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Abstract

We study robust predictions for games of incomplete information with restric-

tions on players’ private information about a payoff relevant state of the world. We

formulate a novel condition on the set of possible information structures, termed in-

dividual garbling completeness. This condition is satisfied if and only if the associated

restriction on equilibrium outcomes can be expressed as extra constraints on which

outcomes are feasible, and does not add any new constraints on incentives, beyond

those already captured by the standard obedience conditions. We also characterize

exactly which feasibility restrictions can arise from restrictions on information. A

leading example is the set of outcomes with a fixed prior distribution over the state

for which the f -information between the players’ action profile and the state is below

a given bound. For a class of linear games, such restrictions on feasibility are equiva-

lent to assuming that the marginal distribution over the state is in a particular set of

mean-preserving contractions of the true prior. We apply the theory to robust pre-

dictions in coordinated attack games, auctions, and optimal informationally-robust

auction design.
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1 Introduction

The standard Bayesian approach to modeling incomplete information games is to posit a

particular information structure for the players, and then study equilibrium behavior un-

der that information structure. A growing literature on informationally-robust predictions

has shifted the focus away from behavior under a particular information structure and to-

wards the characterization of behavior across whole classes of information structures. This

modeling approach addresses two issues: First, conclusions about behavior will necessarily

be less dependent on stylized assumptions about information. Second, as long as the set

of information structures is sufficiently rich, then the problem can be reformulated as the

analysis of Bayes correlated equilibria (BCE). These are joint distributions over actions

and states that satisfy a collection of obedience constraints : conditional on their realized

actions, players do not have a strict incentive to deviate to a different action. BCE are

solutions to a relatively simple linear feasibility problem, which can be easier to work with

than Bayes Nash equilibrium on a particular information structure.

A limitation of the existing theory of robust predictions is that it is only formulated

for certain kinds of sets of information structures. Specifically, BCE, as defined by Berge-

mann and Morris (2016), characterizes the set of equilibrium outcomes under information

structures that are more informative than a given baseline information structure. Thus,

the established theory allows us to incorporate a particular lower bound on information:

players must observe certain signals but may have arbitrary additional information about

the state and others’ information. Relative to the classical approach of analyzing behavior

under a single information structure, BCE gives us a much safer prediction. But BCE

may be too permissive if we think that players may not have arbitrarily precise information

about the state and others’ information. The theory would be more useful if we had greater

control over the degree of possible misspecification of an information structure, in particu-

lar, by imposing upper bounds on information in addition to the lower bound mentioned

above.1

In this paper, we propose a generalization of BCE that incorporates additional restric-

tions on information that effectively upper bound how much the players may know. To

motivate the generalization, note that information plays two roles in determining equilib-

rium outcomes. First, information affects incentives, by determining which deviations are

available. Second, information determines which outcomes are feasible, in the sense that it

allows players to correlate their behavior with one another and with the state. In the defi-

1The lower bound methodology is described in detail in Section 8.
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nition of BCE, the lower bound affects only incentives (through the obedience constraints)

but it does not restrict which outcomes are feasible.

In contrast, the methodology we propose restricts which outcomes are feasible. In fact,

there is a sense in which it only provides restrictions through feasibility, and does not impose

additional requirements in terms of incentives. To elaborate, we formulate a new condition

on a set of information structures, which we term individual garbling completeness. This

condition says the following. Suppose we consider a given information structure to be

possible. There are other information structures that would be less informative than this

one, in the sense that they could be obtained by having the players throw away some

information by garbling their own signals, in a conditionally independent manner. We refer

to the less informative information structure obtained in this way as an individual garbling

of the initial information structure. Individual garbling completeness says that, while the

individual garblings themselves need not be in our set, it must be possible for the players

to “replicate” them as an coordinated individual garbling of something in the set, where

“coordinated” denotes the additional property that conditional on a player’s garbled signal,

their true signal is uninformative about other players’ garbled signals. Thus, a coordinated

individual garbling can be generated by the players in a self-sustaining manner; each player

is willing to garble their own signal, conditional on the others garbling their signals.

With this definition in hand, we can now describe our main result. We consider an

analyst who posits that the players’ information structure lies within a given set. Theorem

1 shows that the set is individual garbling complete if and only if, for every game, the

implied equilibrium outcomes are precisely those that are feasible (given the restriction

on information) and satisfy the standard obedience constraints. Thus, individual garbling

complete sets of information structures are an upper bound on information that only re-

stricts feasibility. They provide a natural counterpart to the lower bound in Bergemann

and Morris (2016) that only tightens obedience but does not restrict feasibility.

Thus, given a set of information structures that is individual garbling complete, the im-

plied restrictions on equilibrium outcomes are completely summarized by which outcomes

are feasible. More specifically, we consider the implied feasibility correspondence that as-

sociates, to each product space of action profiles, a corresponding set of joint distributions

over actions and states are feasible. Each set of information structures induces a particular

feasibility correspondence. Given Theorem 1, it is natural to ask: what are the feasibility

correspondences that are induced by individual garbling complete sets of information struc-

tures? Theorem 2 shows that this is precisely the set of feasibility correspondences that

satisfy an analogous individual garbling completeness condition, which is formulated on the

associated set of “direct recommendation” information structures associated with feasible
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joint distributions. This result allows us to “solve out” the set of information structures,

and work directly with feasibility constraints.

An important feature of the set of BCE is that it is convex, being the intersection

of the finitely many linear obedience constraints. Individual garbling complete feasibility

correspondences, on the other hand, need not be convex-valued. Thus, for the sake of

analytical tractability, we may wish to further restrict attention to convex and individual

garbling complete feasibility correspondences. We are therefore led to ask what is the

assumption on the set of information structures corresponding to these properties of the

feasibility correspondence. Theorem 3 shows that a feasibility correspondence is individual

garbling complete and convex valued if and only if it is induced by a set of information

structures that is individual garbling complete and public randomization complete. The

latter condition means that a public randomization over information structures in the set

is a coordinated individual garbling of some information structure that is also in the set.

Having thus provided epistemic foundations for feasibility restrictions on BCE, we then

turn our attention to a particular class of feasibility correspondences, wherein we fix the

marginal on states and impose an upper bound on an f -divergence between the outcome

distribution and the product of the induced marginals on states and action profiles. The

correspondence defined in this manner depends on which f -divergence we use, such as total

variation distance or Kullback-Leibler divergence (i.e., mutual information). When the

upper bound is zero, this forces the action profile and the state to be independent, so that

players effectively have no information about the state, and when the bound is sufficiently

large, there is no restriction on the correlation between action profiles and states. Theorem

4 shows that for any f -divergence, the resulting feasibility correspondence is both individual

garbling complete and convex valued. Moreover, we provide a structural characterization

of extreme points of the set of f -divergence-constrained BCE, in the special case where

the players’ utilities are linear in the state. In this case, the extreme points coincide with

extreme points of the set of unconstrained BCE, but where the distribution of the state is

a mean-preserving contraction of the true prior. In that sense, f -divergence constraints on

BCE are effectively a constraint on the interim beliefs of the players, given the join of their

information.

We illustrate our findings with applications to a coordinated attack problem, the first-

price auction, and informationally robust optimal auction design. For the coordinated

attack problem, we compute the BCE that maximize the probability of an attack. A

qualitative message is that the tighter is the constraint on players’ information, the more

weight the extremal BCE place on actions where the agents attack less, since these actions

are more efficient to incentivize when there is less information about the state. For the first-
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price auction, we compute the BCE that minimizes expected revenue subject to a divergence

constraint. Here, we find that the optimal BCE has the same form as that described by

Bergemann, Brooks, and Morris (2017): revenue is minimized when the bidders receive

independent signals, the interim expected value is the maximum of the signals, and the

prior is a mean-preserving spread of the highest signal. The final application concerns the

design of auctions that maximize the revenue guarantee with common values, as in Brooks

and Du (2020), but with the f -divergence constraint. Again, we find that the optimal

auction has the same form as in Brooks and Du (2020), but for a contracted prior.

In addition to the aforementioned work, our analysis also relates to other studies of

relations on information structures. Lehrer, Rosenberg, and Shmaya (2013) characterize

when two information structures have the same set of equilibrium outcomes, under various

equilibrium concepts. One of their results is that two information structures have the same

Bayes Nash equilibrium outcomes for all games if and only if they are individual garblings

of one another. Gossner (2000) asks when one information structure has more Bayes

Nash equilibrium outcomes than another information structure, for every game. He argues

that this is equivalent to the coordinated individual garbling relation. (Gossner refers

to a coordinated individual garbling as a “faithful reproduction.”) There are important

technical differences between the results, and in particular, Gossner relies on infinite games

in order to provide his characterization, whereas we restrict attention to finite games. These

differences will be discussed in greater detail in Section 3.

For ease of exposition, most of our analysis concerns the case where the lower bound on

the players’ information is uninformative. In Section 8, we briefly discuss how our results

can be generalized to the case where the lower bound is informative.

The rest of this paper is organized as follows. Section 2 describes our model. Section 3

contains our main results on individual garbling completeness and feasibility constraints.

Section 4 presents our results on f -divergence constraints, including total variation distance.

Section 5 describes our results on linear games, and Section 6 applies those results in turn to

maxmin mechanism design. A brief Section 7 describes the connection between our work

and other research on binary relations on information structures. Section 8 informally

discusses the addition of the lower bound on information. Section 9 concludes the paper.
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2 Model

There is a finite set of players indexed by i “ 1, . . . , N . Preferences depend on a state of

the world θ P Θ, with Θ also finite. The sets of players and states are held fixed throughout

our analysis.

The players’ private information is described by a (common prior) information structure,

consists of the following: a signal space, which is simply a finite product set S “
ś

i“1,...,N Si;

and a joint distribution σ P ∆pS ˆ Θq. An information structure is denoted I “ pS, σq.

We identify sets of signals with subsets of the integers, so that the set of all information

structures is well defined.

A prior over the state is just a distribution µ P ∆pΘq. Given a prior µ, we say that

I “ pS, σq is consistent with µ if the marginal of σ on Θ is µ.

An action space is simply a finite product set of the form A “
ś

i“1,...,N Ai. As with

signals, we identify sets of actions with subsets of the integers, so that the set of all action

spaces is well defined.

The players interact through a game structure (also variously known as a game form

or a base game), which consists of an action space A and, for each player i, an expected

utility index ui : AˆΘ Ñ R. The game structure is denoted by G “ pA, uq.

A Bayesian game is a pair pI,Gq of an information structure and a game structure.

A (behavioral) strategy for player i is simply a mapping bi : Si Ñ ∆pAiq. A profile of

strategies b “ pb1, . . . , bNq is identified with the mapping b : S Ñ ∆pAq, where bpa|sq “
ś

i“1,...,N bipai|siq. The set of strategy profiles is denoted by BpS,Aq. Given b P BpS,Aq,

player i’s expected utility is

Uipb; I,Gq “
ÿ

θPΘ

ÿ

sPS

ÿ

aPA

uipa, θqbpa|sqσps, θq.

The profile b is a (Bayes Nash) equilibrium if Uipb; I,Gq ě Uipb
1
i, b´i; I,Gq for all i and

b1i P BipS,Aq.

Given an action space A, an outcome is a distribution φ P ∆pA ˆ Θq. An information

structure I “ pS, σq and strategies b P BpS,Aq induce an outcome φ defined by

φpa, θq “
ÿ

sPS

bpa|sqσps, θq.

We define FIpAq to be the set of outcomes induced by I and some b P BpS,Aq. We also

call FIpAq the set of feasible outcomes in A under I. Given a game pI,Gq, we say that
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φ P ∆pAˆΘq is an equilibrium outcome if there exists an equilibrium b of pI,Gq such that

pI, bq induce φ. The set of equilibrium outcomes is EIpGq.

Given a set of information structures I, we define EIpGq “ YIPIEIpGq. Similarly, we

define FIpAq “ YIPIFIpAq.

Fix a game structure G “ pA, uq. Following Bergemann and Morris (2013, 2016) and

Bergemann, Brooks, and Morris (2022), we say that the outcome φ P ∆pAˆΘq is a Bayes

correlated equilibrium (BCE) of G if for all i, ai, and a1i, the following inequality holds:

ÿ

a´iPA´i,θPΘ

φpai, a´i, θqpuipai, a´i, θq ´ uipa
1
i, a´i, θqq ě 0. (1)

The inequalities (1) are referred to as obedience constraints, and we also call a BCE outcome

an obedient outcome. We write BCEpGq for the set of BCE of G. It follows immediately

from Theorem 1 of Bergemann and Morris (2016) that φ P EIpGq for some I if and only if

φ P BCEpGq.2

3 Individual garbling completeness

and feasibility constraints

In this section, we provide our main epistemic characterizations: We formulate the notion

of individual garbling completeness of a set of information structures, and we show that

this condition is necessary and sufficient for the implied restriction on equilibrium out-

comes to only operate through feasibility. We also characterize precisely those feasibility

correspondences which can be induced by individual garbling complete sets of information

structures. Finally, we give further conditions that characterize when the induced feasibil-

ity correspondence is also convex, namely, that the set of information structures is public

randomization complete.

2The definition of BCE given in Bergemann and Morris (2013, 2016) also imposes a fixed marginal
distribution over θ. However, their result immediately extends to the case where the marginal on θ is
allowed to “float,” as we have done here. This is the version of BCE used in Bergemann, Brooks, and
Morris (2022).
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3.1 Individual garbling completeness

Given information structures I “ pS, σq and I 1 “ pS 1, σ1q, we say that I is an individual

garbling of I 1 if there exist mappings bi : S 1i Ñ ∆pSiq for each i such that

σps, θq “
ÿ

s1PS1

bps|s1qσ1ps1, θq

for all ps, θq. In a slight abuse of terminology, we also refer to b as the individual garbling

(from I 1 to I). We note for future reference that the individual garbling relation is transitive,

so that if I is an individual garbling of I 1 and I 1 is an individual garbling of I2, then I is

an individual garbling of I2.

We further say that I is a coordinated individual garbling of I 1 if I is an individual

garbling of I 1 via a mapping b, and moreover, for every si and s1i such that σ1pts1iu ˆ S
1
´i ˆ

Θq ą 0 and bipsi|s
1
iq ą 0, we have

σps´i, θ | siq “
ÿ

s1
´iPS

1
´i

ź

j‰i

bjpsj|s
1
jqσ

1
ps1´i, θ | s

1
iq (2)

for every s´i and θ, where σp¨, ¨|siq denotes the conditional belief given si, updating from the

prior σ. In words, if the signal s1i is garbled to si with positive probability, then conditional

on si, beliefs about the state and others garbled signals pθ, s´iq do not depend on s1i.

Gossner (2000) refers to a coordinated individual garbling as a “faithful reproduction,” in

that if I is a coordinated individual garbling of I 1, then starting from I 1, it is possible for

the players to “reproduce” I in a self-sustaining manner, by independently garbling their

own information.

A set of information structures I is individual garbling complete if every information

structure that is an individual garbling of an element of I is also a coordinated individual

garbling of an element of I, i.e., if I P I and I 1 is an individual garbling of I, then there

exists I2 P I such that I 1 is a coordinated individual garbling of I2.

We will illustrate these definitions with a simple example. Suppose that N “ 2 and

Θ “ t0, 1u. Consider the information structure I “ pS, σq where Si “ t0, 1u and the joint

distribution of signals and states σ is

θ “ 0

s1zs2 0 1

0 1{4 0

1 0 1{4

θ “ 1

s1zs2 0 1

0 0 1{4

1 1{4 0
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In other words, all signal profiles have probability 1{4, and the state is equal to the parity

of the sum of the signals.

Next, consider the “no information” structure I 1 “ pS 1i, σ
1q where S 1i “ tHu for i “ 1, 2,

and σ1pH,H, θq “ 1{2 for each θ P Θ. No information is clearly an individual garbling of

I, where bipH|siq “ 1 for all i. It is also a coordinated individual garbling. Conditional on

s1i “ H, both ps1j, θq “ pH, 0q and pH, 1q are equally likely. Moreover, these are the same

beliefs that player i would have conditional on any si P Si. In effect, the players signals

are individually uninformative about the state. So if both players ignore their signals, then

neither will have an incentive to use their signals.

For an example of an information structure I2 “ pS2, σ2q that is individual garbling of

I and not a coordinated individual garbling, take S2 “ S, and σ2 is given by the following

table:

θ “ 0

s21zs
2
2 0 1

0 3{16 0

1 1{16 1{4

θ “ 1

s21zs
2
2 0 1

0 0 3{16

1 1{4 1{16

This information structure can be obtained from I with the individual garbling b1p0|0q “

3{4, b1p1|0q “ 1{4, b1p1|1q “ 1, b1p0|1q “ 0, and b2ps2|s2q “ 1 for all s2. But it is not a

coordinated individual garbling: Conditional on s21 “ 1, all ps22, θq have positive probability

likely. But conditional on s1 “ 0 (which garbles to s2i “ 1), there is zero probability that

ps22, θq “ p0, 1q and p1, 0q. So, if only player 1 adds noise to their signal, but player 2

continues to use theirs, then player 1 would have an incentive to look at their ungarbled

signal.

With these definitions in hand, we can now state our first result:

Theorem 1. I is individual garbling complete if and only if for every G “ pA, uq,

EIpGq “ FIpAq X BCEpGq. (3)

We can illustrate the theorem using the aforementioned information structures. Con-

sider the game G “ pA, uq where Ai “ t0, 1u, and

uipa, θq “

$

’

’

’

&

’

’

’

%

1 if a1 “ a2 and θ “ 0;

1 if a1 ‰ a2 and θ “ 1;

0 otherwise.
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So, players want to match their actions in state 0 and mismatch in state 1.

Let us initially suppose that the set I consists of those information structures that

are individual garblings of the information structure I “ pS, σq constructed above. It

is immediate that this set is individual garbling complete, given that every information

structure is a coordinated individual garbling of itself. Moreover, any feasible and obedient

outcome given I is also an equilibrium outcome: Suppose that φ is induced by some

information structure pS 1, σ1q P I and strategies b1. Then the “direct recommendation”

information structure pA, φq is, by definition, an individual garbling of pS 1, σ1q. And by

hypothesis, pS 1, σ1q is an individual garbling of pS, σq. Hence, pA, φq is itself in I. Finally,

since φ is obedient, pA, φq and the obedient strategies induce φ as an equilibrium outcome.

For a second example, suppose that we take I and produce a new set I 1 by removing all

of those information structures that are “equivalent” to no information I 1, in the sense that

the players’ signals are independent of one another and of the state. (A general and precise

notion of equivalence is discussed in Section 7.) This set is still individual garbling complete:

Indeed, all we have removed are the no-information structures, but as we argued above,

no information is a coordinated individual garbling of I. Moreover, the set of equilibrium

outcomes induced by I 1 is the same as that for I: The only equilibrium outcomes that can

be induced by no information are Nash equilibria of the ex ante game, for example playing

a “ p0, 0q with probability one. But this is also an equilibrium under I, where both players

choose ai “ 0 regardless of si.

As a final example, suppose that I2 consists of just I. This set is not individual garbling

complete, simply because there are individual garblings of I that are not coordinated

individual garblings of I, such as the particular I2 constructed above. Moreover, there are

feasible and obedient outcomes on G which are not equilibrium outcomes. In particular,

consider the outcome induced by the “obedient” strategies on I2, in which both players

play actions equal to their signals. The resulting outcome is precisely σ2. Clearly outcome

σ2 is feasible under I, and one can check that it is also obedient on G. The only way to

generate this outcome using I is that b1p1|1q “ 1 and b2ps2|s2q “ 1 for all s2; otherwise,

there would be positive probability of either pa1, a2, θq “ p0, 1, 0q or p0, 0, 1q. Hence, it must

be that b1p0|0q “ 3{4 and b1p1|0q “ 1{4. But then player 1 would be strictly better off by

deviating to the obedient strategy b11ps1|s1q “ 1 for all s1. The bottom line is that because

I2 is not individual garbling complete, we can find games for which there are feasible and

obedient outcomes which are not equilibrium outcomes.
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3.2 Proof of Theorem 1

We now present the proof of Theorem 1. The more technical parts of the proof will be

sketched, with details in the appendix.

3.2.1 If

Suppose that I satisfies (3) for all G. Moreover, suppose that I “ pS, σq is an individual

garbling of some information structure in I. We will prove that I is also a coordinated

individual garbling of some element of I. The proof relies on the following lemma, which

is of some independent interest (as we discuss further in Section 7).

Lemma 1. For every I “ pS, σq, there exists a game G and an equilibrium outcome

φ P EIpGq, such that if φ P EI 1pGq, then I is a coordinated individual garbling of I 1.

We refer to the G referred to in the statement of the lemma as the separation game

for I. To see why the lemma implies the if direction of Theorem 1, suppose that I is an

individual garbling of some element of I. Let G “ pA, uq be the separation game for I

and φ the equilibrium outcome, as in Lemma 1. Then clearly φ P BCEpGq, and because I

is an individual garbling of something in I, φ P FIpAq as well. But because (3) holds for

all games, we know that φ P EIpGq as well, so φ P EI 1pGq for some I 1 P I. By Lemma 1,

I is a coordinated individual garbling of I 1. Since I was arbitrary, we conclude that I is

individual garbling complete.

The formal proof of Lemma 1 is in the Appendix. We will now sketch the argument.

Fix a information structure I “ pS, σq. In the separation game, each player will report

either a signal si P Si or a “spoiler” action, which consists of a signal si and a direction

b P RS´iˆΘ, i.e., a direction in the space of possible beliefs about ps´i, θq. The equilibrium

outcome φ referred to in the lemma will simply be the outcome induced by the obedient

strategies, i.e., each player playing an action equal to their realized signal.

The payoffs are constructed so that φ is an equilibrium, but also so that reporting si is

a best response to a conjecture over ∆pS´iˆΘq if and only if the belief is precisely that of

type si in the information structure I, which we denote by

σps´i, θ|siq “
σpsi, s´i, θq

ř

s1
´iPS´i,θ

1PΘ σpsi, s
1
´i, θ

1q
.

To see why these properties suffice to prove the lemma, note that if φ is an equilibrium

outcome for I 1 “ pS 1, σ1q, then there are strategies b that induce φ as an outcome. Clearly,

these strategies show that I is an individual garbling of I 1, and in fact, they also satisfy
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the belief-sufficiency property (2): If bipsi|s
1
iq ą 0, but the belief at s1i about ps´i, θq is not

σps´i, θ|siq, then one of the other actions is a strictly better response than si, which would

contradict the hypothesis that b is an equilibrium. Hence, I is a coordinated individual

garbling of I 1.

But how are these payoffs constructed? Clearly, for the aforementioned properties

to hold, it is irrelevant what the payoffs are at action profiles where more than one player

takes an action that is not a reported signal. For the remaining action profiles, we construct

the payoffs in two stages, first specifying payoffs if all agents actions are in S, and then

constructing payoffs for the “spoiler” actions that are strictly better than si at beliefs other

than σp ¨ | siq.

To construct payoffs for action profiles in S, we denumerate the possible interim beliefs

σp ¨ | siq of player i under I as ψ1
i , . . . , ψ

K
i P ∆pS´iˆΘq. These beliefs are arranged so that

each belief is not in the convex hull of the ones that precede it. This means that we can

find a hyperplane νk P RS´iˆΘ that separates ψki from its predecessors in the list, by which

we mean that νk ¨ pψki ´ψ
l
iq ą 0 for l ă k. All actions si that correspond to the same belief

ψki will be assigned the same utility uki . We set u1
i to an arbitrary constant, and inductively

set uki to be

uki ps´i, θq “ 1`max
lăk

ÿ

s1
´iPS´i,θ

1PΘ

ulips
1
´i, θ

1
qψki ps

1
´i, θ

1
q

´ α

¨

˝

ÿ

s1
´iPS´i,θ

1PΘ

νkps1i, θ
1
qψki ps

1
i, θ

1
q ´ νkps´i, θq

˛

‚,

where α is a large, positive number. Note that the term involving α drops out of the

expectation of uki under ψki , but at any of the beliefs ψli for l ă k, this term is large and

negative. We can choose α large enough so that under a belief ψli, deviating from an action

with payoffs uli to an action with payoffs uki is strictly suboptimal, for l ă k. Finally, the

first two terms in uki (i.e., 1`maxlăk . . .) ensures that under a belief ψki deviating from uki

to uli is strictly suboptimal, for l ă k.

This construction is depicted in Figure 1, where we have (with artistic license) repre-

sented the belief space ∆pS´iˆΘq as the x-axis, and utility is on the y axis. As k increases,

the corresponding belief moves farther “out.” The blue curves represent the utility hyper-

planes uki . Notice that at each belief ψki , its own blue line lies strictly above all of those

corresponding to other beliefs.

The last step of the construction is to add the aforementioned “spoiler” actions, which

are of the form pk, bq, where k “ 1, . . . , K, and b is a direction. These directions are drawn

12



0 ψ4
i ψ2

i ψ1
i ψ3

i ψ5
i

1 σip¨, ¨|siq

ui

uki
uk,bi

Figure 1: Constructing the separation game for I.

from a set B, which has the property that linear combinations of vectors in B with non-

negative weights span the whole Euclidean space that contains ∆pS´i ˆΘq. For example,

we can take B to be a set of basis vectors and their negatives. The utility index from pk, bq

is equal to uki ` εb, where ε is sufficiently small. These utility planes are depicted as the red

lines in Figure 1. This bonus is small enough so that these spoiler actions are still (weakly)

suboptimal at the beliefs ψki , but at any other belief, it is strictly better to take one of the

spoiler actions pk, bq than it is to take an action with payoffs uki . This completes the sketch

of the proof of Lemma 1, and hence the proof of the if direction of Theorem 1.

3.2.2 Only if

Now suppose that I is individual garbling complete. Let G “ pA, uq and φ P FIpAq X

BCEpGq. Because φ is feasible, there is an information structure I “ pS, σq P I and

strategies in BpS,Aq that induce φ. Hence, the information structure pA, φq is an individual

garbling of I, and is therefore also a coordinated individual garbling of some I 1 “ pS 1, σ1q P

I. Let b P BpS 1, Aq be the individual garbling from pS 1, σ1q to pA, φq that satisfies (2)

(replacing σ with φ and si with ai in (2)). Clearly b induces φ. We claim that b is an

equilibrium of pI 1, Gq. To see this, note that for every ai and s1i P S
1
i such that bipai|s

1
iq ą 0

13



and s1i has a positive probability under σ1, (2) is satisfied, and therefore

ÿ

a´iPA´i,s1´iPS
1
´i,θPΘ

ź

j‰i

bjpaj|s
1
jqσ

1
ps1´i, θ | s

1
iquipa

1
i, a´i, θq

“
ÿ

a´iPA´i,θPΘ

φpa´i, θ | aiquipa
1
i, a´i, θq

ď
ÿ

a´iPA´i,θPΘ

φpa´i, θ | aiquipai, a´i, θq

“
ÿ

a´iPA´i,s1´iPS
1
´i,θPΘ

ź

j‰i

bjpaj|s
1
jqσ

1
ps1´i, θ | s

1
iquipai, a´i, θq,

where the inequality follows the fact that φ P BCEpGq, and φpa´i, θ|aiq denotes the con-

ditional distribution given ai and the prior φ. We conclude that φ P EI 1pGq Ď EIpGq, as

desired.

3.3 Feasibility correspondences

We now characterize the class of feasibility constraints that can be derived from some

restricted set of information structures that is individual garbling complete. A feasibility

correspondence is a function that maps each product set of action profiles A into a subset

of ∆pAˆΘq. We extend the notion of individual garblings to outcomes by associating each

outcome φ P ∆pAˆΘq with its direct recommendation information structure pA, φq.

The feasibility correspondence F is individual garbling complete if for every A, A1, and

φ P F pAq, if pA1, φ1q is an individual garbling of pA, φq, then φ1 P F pA1q. Our next result is:

Theorem 2. F is individual garbling complete if and only if F “ FI for some I that is

individual garbling complete.

This result will follow from three lemmas.

Lemma 2. For any I, FI is individual garbling complete.

Proof. Let φ P FIpAq. Then there exists an I “ pS, σq and b P BpS,Aq that induce φ. Now

suppose that φ1 P ∆pA1 ˆ Θq is an individual garbling of φ, with the garbling itself being

b1 P BpA,A1q. Consider the strategies pb P BpS,A1q defined by

pbipa
1
i|siq “

ÿ

aiPAi

b1ipa
1
i|aiqbipai|siq.

14



Then the outcome induced by I and pb is

pφpa1, θq “
ÿ

sPS

pbpa1|sqσps, θq

“
ÿ

sPS,aPA

b1pa1|aqbpa|sqσps, θq

“
ÿ

aPA

b1pa1|aqφpa, θq

“ φ1pa1, θq,

so φ1 P FIpA
1q, as desired.

Given a feasibility correspondence F , let IF be the corresponding set of “direct recom-

mendation” information structures of the form pA, φq for φ P F pAq.

Lemma 3. If F is individual garbling complete, then F “ FIF .

Proof. For any φ P F pAq, pA, φq P IF . Moreover, pA, φq together with the obedient strate-

gies in BpA,Aq induce φ, and hence φ P FIF pAq. This proves that F Ď FIF (and this is

always true regardless of whether F is individual garbling complete).

Conversely, if φ P FIF pAq, then there is an pA1, φ1q P IF and strategies b P BpA1, Aq

such that pA1, φ1q and b induce φ. Thus, the information structure pA, φq is an individual

garbling of pA1, φ1q, and according to our definition φ is an individual garbling of φ1. From

the definition of IF , we know that φ1 P F pA1q, and hence φ P F pAq by individual garbling

completeness. This proves that FIF Ď F , and we are done.

Lemma 4. If F is individual garbling complete, then IF is individual garbling complete.

Proof. Suppose that F is individual garbling complete. Let pA, φq P IF and let pS, σq be

an individual garbling of pA, φq. Consider the action space A1 “ S and the outcome φ1 “ σ.

Then clearly, the outcome φ1 is an individual garbling of φ, and so by individual garbling

completeness, we have φ1 P F pA1q, so that pA1, φ1q P IF . Thus, IF is individual garbling

complete.

Proof of Theorem 2. By Lemma 2, if F is induced by some I, then F is individual garbling

complete, whether or not I is itself individual garbling complete.

If F is individual garbling complete, then by Lemma 3, it is induced by IF , and by

Lemma 4, IF is individual garbling complete, so F is induced by a set of information

structures that is individual garbling complete.
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3.4 Public randomization completeness and convexity

As a final task for this section, we address the question: under what conditions on I is the

induced feasibility correspondence convex valued? Given information structures I “ pS, σq

and I 1 “ pS 1, σ1q, and α P r0, 1s, we define αI ` p1 ´ αqI 1 to be the information structure

pS2, σ2q, where S2i “ Si \ S
1
i, and

σ2ps, θq “

$

’

’

’

&

’

’

’

%

ασps, θq if s P S;

p1´ αqσ1ps, θq if s P S 1;

0 otherwise.

In other words, αI ` p1 ´ αqI 1 is an information structure in which there is public ran-

domization between I and I 1, with weights α and 1´ α respectively. A set of information

structures) I is public randomization complete (PRC) if for every I, I 1 P I and α P r0, 1s,

αI ` p1´ αqI 1 is a coordinated individual garbling of some element of I.

Theorem 3. F is individual garbling complete and convex-valued if and only if F “ FI

for some I that is individual garbling complete and public randomization complete.

Proof. If: Suppose that F “ FI where I is individual garbling complete and public ran-

domization complete. By Theorem 2, F is individual garbling complete, so it only remains

to establish convexity. If φ, φ1 P F pAq, then they are induced by information structures and

strategies pI “ pS, σq, bq and pI 1 “ pS 1, σ1q, b1q, respectively. Now let α P r0, 1s. Because I
is public randomization complete, the mixture αI ` p1 ´ αqI 1 is a coordinated individual

garbling of some I2 P I. Let b2 denote the garbling itself. Now, we claim that the following

strategies on I2 induce αφ` p1´ αqφ1:

pbipai|siq “
ÿ

psiPSi

bipai|psiqb
2
i ppsi|siq `

ÿ

psiPS1i

b1ipai|psiqb
2
i ppsi|siq.
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Indeed, using the definition of αI ` p1 ´ αqI 1 and the fact that the mixture is induced by

pI2, b2q, we have that

ÿ

sPS2

pbpa|sqσ2ps, θq

“
ÿ

sPS2

ÿ

psP
ś

i“1,...,NpSi\S
1
iq

ź

i“1,...,N

`

bipai|psiqIpsiPSi ` b1ipai|psiqIpsiPS1i
˘

b2pps|sqσ2ps, θq

“
ÿ

psP
ś

i“1,...,NpSi\S
1
iq

ź

i“1,...,N

`

bipai|psiqIpsiPSi ` b1ipai|psiqIpsiPS1i
˘

pασpps, θqI
psPS ` p1´ αqσ

1
pps, θqI

psPS1q

“ α
ÿ

psPS

bpa|psqσpps, θq ` p1´ αq
ÿ

psPS1

b1pa|psqσ1pps, θq

“ αφpa, θq ` p1´ αqφ1pa, θq.

Hence, αφ` p1´ αqφ P FI2pAq Ď FIpAq “ F pAq, and therefore F is public randomization

complete.

Only if: By Theorem 2 and Lemmas 3 and 4, if F is individual garbling complete, then

IF , the set of direct recommendation information structures associated with F , is individual

garbling complete and induces F . We will further show that IF is public randomization

complete. To that end, fix I, I 1 P IF and α P r0, 1s. We write I “ pA, φq and I “ pA1, φ1q.

Now, let pA be any action space for which | pAi| “ |Ai| ` |A
1
i|. Thus, for each i, there is a

bijection ζi : Ai\A
1
i Ñ

pAi. We write ζpaq “ pζ1pa1q, . . . , ζNpaNqq. Also define pσ P ∆p pAˆΘq

according to

pσps, θq “

$

’

’

’

&

’

’

’

%

αφps, θq if s “ ζpaq for a P A;

p1´ αqφ1ps, θq if s “ ζpa1q for a1 P A1;

0 otherwise.

It is immediate that αI`p1´αqI 1 is a coordinated individual garbling of pI “ p pA, pσq, where

bipai|ζipaiqq “ 1. It remains to establish that pI P IF . As F is individual garbling complete,

there are elements σ̃, σ̃1 P F p pAq given by

σ̃ps, θq “

$

&

%

φps, θq if s “ ζpaq for a P A;

0 otherwise
, σ̃1ps, θq “

$

&

%

φ1ps, θq if s “ ζpa1q for a1 P A1;

0 otherwise
.

By convexity of F , ασ̃ ` p1 ´ αqσ̃ “ pσ is in F ppSq, so that pI P IF . Hence, IF is public

randomization complete, as desired.

17



4 f-Divergence Constrained Outcomes

BCE is especially analytically tractable because it is defined as the intersection of a family of

linear obedience constraints. In contrast, the individual garbling relationship is non-linear:

For example, if we fix an outcome φ, the set of outcomes that are individual garblings of φ is

not convex. Nonetheless, we can consider feasibility correspondences that are both convex

and individual garbling complete under a wide range of parameterizations. To do this we

make use of f -information, an extension of mutual information for general f -divergences.

4.1 f-information

Let f : R` Ñ R be a convex function with fp1q “ 0.3 If η, ζ P ∆pXq are probability

distributions over a finite space X, such that η is absolutely continuous with respect to ζ,

then the f -divergence is defined as

Df pη ‖ ζq “
ÿ

xPX

ηpxqf

ˆ

ηpxq

ζpxq

˙

(4)

When fpxq “ x logpxq, (4) is the famous Kullback–Leibler (KL) divergence between η

and ζ (alternatively, from η to ζ). f -divergences therefore a generalize KL-divergence to a

whole family of dissimilarity measures between distributions. A fundamental property of

f -divergences is the data processing inequality which has the interpretation that process-

ing data cannot increase information (alternatively, cannot make it easier to distinguish

distributions).

Proposition 1 (Polyanski and Wu (2023), Theorem 7.4). For any η, ζ P ∆pXq and tran-

sition kernel K : X Ñ ∆pX 1q, let η1, ζ 1 P ∆pX 1q be defined by η1px1q “
ř

xPX Kpx
1|xqηpxq

and ζ 1px1q “
ř

xPX Kpx
1|xqζpxq, each @x1 P X 1. Then for any f-divergence, Df :

Df pη
1 ‖ ζ 1q ď Df pη ‖ ζq (DPI)

One notable application of KL-divergence is mutual information, which uses KL-divergence

to measure the amount of information one random variable encodes in another. By replacing

KL-divergence with f -divergence in the definition of mutual information, we can similarly

generalize mutual information to be defined for any f -divergence. Formally, for any f -

divergence, Df , and joint distribution η P ∆pX ˆ Y q, the f -information of η is defined as

3Here we define fp0q “ fp0`q, 0f
`

0
0

˘

“ 0, and 0f
`

a
0

˘

“ limxÓ0 xf
`

a
x

˘

“ af 1p8q for a ą 0.
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Df pη ‖ ηX b ηY q, where ηX denotes the marginal distribution over X induced by η, and

ηXbηY denotes the joint distribution over pXˆY q that satisfies ηXbηY px, yq “ ηXpxqηY pyq

for all px, yq P pX ˆ Y q. We continue to use this notation throughout the text.

Since f -information is just the f -divergence between a joint distribution and a particu-

larly constructed joint distribution, a trivial application of Proposition 1 shows that (DPI)

also holds for f -information (see Polyanski and Wu (2023), Theorem 7.16).

When applied to distributions over outcomes, f -information provides a flexible measure

of the amount of information about the state encoded in an action profile. Such mea-

sures are a natural candidate for constraining sets of outcomes and incidentally the sets of

outcomes they give rise to posses a number of key properties.

4.2 Bounding the players’ joint information

For any f -divergence Df , prior µ P ∆pΘq and ε P R`, we define the following feasibility

correspondence:

Ff,ε,µpAq “ tφ P ∆pAˆΘq|φΘ “ µ,Df pφ ‖ φA b φΘq ď εu

Theorem 4. For any f -divergence Df , prior µ P ∆pΘq and ε P R`, the correspondence

Ff,ε,µ is individual garbling complete and convex valued.

Proof. Consider any pA,A1q, and φ P Ff,ε,µpAq. If pA1, φ1q is an individual garbling of

pA, φq then there exists b : A Ñ ∆pA1q such that φ1pa1, θq “
ř

aPA bpa
1|aqφpa, θq. Define

pb : pA ˆ Θq Ñ ∆pA1 ˆ Θq as the transition kernel such that pbpa1, θ1|a, θq “ bpa1|aq if θ1 “ θ

and 0 otherwise. Plugging η “ φ, ζ “ φA b φΘ and K “ pb into Proposition 1, we obtain

Df pφ
1 ‖ φ1A1 b φ1Θq ď Df pφ ‖ φAb φΘq. The garbling formula for φ1 also makes it clear that

φ1Θ “ φΘ and thus φ1 P Ff,ε,µpA
1q. This proves that Ff,ε,µ is individual garbling complete.

To prove convexity, consider φ0, φ1 P Ff,ε,µpAq and λ P r0, 1s. We will show that the

mixture distribution parameterized by λ has f -information weakly less than ε. Combined

with the fact that the mixture distribution has the same marginal over Θ, this proves its

inclusion in Ff,ε,µpAq and hence convexity.

Let ηλ, ζλ P ∆pAˆΘˆ Zq be defined as

ηλpa, θ, zq “

$

&

%

p1´ λqφ0pa, θq if z “ 0;

λφ1pa, θq if z “ 1,
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and

ζλpa, θ, zq “

$

&

%

p1´ λqφ0
Apaqφ

0
Θpθq if z “ 0;

λφ1
Apaqφ

1
Θpθq if z “ 1,

where Z “ t0, 1u. Explicit calculation shows that

Df pη
λ ‖ ζλq “

ÿ

aPA,θPΘ,zPt0,1u

ζλpa, θ, zqf

ˆ

ηλpa, θ, zq

ζλpa, θ, zq

˙

“
ÿ

aPA,θPΘ

ˆ

p1´ λqφ0
Apaqφ

0
Θpθqf

ˆ

p1´ λqφ0pa, θq

p1´ λqφ0
Apaqφ

0
Θpθq

˙

` λφ1
Apaqφ

1
Θpθqf

ˆ

λφ1pa, θq

λφ1
Apaqφ

1
Θpθq

˙˙

“ p1´ λq
ÿ

aPA,θPΘ

φ0
Apaqφ

0
Θpθqf

ˆ

φ0pa, θq

φ0
Apaqφ

0
Θpθq

˙

` λ
ÿ

aPA,θPΘ

φ1
Apaqφ

1
Θpθqf

ˆ

φ1pa, θq

φ1
Apaqφ

1
Θpθq

˙

“ p1´ λqDf pφ
0 ‖ φ0

A b φ
0
Θq ` λDf pφ

1 ‖ φ1
A b φ

1
Θq

By the law of total probability,

Df pη
λ
A,Θ ‖ ζλA,Θq “ Df pp1´ λqφ

0
` λφ1 ‖ p1´ λqφ0

A b φ
0
Θ ` λφ

1
A b φ

1
Θq

Using the projection kernel that maps pa, θ, zq Ñ pa, θq with probability 1, Proposition 1

implies that

Df pη
λ
A,Θ ‖ ζλA,Θq ď Df pη

λ ‖ ζλq

Hence,

Df pp1´ λqφ
0
` λφ1 ‖ p1´ λqφ0

A b φ
0
Θ ` λφ

1
A b φ

1
Θq

ď p1´ λqDf pφ
0 ‖ φ0

A b φ
0
Θq ` λDf pφ

1 ‖ φ1
A b φ

1
Θq

and thus the mixture distribution must have f -information at most ε.

Remark 1. Individual garbling completeness is a direct consequence of the data processing

inequality. Hence, we could replace Df in the definition of Ff,ε,µ with any functional that

satisfies (DPI) and still maintain individual garbling completeness of the correspondence.

For example, Renyi divergence is a well known dissimilarity measure that is not an f -

divergence but does satisfy a DPI. Thus, if we defined a feasibility correspondence for the

Renyi divergence analogously to Ff,ε,µ, it would be individual garbling complete. Further,
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under those parameterizations of the Renyi divergence for which it is convex, the associated

feasibility correspondence would also be convex valued.

Theorems 3 and 4 together imply that the correspondence Ff,ε,µpAq is induced by a set of

information structures that is both individual garbling complete and public randomization

complete.

Among f -divergences, the total variation distance, defined by fpxq “ |x´1|, is particu-

larly tractable for linear programming purposes because the total variation bounds can be

written as a finite linear feasibility problem, through the suitable introduction of auxiliary

variables.4 Let F TV
ε,µ be Ff,ε,µ where fpxq “ |x ´ 1|. If ε ě 2, then F TV

ε,µ pAq is just the

outcomes with marginal µ, and F TV
ε,µ pAq X BCEpGq is the set of BCE with prior µ and

no upper bound on information. If ε “ 0, then F TV
ε,µ pAq contains all outcomes in which

a and θ are independent, and F TV
ε,µ pAq X BCEpGq are the correlated equilibria of G when

the players have no information and the prior is µ. Thus, F TV
ε,µ pAq interpolates smoothly

between the cases of unrestricted information and no information (but players still have

access to pure correlation devices).

4.3 Application: Coordinated attack

We conclude this section with an application to a coordinated attack problem. Suppose

Θ “ t´1, 1u, Ai “ t0, 1u, and uipa, θq “ aipθ ` baj ` cq for constants b, c P R. Both

states are equally likely: µp´1q “ µp1q “ 1{2. We first fix b “ ´1{2 and c “ ´1{4. We

ask: What is the maximum probability that a “ p1, 1q across all BCE, meaning that both

players “attack?”

We first consider the optimum without any feasibility constraints. The unconstrained

BCE that maximizes the probability of a “ p1, 1q has the following form:

θ “ ´1

a1{a2 1 0

1 δ 0

0 0 1{2´ δ

θ “ 1

a1{a2 1 0

1 1{2 0

0 0 0

Obedience for ai “ 1 reduces to δp´7{4q ` p1{2qp1{4q ě 0, which holds if and only if

δ ď 1{14. The optimal BCE makes this constraint bind, in which case the total probability

of a “ p1, 1q is 4{7. Note that the optimal BCE also has the form of a public bad news

signal. We denote this BCE by φ1.

4Total variation distance is often defined using fpxq “ 1
2 |x ´ 1|. Throughout the paper we used the

scaled version for ease of exposition.
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We now consider what happens with feasibility constraints, meaning that φ P F TV
ε,µ .

When ε “ 0, the players have no information, and ai “ 0 strictly dominates. Hence, the

unique feasibility-constrained BCE puts probability one on p0, 0q. We denote this BCE by

φ0.

When ε ď 6{7, the total variation-constrained optimal BCE is simply φ1ε{p6{7q`φ0p1´

ε{p6{7qq. This satisfies the total variation constraint due to the data processing inequality.

Note that the optimal feasibility-constrained BCE still has the form of a binary public

signal, and players are indifferent between entering and not entering after good news.

Naturally, as ε decreases, the feasibility constraints become tighter, and fewer outcomes

can be attained in equilibrium. As εÑ 0, we converge to the outcome in which a “ p0, 0q

occurs with probability one.

To make the example a bit richer, let us now allow the players to make a half investment

of ai “ 1{2, but maintain the same payoff structure. Thus, the payoff from p1{2, 1{2q

is ´3{2 in state θ “ ´1 and 1{2 in state θ “ 1. By following a similar analysis, we

conclude that the unconstrained BCE that maximizes the probability of p1{2, 1{2q involves

a public signal, so that p1{2, 1{2q is played with probability one in the good state and with

probability ζ in the bad state, so as to satisfy the obedience constraints with equality:

ζp´3{2q ` 1{2p1{2q “ 0 ðñ ζ “ 1{6, so that the total probability of p1{2, 1{2q is 2{3.

We denote this BCE by φ1{2. The resulting total variation in this BCE is 2{3, which is

strictly less than the total variation of 6{7 for the BCE that maximizes the probability of

a “ p1, 1q. Indeed, because deviations from a “ p1{2, 1{2q are less attractive, the players

do not need as much information to be incentivized to play these actions.

As a final exercise, consider the optimal BCE when we maximize the probability of

p1, 1q plus η times the probability of p1{2, 1{2q. As long as η ď p4{7q{p2{3q “ 6{7, the

unconstrained optimum will be the BCE that maximizes p1, 1q. But if η is sufficiently high,

then the optimum changes for ε ď 6{7. Rather than stochastically receiving no-information

outcome, in order to satisfy the total variation constraint, the optimal BCE instead is a

convex combination of φ1{2 and φ1, with appropriate weights to make the total variation

constraint bind. In particular, this happens as long as ηp2{3q ě p4{7qp2{3q{p6{7q ðñ η ě

2{3. When ε “ 2{3, the optimum is φ1{2, and for ε ď 1{3, the optimal BCE is a mixture of

φ1{2 and φ0.

This example illustrates several ideas. First, it shows that individual garbling complete

sets of information structures provide a tractable methodology for analyzing BCE with

upper bounds on information. Second, it shows that as information constraints become

tighter, extremal BCE will change so as to place greater weight on actions that can be

incentivized with less information, such as by transitioning from playing a “ p1, 1q to
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playing a “ p1{2, 1{2q. Finally, the example illustrates consequences of the linearity of

the data processing inequality, namely that any objective will be concave in the allowed

f -information.

5 Linear games

5.1 Robust predictions

We now let Θ be a subset of a linear space, which we will typically think of as RK . (To be

consistent with the earlier sections we will only consider outcomes with a finite support on

Θ.) Fix a game G “ pA, uq, where the payoff ui : AˆΘ Ñ R is a linear function of θ P Θ

for each a P A. We call pA, uq satisfying these conditions a linear game.

For a µ P ∆pΘq with a finite support, with a slight abuse of notation let BCEpµ;Gq be

the set of BCE in G whose marginal over the states is µ. We will abbreviate BCEpµ;Gq to

BCEpµq when the game G is clear from the context.

For an outcome φ P ∆pAˆΘq, let ηφpaq be the interim (expected) state conditional on

a, i.e., ηφpaq “
ř

θPΘ θφpa, θq{φApaq when φApaq ą 0, and let νpφq be the distribution of

ηφpaq under φA.

We are interested in the extreme points of the set of feasibility constrained BCE. In

particular, we will calculate divergence constrained BCE that minimize the expectation of

some welfare criterion w : AˆΘ Ñ R. We further assume that w is linear in θ for each a.

Then the expectation of w given an outcome φ is

W pφq “
ÿ

aPA,θPΘ

wpa, θqφpa, θq.

We write W pφ;Gq when we want to emphasize the underlying game G.

Our main result in this section is:

Theorem 5. Fix a linear game G “ pA, uq and a prior µ P ∆pΘq with a finite support.

Then

min
φPFf,ε,µpAqXBCEpGq

W pφq “ min
µ1PPµ

min
φPBCEpµ1q

W pφq, (5)

where

Pµ ”tνpφq : φ P Ff,ε,µpAqu. (6)
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Moreover, there exists optimal solutions φ˚ and pµ1, φ1q to the left- and right-hand sides of

(5), respectively, such that φ1A “ φ˚A and ηφ˚ “ ηφ1.

Thus for a linear game, the minimization over divergence constrained equilibrium out-

comes in (5) is reduced to a simpler and more familiar minimization over equilibrium

outcomes with a prior equal to µ1, where µ1 is endogenously chosen from Pµ and is a mean-

preserving contraction of the true prior µ. This result is particularly helpful when the

minimizing solution over equilibrium outcomes is well understood for every prior; Theo-

rem 5 implies that such a solution for some µ1 will also be a solution to problem (5). We

illustrate this for revenue minimization in the first-price common value auction in Section

5.2.

Remark 2. The constrained minimization in problem (5) can be equivalently written as

min
φPBCEpµq

W pφq ` λDf pφ ‖ φA b µq

where λ ě 0 is the Lagrange multiplier on the divergence constraint. The above problem

is exactly the multiplier robust-control problem in Hansen and Sargent (2001) where we

take the reference outcome to be the information structure where the players have no

information about the state. The interpretation is that the no information scenario is the

analyst’s best guess for the agents’ information structure, but the analyst does not fully

trust it. Instead, the analyst considers many other information structures to be plausible,

with plausibility diminishing with their divergence from the no information scenario.

To prove Theorem 5, we first note that when we pool together the conditional distri-

butions of the state across the action profiles, the correlation between the state and action

profile is reduced, and hence the f -information is also reduced:

Lemma 5. For a φ P ∆pA ˆ Θq, suppose β “ φA places positive probability on a1 and

a2 P A. Let φ1 P ∆pAˆΘq be such that φ1A “ β and

φ1pθ | aq “

$

&

%

φpθ | aq a R ta1, a2u;

φpθ | a1q
βpa1q

βpa1q`βpa2q
` φpθ | a2q

βpa2q

βpa1q`βpa2q
a P ta1, a2u.

Then we have Df pφ
1 ‖ β b µq ď Df pφ ‖ β b µq.
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Proof. Since f is convex, we have for a P ta1, a2u

f

ˆ

φ1pθ | aq

µpθq

˙

“ f

ˆ

φpθ | a1q

µpθq

βpa1q

βpa1q ` βpa2q
`
φpθ | a2q

µpθq

βpa2q

βpa1q ` βpa2q

˙

ď f

ˆ

φpθ | a1q

µpθq

˙

βpa1q

βpa1q ` βpa2q
` f

ˆ

φpθ | a2q

µpθq

˙

βpa2q

βpa1q ` βpa2q
.

The proposition immediately follows.

Proof of Theorem 5. First, let φ˚ be an optimal solution to problem (5), and let β˚ and η˚

be its marginal distribution over actions and interim state function, respectively. Define

φ1pa, θq “ β˚paqIθ“η˚paq. By the linearity of the game, we have φ1 P BCEpνpφ˚qq and

W pφ˚q “ W pφ1q. Therefore, the optimal value of the left-hand side of (5) is greater than

or equal to that of the right-hand side.

Let pµ1, φ1q be an optimal solution to the right-hand side of (5), and suppose µ1 “ νpφq

where φ satisfies the conditions in the definition of Pµ. Let β1 and η1 be the marginal

distribution over actions and interim state function for φ1, and likewise let β and η be that

for φ. By Lemma 5 we can assume without loss of generality that φ1pa, θq “ β1paqρ1pθ | η1paqq

for an unbiased noise function ρ1, and likewise for φ and ρ.

Define φ̃1pa, θq “ β1paq
ř

θ1PΘ ρ
1pθ1 | η1paqqρpθ | θ1q. We claim that Df pφ̃

1 ‖ β1 b µq ď

Df pφ ‖ β b µq ď ε. Since W pφ̃1q “ W pφ1q and φ̃1 P BCEpµq by the linearity of the game,

this implies that the optimal value of the right-hand side of (5) is greater than or equal to

that of the left-hand side.

We have

Df pφ ‖ β b µq “
ÿ

aPA,θPΘ

f

ˆ

φpa, θq

βpaqµpθq

˙

βpaqµpθq

“
ÿ

aPA,θPΘ

f

ˆ

ρpθ | ηpaqq

µpθq

˙

βpaqµpθq,

“
ÿ

θPΘ,θ1PΘ

f

ˆ

ρpθ | θ1q

µpθq

˙

µ1pθ1qµpθq,

(7)
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and

Df pφ̃
1 ‖ β1 b µq “

ÿ

aPA,θPΘ

f

˜

φ̃1pa, θq

β1paqµpθq

¸

β1paqµpθq

“
ÿ

aPA,θPΘ

f

ˆř

θ1 ρ
1pθ1 | η1paqqρpθ | θ1q

µpθq

˙

β1paqµpθq

ď
ÿ

aPA,θPΘ

ÿ

θ1PΘ

f

ˆ

ρpθ | θ1q

µpθq

˙

ρ1pθ1 | η1paqqβ1paqµpθq

“
ÿ

θPΘ,θ1PΘ

f

ˆ

ρpθ | θ1q

µpθq

˙

µ1pθ1qµpθq

“Df pφ ‖ β b µq

ďε.

In general, the set Pµ in Theorem 5 will not be convex, since for each prior in Pµ the

support can be arbitrary but with at most |A| elements. Nonetheless, to compute the

welfare guarantee across divergence constrained equilibrium outcomes in Theorem 5, it is

without loss to convexify Pµ, as shown in the following proposition. This convexity will

prove crucial for maxmin mechanism design in Section 6. Given a set X in a linear space,

we denote its convex hull by convX.

Proposition 2. The value of problem (5) is equal to

min
µ1PconvPµ

min
φPBCEpµ1q

W pφq. (8)

The intuition for Proposition 2 is that while a convex combination of priors from Pµ

needs not be in Pµ, for any µ P convPµ and outcome φ with marginal µ, the associated

distribution of interim states is still in Pµ, and only the interim states matter for a linear

game.

5.2 Application: First-price common value auctions

We now illustrate our results on linear games with the example of a first-price auction

for a common-value good, as in Bergemann, Brooks, and Morris (2017). The state is the

common value of the good, which is drawn from a finite subset Θ of R. Each player i’s
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action is a bid, which is an element of finite set Ai Ă R. Payoffs are given by

uipa, θq “

$

&

%

1
|Hpaq|

pθ ´ aiq i P Hpaq;

0 otherwise,

Hpaq “

"

j

ˇ

ˇ

ˇ

ˇ

aj “ max
j1“1,...,N

aj1

*

,

for a P A and θ P Θ. In other words, the winner of the good is one of the high bidders,

breaking ties randomly, and the winner pays their bid. We note that ui is linear in the

state, so this is a linear game.

For our simulations, we will assume that the prior µ is uniform on Θ “ t0, 0.2, 0.4, 0.6, 0.8, 1u.

The action space is an evenly spaced grid of 100 points on r0, 0.5s.

We first computed the extreme point of the set of total variation constrained BCE

that minimizes expected revenue. In other words, the welfare criterion is revenue, i.e.,

wpa, θq “ maxi“1,...,N ai. We refer to the minimum value as the first-price auction’s revenue

guarantee. The guarantee implicitly depends on the bound on the players’ information

about the state, in terms of total variation distance. The results of the calculation are

depicted in Figures 2 and 3. On the left-hand side of Figure 2, we have plotted the

marginal over the action profile, i.e., φA. On the right-hand side, we have plotted the

function ηφ. Each of these objects is depicted for values of ε “ t0.5, 1, 2u. While not

necessarily self-evident from the figures, it is easily verified that in each case, the players’

actions are independent and identically distributed. Moreover, we can see that the interim

value ηφpaq is only a function of the highest of the bidders signals. As Figure 3 shows, as ε

decreases, the distribution of interim values νpφq becomes more and more compressed, and

when ε “ 0 it is simply a point mass on the prior expectation of 1{2.

The BCE depicted in these figures corresponds closely with that described by Berge-

mann, Brooks, and Morris (2017), who studied revenue-minimizing BCE of first-price auc-

tions, in a model with continuous values and continuous bids; their results correspond to

the case of ε “ 2 in our simulation since in this case the total variation constraint does

not bind. Bergemann, Brooks, and Morris (2017) show that in the case of a pure common

value, revenue is minimized when the bidders receive iid signals, the high signal is equal to

the common value, and the bidders use monotonic pure strategies. In fact, the bidders treat

their signals as if they were private values, and play the standard Vickrey equilibrium of the

independent private value first-price auction. The only substantive difference between our

simulations and the structure identified in Bergemann, Brooks, and Morris (2017) is that

in the simulations, the high signal (which is one-to-one with the high bid) does not reveal
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the true value (unless ε “ 2), but rather reveals a noisy estimate of the value. But this

is the revenue-minimizing BCE, as identified in Bergemann, Brooks, and Morris (2017), if

we treated the interim expected value as the true value. Thus, the simulation dramatically

verifies the conclusion of Theorem 5, that for linear games, extremal divergence-constrained

BCE are extremal BCE under a contracted prior.

We also computed the revenue guarantee over Kullback-Leibler constrained BCE. In

the Kullback-Leibler divergence we have fpxq “ x logpxq, so minimizing over BCE subject

to an upper bound on the Kullback-Leibler divergence is not a finite-dimensional linear

program. To simplify to a finite linear program, we replace fpxq “ x logpxq by a piecewise

linear approximation

f̃pxq “ max
i“1,...,N

fpxiq ` f
1
pxiqpx´ xiq ´ C, (9)

where fpxiq ` f 1pxiqpx ´ xiq is a linear approximation of fpxq “ x logpxq around a base

point xi, f
1pxq “ 1 ` logpxq, and C is a constant that ensures f̃p1q “ 0. We choose the

base points xi to be an evenly spaced grid of 20 points on r0, 2s as well as xi “ 4, 6. (We

have x “ φpa,θq
φApaqµpθq

ď 6 since µ is uniformly distributed on 6 values.) In Figure 4 we plot

fpxq and f̃pxq on [0,6] and see that they are virtually identical.

As with the total variation constraint, the extremal Kullback-Leibler constrained BCE

are extremal BCE under a contracted prior, which are the interim value distributions

plotted in Figure 5. Compared with the total variation constraint in Figure 3, we see that

the interim value distributions from the Kullback-Leibler information constraint tend to be

smoother.

6 Maxmin mechanism design

6.1 A general result

As a further application of our results on f -divergence constrained outcomes in linear

games, we will consider a variation on the informationally robust mechanism design model

of Brooks and Du (2023), but where we now posit that the players have limited informa-

tion about the state. Suppose a mechanism designer wants to maximize the mechanism’s

performance guarantee over the information structures subject to an upper bound on the

agents’ information. The designer controls an outcome ω P Ω. Suppose the agents and

designer’s utilities, ũipω, θq and w̃pω, θq, are linear in the state θ for each fixed ω.
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Figure 2: Common value first-price auctions under total variation constraints. On the
left-hand side is the marginal joint distribution over action profiles. On the right-hand side
is the interim expected value, conditional on the players’ actions.
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Figure 3: Interim value distributions in the first-price auction under total variation con-
straints.
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Figure 4: Piecewise linear approximation of fpxq “ x logpxq (cf. equation (9)).
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Figure 5: Interim value distributions in the first-price auction under Kullback-Leibler in-
formation constraints.

A mechanism is a tuple M “ pA,mq where A “
ś

i“1,...,N Ai and m : A Ñ ∆pΩq. A

mechanism M induces a game where uipa, θ;Mq “
ř

ωPΩ mpω | aqũipω, θq and wpa, θ;Mq “
ř

ωPΩ mpω | aqw̃pω, θq. A mechanism M is participation secure if for every player i there

exists an action 0 P Ai such that uip0, a´i, θ;Mq ě 0 for all a´i P A´i and θ P Θ. Recall

our definitions of W pφ;Mq and BCEpµ;Mq where we identify the game with its underlying

mechanism M .

Following Brooks and Du (2023), we consider action spaces parametrized by an integer

k, where the kth action space has k2 ` 1 actions that are labeled Ai “ t0, 1{k, 2{k, . . . , ku.

Let M0
k be the set of participation-secure mechanisms on A where 0 is a participation

secure action for every player.

For a given µ P ∆pΘq and ε ě 0, the performance guarantee of a mechanism M over

f -divergence constrained equilibrium outcomes is

min
φPFf,ε,µpAqXBCEpMq

W pφ;Mq. (10)

Thus, the guarantee-maximizing mechanism in M0
k solves

max
M“pA,mqPM0

k

min
φPFf,ε,µpAqXBCEpMq

W pφ;Mq. (11)
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By Theorem 5 and Proposition 2, problem (11) is equivalent to:

max
M“pA,mqPM0

k

min
µ1PconvPµ

min
φPBCEpµ1;Mq

W pφ;Mq. (12)

It is natural to ask how this program is related to

min
µ1PconvPµ

max
MPM0

k

min
φPBCEpµ1;Mq

W pφ;Mq. (13)

If these two programs have the same value, then we would know that the solution to (12)

reduces to the solution of the analogous maxmin problem with a different prior and no

information constraints. This would be especially useful in cases where the solution to the

maxmin problem with a fixed prior is known for all priors, such as in the common-value

first-price auction discussed in Section 6.2.

It is immediate that (12) is less than or equal to (13). However, it does not follow from

the standard minimax theorem that (12) is equal to (13): for a fixed µ1, minφPBCEpµ1;MqW pφ;Mq

is generally neither a concave nor convex function of M .

On the other hand one can bound the gap between (12) and (13) by applying the

bounding programs from Brooks and Du (2023). In particular, Theorem 1 of Brooks and

Du (2023) shows that (12) is at least

max
M“pA,mqPM0

k

min
µ1PconvPµ

ÿ

θPΘ

µ1pθqmin
a

ÿ

ωPΩ

«

w̃pω, θqmpω|aq `
ÿ

i“1,...,N

ũipω, θq∇`
i mpω|aq

ff

, (14)

where

∇`
i fpaq “

$

&

%

pk ´ 1qpfpai ` 1{k, a´iq ´ fpaqq if ai ă k;

0 if ai “ k.

The inner function in (14) is clearly linear in µ1 for a fixed m and concave in m for a

fixed µ1. Thus, by Sion’s minimax theorem, (14) is equal to

min
µ1PconvPµ

max
pA,mqPM0

k

ÿ

θPΘ

µ1pθqmin
aPA

ÿ

ωPΩ

«

w̃pω, θqmpω|aq `
ÿ

i“1,...,N

ũipω, θq∇`
i mpω|aq

ff

. (15)

Moreover, (13) is clearly less than or equal to

min
µ1PconvPµ

min
I“pS,σq:σΘ“µ1

max
pA,mqPM0

k

max
φPEIpMq

W pφ;Mq,
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where we again identify M with the induced game structure. Brooks and Du (2023) refer

to the inner double maximand as the potential of an information structure I. By Theorem

1 of Brooks and Du (2023), the minimum potential across all I with the prior µ is at most

min
µ1PconvPµ

min
φP∆pAˆΘq:φΘ“µ1

ÿ

aPA

max
ωPΩ

ÿ

θPΘ

«

w̃pω, θqφpa, θq ´
ÿ

i“1,...,N

ũipω, θq∇̃`
i φpa, θq

ff

, (16)

where

∇̃`
i fpaq “

$

’

’

’

&

’

’

’

%

´fpk, a´iq if ai “ k;

fpk, a´iq ´ kfpk ´ 1{k, a´iq if ai “ k ´ 1{k;

kpfpai ` 1{k, a´iq ´ fpaqq otherwise.

Thus, we conclude that the value of (15) is less than that of (12), which is less than that

of (13), which is in turn less than (16). This proves the following result:

Theorem 6. Let pµ1,mq be a Nash equilibrium of the zero-sum game in (15). Then the

guarantee of mechanism M over f -divergence constrained equilibrium outcomes, given by

(10), is at least the value of (15). Moreover, the guarantee of any mechanism is at most

the value of problem (16).

Thus, if the values of (15) and (16) are equal, then mechanisms maximizing (15) must

approximately maximize the guarantee. Brooks and Du (2023) present intuitions for why

the difference between the inner max in (15) and the inner min in (16) should tend to 0 as

k Ñ 8 for each µ1. They also prove that the difference is asymptotically zero for revenue

maximization in auctions for any fixed µ1.

6.2 Application: Common value auction design

We simulated solutions of the programs (15) and (16) for the common value auction model

studied in Brooks and Du (2020). In particular, Θ is a finite subset of R. The outcome

ω “ pq, tq P RN
` ˆ RN is a collection of allocations and transfers, where

ř

i“1,...,N qi “ 1.5.

Player i’s utility is

ũipq, t, θq “ θqi ´ ti.

5This corresponds to the “must-sell” case studied in Brooks and Du (2020).
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The designer’s objective is revenue maximization:

w̃pq, t, θq “
ÿ

i“1,...,N

ti.

Thus, the program (15) is a lower bound on the maximum guarantee for revenue across

all mechanisms that always sell the good, and the program (16) is an upper bound on the

minimum potential for revenue across all information structures, again assuming that the

good must be sold.

We first solved programs (15) and (16) under the total variation information constraints

when k “ 15, meaning that each player has 226 actions, and µ is the uniform distribution

on Θ “ t0, 0.2, 0.4, 0.6, 0.8, 1u (as in Section 5.2).

The results of the simulations are depicted in Figures 7–9. Figure 7 depicts the informa-

tion structures that minimize the upper bound on the potential (16). On the left-hand side

is the joint distributions of the players’ signals, and on the right-hand side is the players’

expectation of the value conditional on the signal profile. There are two notable features:

First, the likelihood of a signal profile only depends on the sum of the signals. While this is

again not self-evident from the figure, it is also easily verified that the distribution of signals

is independent, and these two properties together imply that the signals are iid exponential

random variables. Second, the interim expected value is a non-decreasing function of the

sum of the players’ signals.

This is the same structure as identified in Brooks and Du (2020) for the potential

minimizing information structure with a fixed prior, which coincide with the information

in Figures 7 when ε “ 2.6 In particular, the signals are iid exponential and the interim value

is a non-decreasing function of the sum of the signals. The only difference is in the particular

interim value function. Without any constraints on the players’ information, the sum of the

signals fully “reveals” the value, meaning that the distribution of the interim value is equal

to the distribution of the ex post value. However, with an upper bound on information,

the sum of the signals is only a noisy signal about the value. The particular noisy interim

value distributions, which are mean-preserving contractions of the true prior, are depicted

in the left panel of Figure 8. Consistent with Theorems 5 and 6, and according to the

limit analysis of Brooks and Du (2020), this “noisy” interim value function would be the

potential minimizing value function, without any constraints on the players’ information,

6As with our discussion fo the first-price auction, the analysis of Brooks and Du (2020) is primarily in a
limit continuum model, although Section 5 of that paper shows that the potential minimizing information
structures can be approached with finite information structures that have the same qualitative features as
in the simulations depicted in Figure 7. A similar comment applies to the mechanisms depicted in Figure
9.
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if we treated the interim value as the ex post value, and replaced the true prior with the

corresponding contracted prior in Figure 8.

We obtain analogous results for the mechanisms that maximize the lower bound on

the guarantee, depicted in Figure 9. In fact, for each value of ε, the computed allocations

look nearly identical, and are close to the proportional allocation qipaq “ ai{Σa, where

Σa “ a1 ` . . . ` aN . Consistent with the results of Brooks and Du (2020), there seem

to be many optimal transfer rules. We selected a particular transfer rule by imposing an

additional constraint, that the aggregate transfer
ř

i“1,...,N tipaq only depends on the sum of

the actions Σa. Adding this constraint did not change the optimal value, and it resulted in

transfer rules of the form tipaq “ T pΣaqai{Σa, where T depends on the contracted prior and

is plotted in the right panel of Figure 8. When ε “ 2, the aggregate transfer coincides with

that in Brooks and Du (2020). When ε “ 0, the aggregate transfer is close to 0.5 for any

positive aggregate action; the aggregate transfer is not exactly 0.5 since we use a discrete

approximation of k “ 15; we can see in Figure 6 that due to the discrete approximation,

the revenue guarantee is close to but strictly less than 0.5 when ε “ 0, even though in

this case the designer knows that all agents have no information about the common value.

In sum, the mechanisms from the simulations have the form of the proportional auctions

described in Brooks and Du (2020) and calibrated to the contracted priors of Figure 8.

The optimal values of programs (15) and (16) are plotted in Figure 6, along with that of

the first-price auctions from Section 5.2. We see that the upper and lower bounds are close,

and the lower bound is significantly larger than the revenue guarantee from the first-price

auction when ε ą 0. Thus, the proportional auctions in Figure 9 significantly outperform

first-price auction in terms of the revenue guarantee.

Finally, we depict the corresponding pictures under the Kullback-Leibler information

constraints in Figure 10, with the same piecewise linear approximation as in Section 5.2. We

see that the interim value distributions, aggregate transfers, and revenues are qualitatively

similar to those under total variation information constraints, though just as with the first-

price auction the interim value distributions tend to be smoother under the Kullback-Leibler

information constraints.

The takeaway from this application is that it is possible to combine the insights of

this paper with the informationally robust mechanism design approach of Brooks and Du

(2023), in order to obtain new insights about informationally robust mechanisms when the

players have bounded information about the state. This approach is especially powerful

when the agents’ preferences in the mechanism design problem are linear in the state.
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Figure 6: Revenue guarantees and potentials from maxmin common value auctions and
first-price auctions under total variation information constraints.

7 Relations on information structures

We will now shift gears and discuss the connection between our results and the literature on

comparisons of information structures. The notions of individual garbling and coordinated

individual garbling have been previously introduced in the literature, notably in Gossner

(2000) and Lehrer, Rosenberg, and Shmaya (2013). We discuss each of these in turn.

Gossner (2000) asks the question: Given information structures I and I 1, when is it the

case that EIpGq Ď EI 1pGq for all G? His main result shows that this is the case if and

only if, in our terminology, I is a coordinated individual garbling of I 1.7 Thus, coordinated

individual garblings represent a natural preorder on information structures.

Gossner’s setup is different from ours in that he allows for compact and continuous

games. As a result, his result does not imply ours, nor do our results imply his. We now

state an analogue of Gossner’s theorem for our finite setting:

Proposition 3. I is a coordinated individual garbling of I 1 if and only if EIpGq Ď EI 1pGq

for all G.

For the if direction, let G be the separation game and φ the equilibrium outcome, as

in Lemma 1. By hypothesis, φ P EI 1pGq, so by Lemma 1, I is a coordinated individual

garbling of I 1.

The proof of the only if direction is in the Appendix. It is materially the same as

Gossner’s: From the fact that I is a coordinated individual garbling of I, we know that

7Gossner would say that I is “faithfully reproduced” from I 1.
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Figure 7: Information structures from program (16) under total variation information con-
straints; the left is the marginal distribution of the signal profiles, and the right is the
interim value as a function of the signal profile.
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Figure 8: The interim value distributions and aggregate transfers from maxmin common
value auctions under total variation information constraints.

the players can “simulate” I from I 1 in such a way that each player’s garbled signal is

sufficient for other players’ garbled signals and the state. Thus, any equilibrium of I has

an equivalent equilibrium of I 1, where the players first simulate I and then play the given

strategies on I.

The if direction of the proof of Proposition 3, however, is substantively different. Goss-

ner also constructs a game that plays an analogous role as our separation game. However,

in his game, players report signals as well as beliefs about others signals (and the state,

in his extension to incomplete information). The payoff for the belief is given by a log

scoring rule, with the payoff defined to be ´8 if a player assigns zero probability to the

signals that are reported by the others. Because Gossner’s game is not compact, an extra

step is needed to approximate the obedient outcome of his separation game via compact

games. He establishes that an approximate analogue of the coordinated individual garbling

property holds, and he finally takes limits to conclude that it holds exactly. In comparison,

the construction of our separation game proceeds via elementary arguments. The game is

finite, and no scoring rules, infinite payoffs, or approximations are needed.

In a slightly different but related direction, Lehrer, Rosenberg, and Shmaya (2013)

study equivalence relations on information structures that arise from having the same

set of equilibrium outcomes for all games, according to various equilibrium concepts, and

including Bayes Nash equilibrium. Their main result for Bayes Nash equilibrium is that

two information structures have the same equilibrium outcomes for all games if and only

if they are individual garblings of one another. While it is not a primary objective of

our paper, our investigation has led us to the observation that the equivalence relations of
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Figure 9: Maxmin common value auctions under total variation information constraints.
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Lehrer, Rosenberg, and Shmaya (2013) are also equivalent to several other notions, which

we now state. For the sake of completeness, a self-contained proof is in the Appendix.

We say that I 1 “ pS 1, σ1q is a reduction of I “ pS, σq if there are mappings fi : Si Ñ S 1i

for each i such that (i) if fipsiq “ fippsiq, then there exists an α P R such that for all

ps´i, θq P S´i ˆΘ, we have

σpsi, s´i, θq “ ασppsi, s´i, θq,

and (ii) for any ps1, θq P S 1 ˆΘ, we have that

σ1ps1, θq “
ÿ

sPf´1ps1q

σps, θq.

In other words, I 1 is obtained from I by merging types that have the same interim beliefs.

We say that I is irreducible if for every i, no two types have the same interim beliefs. We

say that I is reduction equivalent to I 1 if there is an information structure I2 that is a

reduction of both I and I 1.

Proposition 4. Given information structures I and I 1, the following statements are equiv-

alent:

(a) I and I 1 are individual garblings of each other.

(b) I and I 1 are coordinated individual garblings of each other.

(c) EIpGq “ EI 1pGq for all G (equilibrium outcome equivalence).

(d) FIpAq “ FI 1pAq for all A (outcome equivalence).

(e) I and I 1 are reduction equivalent.

The proof of Proposition 4 shows that if I 1 is a reduction of I and I2 is a reduction

of I 1, then I2 is in fact a reduction of I. This implies that any information structure I,

there is a unique I 1 (up to a relabeling of signals) that is an irreducible reduction of I.

Moreover, I 1 can be obtained “at one step”, by merging signals in I that have the same

interim belief. In this sense, there is a simple finite procedure for determining if I and

I 1 are equivalent, that eliminates the existential and universal quantifiers over individual

garblings and games, respectively.
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8 Adding a lower bound on information

In this section, we discuss the addition of a lower bound on information into the analysis.

We conjecture that all of our results would generalize to this case, and we will sketch the

arguments, but we do not provide formal proofs.

As mentioned in the introduction, the definition of BCE given in Bergemann and Morris

(2016) incorporates a lower bound on information in the following manner: There is a base

information structure I “ pS, σq. A BCE of a game G “ pA, uq is defined to be a joint

distribution φ P ∆pA ˆ S ˆ Θq such that the marginal of φ on S ˆ Θ is σ, and such that

the following obedience constraints are satisfied: For all i, si, ai, and a1i,

ÿ

a´iPA´i,s´iPS´i,θPΘ

φpai, a´i, si, s´i, θqpuipai, a´i, θq ´ uipa
1
i, a´i, θqq ě 0. (17)

In other words, conditional on pai, siq, ai maximizes player i’s payoff. Thus, the lower

bound strengthens the obedience constraint by allowing players to condition their deviation

on their base signal si, in addition to their recommended action ai (as was the case in (1)).

Notice that there is also a feasibility constraint on the marginal on S ˆ Θ (analogous to

fixing the marginal on Θ, as we did in Sections 4–6), but there are no other feasibility

constraints.

The main theorem in Bergemann and Morris (2016) shows that these BCE are precisely

the equilibrium outcomes ranging over all I that are more informative than I in the sense

of individual sufficiency, meaning that I is equivalent an information structure of the form

p
ś

i“1,...,NpSi ˆ Siq, σq, and the marginal of σ on S ˆ Θ is σ. We will also write S ˆ S for

the signal profile space. Informally, I is equivalent to players observing their signals in I,

plus additional signals s in S, which may be correlated with ps, θq in an arbitrary manner.

This structure could be used in various ways, such as to model the hypothesis that

values are private. In particular, we could suppose that under I, si reveals to player i all

aspects of θ that are payoff relevant to them. It could also be used to model interdependent

values using “payoff types”, as in Bergemann and Morris (2005), where θ “ s.

We now explain how the lower bound could be incorporated into our theory. The lower

bound I can be viewed as consisting of two pieces: One is the assumption that signals have

a product form SˆS for a fixed set of base signals S. The second is a feasibility restriction

on the marginal on S ˆ Θ. The product signals can be incorporated into our analysis by

first defining outcomes as distributions in AˆSˆΘ. In the definition of BCE, we would use

the stronger obedience constraint (17) in lieu of (1). Also, the set of information structures
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I should only consist of signals of the product form. The notion of an equilibrium and

strategy profile “inducing” an outcome should be adapted in the obvious way.

The notions of individual garbling and coordinated individual garbling must also be

adapted. In particular, I “ pS ˆ S, σq is an individual garbling of I 1 “ pS 1 ˆ S, σq if there

are mappings bi : S 1i ˆ Si Ñ ∆pSiq such that for all ps, s, θq

σps, s, θq “
ÿ

s1PS1

bps|s1, sqσ1ps1, s, θq,

where bps|s1, sq “
ś

i“1,...,N bipsi|s
1
i, siq. Note that implicit in this definition are the ideas

that a player’s garbling can depend on their base signal, and the base signal is unchanged

by the garbling. The individual garbling is coordinated if the belief about ps´i, s´i, θq does

not depend on s1i, conditional on psi, siq. Formally, if we let σps´i, s´i, θ|si, siq denote the

belief of agent i conditional on psi, siq, then a coordinated individual garbling must further

satisfy, for all i, ps1i, siq, and si such that bipsi|s
1
i, siq ą 0,

σps´i, s´i, θ|si, siq “
ÿ

s1
´iPS

1
´i

ź

j‰i

bjpsj|s
1
j, sjqσ

1
ps1´i, s´i|s

1
i, siq.

A feasibility correspondence is now a mapping that associates to each product set of action

profiles A a set F pAq Ď ∆pAˆSˆΘq. The definitions of individual garbling completeness

of a set of information structures and of a feasibility correspondence apply in this more

general setting without modification.

With these adjustments, Theorem 1 would remain true as stated. Generalizing the

proof of the only if direction is straightforward: For any pI,Gq and equilibrium outcome

φ, there is an associated revelation information structure I 1 “ pA ˆ S, φq and equilibrium

outcome. If I is individual garbling complete and I P I, then I 1 is a coordinated individual

garbling of some I2 P I. The same argument then shows that there is an equilibrium of

pI2, Gq that also induces φ.

The proof of the if direction of Theorem 1 can be similarly adapted. However, the

construction of the separation game must be adjusted. In particular, in the separation

game G for an information structure I “ pS ˆ S, σq, agents are either reporting signals

psi, siq or taking the spoiler actions. Under the “revelation” outcome for the separation

game, the reported psi, siq is such that the component si matches its true value. If this

revelation outcome is also an equilibrium outcome of G for some information structure

I 1 “ pS 1ˆS, σ1q, then for any type ps1i, s
1
iq reporting psi, siq, it must be that s1i “ si. Because

this report is preferred by ps1i, siq to any of the spoiler actions, the belief conditional ps1i, siq
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about ps´i, siq must be the same as that of belief of psi, siq under I, thus proving that I is

a coordinated individual garbling of I 1 (in the modified sense given above). The rest of the

proof of the if direction goes through without modification. We conjecture that Theorems

2 and 3 would similarly go through, but we will not sketch the argument.

Most of the substance of the lower bound comes from additional feasibility restrictions

on the marginal on SˆΘ. As stated above, in Bergemann and Morris (2016), it is assumed

that this marginal is the same for all information structures in I, equal to a fixed σ. We

could similarly impose this kind of restriction, just as we previously fixed the marginal on

Θ.

In Sections 4–6, we studied a particular class of feasibility restrictions, where we cap

the informativeness of the action profile about the state, as measured by an f -divergence.

A natural way to extend this exercise to a non-trivial lower bound on information would be

to impose a separate bound conditional on each realization of the base signals s. The in-

terpretation would be that we cap the amount of additional information that players might

have, beyond their base signals s and given the prior σ. The data processing inequality

would similarly imply that this feasibility correspondence is both individual garbling com-

plete and convex, meaning that Theorem 5 and all of its consequences would go through.

In particular, for linear games, divergence constrained BCE would correspond to BCE with

a modified prior, where conditional on each realization of s, the marginal on θ is in a set of

mean-preserving contractions of the conditional distribution under σ. In the special case

where the f -divergence is zero, the corresponding robust prediction would coincide with

belief-invariant Bayes correlated equilibrium, described in Bergemann and Morris (2016).

The bottom line is that with some additional notation, our key results readily generalize

to the case where there is a lower bound on information, given by a base information

structure. A natural direction for future research would be to study more flexible lower

bounds on information, in which the marginal on S ˆ Θ is constrained but does not have

to be equal to a fixed σ for every information structure in I.

9 Conclusion

The purpose of this paper has been to introduce a new methodology for robust predictions

with bounded information. We proposed a particular class of restrictions on informa-

tion, namely, those for which the set of admissible information structures is individual

garbling complete. Individual garbling completeness precisely characterizes when the re-

striction on information only constrains which outcomes are feasible, and does not impose
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additional equilibrium constraints. We have also characterized exactly those feasibility

correspondences which can be induced by individual garbling complete sets of information

structures, which are those correspondences that satisfy an analogous notion of individual

garbling completeness. We have further given an epistemic characterization of when the

induced feasibility correspondence is convex, namely, public randomization completeness.

We also showed that a feasibility correspondence consisting of those outcomes with a given

marginal on θ and an upper bound on the f -divergence between action profiles and states

is both individual garbling and public randomization complete. We applied this method-

ology to a class of linear models, and we determined that extremal BCE with feasibility

restrictions correspond to BCE with a set of contracted priors. This finding was illustrated

with simulations of extremal BCE of the first-price auction and maxmin auctions.

In future work, we hope to further develop this methodology in several directions.

First, we hope to identify additional classes of individual garbling complete feasibility

correspondences, analogous to those constrained by f -divergences, that would allow us to

more flexibly restrict the amount of information held by each agent. We also hope to

incorporate more flexible lower bounds on information into the theory. Finally, we hope to

apply our methodology in more and different settings, to understand better how constraints

on information impact informationally robust predictions in settings of economic interest.
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A Omitted proofs

Proof of Lemma 1. The action space for each player i is defined as follows. Let B0
i be a

basis for RS´iˆΘ, and let Bi “ t˘b|b P B
0
i u. Then player i’s action set is Ai “ SiYSiˆBi.
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In other words, the action consists of either a reported signal in I, or a reported signal and

direction.

Notice that the “obedient” strategies in which each player reports their true signal

would induce the outcome φ P ∆pAˆΘq, where φps, θq “ σps, θq for all ps, θq P S ˆΘ. For

each i and si, we define the conditional belief

σps´i, θ | siq “ σpsi, s´i, θq{
ÿ

s1
´iPS´i,θ

1PΘ

σpsi, s
1
´i, θ

1
q.

Let Ψi be the set of the interim beliefs in ∆pS´iˆΘq of the form σp ¨ | siq. We denumerate

the elements of Ψi “ tψ
1
i , . . . , ψ

K
i u, so that for every k “ 1, . . . , K, ψli for l ą k are not in

the convex hull of tψ1
i , . . . , ψ

k´1
i u.8 Further let Ski be the set of si’s for which σp ¨ | siq “ ψki .

We will construct players’ utilities so that (i) φ is an equilibrium outcome of pI,Gq and

(ii) ψki is the unique belief in ∆pS´i ˆΘq at which si is a best response.

We note that whether or not properties (i) and (ii) hold depends only on how we define

player i’s utilities at action profiles of the form ps, θq and ppsi, bq, s´i, θq, since these are the

only action profiles that can be reached via a single player’s deviation from the outcome φ.

Now, we inductively define the utilities on SˆΘ. All of the actions in Ski have the same

utility, which is denoted uki ps´i, θq. Set u1
i ps´i, θq “ 0 for all ps´i, θq. Suppose that uli has

been defined for all l ă k. Let ν P RS´iˆΘ be a separating hyperplane such that

ÿ

s´iPS´i,θPΘ

νps´i, θqpψ
l
ips´i, θq ´ ψ

k
i ps´i, θqq ă 0

for all l ă k. We set

uki ps´i, θq “ 1`max
lăk

ÿ

s1
´iPS´i,θ

1PΘ

ψki ps
1
´i, θ

1
qulips

1
´i, θ

1
q

` γipsiq

¨

˝νps´i, θq ´
ÿ

s1
´iPS´i,θ

1PΘ

νps1´i, θ
1
qψki ps

1
´i, θ

1
qq

˛

‚,

8Such an order can be defined inductively. Let ψK
i be any extreme point of the convex hull of

Ψi. Now, having inductively defined ψk`1
i , . . . , ψK

i , let ψk
i be any extreme point of the convex hull of

Ψiztψ
k`1
i , . . . , ψK

i u.
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where γipsiq ą 0 large enough that for all l ă k

ÿ

s´iPS´i,θPΘ

ψlips´i, θqu
k
i ps´i, θq

“ 1`max
lăk

ÿ

s´iPS´i,θPΘ

ψki ps´i, θqu
l
ips´i, θq ` γipsiq

ÿ

s´iPS´i,θPΘ

νps´i, θq
`

ψlips´i, θq ´ ψ
k
i ps´i, θq

˘

ă
ÿ

s´iPS´i,θPΘ

ψlips´i, θqu
l
ips´i, θq.

(Such a γipsiq exists because the coefficient on γ is strictly negative and there are only

finitely many such inequalities.) At the end of this process, we have constructed the

utilities inductively so that if si P S
k
i , then

ÿ

s´iPS´i,θPΘ

ψki ps´i, θqu
k
i ps´i, θq ą

ÿ

s´iPS´i,θPΘ

ψki ps´i, θqu
l
ips´i, θq (18)

for all l ‰ k.

It remains to construct the utilities for action profiles of the form ppsi, bq, s´i, θq. For

si P S
k
i and b P Bi, we set uippsi, bq, s´i, θq “ uk,bi ps´i, θq, where

uk,bi ps´i, θq “ uki ps´i, θq ` γipsi, bqpbips´i, θq ´
ÿ

s1
´iPS´i,θ

1PΘ

ψki ps
1
´i, θ

1
qbips

1
´i, θ

1
qq.

for γipsi, bq ą 0 small enough such that for all l ‰ k,

ÿ

s´iPS´i,θPΘ

ψlips´i, θqu
k,b
i p, s´i, θq

“
ÿ

s´iPS´i,θPΘ

ψlips´i, θqu
k
i ps´i, θq ` γipsi, bq

ÿ

s´iPS´i,θPΘ

pbips´i, θq
`

ψlips´i, θq ´ ψ
k
i ps´i, θq

˘

ă
ÿ

s´iPS´i,θPΘ

ψlips´i, θqu
l
ips´i, θq.

(19)

Such a γipsi, bq ą 0 exists because there are only finitely many such inequalities and because

of the strict inequality (18). This completes the specification of utilities for the separation

game.

We now prove properties (i) and (ii). For (i), by (18), we know that at the belief ψki , an

action in Ski leads to strictly higher expected utility than any action in SizS
k
i , and by (19),

an action in Ski leads to a strictly higher expected utility than psi, bq for si R S
k
i . Finally,

48



all actions of the form psi, bq with si P S
k
i lead to an expected payoff of

ÿ

s´iPS´i,θPΘ

ψki ps´i, θquippsi, bq, s´i, θq

“
ÿ

s´iPS´i,θPΘ

ψki ps´i, θqu
k
i ps´i, θq ` γipsi, bq

ÿ

s´iPS´i,θPΘ

bps´i, θq
`

ψki ps´i, θq ´ ψ
k
i ps´i, θq

˘

“
ÿ

s´iPS´i,θPΘ

ψki ps´i, θqu
k
i ps´i, θq,

so that player i is indifferent to all psi, bq with si P S
k
i . We conclude that if others play the

obedient strategies, obedience is a best response for player i, and therefore property (i) is

satisfied.

For (ii), suppose that the belief ψi P ∆pS´i ˆ Θq is not equal to ψki . Then there is a

direction b P Bi such that

ÿ

s´iPS´i,θPΘ

bps´i, θqpψips´i, θq ´ ψ
k
i ps´i, θqq ą 0.

Hence, the action psi, bq yields an expected payoff

ÿ

s´iPS´i,θPΘ

ψips´i, θqu
k
i ps´i, θq ` γipsi, bq

ÿ

s´iPS´i,θPΘ

bps´i, θqpψips´i, θq ´ ψ
k
i ps´i, θqq

ą
ÿ

s´iPS´i,θPΘ

ψips´i, θqu
k
i ps´i, θq,

and hence si is not a best response.

By property (i), φ P EIpGq. Now suppose that φ P EI 1pGq for I 1 “ pS 1, σ1q, and let b be

an equilibrium of pI 1, Gq that induce φ. Thus, si is a best response at any s1i P S
1
i for which

bipsi|s
1
iq ą 0. By property (ii), the belief about ps´i, θq at s1i must be ψki “ σp¨, ¨|siq, so that

(2) is satisfied. Hence, I is a coordinated individual garbling of I 1.

Proof of Proposition 2. Suppose µ1 “ αµ̃ ` p1 ´ αqpµ, where µ̃, pµ P Pµ and α P r0, 1s (for

notational simplicity, we assume a convex combination of only two elements in Pµ). By the

definition of Pµ, there exist φ̃, pφ P ∆pAˆΘq such that νpφ̃q “ µ̃, νppφq “ pµ, Df pφ̃ ‖ β̃bµq ď ε

and Df p
pφ ‖ pβ b µq ď ε, where β̃ and pβ are the marginal distributions of φ̃ and pφ over A,

respectively. By Lemma 5, we can assume without loss that φ̃pa, θq “ β̃paqρ̃pθ | η̃paqq and
pφpa, θq “ pβpaqpρpθ | pηpaqq, where η̃paq and pηpaq are the interim state given a, and ρ̃ and pρ

are the unbiased noises conditional on the interim state.
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By equation (7), we have

ε ě αDf pφ̃ ‖ β̃ b µq ` p1´ αqDf p
pφ ‖ pβ b µq

“
ÿ

θPΘ

ÿ

θ1PΘ

f

ˆ

ρ̃pθ | θ1q

µpθq

˙

αµ̃pθ1qµpθq `
ÿ

θPΘ

ÿ

θ1PΘ

f

ˆ

pρpθ | θ1q

µpθq

˙

p1´ αqpµpθ1qµpθq

ě
ÿ

θPΘ

ÿ

θ1PΘ

f

ˆ

ρ1pθ | θ1q

µpθq

˙

µ1pθ1qµpθq,

(20)

where

ρ1pθ | θ1q “ ρ̃pθ | θ1q
αµ̃pθ1q

µ1pθ1q
` pρpθ | θ1q

p1´ αqpµpθ1q

µ1pθ1q
.

Now, suppose φ1 P BCEpµ1q, and let µ2 “ νpφ1q. Effectively we need to show that

µ2 P Pµ. Without loss suppose there exists noise ρ2 such that φ1pa, θ1q “ β1paqρ2pθ1 | η1paqq

for all a P A and θ1 P Θ. Add noise ρ1 to φ1 to arrive at an outcome φ P BCEpµq:

φpa, θq “
ř

θ1PΘ φ
1pa, θ1qρ1pθ | θ1q. Note that the marginal distributions of φ and φ1 over A

are the same: β “ β1. We compute

Df pφ ‖ β b µq “
ÿ

θPΘ

ÿ

θ2PΘ

f

ˆř

θ1PΘ ρ
2pθ1 | θ2qρ1pθ | θ1q

µpθq

˙

µ2pθ2qµpθq

ď
ÿ

θPΘ

ÿ

θ2PΘ

ÿ

θ1PΘ

f

ˆ

ρ1pθ | θ1q

µpθq

˙

ρ2pθ1 | θ2qµ2pθ2qµpθq

“
ÿ

θPΘ

ÿ

θ1PΘ

f

ˆ

ρ1pθ | θ1q

µpθq

˙

µ1pθ1qµpθq

ď ε,

where the last inequality follows from (20). Thus, we have µ2 P Pµ, and W pφ1q “ W pφq is

greater than or equal to the optimal value of problem (5).

Since φ1 is an arbitrary element of BCEpµ1q and µ1 is an arbitrary element of convPµ, we

conclude that the optimal value of problem (8) is greater than or equal to that of problem

(5).

Moreover, the optimal value of problem (8) is obviously less than or equal to that of

the right-hand side of problem (5), which is also equal to the left-hand side by Theorem 5.

This proves the proposition.

Proof of Proposition 3. The proof of the if direction was given in the text. We now prove

the only if direction. Suppose I “ pS, σq is a coordinated individual garbling of I 1 “ pS 1, σ1q,

where b1 P BpS, S 1q is the individual garbling that satisfies (2). Let G “ pA, uq and
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φ P EIpGq, and b the strategies that induce φ. We claim that the strategies

pbpai|s
1
iq “

ÿ

siPSi

bipai|siqb
1
ipsi|s

1
iq

are an equilibrium of pI 1, Gq that induce φ. To see that pb is an equilibrium, first note that

pb´ipa´i|s
1
´iq ”

ź

j‰i

ÿ

sjPSj

bjpaj|sjqb
1
jpsj|s

1
jq

“
ÿ

s´iPS´i

b´ipa´i|s´iqb
1
´ips´i|s

1
´iq,

where analogously b´ipa´i|s´iq ”
ś

j‰i bjpaj|sjq, and so on. Now, for every ai and s1i P S
1
i

such that b1ipai|s
1
iq ą 0, there exists an α ą 0 such that (2) is satisfied. Thus, for any i and

si and s1i such that b1ipsi|s
1
iq ą 0, there exists an α ą 0 such that for all ai,

ÿ

s1
´iPS

1
´i,θPΘ

pb´ipa´i|s
1
´iqσ

1
ps1i, s

1
´i, θquipai, a´i, θq

“
ÿ

s1
´iPS

1
´i,θPΘ

ÿ

s´iPS´i

b´ipa´i|s´iqb
1
ps´i|s´iqσ

1
ps1i, s

1
´i, θquipai, a´i, θq

“ α
ÿ

s´iPS´i,θPΘ

ÿ

s´iPS´i

b´ipa´i|s´iqσpsi, s´i, θquipai, a´i, θq,

which is precisely the interim expected utility of type si playing ai when others are using

b´i. Thus, ai is a best response for s1i if and only if it is a best response for ai, and therefore

the strategy pbipai|s
1
iq is a best response. Finally, because b1 is an individual garbling, we

have that

ÿ

s1PS1

pbpa|s1qσ1ps1, θq “
ÿ

sPS

bpa|sq
ÿ

s1PS1

b1ps|s1qσ1ps1, θq

“
ÿ

sPS

bpa|sqσps, θq “ φpa, θq,

so that pb and I 1 induce φ. We conclude that φ P EI 1pGq, as desired.

Proof of Proposition 4. (b) ùñ (a): Clearly, if I and I 1 are coordinated individual garblings

of each other, then they are also individual garblings of each other.

(a) ùñ (d): Suppose I “ pS, σq is an individual garbling of I 1 “ pS 1, σ1q, with garbling

b1 P BpS 1, Sq, and let φ P FIpAq, induced by strategies b1 P BpS,Aq. Define the strategies
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pb P BpS 1, Aq by

pbipai|s
1
iq “

ÿ

siPSi

bipai|siqb
1
ipsi|s

1
iq.

Then the outcome φ1 induced by pb and I 1 is

φ1pa, θq “
ÿ

s1PS1

pbpa|s1qσ1ps1, θq

“
ÿ

s1PS1

ź

i“1,...,N

ÿ

siPSi

bipai|siqb
1
ipsi|s

1
iqσ

1
ps1, θq

“
ÿ

s1PS1

ÿ

sPS

bpa|sqb1ps|sqσ1ps1, θq

“
ÿ

sPS

bpa|sq
ÿ

s1PS1

b1ps|s1qσ1ps1, θq

“
ÿ

sPS

bpa|sqσps, θq

“ φpa, θq

so that φ P FI 1pAq. Since φ was arbitrary, we have FIpAq Ď FI 1pAq. Reversing the roles of

I and I 1 gives FI 1pAq Ď FIpAq, so that I and I 1 are outcome equivalent, as desired.

(b) ðñ (c): Let G be the separation game and φ the equilibrium outcome φ P EIpGq

given in Lemma 1. By (c), φ P EI 1pGq, so by Lemma 1, I is a coordinated individual garbling

of I 1. Repeating this argument with I and I 1 reversed implies that I 1 is an individual

garbling of I as well.

(c) ùñ (d): Fix an action space A and let G “ pA, uq where uipaq “ 0 for all i and

a P A. From equilibrium outcome equivalence, we have that EIpGq “ EI 1pGq. But because

players are indifferent between all actions, EIpGq “ FIpAq and EI 1pGq “ FI 1pAq. We

conclude that FIpAq “ FI 1pAq, i.e., I and I 1 are outcome equivalent.

(d) ùñ (e): Suppose that I and I 1 are outcome equivalent. Since I and I 1 are reduction

equivalent to their respective reductions, it is without loss to assume that I and I 1 are

irreducible. Now, clearly we have that σ P FIpSq and σ1 P FI 1pS
1q. Outcome equivalence

therefore implies that σ P FI 1pSq and σ1 P FIpS
1q. Let b and b1 be strategies such that pI, bq

induce σ1 and pI 1, b1q induce σ. Define the Markov kernels Ki : Si Ñ ∆pSiq according to

Kippsi|siq “
ÿ

s1iPS
1
i

b1ippsi|s
1
iqbips

1
i|siq.
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Also define the product kernel Kpps|sq “
ś

i“1,...,N Kippsi|siq. It follows from the fact that

pI, bq induce σ1 and pI 1, b1q induce σ that σ is an invariant measure for K, in the sense that

for all pps, θq, we have

σpps, θq “
ÿ

sPS

Kpps|sqσps, θq.

Now, let di such that the kernel Kdi
i is aperiodic, and let d “

ś

i“1,...,N di (so that Kd
i

and Kd are all aperiodic). Let Pi be the partition of Si into communicating classes of

Ki and let P be the partition of S into communicating classes of K. It is easy to see

that P “
ś

i“1,...,N Pi. Note that because Kd
i is aperiodic, there is a unique invariant

measure of Kd
i restricted to pi P Pi, which we denote by πpii . Similarly, if Kd is restricted

to p “
ś

i“1,...,N pi P P , there is a unique invariant measure πp, and since
ś

i“1,...,N π
pi
i is

also an invariant of Kd on p, we must have πp “
ś

i“1,...,N π
pi
i . Hence, if we write

σpp, θq “
ÿ

sPp

σps, θq,

then for s P p P P , we have

σps, θq “ σpp, θqπppsq.

Now, fix i, s P p P P , and θ P Θ. Then

σips´i, θ|siq “
σpsi, s´i, θq

ř

s1
´iPS´i,θ

1PΘ σpsi, s
1
´i, θ

1q

“
πppsi, s´iqσpp, θq

ř

p1
´iPP´i,θ

1PΘ σppi, p
1
´i, θ

1q
ř

s1
´iPp

1
´i
πpi,p

1
´ipsi, s1´iq

“
πpii psiqπ

p´i
´i ps´iqσpp, θq

ř

p1
´iPP´i,θ

1PΘ σppi, p
1
´i, θ

1q
ř

s1
´iPp

1
´i
πpii psiqπ

p1
´i

´i ps
1
´iq

“
πpii psiqπ

p´i
´i ps´iqσpp, θq

πpii psiq
ř

p1
´iPP´i,θ

1PΘ σppi, p
1
´i, θ

1q

“
π
p´i
´i ps´iqσpp, θq

ř

p1
´iPP´i,θ

1PΘ σppi, p
1
´i, θ

1q
.

This expression depends on pi but not on the particular si P pi. Hence, it must be that if

si, s
1
i P pi, then σip¨, ¨|siq “ σip¨, ¨|s

1
iq. From the hypothesis that I is irreducible, we conclude

that |pi| “ 1, and thus Kdps|sq “ 1. This is possible only if b1 is a pure strategy such that
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b1ps|s1q “ 1 for any s1 such that bps1|sq ą 0. By a similar analysis, we conclude that b1 is

also pure. Hence, the function fipsiq defined according to bipfipsiq|siq “ 1 is a bijection

from Si to S 1i. This function satisfies (i) and (ii) in the definition of reduction, so that I 1 is

a reduction of I.

(e) ùñ (c): We will show this for the special case in which S 1 Ď S, and fips
2
i q “ s2i for

all s2i R tsi, s
1
iu and fjpsjq “ sj for all sj P Sj. In other words, exactly two signals are merged

for player i, and no signals are merged for players j ‰ i. Without loss, we assume that si

and s1i arise with positive probability. Let σipsiq denote the marginal probability of si, and

let σips´i, θ|siq denote the conditional distribution of ps´i, θq given si, and defined similarly

for σ1. From the definition of reduction equivalence, we have that σ1jp¨, ¨|fjpsjqq “ σjp¨, ¨|sjq

and σ1jps
1
jq “

ř

sjPf
´1
j ps1jq

σjpsjq for all j and sj P Sj.

Now, let b and b1 be strategies in pI,Gq and pI 1, Gq respectively, such that (i) b1jpsjq “

bjpsjq for all j ‰ i and sj, (ii) b1ips
2
i q “ bips

2
i q for all s2i ‰ si, and (iii)

b1ipsiq “
1

σipsiq ` σips1iq
pσipsiqbipsiq ` σips

1
iqbips

1
iqq . (21)

where si “ fipsiq “ fips
1
iq. Then pI 1, b1q induce the outcome

ÿ

s1PS

σ1ps1, θqb1pa|s1q

“
ÿ

s´iPS´i

»

–

ÿ

s2i Rtsi,s
1
iu

σ1ps2i , s´i, θqb
1
pa|s2i , s´iq ` σ

1
ippsiqσ

1
ps´i, θ|psiqb

1
pa|psi, s´iq

fi

fl

“
ÿ

s´iPS´i

»

–

ÿ

s2i Rtsi,s
1
iu

σps2i , s´i, θqbpa|s
2
i , s´iq ` σ

1
ippsiqb

1
ipai|psiqσ

1
ps´i, θ|psiq

ź

j‰i

b1´ipa´i|s´iq

fi

fl

“
ÿ

s´iPS´i

»

–

ÿ

s2i Rtsi,s
1
iu

σps2i , s´i, θqbpa|s
2
i , s´iq `

¨

˝

ÿ

s2i Ptsi,s
1
iu

σips
2
i qb

1
ipai|psiq

˛

‚σps´i, θ|s
2
i q
ź

j‰i

b´ipa´i|s´iq

fi

fl

“
ÿ

s´iPS´i

»

–

ÿ

s2i Rtsi,s
1
iu

σps2i , s´i, θqbpa|s
2
i , s´iq `

¨

˝

ÿ

s2i Ptsi,s
1
iu

σips
2
i qbipai|psiq

˛

‚σps´i, θ|s
2
i q
ź

j‰i

b´ipa´i|s´iq

fi

fl

“
ÿ

sPS

σps, θqbpa|sq “ φpa, θq.

Hence Uipb
1; I 1, Gq “ Uipb; I,Gq.

Now, we claim that if b and b1 satisfy (i)–(iii) above, then b is an equilibrium if and

only if b1 is an equilibrium. We have already established that Ujpb; I,Gq “ Ujpb
1; I 1, Gq for
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all j. If b1 is not an equilibrium, then there exists j and pb1j such that Ujppb
1
j, b

1
´j; I

1, Gq ą

Ujpb
1; I 1, Gq. Now define pbjpsjq “ pb1jpfjpsjqq. Then ppb1j, b

1
´jq and ppbj, b´jq satisfy (i)–(iii),

so that Ujppbj, b´j; I,Gq “ Ujppb
1
j, b

1
´j; I

1, Gq, so that pbj is a profitable deviation from pI, bq.

Alternatively, if pbj is a profitable deviation from pI, bq, then we can define pb1j according to

(21), so that (i)–(iii) are again satisfied for ppb1j, b
1
´jq and ppbj, b´jq, and we similarly conclude

that pb1j is a profitable deviation from pI 1, b1q. This completes the proof that I and I 1 are

equilibrium outcome equivalent when I 1 is a reduction of I obtained by merging two signals.

Iterative application of this step (and relabeling of signals) then establishes that I is

equilibrium outcome equivalent to I 1 if I 1 is a reduction of I. Now, if I and I 1 are reduction

equivalent, then there exists an information structure I2 that is a reduction of I and I 1.

We therefore have EIpGq “ EI2pGq “ EI 1pGq.

We conclude that pbq ðñ pcq ùñ pdq ùñ peq ùñ pcq. So that pbq–peq are all

equivalent. Finally, paq ùñ pdq and pbq ùñ paq, so that pbq–peq are all equivalent to paq

as well.
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