelling constraints are a necessary condition for
equilibrium, weak duality implies that

P(I)< P(I) = f mjxv(x,w)dx,

where (cf. equation (23))

Y(z,w) = Zw(w, 0)o(x,0) — Z ui(w,0)V,o(x,0).

7

Thus, one way to certify that (M, I) is in fact a saddle point would be to show that
Z,u(ﬁ) inf A(z,0) = J max y(x,w)dz.
P T T w

This is precisely the approach adopted in Brooks and Du (2021b,a, 2023) and Brooks, Du,
and Feffer (2025).

Notice that what we have just described is a “guess and verify” approach to solving the
informationally-robust design problem. This is to be contrasted with the more systematic
approach we previously described, via the bounding linear programs, whose solutions nec-
essarily converge to the respective optimal values, whether or not there is a duality gap
and whether or not there are saddle points. The guess and verify approach, by contrast,
can succeed only if a saddle point exists and there is no duality gap.

Nonetheless, for problems in auctions, public goods, bilateral trade, and market ex-
change, the guess and verify approach has yielded results. The key step is to generate
informed guesses for the saddle point (M, I'), which may be verified via weak duality. One
way to do so is to utilize the bounding programs (18) and (19), which are are finite dimen-
sional linear programs (cf. equations (22) and (24)) and hence relatively computationally
tractable. As in Roger Myerson’s anecdote from the beginning of this article, numerical
solutions of (18) and (19) can be used to generate and test conjectures for the guarantee-
maximizing mechanism and potential-minimizing information in applications, and infer
functional forms in the continuum limit.

Another way to guess saddle points is using linear programming duality. In partic-
ular, as argued in Brooks and Du (2024), the bounding programs (18) and (19) are
an “approximate” dual pair of linear programs, except that the direction of equilibrium
constraints and the form of the participation constraint are different. In this dual pair-
ing, the likelihood m(w|x) plays the role of a Lagrange multiplier on the constraint that
v(z,w) < max, y(z,w'). And o(z,0) plays the role of Lagrange multiplier on the con-
straint that A(z,0) = min, A(2/,0). A natural guess is that in the continuum limit, this
approximate duality is exact, so that a saddle point would satisfy complementary slack-

TL6887I

m(w|z) > 0 = w € argmax_, y(z,w’), (25)

"Here is another way to think about complementary slackness. Suppose L(o,m) =
§, 20 (@ wym(wlz)de = 3,5 X, 0)o(x,0)ds. Consider a zero-sum game where player 1 chooses o
(such that margg o = p) to minimize L(o,m), while player 2 chooses m to maximize L(c,m) (cf. the
minmax and maxmin problems in (18) and (19)). Then the complementary slackness (25) and (26) are
exactly the conditions for (o,m) to be a Nash equilibrium of this game.
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o(z,0) > 0= z € argmin,, \(2’,6). (26)

There is no formal result in this literature that establishes complementary slackness as a
necessary condition for a saddle point. However, these complementary slackness conditions
turn out to hold in the saddle points that have been identified in the literature. Moreover,
the ansatz of complementary slackness has proven extremely valuable in solving for saddle
points in applications, as we illustrate in the next two sections.

3.5 Example: A Common Value Auction

We now describe a simple version of the common value auction problem of Brooks and
Du (2021b). Suppose there is a single unit of common-value good for sale. For simplicity,
suppose the common value is either 0 or 1, i.e., © = {0, 1}, with distribution x € A(©). The
outcome space is A(Q2) where Q = {0,1,..., N} x {~tmazs tmaz ). Forw = (1, 71,...,75) €
Q and 0 € O,

wi(0,w) = 0L, — 7,

w(f,w) = Z T;.

Thus ¢ = 0 means the good is not sold; ¢ € {1,2,..., N} means the good is sold to agent ¢.
And 7; is the monetary transfer from agent i to the designer. The designer’s preference is
total transfer, i.e., revenue.

Note that the transfer 7; can only take on two values. But randomizing over these
values induces an expected net payment, which we interpret as the continuous transfer
typically modeled in auction theory. We will consider the case when t,,,, is large, so
that transfer is essentially unbounded.® Specifically, for an @ € A(f2), we denote the
allocation probability ¢; = w({(¢,71,...,7n) € Q : ¢+ = i}), and the (expected) transfer
ti=20({(t,m1,..-,7™8) €Q: Ti = tmar}) — Dimaz. Then we have

Zui(&w)@(w) = 0q; — t;,

and

and

Z w(f,w)w(w) = 2 t;.

w

So, we may reparametrize the outcome, and instead of choosing @ € A(2), we will model
the outcome in reduced form as ¢ € A({0,1,...,N}) and t € [~taz, tmaz]” - Note that
when we sum over ¢ we always meant for i € {1,2,..., N}, s0 g =1—> . ¢.

8Brooks and Du (2021b) formally consider the case where the transfer is unbounded. This is not
formally subsumed within our model with finitely many outcomes. Brooks and Du (2024) derive analogues
of the bounding programs when transfers are free variables. However, for the present purposes, it suffices
to consider the case where transfers can be large but finite.
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3.5.1 Potential-minimizing information structure

The IVO of an information structure (RY, o) is
Y, (g,0) = Y y(m,w)w) = >, (tio(w,0) — Vio(z,0)(0g; — t,)) .
w i 0

For every z, we maximize y(z, (¢,t)) over (q,t), clearly we want to set ¢; to be t,,4, (re-
spectively, —t,,q.) if the coefficient of ¢; in y(x, (¢,t)) is positive (respectively, negative). If
transfers were unbounded, the coefficient of ¢; would have to be zero:

2(0‘(1’, 0) + Vio(z,0)) =0 (27)

for every i and z € RY. In the version of the model we are describing, the transfer is
bounded, but the bounds are as large as we would like them to be. So, it is natural to
consider information structures that satisfy (27). We shall subsequently verify that when
tmaz 18 sufficiently large, such information structures do in fact minimize the potential.

Denote the marginal distribution of o on x as p(x) = >, 0(x,6). Then (27) implies
that for every z; € R, and z_; e RY ™!

p(z) + Vip(z) =0,

so that p(x) = p(0,z_;)e . Iterating this across agents, and using the condition that
Sxi R, p(x;|z_;)dx; = 1 we conclude that implies that the the agents’ signals must be in-
dependently and exponentially distributed! For future references we denote this marginal
distribution as p(x) = e™>%, where Xz = Y, ;.

We now consider o with p as the marginal on x and substitute it into the IVO. Denote
the interim expected value as

3, 00(z,0)

o) = =)

. (28)
Then the TVO can be written as
(@, (g:1) = — Z ; Vio(z,0)0q;
== Z Vi(p(z)o(r))a: (29)
= ﬁ(wl) 2, (@) = Vio())a,

i

where we used the fact that V,;p(z) = —p(x). Since the inverse hazard rate of a standard
exponential distribution is one, this is exactly the Myersonian formula for the virtual value,
as generalized to interdependent values by Bulow and Klemperer (1996). Clearly, to max-
imize v(x, (q,t)) over ¢, we should have ¢; > 0 only if i’s virtual value v(z) — V,v(x) is
non-negative and maximal among all agents. This immediately suggests that to minimize
P(RY, ), we should have v(z) — V,u(z) = 0 for all i for a large set of z to keep the
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maximum [VO as small as possible, i.e., v(z) = Ae*® for some constant A > 0. Since we
must have v(z) < 1, this suggests an interim value function v(x) = min{Ae*® 1}, so that

0 Yr <7,
Y@, (g:1) = _ - (30)
p(x)(1—qo) Xzx>T7,
where 7 = log(1/A).
The constant A is chosen so that the marginal distribution over © is p, i.e.,
J min{Ae**, 1}p(x)dz = p(1). (31)
:):E]Rf
The sum of the signals has an Erlang distribution, with density function
N—-1_—y
y“ e
= — 32
o) = (32)

and cumulative distribution

z=0

” N
Gl = [ w2z = 1= Y alw) (33)
=1
Thus equation (31) can be rewritten as
Y yN
| Aerane) + 1= Gulw) = 4% + 1~ Gulw)
o N
= gn+1(7) +1 - Gn(7)
=1-Gnn(y) = p(1),

Gn11(y) = p(0). (34)

Summing up, the candidate for the potential-minimizing information structure is I =
(RY,7), where

a(x,1) = p(x)u(x), a(x,0) = px)(1 -v(x)),

which has a potential of at most

f maxy(x, (¢, t))dx =1 — Gn(7). (35)

eR¥Y at
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3.5.2 Guarantee-maximizing mechanism

Consider a mechanism (RY, ¢, ) where ¢ : RY — A({0,1,...,N}) and ¢ : RY — [~tn00, timaz V-
Its SVO is:

MO, 2) = > (ti(x) + 0Vigi(x) — Viti(x)).

Since both 7(z,0) > 0 and 7(z,1) > 0 when Yz < 7, but (z,0) = 0 and &(x,1) > 0
when Yx > 7, by complementary slackness condition (26), we look for a mechanism for
which all action profiles minimize the SVO 6 = 1, and action profiles with ¥z < 7 minimize
the SVO when 6 = 0. Equivalently, A(1,z) = L; for all z, A(0,2) = Ly when Yz < 7, and
L(0,z) = Ly when Xz > 7, for constants L; and Lg. This implies that

=B Xz <y,
< B Xz >y,

Vq(z) = Z Vigi(z) {
for some constant B > 0, and
Ly =Ly+ B.

Moreover, when Yz > 7, the IVO of @ is not maximized when ¢y > 0 (see equation
(30)), so by complementary slackness condition (25) we must have

dalr) =1, Lz>7.

A solution to this PDE is

which gives
N/y=1B Yr <7,

V-
(N-1)/32z Yz >7.

)]

<w=V@@@={

In fact, in the case of N = 2, if we want V - ¢(z) to be a function of Xz, then one can show
that the above 7 is the only possibility.
Now given a proportional allocation, it is natural to conjecture that the transfer function
should be proportional as well:
— ZT;

ti(z) = ZwT(Ex)

for some total transfer function 7' : R, — R. Brooks and Du (2021b) call a mechanism
M = (RY,q,%) of this form a proportional auction.
Then we have

2, (Ei(x) = Viti(x) = T(Sx) -

%

N -1

" T(Xz) —T'(Xx)
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=AN1l,z) =V -q(Xx) = L, — V-q(3x),

The initial condition is 7°(0) = 0, which ensures participation security. Solving this differ-
ential equation gives

Z:o(v -q(2) — L1)gn(2)dz

Tly) = gn(y)

)

where gn defined in (32).
In summary, the guarantee of proportional auction satisfies

Z,u mm)\ 0,x) = u(1)Ly + p(0)Lo.

Clearly we want to make L, and Ly as large as possible. However, if L; > S:O:OV :
q(2)gn(2)dz, then lim, ,,, T(y) = —oo since lim, ., gn(y) = 0, which preclude the ex-
istence of any equilibrium (the agents would race to bid an ever larger z;). Thus, we
set

* N-1

gn(y)dy
v=5 Y (36)

N
= GN@)g +1—-Gn-1(7),

L — J w V- (y)gn (y)dy = GN@% ¥

since gn-1(y) = gn (y) ™+
Since Ly = Ly — % he proportional auction has a guarantee of

G(T) = p(1) Ly + u(0) Lo = GN@% £ 1 Gy (@) — pl0)

<l | =

= 9N+1<?7)% +1—-Gn_1(Y) (37)

=1-Gn (D)

where we have used equations (33) and (34). The lower bound on the guarantee in (37) is
exactly equal to the upper bound on the potential in (35). Thus, (M, I) is a saddle point.

Brooks and Du (2021b) show the striking fact that as N — oo, the guarantee/potential
in (37) converges to the expected common value (1) at the convergence rate of O(1/v/N);
this result also holds for any prior distribution px of common values and generalizes an
earlier result of Du (2018). Thus, the guarantee of the proportional auction converges to
the first best full surplus as the market gets large, regardless of how information changes
as we add more agents to the market. Such an asymptotic full surplus extraction cannot
be obtained by a standard auction like the first price auction, as shown by Bergemann,
Brooks, and Morris (2017, 2019).
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3.6 Example: bilateral trading

Our second example is a derived from the public goods problem in Brooks and Du (2023)
(see also Brooks and Du, 2024, Section 4)).

There are two agents: agent 1 is the seller with a unit of a good; agent 2 is the buyer.
The state is either high or low: In the low state 6 = (0, g), so the seller’s value for the good
is 6; = 0, while the buyer’s value is #; = g > 0. In the high state, § = (h,h + g), so the
seller’s value for the good is #; = h > 0, while the buyer’s value is #; = h + g. Thus, there
is common knowledge that the gains from trade are equal to g > 0. Both states are equally
likely, i.e., (0, 9) = u(h,h+g) = 1/2.

The outcome space is A(Q2), where Q = {0, 1} x {—t,naz, tmaz }, Which represents whether
or not trade takes place and the net transfer from the buyer to the seller. As in the common
value auction example we look at the case where t,,,, is large. Preferences again have the
quasilinear form: For w = (¢, 7) € Q,

ul(e,w) =T — 91]IL:1,

us(0,w) = —7 + Oo1,_y,

w(H,w) = Hbzl(gg — 91) = ]ILzlg.
Thus, the designer’s objective is to maximize gains from trade.

For an @ € A(?), we denote the trading probability ¢ = @({(¢,7) € Q@ : ¢ = 1}), and the
(expected) transfer t = (20({(¢,7) € Q: T = timaz}) — 1)timaz. Then we have

D (0, w)i(w) =t — g,
D ua (0, w)i(w) = —t + bag,

> w(B,w)d(w) = g2 — 1) = qg.

So instead of @ € A(Q2) we will work directly with ¢ € [0, 1] and ¢ € [~taz, tmaz]-

We assume that A > g to rule out a trivial case in which it is always possible to
implement efficient trade: If h < g, then any price lower than g and higher than A would
be acceptable to both the buyer and the seller regardless of their information about the
state.

3.6.1 Potential-minimizing information structure

The IVO of an information structure (RY, o) is

v, (g,1)) = Y Y, w)d(w) = Y (990 (x,0) = Vio(,0)(t — gb1) = Vao(x,0)(—t + 6>)).
w 0

As with the auction, we may conjecture that when t,,,, is large, the coefficient of ¢ in
v(z, (q,t)) must be zero. This is equivalent to the PDE

Y (=Vio(z,0) + Vao(z,0)) =0,
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i.e., the marginal over z is a function of z; + x5,

S o(2,0) = pla) = ples + ). (33)
6

Now let v(x) be the interim probability of the high state:

o(z,(h,h + g))
p(z1 4+ x9)

v(z) =

Substituting this back to IVO, we have

Y@, (1) = (g1 +22) + Vilp(wr + 22)v(2)h = Va(p(z1 + z2)v(2)) (h + g)
— Va(p(z1 + 22)(1 — v(x)))g)q
— Vap(z1 + 22)9)q
= (gp(z1 + 2) + p(z1 + 22)(Viv(z) — Vav(z))h — p'(z1 + 22)9) g
Numerical solution suggests that the minimizing v(z) is

v(z) = P (39)

That is, conditional on the signal sum x; + zo, a higher x; for the seller is a bad news
about the value, while a higher x5 for the buyer is a good news. With this v, the IVO is a
function of just z; + xs:

p(zy + l'2>h> .

V(z, (g,t) = (Q(P(l‘l + o) — Py + 2)) — T

As in the common value auction example, to make max,; y(x, (¢,t)) as small as possible,
we should pick p so that the IVO is zero:

p(z1 + x9)
X1+ Xo

g(p(z1 + x9) — p'(11 + 12)) — h = 0. (40)
Solving this differential equation gives p(y) = Ae¥y~"9 for some constant A > 0. How-
ever, unlike the information structure in the common value auction example, we have
lim, o p(y) # 0 so we must truncate this density:

where 7 will be determined later (equation (43)), and A is a normalizing constant.
For various technical reasons (one of them is that if h/g > 2, p(y) is not integrable
around y = 0), we avoid the signal profile (0,0) and work with I, = ([¢/2,0)?,7), where

T2 g

a(@,(h,h +g)) = p(x1 + 25) a(x,(0,9)) = plar + 2)

) b
X1+ Xo X1 + X2
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and

L, 1 - 1
S(wl,xg)E[E/Q,OO)2 er1tT2 (ZL'I + .Z'Q)_h/gdl’ldl’g Sz:e (y — E)eyy—h/gdy

It would seem that the potential of I, is zero, since by construction ~(z, (¢q,t)) = 0.
While we do have y(z, (q,t)) = 0 for all ¢ when z; + x5 < ¥, the density p is discontinuous
at 1 + x93 = 7, so the derivative V;p(zy + x2) in y(z, (¢,t)) is not well defined when
x1 + 2 = 7. To work out v(z,(q,t)) when z; + zo = 7, let us go back to the discrete
approximation: let

or(z,0) = Bio(x,0)/k?

for x € (Xi(k*) N [¢/2,0))?, where By, is a normalization constant so that 3, o (z,0) = 1
when summed over z € (X;(k?) n [¢/2,0))? and 6§ € ©. Then using the discrete IVO in
(23) with o = oy, if z1 + 22 <7 but 21 + x5 + 1/k > 7, then

= > (94Bia(w,0)/k* — k(0 — By (x,0)/k*)gq)

which is clearly maximized when ¢ = 1. As k& — oo, we have B, — 1, and there are
approximately k(7 — €) such z, so Y, max,;y(z, (¢,t)) summed over these z’s tends to

(7 — €)e¥y "9y
(y — e)evy=hady

U —p®)g = F

y=e

Working directly with I, but using essentially the same argument as above, Brooks and
Du (2023) show that

Py < T

v (y — e)evyhlady

Therefore

lim P(I,) <

_ evyl—hlag
{ SZ:() evyl=hlady h/g = 2, (41)
e—0

0 hjg =2

Thus, if h/g > 2, there is practically no trade under information structure I, in any budget-
balanced mechanism and any equilibrium, even though there is a common knowledge of
gains from trade.

In comparison, consider Akerlof (1970)’s lemons information structure where the seller
knows the state and the buyer has no information. The condition h/g > 2 is equivalent to
the Akerlof (1970) condition (h + g)/2 + g/2 < h (the expected buyer value less than the
seller’s high value) for the breakdown of trade in the high state in the lemon information
structure; nonetheless, efficient trade would still take place in the low state, i.e., with 1/2
ex-ante probability. In a sense, we have learned that efficient trade can be much harder to
achieve than suggested by the lemons model.
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If h/g < 2, then the upper bound on potential in (41) is positive. We can determine g
by minimizing
Szz() eyyl—h/gdy’
though this can be done indirectly by characterizing the guarantee-maximizing mechanism
(see equation (43)).

3.6.2 Guarantee-maximizing mechanism

When h/g = 2, the minimum potential is zero. Clearly, any mechanism has a guarantee of
at least 0, so trivially obtains the maximum guarantee.

Suppose h/g < 2. For a mechanism (R%,¢,t), where ¢ : R2 — [0,1] and ¢ : R —
[—timazs tmaz |, the SVO is:

A0, x) = q(x)g + Vit(x) — 6, Vig(z) — Vat(x) + 0:Vaq(x).

Since @ (x,0) > 0 for both high and low € for all x such that x; + xs < ¥, by comple-
mentary slackness condition (26), we want A(0, ) = Ly when x1 +x9 < 7, and A(0,x) = Ly
when 1 + x9 > 7, where Ly’s are constants. Moreover, since (z, (¢,t)) is uniquely max-
imized by ¢ = 1 when 27 + 25 = 7, by complementary slackness condition (25) we want
q(z) =1 when z; + 2 = 7.

Since z1 + x5 is a “sufficient statistic” for the signal profile in I., we conjecture that
q(z) = q(z1 +x3). This conjecture is confirmed by the numerical solutions of program (19),
which also suggest

1 + T2

() = alor + ) (5 (0 ) =2 ).

The above transfer rule is participation secure: with z; = 0 the seller can guarantee to sell
at his high price of h, and with x5 = 0 the buyer can guarantee to buy at his low price of
g. (We will require ¢(0) = 0 so it is irrelevant how the price is defined when = = (0,0).)
In general the pricing function interpolates between g and h, the higher z; is, the more
favorable the price is to the other agent j # 7. That is the cost of raising x;; the benefit is a
higher trading probability, since the guarantee-maximizing ¢(x) turns out to be increasing
in x;.
Substituting these conjectures into the SVO, we get
(h—g)q(x1 + x2)

MO, z) = g(q(x1 + 22) + ¢ (21 + 22)) — 1 + 2 '

We see that (6, z) is actually independent of 6, so we set Ly = L. The complementary
slackness conditions discussed in the previous paragraph then implies

(h = g)g(z1 + 73)
T, + X

q0) =0, qlz1+z2) =1, 1 +22>7, (42)
(h—g)

Y

g(q(@1 + 22) + ¢' (21 + 22)) — =1L, x1+x9 <7,

> L.
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The first two equations are self-explanatory. When z + zo > L, A\(0,x) = g — wﬁi,

the third equation is necessary and sufficient for A(6,z) > L for all x; + x5 > L. Since
q(y) < 1 = q(y), we must have lim, -5 ¢'(y) = 0, and hence the first and third equation

imply

h—
g =9 _ (43)
Y
Then we can solve (42) as:
1 y>1y
where
gegy_(h_g)/g

Sz:o e?z—(h=9)/9d>"

L=

Equations (45), (44) and (45) fully determine the mechanism M = (RY,q,?), where #(z) =
G(z1 + x2) (g + (h — g)x—2> Then we have

xr1+x2

G(M) > L= S,Z:O e?z—(h=9)/ad"

Since L does not depend on the state #, this lower bound on guarantee is independent of
the prior u. When both states are equiprobable, M forms a saddle point with /. as € — 0,
since the lower bound on guarantee coincides with the upper bound on potential in (41).

3.7 The Literature

We conclude this section with a brief discussion of the literature. The Bayesian mechanism
design problem and the revelation principle goes back to Myerson (1981) or earlier. Berge-
mann and Morris (2013, 2016) introduced the notion of Bayes correlated equilibrium of
a game for characterizing possible equilibrium outcomes across all information structures.
Bergemann et al. (2017) applied this methodology to solve for the revenue guarantee of the
first-price auction.

Du (2018) pioneered the use of the robust-predictions methodology for mechanism de-
sign: in an auction setting with pure common values, Du (2018) constructs a sequence of
mechanisms, indexed by the number of bidders, that extracts all of the surplus in the limit
as the number of bidders goes to infinity. Importantly, Du (2018) introduced a version of
the lower bounding program G(X (k%)) to prove the main result of that paper. Aside from
the case of a single bidder, the mechanisms constructed by Du (2018) do not maximize the
guarantee for a fixed number of bidders.

Subsequently, Bergemann, Brooks, and Morris (2016) constructed a saddle point for the
special case of the common value auction with two bidders whose values are either 0 or 1,
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using versions of both bounding programs. This analysis was then generalized by Brooks
and Du (2021b), who solved for revenue-guarantee-maximizing mechanisms in common
value auctions, with an arbitrary number of bidders and value distribution. A special case
of that solution was described above.

Brooks and Du (2024) presented versions of the bounding programs for general mecha-
nism design problems, and proved that there is no duality gap for a class of auction prob-
lems. Brooks and Du (2025) introduced the particular notion of dual reduction described
above, as a rigorous foundation for the bounding programs.”

Brooks, Du, and Feffer (2025) solve for revenue-guarantee-maximizing auctions when
each agent’s expected value is known, but the joint distribution of values and the infor-
mation structure are unknown. Brooks, Du, and Zhang (2024b) construct binary action
mechanisms for selling a large number of goods to a large number of agents. These mecha-
nisms extract all of the surplus as the number of agents grows large. Brooks and Du (2023)
constructed saddle points for a public expenditure problem, which for two agents can be
reinterpreted as the bilateral trade problem described in the preceding section. Brooks, Du,
and Haberman (2024a) generalize the theory of Brooks and Du (2024) to include restricted
classes of information structures.

4 Other Approaches to Robustness
in Mechanism Design

Economists and game theorists have long been concerned with issues of robustness in
mechanism design. The standard approach has been critiqued in various ways. For recent
comprehensive surveys of this literature, see Bergemann and Morris (2012) and Carroll
(2019). We will focus our discussion on those threads in the literature that relate most
closely to the informationally-robust approach that has been our focus.

4.1 Beliefs and higher-order beliefs

To frame the discussion, it is helpful to articulate a benchmark against which we may seek
greater “robustness.” The standard approach to Bayesian mechanism design is to take a
single information structure as a complete and correct description of the environment.!®
By and large, it is also assumed that this information structure satisfies the common prior
assumption. Moreover, for any given mechanism, if there are multiple equilibria, we suppose
that the designer can coordinate the agents on the equilibrium that they most prefer. The
known information structure, favorable equilibrium selection, as well with the assumption
that the designer has the ability to implement a rich set of mechanisms, together imply
the revelation principle: the designer can without loss restrict attention to mechanisms

9Myerson (1981) previously introduced a related but distinct notion of dual reduction for complete
information games. See Brooks and Du (2025) for a detailed discussion.

FEven though we treat partial implementation as the benchmark, we do not mean to suggest that it
preceded chronologically the other approaches to mechanism design that we refer to below.
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in which each agent’s action is a report of their private information, and in equilibrium,
agents report truthfully (Myerson, 1981, 1986).

This approach to mechanism design has been criticized on various grounds. First and
foremost, the standard model assumes a great deal of common knowledge among the agents
and the designer, about both the information structure and what equilibrium is being
played. With respect to the information structure, mechanism design is often conducted
in highly stylized models, such as independent private values, which we have no reason to
think are correct descriptions of information in the real world. The common knowledge
assumption seems especially controversial with regard to agents’ higher-order beliefs about
one another’s” information. A canonical reference for this critique is Wilson (1987), who
argued that mechanisms should be “detail free.”

One way to sidestep the problems arising from misspecification of the higher-order
beliefs, either on the part of the designer or the agents, is to use mechanisms that have
equilibria in dominant strategies (in the case where each agent knows their own preferences,
i.e., private values) or in ex post equilibrium (in the case where there is interdependence
in preferences). Dominant strategy and ex post implementation have been widely adopted
in mechanism design as methods of achieving “robust” implementation and as a resolution
of the Wilson critique. Indeed, recent work has sought to strengthen the implementation
concept even further (Li, 2017).

A long line of research has explored foundations for dominant strategy and ex post
implementation. Dasgupta, Hammond, and Maskin (1979) argued that dominant strategy
implementation is equivalent to implementation regardless of agents’ higher-order beliefs in
private value environments. More recently, Bergemann and Morris (2005) studied founda-
tions for ex post equilibrium. They distinguished between agents’ possible “payoft” types,
about which there is common knowledge, and “belief” types that are payoff irrelevant but
parametrize subjective beliefs. They gave a set of sufficient conditions on preferences of
the agents and the social choice correspondence (termed “separability”) for which imple-
mentation for all belief types is equivalent to ex post implementation, where “ex post” is
with respect to the realized payoff types. Bergemann and Morris (2005) also give examples
where separability fails and a given social choice correspondence is implementable, but not
with ex post incentive compatible mechanisms. Going further, Jehiel et al. (2006) and
subsequent papers have argued that ex post implementation is a demanding concept, and
that generically, the only social choice correspondences that can be implemented ex post
are those that are constant.

The literature on ex post implementation relaxes common knowledge of higher-order
beliefs but maintains common knowledge of the set of possible payoff types. In the case
of Dasgupta, Hammond, and Maskin (1979), these payoff types are the possible ex post
preferences of the agents (which they are assumed to know). In Bergemann and Morris
(2005), the relationship between the payoff types and each agent’s ex post preferences may
be more involved. Moreover, the payoff types are presumed to capture everything about
the agents’ preferences that are payoff relevant to the designer.

In a somewhat different take, Chung and Ely (2007) studied a correlated private value
auctions problem. Their exercise is the following: Fix a distribution over the agents’ values
for a good, and consider all of the (possibly non-common prior) information structures in
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which agents know their values. Suppose the seller evaluates a given mechanism by the
worst-case across such information structures of the best equilibrium. The seller has the
option of using a mechanism in which agents report their private values and for which
truthtelling is a dominant strategy. For certain “regular” value distributions, Chung and
Ely construct an information structure in which the seller can do no better than the best
dominant strategy mechanism. In their terminology, this provides a “maxmin” foundation
for dominant strategy mechanisms. Yamashita and Zhu (2018) and Chen and Li (2018)
extended Chung and Ely’s result to settings with interdependent values and other mech-
anism design problems. These papers also give examples where regularity fails, and the
designer can do strictly better than with dominant strategy mechanisms. Moreover, the
worst-case information structures always violate the common prior assumption.

Like Chung and Ely (2007), the informationally-robust approach surveyed in this ar-
ticle endows the designer with an expected utility preference. Also like Chung and Ely
(2007), participation constraints play a central role in the informationally-robust theory.
In contrast to both of these strands of the literature, the informationally-robust approach
imposes the common prior and does not assume that the designer can select their preferred
equilibrium. We will comment further on equilibrium selection below. But regarding the
common prior assumption, whether this is a feature or a bug of the theory depends on one’s
view of the strength of forces in the world towards common knowledge, and whether the
particular non-common prior beliefs that would be a worst-case outcome are themselves
plausible.

Perhaps most importantly, relative to all of the aforementioned papers on ex post and
dominant strategy implementation, the informationally-robust approach does not assume
common knowledge of the component of the agents’ private information that is payoff-
relevant to the designer and the agents. In particular, we model the fundamental uncer-
tainty as being about payoff-relevant states, as opposed to payoff types. The distinction is
important: In the informationally robust approach, the designer is not presumed to place
any restrictions on the agents’ payoff-relevant information, and one possibility is that they
know nothing at all. Hence, agents’ information about what is payoff relevant cannot be
disentangled from their information about others’ information, and there is no set of pay-
off types with respect to which incentives could be provided ex post. Indeed, the only
outcomes which could be implemented ex post are those that do not depend on private
information at all. Thus, the designer is forced to rely on Bayesian mechanisms to achieve
their objectives.

4.2 Equilibrium Selection and Strong Nash Implementation

A given mechanism and information structure can have many equilibria. The dominant
paradigm in Bayesian mechanism design is to suppose that the equilibrium played will be
the one that is most preferred by the designer. If truthful equilibria were not selected, then
the revelation principle would not apply, and we would have to grapple with optimiza-
tion over all indirect mechanisms and the whole set of Bayes Nash equilibria, a decidedly
daunting task.
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In contrast, the literature on mechanism design under complete information has pre-
dominantly concerned itself with achieving desirable outcomes in all equilibria (Maskin,
1999). This is so-called strong (or full) implementation, to be contrasted with weak (or
partial) implementation when the designer picks the equilibrium. Strong implementation
has also been studied in a Bayesian setting by Serrano and Vohra (2010). The mecha-
nisms that achieve strong implementation often have features such as integer games (or
modulo games when restricting to pure equilibria) for “killing off” undesirable equilibria.
Relatedly, Abreu and Matsushima (1992b) study virtual implementation in mechanisms
that have a unique strategy profile that survives iterated deletion of strictly dominated
strategies. Their mechanisms divide the outcome into a series of small probability events,
eliciting separate reports for each event in the sequence, and targeting a (small) punishment
at the agent who is the “first” to disagree with the others’ reports.

The informationally robust approach described in this article embraces elements of
both traditions. In the potential, we consider the best equilibrium for the designer, but in
the guarantee, we consider the worst equilibrium. Thus, when the min potential is equal
to the max guarantee, we know that the designer achieves the same payoff regardless of
whether they can select the equilibrium, and in particular, the mechanisms that maximize
the expected lowest strategic virtual objective achieve the max guarantee in all equilibria.
Moreover, this guarantee is achieved without resorting to integer games (or modulo games
with restrictions on strategies) or with the targeted punishments and fine probabilistic
structure of Abreu-Matsushima mechanisms.!!

Is equilibrium multiplicity of significant practical concern, or is it more of a theoretical
nuisance? Consider for example the second-price auction. In the independent private value
model, each agent has a unique weakly undominated strategy to bid their value (Vickrey,
1961). But there are also “bidding ring” equilibria in which one agent makes a high bid, and
the others essentially refuse to participate. By contrast, the payoff-equivalent equilibrium
of the first-price auction is essentially unique (Lizzeri and Persico, 2000). Are the bidding
ring equilibria plausible? Rothkopf, Teisberg, and Kahn (1990) have argued that they
represent a realistic method of collusion in repeated auctions, wherein the agents take
turns as the high bidder, and that second-price auctions are more vulnerable to collusion
than first-price auctions as a result. At the same time, the designer could always “perturb”
the mechanism by adding a noisy hidden reserve price, so that bidding one’s value becomes
strictly dominant. Moreover, this can be done with very arbitrarily small probability, and
at negligible cost to the seller. Would such perturbations be effective in deterring collusive
behavior? The answer has to depend on how large is the perturbation and how sensitive
the bidders are to small changes in their payoffs.

While we are not aware of general results along these lines, it may be that for many
mechanism design problems, the optimal payoff to the designer does not depend on what
we assume about equilibrium selection, at least in the benchmark setting where the agents
are sensitive to arbitrarily small changes in their payoffs. The reason would be because a

1The Abreu-Matsushima mechanisms have been criticized as artificial and implausible. See Glazer and
Rosenthal (1992) for such a critique and Abreu and Matsushima (1992a) for a response. This view has
recently been contested by Kapon, Del Carpio, and Chassang (2024), who view a variant of the Abreu-
Matsushima targeted punishments as a practical tool for mechanism design in large populations.
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mechanism that weakly implements the desired outcome can always be perturbed at low
cost in a way that selects for the most preferred equilibrium. At the same time, there may
be more than one way of selecting favorable equilibria. In a similar vein, there may be
mechanisms that maximize the guarantee even though they do not maximize the expected
lowest strategic virtual objective, e.g., by effectively asking the agents to report the informa-
tion structure. Which class of solutions are preferred may come down to factors outside of
the model, such as how sensitive we think real agents would be to the particular incentives
provided by the mechanism. With regard to mechanisms that maximize the expected low-
est strategic virtual objective, their performance is entirely driven by the local equilibrium
constraints, that each agent prefers their equilibrium action to a marginal movement away
from the secure action. This may be a more appealing method of eliminating undesirable
equilibria than other devices that have been suggested in the literature.

4.3 Robustness to Fundamentals

In our definition of the guarantee in Section 2, we fixed the distribution over the payoft-
relevant state 6, and took a worst-case over common-prior information structures with
the given marginal. Thus, the “robustness” in the guarantee is with respect to just the
agents’ information and equilibrium, and not with respect to fundamentals of the economy.
There is a large body of other work that emphasizes instead robustness with respect to the
fundamentals themselves, and deemphasizes the role of information and equilibrium.

For example, Carroll (2017) studied a class of single agent screening problems where the
payoff fundamental and outcome are multidimensional and there is additive separability in
preferences across the dimensions. A leading example would be multi-product monopoly
with additive values. A key finding is that there are correlation structures for which it
is without loss to screen separately. Che and Zhong (2021) and Deb and Roesler (2023)
further investigate the role of correlation in multiproduct monopoly and find cases where
it is optimal to either sell separately or only offer a grand bundle consisting of all of the
goods. And while certain moments of the value distribution are known, e.g., the marginal
distributions, the correlation structure of not known. In multi-agent settings, He and Li
(2022) analyzes guarantees of second-price auctions with (possibly random) reserve prices
when the marginal distribution of each agent’s private value is known but the correlation
structure is uncertain. Che (2020) studies a similar environment and argues that the
second-price auction with random reserve provides the highest guarantee from a class of
“competitive” mechanisms. Zhang (2022) conducts a related exercise for bilateral trade
and argues that double auctions with a random trade price maximize the guarantee among
dominant strategy and ex post individually rational mechanisms.

The spirit of these exercises is somewhat different in that they are either consider a
single agent with general mechanisms, or multiple agents with private values and dominant
strategy mechanisms. In either case, higher-order beliefs are irrelevant to the analysis.
While the informationally robust approach applies also to single-agent models, the results
are most powerful in multi-agent Bayesian mechanism design, where higher-order beliefs
play an essential role.
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There is also a voluminous literature, predominantly in computer science, on algorith-
mic mechanism design that considers how the performance of a mechanism will vary across
environments. The design criterion is the minimum ratio between a mechanism’s perfor-
mance and a given benchmark. As far as we are aware, the vast majority of work in this
literature fixes a form for information (e.g., private values in auctions) and then considers
robustness with respect to fundamentals. See Hartline (2012) for a discussion and Nisan
et al. (2007) for a textbook treatment.

Of course, one could ask for robustness with respect to fundamentals and information.
Brooks (2013) conducts such an analysis of private value auctions where only certain mo-
ments of the value distribution are known, and finds that a modified second-price auction
maximizes a guarantee over all private value information structures satisfying a given mo-
ment condition. Within the informationally robust framework that has been the focus of
this article, there is conceptual challenge associated with also entertaining uncertainty over
the prior distribution of the payoff-relevant fundamental, which we denoted p. Indeed,
Brooks and Du (2021b, 2024) discuss how the performance of a guarantee maximizer at
1 would vary as the prior changes to y/, and argues that there is a lower bound on the
mechanism’s guarantee that is linear in u — p’. Also, as discussed in Brooks and Du (2024,
2023), the results on the informationally robust model of bilateral trade that we reviewed
in Section 3 remain true even if the designer only knows a lower bound on the gains from
trade. Similarly, in Brooks and Du (2021a), we consider informationally robust optimal
auction design when the designer only knows the expectation of each agent’s value.

In our view, for mechanism design to be useful as a normative theory, the parameters of
the model must be quantities that we could reasonably expect a user of the theory to be able
to specify, either through empirical or introspective analysis. The worst-case criterion can
be a useful modeling device for “solving out” those parameters that the designer is unable
to quantify but on which the theory depends. For that reason, it may be advantageous to
consider models in which the designer does not fully specify the prior distribution over the
agents’ preferences (parametrized by 6 in the model of Section 2) but rather considers a
set of priors that reflect the designer’s knowledge of the environment.

5 A Case Against the Worst Case

The theory exposited in this article is one in which a designer plays their own devil’s
advocate: For each possible mechanism, the designer thoroughly explores its potential
flaws and deficiencies. The hope is that such critical analysis will lead to a more robust
solution to the problem of institutional design. After having considered and illustrated
the potential benefits of this theory, it seems only fitting that we should similarly turn a
critical eye on the theory itself, and assess the ways in which it may fail to achieve our
stated goals. At the very least, we should identify those areas in which the theory requires
further development.
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5.1 The Worst-Case is not the Relevant Case

Perhaps the most obvious critique of this theory is evaluating a mechanism by its the
worst-case outcome is too extreme, and may not be representative of the mechanism’s per-
formance in the most important environments. For example, suppose it were the case that
the guarantee is maximized by a mechanism that achieves a payoff of 1 in all mechanisms
and equilibria. There is another mechanism, however, that achieves a payoff of 2 in ev-
ery information structure and equilibrium, except for a single information structure and
equilibrium, in which it achieves a payoff of zero. Guarantee maximization would select
the first mechanism. But the second mechanism might be preferred, if the particulars of
the bad information structure/equilibrium made it a poor reflection of the environments in
which we expect the mechanism to operate.

We should not think that a mechanism is “good” just because it maximizes the guaran-
tee. Rather, we have to look at the particular mechanisms that arise from the theory, and
assess whether the structures driving their performance would be effective with actual hu-
man beings as agents, and not just their theoretical representations. In addition, we should
also look at those worst-case environments that the mechanisms are “guarding” against;
if those environments seem plausible, then that is a further argument that the guarantee-
maximizing mechanism is an efficacious design. Guarantee maximization in and of itself is
a heuristic that we hope may guide us to novel and efficacious designs for mechanisms.

For example, in the case of proportional auctions, the mechanism distributes the alloca-
tion across agents in such a manner that both the transfer and the net sensitivity of payoffs
to actions is independent of which agent is taking which action. This is a sensible structure
if we are worried that agents might coordinate on who is taking which action in order to
maximize their payoffs, to the detriment of the designer (as in bidding ring equilibria of the
second-price auction) or if we are worried that the agents will load all of the allocation on
the agent with the most valuable information, thus generating a strong winner’s curse (as
is possible in the first-price auction). Moreover, these mechanisms are rationalized by the
potential-minimizing information structure in which the agents have independent signals,
and the value is an increasing function of the average signal, which is not an especially
exotic functional form.

But suppose it is the case that the potential-minimizing information structure is one that
is implausible. One way to proceed would be to restrict the set of information structures to
exclude the potential minimizer (or information structures that share whatever properties
that make it implausible). For example, in common value auctions when the good has to
be allocated, the potential-minimizing information structure has the feature that the join
of the agents’ information perfectly reveals the value. Perhaps we think it is implausible
that by pooling their information, the agents would always know the value exactly. Brooks,
Du, and Haberman (2024a) suggest that in this situation, we could put an “upper bound”
on the agents’ information. They develop a general methodology and use it to compute
robust predictions for revenue in auctions and for the computation of guarantee-maximizing
mechanisms.

Alternatively, it could be that in the worst-case, the agents have too little information.
Indeed, for many problems problems, such as taxation or voting, participation constraints
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of the agents’ seem less relevant, since the government has powerful punishments at its
disposal. If we drop participation constraints from the informationally-robust design prob-
lem, then the solution is trivial: the worst case is that the agents have no information, and
the designer can do no better implement the ex ante optimal outcome. But perhaps this
worst-case is implausible: while we may be uncertain about the agents’ information, we
may think that there is a lower bound on what they know.

Even with participation constraints, we may wish to put lower bounds on agents’ in-
formation. We began this article with a paean of praise for the independent private value
model of Vickrey (1961) and Myerson (1981), where agents are supposed to know their
values. And we suggested that independent private values can be thought of as a worst
case of sorts (relative to correlated private value models). And yet, the theory of infor-
mationally robust predictions has thus far failed to provide a foundation for independent
private values. One view is that private values is an technically convenient but unnatural
assumption, and we should not be basing mechanism design on it. However, one could ar-
gue that agents know more about their own values than about others’. One way to capture
this is with a lower bound on the agents’ information, where each agent knows their own
value and may know more.

Bergemann and Morris (2016) actually do incorporate such a lower bounds on the
agents’ information in their formulation of BCE: There is a fixed baseline information
structure, and the agents are assumed to observe their baseline signals, plus some addi-
tional information. The theory of informationally robust mechanism design with lower
bounds on information is still being developed. However, preliminary steps have been
taken by Brooks and Du (2025), who generalize dual reductions to the case where there
is a baseline information structure. In this case, it is without loss to consider mechanisms
and information structures in which actions or signals are sequences of baseline signals,
and the binding equilibrium constraints correspond to deviating to a sequence that is one
entry longer (in the case of mechanisms and guarantees) or one entry shorter (in the case of
information and potentials). It remains to be seen where this theory will lead, and whether
it will lead to useful insights when there are lower bounds on agents’ private information.

5.2 Participation Security is Too Strong

It is clear that participation constraints play a central role in the theory. But participation
constraints are modeled in two different ways: As participation security for guarantees,
and as interim individual rationality for potentials (i.e., non-negative interim utilities).
Participation security implies interim IR in any information structure and equilibrium, but
the converse is not true.

For the examples given above with zero duality gap, the difference in how we model
participation constraints is immaterial: because the min potential is equal to the max
guarantee, the designer could not achieve a higher guarantee even if they could pick their
preferred equilibrium subject to interim IR. However, this is not always the case. The
following example is from Brooks and Du (2023, 2024): A public good can be produced
at a cost of one dollar. There are two agents who may fund it. The good generates the
same value 6 to both agents, which is either 0 or a number in (1/2,1), with likelihoods e
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and 1 — e respectively. In this setting, if an agent takes a secure action, their contribution
must be zero, so that if only one agent’s action is not secure, they must pay the whole
cost of the public good. Hence, any participation-secure mechanism has an equilibrium
in which both agents take the secure action, and the good is not produced. However,
for any information structure, there is an incentive compatible and individually rational
direct mechanism where the good is produced if and only if the interim expectation of
(conditional on both agents’ signals) is at least 1/2, with each agent paying half the cost.
When € goes to zero, the surplus generated by this mechanism converges to the ex post
efficient surplus of 20 — 1, uniformly across information structures.!?

Thus, participation security is in general much stronger than the requirement that for
every information structure there exists an equilibrium with non-negative interim utility.
Further advances in such problems may depend on finding tractable and conceptually
appealing ways of relaxing participation security.

5.3 Randomization

Even if we have a saddle point in which the worst-case information and equilibrium are
plausible, we still must ask, could the guarantee maximizing mechanism actually be imple-
mented? Both proportional auctions and proportional-price trading mechanisms exhibit
interior outcomes that respond smoothly to the agents’ actions. This structure is not en-
tirely surprising. Guarantee maximizers tend to equalize the SVO across action profiles,
and doing so requires interior allocations (similarly to how maxmin mixed strategies in
zero-sum games may equalize payoffs across opponent’s actions).

When goods are indivisible, interior allocations correspond to randomization. One
may be skeptical of a designer’s ability to commit to such randomization, especially with
carefully calibrated probabilities. However, if the goods being allocated are divisible, e.g.,
bushels of wheat or shares of common stock, then we can interpret the interior allocation
as dividing the good across agents, which seems less challenging to implement in practice.

One might ask, in addition to randomization within the mechanism, could the designer
improve the guarantee by randomizing over the mechanism itself?!* This seems to have
been precluded in the model of Section 2. However, it turns out such randomization over
mechanisms is always equivalent to randomization within the mechanism. Indeed, suppose
the designer implemented a lottery over mechanisms. The designer could equivalently put
probability one on this mechanism’s strategic normal form, in which each agent’s action is
a strategy that says, for each outcome of the randomization, which action do they play. A
similar comment applies to information: A lottery over information structures is equivalent
to a single information structure with different common knowledge components.

Nonetheless, when goods are indivisible, guarantee-maximizing mechanisms may involve
randomization. If this randomization is seen as problematic, then one way to proceed is

12The worst-case information for this mechanism would be one for which the interim expected has two
point support, and where the lower value approaches 1/2 from below (so that the probability that agents
will not fund the good is maximized). The probability placed on interim values below 1/2 must go to zero
as e — 0.

13This would be analogous to how randomization over contracts can produce strictly higher guarantees
than with deterministic contracts (Kambhampati, 2023).
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solve a restricted problem where we maximize the guarantee over a class of deterministic
mechanisms. This is the approach taken by Bergemann, Brooks, and Morris (2019), who
optimized the guarantee for revenue single-item auctions across all “standard” auctions, a
class that includes first-price, second-price, and all-pay auctions, as well as convex combi-
nations of these rules. They find that the first-price auction has the highest guarantee of
any such mechanism. Dovetailing with our earlier discussion of restricted sets of informa-
tion structures, Bergemann, Brooks, and Morris (2019) also consider a restricted exercise
where they consider pure common values and compute a restricted guarantee where the
information must be an affiliated values environment and the agents play the symmetric
monotone pure strategy equilibrium of Milgrom and Weber (1982). With this restriction,
the guarantee of the first-price auction is unchanged, but now first-price and second-price
auctions have the same guarantee. At the revenue minimizing BCE, all “upward” obedience
constraints bind. An interesting direction for future research is to explore the relationship
between randomization and other patterns of binding equilibrium constraints, which cor-
respond to different notions of the strategic virtual objective.

5.4 Simplicity and Portability?

We motivated the informationally robust model with the twin desires for simplicity and
portability. The former arose out of a belief that if a mechanism is too complicated, then
equilibrium becomes less compelling, and we are not confident in our predictions agents will
behave in the mechanism. We argued that the search for the worst-case information would
lead us to an ordered structure on signals that reflects the efficient use of information to
amplify the agents’ objections. Such structure is also reflected in the guarantee maximiz-
ing mechanisms. Moreover, guarantee-maximizing mechanisms will always be as or more
effective in achieving the designer’s goals, regardless of the environment, as they are in the
potential-minimizing information structures. In that sense, guarantee-maximizing mecha-
nisms exhibit a strong form of portability across information structures and equilibria.

One can push back against these claims. The mere fact that the binding equilibrium
constraints are linearly ordered is not by itself a satisfying definition of simplicity. For
one thing, this is a kind of simplicity from the analyst’s perspective, but what really mat-
ters is whether it is easy for the agents to converge to equilibrium. But even analytical
tractability is not assured. Potential minimizers and guarantee maximizers are solutions
to linear programming problems, but the solution may be still be hard to describe an-
alytically. For example, in optimal auctions, potential-minimizing information structures
always have independent signals, we do not know the analytical form of the optimal interim
expected value in general. Thus, it may still be that the theory is tractable only for certain
specifications of preferences and priors.

Regarding portability, we have already remarked that the guarantee is a rather extreme
notion. Indeed, we should be asking for portability across the particular environments that
are empirically relevant, and even then, portability should be traded off against optimality
in environments that are regarded as more likely.

Perhaps a more serious issue is that by failing to articulate exactly when and why we
think that equilibrium may become less convincing, we have undermined the claim that
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mechanisms with high guarantees are portable. For, without a better understanding of
how agents reason through a mechanism in a complex environment, how can we even be
confident in the equilibrium prediction, or even in the premise that that agents would be
willing to participate?'* One could argue that because guarantee maximizers only rely on
local equilibrium constraints, the forces that drive the guarantee should be robust to agents
who can only discover locally optimal actions. Still, it seems like we have avoided a central
issue, which is exactly what kinds of complexity will make it will be for agents to learn how
to play a mechanism and converge to equilibrium.

Indeed, the whole informationally-robust approach may be viewed as a workaround for
not having been able to properly define or quantify simplicity or portability, so that it could
be directly incorporated into the design problem. Echoing one of our earlier sentiments, the
best hope for the informationally-robust approach is that in spite of not having precisely
articulated what we are after, it may lead us there anyway, and we will know it when we
see it. At the very least, we hope that it will generate novel ideas for how to structure
incentives. But it may be that the ultimate progress of mechanism design depends on more
directly addressing the issue of how agents reason through a mechanism and converge in
their behavior, so that we may design institutions with greater regard for the realities and
peculiarities of human strategic interaction.
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