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Abstract

We consider the design of optimal auctions when buyers may have asymmetric
and/or interdependent values. All that is known to the seller is each buyer’s ex ante
expected value and an upper bound on the values. We describe a new class of mech-
anisms which we term compound proportional auctions: Each buyer submits a bid,
which is a non-negative real number. The auction then clears in a series of rounds.
Within each round, a proportional auction (Brooks and Du, 2021b)) is run allocate
the remaining supply that is left over from previous rounds, among a set of active
buyers. At the end of the round, those active buyers with the lowest expected value
become inactive. Our main result is that compound proportional auctions maximize
the revenue guarantee: minimum expected revenue across all information structures

and Bayes Nash equilibria.
KEYWORDS: Optimal auctions, interdependent values, robustness, guarantee, potential.

JEL CLASSIFICATION: C72, D44, D82, D83.

*Brooks: Department of Economics, University of Chicago, babrooks@uchicago.edu; Du: Department
of Economics, University of California San Diego, sodu@ucsd.edu; Feffer: Graduate School of Business,
Stanford University, feffer@stanford.edu. This paper subsumes an earlier working paper “Maxmin Auction
Design with Known Expected Values.” Brooks and Du gratefully acknowledge support of the National
Science Foundation under grants #2215259 and #2215475.



1 Introduction

A classic and fundamental problem in the theory of mechanism design concerns how to max-
imize revenue from the sale of goods. This question has been intensively studied for nearly
fifty years. In certain specialized settings, economic theorists have arrived at compelling an-
swers. If there is a single buyer for a single unit of a good, the optimal mechanism is simply
a posted price (Riley and Zeckhauser, |1983). When there are multiple buyers with inde-
pendent private values, then the class of optimal mechanisms has been concisely described
by Myerson (1981). In the further special case where the buyers are symmetric and each
buyer’s value distribution is log-concave, we have the celebrated result that both first- and
second-price auctions with reserve prices are optimal mechanisms. Beyond those settings,
the results are less satisfying. It has long been understood that relaxing independence in
private information can lead to cases that are both very easy for the seller (meaning that
they can get the same payoff as if the buyers’ information were not private) and moreover,
the optimal mechanisms involve the buyers placing implausibly complicated and detailed
bets about one another’s private information (Crémer and McLean| [1988). And if we move
away from private values, then the precise form of interdependence in valuations matters a
great deal, and the theory does not deliver clean and general insights about what form of
auction is advantageous (Bulow and Klemperer] 1996, 2002; Bergemann et al., 2020).

This state of affairs reflects both the strengths and weaknesses of the Bayesian mech-
anism design framework: The designer’s understanding of the agents’ private information,
expressed as an information structure, is absolutely correct and in complete agreement with
the agents’ knowledge. This assumption is what permits the theory to deliver clean and
precise conclusion about optimal mechanisms. It also means that those optimal mechanisms
utilize all of the designer’s implausibly detailed understanding of the environment. But in
reality, the designer may face large uncertainty about the nature of the agents’ private infor-
mation. And even if the designer could fully articulate all of those possibilities, a mechanism
that is equipped for all scenarios would be unwieldy and incomprehensible to the agents who
are supposed to interact with itE]

A recent literature has proposed to sidestep these issues by analyzing mechanisms that
attain a favorable performance guarantee, that is, a uniform lower bound on performance
that hold regardless of the information structure and equilibrium. Even though the guarantee
applies to all information structures and equilibria, the guarantee maximizing mechanism is

tailored to the worst-case informational environment and equilibrium, which has an especially

!This perspective on the literature is discussed in greater detail in Brooks and Dul (2025)).



simple form (Brooks and Dul [2024al [2025) |

Prior work has applied this methodology to optimal auctions, for the special case in which
the buyers have a pure common value for the good being sold (Brooks and Du, [2021b)). The
main finding is that the revenue guarantee is maximized within a class of mechanisms termed
proportional auctions: Each buyer submits a “bid,” a non-negative real number. The total
amount of the good allocated, and the price per unit, are both determined as a function of
the sum of the buyers’ bids. Finally, each buyer’s individual allocation is proportional to
their bid. In benchmark cases, the total amount allocated increases linearly until the total
supply is reached. As a result, bids can be interpreted as a demand for a quantity of the
good, and if the total demand exceeds the supply, then the good is rationed proportionally.

In the present paper, we study an analogous problem, but where we substantially weaken
assumptions about the distribution of buyers’ values. In particular, we suppose that the
seller knows each buyer’s expected value, which may be different across buyers. There is also
an upper bound on values, which is common across buyers. No other assumptions about
the distribution of buyers’ values (and in particular the joint distribution) are made. In
this setting, a mechanism’s revenue guarantee is its minimum expected revenue across all
value distributions satisfying the mean constraints, and across information structures and
equilibria. Our main result is that the revenue guarantee is maximized by a novel class
of mechanisms, which we call compound proportional auctions (CPAs). This class includes
proportional auctions as a special case.

A CPA is structured as follows: Each buyer submits a “bid,” which is a non-negative real
number. Allocations and payments are then determined in a series of rounds. Within each
round, a proportional auction is run among a subset of “active” buyers, for whatever residual
supply is left over from the previous rounds. If the residual supply sells out, then there are
no more rounds, and the allocation of the residual supply and payments are determined
via the rules of the proportional auction. However, if the good does not sell out, then the
process continues on to another round, with the active buyers with the lowest expected value
becoming inactive. The buyers who are dropped from the active group receive allocations
and payments in accordance with the rules of the proportional auction in their last round.
But no allocations are made to buyers who remain active; their allocations and payments
will be determined at a later round. The process terminates once the good sells out, or until

no buyers remainﬂ As with proportional auctions, we can interpret the bids as a demand

2A number of papers conduct a related but distinct exercise of holding fixed the information (typically
assumed to be private values) and evaluating a mechanism by a worst case over all value distributions in
some class, e.g., (Che| (2020), |Suzdaltsev]| (2020), and He and Li| (2022).

3We note that while we have offered a sequential interpretation of the auction, each buyer submits a
single bid that is used in all rounds. We discuss possible dynamic interpretations later in the paper, in which



for a quantity of the good, with a weighted-proportional rationing rule when the good sells
out.

In the special case where all of the buyers have the same expected value, the guarantee-
maximizing CPA has only a single round, which is simply a proportional auction. Impor-
tantly, even though all of the buyers have the same expected value, their actual values may be
distinct and may be correlated in an arbitrary manner. Thus, one contribution of our paper
is to provide further foundations for proportional auctions as revenue-guarantee-maximizing
mechanisms, beyond the case of pure common values.

Our characterization relies on the first-order methodology for informationally-robust
mechanism design introduced in |Brooks and Du| (2021b;, 2024bja). In particular, the CPA
is the auction that maximizes the expected lowest strategic virtual objective. In effect, it
achieves the optimal balance across actions of revenue and local incentives for the buyers.
This methodology is described in more detail in Sections [3| and

The rest of this paper is organized as follows: Section [2| describes our model. Section
presents a simple two buyer example that illustrates the logic behind the CPA. Section
describes the general version of the CPA, and proves a lower bound on its revenue guarantee.
Section |5| proves that this lower bound is tight: There are information structures for which
the CPA’s guarantee is equal to maximum revenue across all mechanisms and equilibria.

Not all mechanisms that maximize the guarantee are CPAs. In Section [6], we describe
other guarantee maximizing mechanisms, and we discuss why the the CPA is relatively simple
compared to other known solutions.

Section [7]is a discussion. Omitted proofs are contained in Appendix [A]

2 Model

There are buyers i = 1,..., N and a seller. Each buyer i has a value v; € [0,7]. Buyer
i’s ex ante expected value is known to be v;. Without loss, we order the buyers so that
Uy >0y >0 > V.

A mechanism is a tuple M = (A, q,t) consisting of: a measurable set of actions A; for
each buyer, with A = [], A;; an allocation rule ¢ : A — [0, 1] with >, ¢;(a) < 1 for all

a € A; and a transfer rule t : A — RY. An action q; is secure if t;(a;,a_;) < 0 for all a,i.ﬁ

the buyers can submit different bids for different rounds. However, any true dynamic implementation would
entail some release of information about the progress of the auction, which could be used to support dynamic
strategies that would alter the auction’s incentives.

4The present paper subsumes earlier work of Brooks and Dul (2021a). That paper identified the same
optimal guarantee, and showed that the proportional auction was a guarantee maximizer in the symmetric
case, but did not identify the CPA as a guarantee-maximizing mechanism.

5This definition is equivalent to the one given in Brooks and Du| (2024b).
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A mechanism is participation secure if every buyer ¢ has at least one secure action.

An information structure is a tuple I = (S, o) consisting of: a measurable set of signals
S; for each buyer, with S =[], S;; and a joint probability measure o € A(S x [0,7]"), with
the property that for each i, fs’v vio(ds,dv) = v;. In other words, each buyer i’s expected
value under o is v;. The information structure has common values if v = --- = vy with
probability one.

Given a pair (M, I) of a mechanism and an information structure, a strategy for buyer i
is a probability transition kernel b; : S; — A(A;). Given a strategy profile b = (by,...,byn),
we write b(da|s) = [, bi(da;|s;) for the induced kernel from S to A(A). The ex ante expected
utility of buyer ¢ is

Ui(b; M, I) = / (viqi(a) — ti(a))b(da|s)o(ds, dv).

s,v,a

Ex ante expected revenue is

R(b: M, T) = /

s,v,a

(Z ti(d)) b(da|s)a(ds,dv).

The profile b is a (Bayes Nash) equilibrium of (M,I) if U;(b; M,I) > U;(b.,b_;; M, I) for
every i and strategy b;. The set of equilibria is E (M, I).
The revenue guarantee of a mechanism M is

G(M)=inf inf R(b;M,I).

I beE(M,I)

The revenue potential of an information structure I is

P(I) = sup sup R(b; M, I).

M participation secure be E(M,I)

3 Example

Our goal in this paper is to understand which mechanisms provide favorable revenue guar-
antees. Our main contribution is to propose a new class of mechanisms, which we term
compound proportional auctions. In this section, we will motivate these mechanisms by
studying a simple example with two buyers. This discussion is informal; rigorous proofs of

the results we describe will be given later in the paper.



3.1 Common-value auctions

To start, we will suppose that 7 = 1 and v; = vy = 1/2. A variant of our model has been
studied by |Brooks and Dul (2021b), where the further assumption was made that v; = vy
with probability one. In other words, the buyers were assumed to have pure common values.
A key result of that paper is that for a certain class of differentiable mechanisms, there
is a lower bound on the revenue guarantee given by the expected lowest strategic virtual
objective. In particular, suppose that A; = Ry and that the partial derivatives dg;(a)/0a;
and 0t;(a)/0a; exist everywhere. Then G(M) is at least

aE]R

inf (dv) inf vg;(a) —t;(a))| . 1
{MEA([OJ])Ifvvu(dv)=1/2}/M Z{ ( (a) = t:(a)) 1)

It is the term in square brackets that is referred to as the strategic virtual objective (SVO),
which we denote by A(v,a). The expression is the optimal value of a Lagrangian for the
problem of minimizing expected revenue over all information structures and equilibria, but
where we have dropped all equilibrium constraints except for those associated with “local”
deviations in the standard order structure on R, , and we have attached a constant multiplier
(equal to 1) on those constraints. This lower bound may seem quite arbitrary, but in fact it
is known to be tight (Brooks and Du, [2024a,b)).

It is important to note that the SVO is linear in v, so that we can replace the outer
infimum over p with an expectation over v € {0, 1}, both equally likely, which must weakly

decrease the expression . Thus, if we define
Av) = inf A(v, a),

then reduces to

In fact, as Brooks and Du (2021b)) show, not only is this a lower bound; there are guarantee-
maximizing auctions for which G(M) is equal to (I)[]
Brooks and Du| (2021b) identify a particular class of guarantee maximizers that they term

proportional auctions: For some scalar n > 0 and for a differentiable function T : R, — R,

5The result that the guarantee is at least the expected lowest strategic virtual objective was generalized
to a broad class of mechanism design problems by Brooks and Dul (2024b)). Moreover, as shown in |Brooks
and Du (2024a)), for any mechanism M, there is another mechanism M’ for which is at least G(M). In
that sense, the lower bound is always tight.



the mechanism is given by

¢;(a) = min {n% &—} ;

a1+ as

ti(a):< ai )-T(a1+a2).

a1+a2

In other words, as long as n(a; + az) < 1, each buyer’s allocation is na;, and above that
threshold, the good is allocated proportionally. The parameter n controls the sensitivity of
the allocation to buyers’ actions. The buyers together pay an aggregate transfer 7'(a; + as)
that only depends on the sum of their actions. Each buyer’s share of this aggregate transfer
is proportional to their action.
To see why this structure is effective for maximizing , note that the strategic virtual
objective simplifies to
Av.a) T(ay + az) + 2nv — ali@ (T'(ay + ag)) —T' (a1 + a2) if n(a; +az) < 1.
v,a) =
T(a1 + a2) + (v—="T(a; + az)) — T"(as + a) if n(a; + az) > 1.

1
a1+az

In other words, A(v, a) only depends on & = ay + as. This limits the scope for information to
coordinate equilibrium behavior to depress the SVO, since all that matters is the sum of the
buyers’ actions. This reflects a common feature of informationally robust mechanisms, that
they tend to equalize the SVO across action profiles (see also Brooks and Dul, 2023, 2024b)).

Within the class of proportional auctions, and given a value for the sensitivity 7, the
guarantee is maximized by a particular aggregate transfer rule 7', chosen so that A(1,a) is
constant everywhere, \(0,a) is constant when n¥a < 1, and A(0,1/n) < A(0,a) for ¥a >
1/ 77.|Z| This further equalizes and “balances” the SVO across action profiles and limits the
scope for adversarial information and equilibrium to depress revenue. On the region nzr < 1,

an aggregate transfer rule with these properties solves the ordinary differential equation

T'(2) + (1 - 1) T(x) = —A(1) + 29

X

"This pattern for SVO minimizers satisfies complementary slackness with a potential-minimizing infor-
mation structure, in which interim values are in [0, 1] when a; + a2 < 1/, and the interim value is 1 when
a1 + az > 1/n. The complementarity is that both v = 0 and v = 1 are SVO-minimizers when a1 +as < 1/7,
and v = 1 is the unique minimizer when a; + a2 > 1/1. See |Brooks and Du| (2024b) for a further discussion
of complementary slackness in informationally-robust mechanism design.



with the solution (subject to 7'(0) = 0) being

T = o { / " yexp(—y) [-X(1) + 2] dy} |

T exp -0

For nx > 1, the aggregate transfer solves

T'(x) + (1 - 1) T(x) =—A1)+ i

T
T

— T — L [(1/n> exp(-1 /)T +

xexp(—x) y=1/n

yexp(-y) |-X0) + 1 ]

Because A(0, a) is minimized when >_ a < 1, this construction implies that A(0) = A(1) — 2.
All else equal, the seller would prefer a higher A\(1). However, if A(1) is too high, in particular

larger than

1 o0
/ /nyexp(—y) - 2n) dy+/ yexp(—y) -~ dy, (2)
y=0 y=1/n Yy
then lim, ,,, T'(z) — —o0, and the resulting mechanism would have no equilibria: Given a
candidate equilibrium in which a; is a best reply, a buyer could always deviate to a large
number a; > a;, win the good with weakly higher probability, and guarantee themselves a
large payment from the mechanism close to —T'(a}). Thus, the optimal solution is to set
(1) equal to .

Let us denote the proportional auction just derived by M(n), with associated SVO

(v, a;n), optimal SVO A(v;n), and so on. The associated lower bound on the guarantee is
G(M(n)) = (1 = B)A0;9) +TA(L;9) = 200 + A(0; 7).

This formula reveals a key tradeoff: The more sensitive the allocation is to buyers’ actions
(meaning the higher is ), the larger is the spread A(1; 1) —A(0; ) = 21 between the SVOs for
high and low values. At the same time, \(0;7) is decreasing in 1. This tradeoff is depicted
graphically in Figure . The left panel shows the curves A(v;n), as well as the frontier of
(A(0;7), A(1; 7)) pairs that can be induced in a proportional auction for some 7. The optimal
n therefore depends on v, and the higher is the expected value, the higher is the allocation
sensitivity that maximizes the guarantee. We denote the optimal sensitivity when v = 1/2

by 7 &~ 0.375, with associated optimal guarantee of approximately 0.253.

8Brooks and Du| (2021b) address the possibility of equilibrium non-existence, and that the guarantee
may be vacuous, by only considering strong mazmin solutions. We revisit this approach in Theorem [2| below.
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Figure 1: Left: A(0;n). Right: The locus of (A(0;7), \(1;7)) pairs.

3.2 Adding interdependence

We now return to the more general version of the problem studied in this paper, where
each buyer’s expected value is 1/2, but the correlation structure is unknown. It is still
possible that the values are perfectly correlated, as in the pure common value case, but
other distributions are also possible, e.g., where the value profiles (1,0) and (0, 1) are both
equally likely. Because there are now more information structures over which the guarantee
has to hold, the guarantee must be weakly lower than when values are known to be common.

In this more general model, there is an analogous lower bound to , but where the

buyers’ values may be different:

0
inf dv) inf ti(a) + —(v;q;(a) — t;(a)) | . 3
{MGA([O,1}2)|fvviu(dv):1/2Vi:1,2}/UM( )aeRi - l (a) 6ai( ai(a) (@) 3)
E)\;(;-,a)

Again, the SVO is linear in v, so we may without loss rewrite the problem as minimization
over all i that are supported on {0,1}?, and for which the marginals are uniform. Thus, the

expression (3]) reduces to

inf dv) inf [\ (01, @) + Ao (ve, )] .
{uEA({O,l}Q)fvlzgu(dv)=l/2\ﬁ=172}/v pldv) it Pa (o1, @) + do(vz, a)

This expression is similar to what we had before, but with two important differences: First,



the values need not be the same, and second, the strategic virtual objective is now additively
separable across players and has the functional form A;(vq,a) 4+ A2 (ve, a).

Now, suppose the mechanism is the same proportional auction that maximized the rev-
enue guarantee in the common value setting. We will argue that even though the set of
information structures is larger, in fact, the guarantee has not changed. To conclude this,
we first calculate the SVO induced by M (7):

T(a1 + CLQ) +ﬁ(1)1 + ’UQ) — ! (T(a1 + (12)) — T/(Cbl + CLQ) if ﬁ(al + CLQ) < 1.

> Ni(via) = e
i T(ar + ap) + FH? — - (T(an +az)) = T + a2)  if (a1 +az) > 1.

Clearly, this expression reduces to the common value SVO A(v,a;7) when v = (0,0) and
when v = (1,1). Moreover, when 7j(a; + a2) < 1, we have that
A0, a;7) + A(L, a;7)

>\1<0,(l)+>\2<1,a> :Al(lva)_‘_)@(ova) :)\(07a7ﬁ)+ﬁ: 9 .

Thus, for low aggregate actions, the SVO from the value profile (0, 1) is the same as that
from an equiprobable mixture over (0,0) and (1,1). In addition, on the high region where

7(a1 + az) > 1, we have that

a1

A (0,a) + X2(1,a) = A0, a;7) +

CL1—|-(12 a1+a2

A(L, a;7). (4)

Recall that \(1, a;7) is constant in a, and A(0, a;7) is constant in @ when 7(a; +a2) < 1 and
is higher when 7j(a; + a3) > 1. Hence, the expression is minimized when 7j(a; + a3) < 1,
so that for value profiles (1,0) and (0, 1), the SVO minimizers are the action profiles in the
low region. This, combined with the fact that the marginals are symmetric, implies that the
expected lowest SVO is achieved by value distributions concentrated on the value profiles
{(0,0), (1,1)}. In other words, common values is the worst case for revenue.

In a way, this is not so surprising: the common value distribution minimizes the expected
highest value, subject to the marginal constraints. Thus, common values minimizes the total
amount of surplus available to both buyers and seller. Of course, if values are not common,
then there could be more private information, and resulting rents for the buyers, which
would also cut into revenue. But in the event, it seems that the lower surplus associated
with common values is the dominant factor.

The bottom line is that if the seller uses the mechanism M (%) in the symmetric in-
terdependent value model, the resulting guarantee is the same as when we had assumed
pure common values. Therefore, proportional auctions maximize the interdependent-values

revenue guarantee, when buyers are symmetric.

10



3.3 Asymmetric buyers

We now enrich the problem one step further. Previously, both buyers expected values were
equal to 1/2. But now suppose that buyer 1’s expected value is 3/5, while buyer 2’s value is
2/5. Thus, we have preserved the average expected value, which is still 1/2.

An important observation is that the seller can continue to use the same proportional
auction M (1) and achieve at least the same guarantee G(M (7)). To see why, suppose there is
some information structure I and equilibrium b of M (%) for which revenue is R < G(M(7)).
Then in the symmetric interdependent values setting of the previous section, when both
expected values were 1/2, we could construct an information structure where, with equal
probability, it becomes public information that one buyer’s expected value is 3/5 and the
other’s is 2/5. Clearly, this satisfies the constraint that each buyer’s ex ante expected value
is 1/2. But conditional on knowing which buyer has the higher value, the buyers receive
further information and play the equilibrium that induces expected revenue R (exchanging
the identities of the buyers in I and b when it is buyer 2 who has the higher expected value),
so that ex ante expected revenue is also R.

Our point is that asymmetry in the buyers’ expected values can only help the seller,
relative to the symmetric model with the same average expected value across buyers. It is
analogous to a lower bound on the buyers’ information that induces some interim asymmetry.
This effectively shrinks the set of information structures over which the guarantee has to hold,
and therefore raises the guarantee.

The natural next question is: can the seller exploit this asymmetry to achieve a strictly
higher guarantee? The answer turns out to be yes. Recall the fundamental tradeoft across
proportional auctions in the common value setting: The seller can adjust the sensitivity of
the allocation, and the higher is the sensitivity, the lower is the SVO when v = 0 but the
higher is the SVO when v = 1, so that all else equal, higher sensitivity is desirable when
expected values are higher. But now, buyer 1’s expected value is relatively high and buyer
2’s expected value is relatively low. We might want to modify the auction so that we increase
the allocation sensitivity of buyer 1 and decrease that of buyer 2.

Here is a simple way to do so: We start with the proportional auction, as before, but with
a lower sensitivity, denoted by 7, < 77. We run this auction. If the good sells out (meaning
that 79(a; + az) > 1), then we implement the outcome of the proportional auction. If the
good does not sell out (meaning that 7e(a; + az) < 1), buyer 2 still receives their allocation
and payment, as per the rules of the proportional auction. Thus, player 2’s allocation is
G,(a;n2). However, in the case where ny(a; + az) < 1, for buyer 1 we do something different.

In particular, we implement a second stage of the auction in which we allocate some or all of

11



the residual supply of the good to buyer 1, according to an additional sensitivity of n; — ng,
for some 1; > 7 (so that also 71 > 72). As we will see, this rule “tops up” buyer 1’s total
sensitivity to 7;. This two-stage rule is an example of what we refer to more generally as a
compound proportional auction.

In particular, buyer 1’s allocation in the second stage, when this stage occurs, is
qi(ar; a1 + az) = min{(m — n2)ar, 1 — na(ar + az)}
and their overall allocation is

min{mal, 1— T]QCLQ} if ?72(@1 + CLQ) <1
if na(a; + az) > 1.

Q1(a1,a2) = .
1

a1+az
Thus, on the region where n1a; + 1202 < 1, buyer 1’s sensitivity is indeed 7.

We modify both buyers’ payments as well, to preserve the “balance” in the SVO, meaning
the equalization of the SVO across action profiles. This is done while preserving the structure
that payments per unit only depend on the aggregate action in a given round. In particular,
we look for a pair of aggregate transfer rules for the two stages of this auction that, together,
equalize the total SVO Ai(1,a) + A2(1,a) =: A(1) everywhere. The component of this value
that is derived from the second stage is a continuation strategic virtual objective that depends
on the allocations in the first stage, which we denote by 5\(1; a; + az). Because the total
SVO, A(1), must be constant at all action profiles, the proportional first stage must have an
SVO of A(1) — A(1;a; + as).

Given this structure on incentives, we can solve for the corresponding aggregate transfer

rules in the same manner as before to get:

Wfo yexp(— [2772 (A - M1y )} dy if nexr < 1;
T(x) = m[(l/w)exm 1/n)T(1/12)
S vexp(—y) [ = (A1) = ALy) | dy| i > 1,

T(a,l; as) = @ /Omm(ah ;112 2) exp(—2z) [(771 — 1) — 5\(1; z+ ag)} dz.

Also as before, the guarantee is increasing in A(1) and A(1; a; 4az), but if these constants are

too large, then transfers will diverge to —oo. This constraint fully determines the remaining

12



constants:

l—exp \ 1—n2(a1+a .
(m — m2) ( P (1ot 2))> if po(a; +ag) <1

N

5\(1; a; + ag) =
0 i (s +a) > 1

1

MD=Xﬂmﬁ+Amywm—wﬁﬂwﬂ®

Note that the optimal constants A and A implicitly depend on the sensitivities (M1, m2).
With transfer rules pinned down, we can study how this compound proportional auction

improves upon the one-round proportional auction. We denote the compound proportional

auction with these transfer rules as M (11, UQ)H We calculate the SVO induced by M (n;,15)

in a similar fashion as before:

;

T(ay + ag) + (v + v2) — == (T(ar + az)) — T'(ay + az)
+ T(a1; a2) + (m — m2)v1 — T'(as; az) if may + meag < 1.

Z A(vn.a) = T(ay + ag) + ma(v1 +va) — == (T(a1 + az)) — T'(ay + as)
i + T(ar; a2) — T'(as; az) if may + maz > 1,
ne(ar + az) < 1.
\T(al +as) + agﬂ"f:{il)? - al}raz (T(a1 + as)) — T' (a1 + az) if no(ar + az) > 1.

Because ), \;(1,a) is equalized at all action profiles by the constructed transfer rules,
we can use the equations above to determine when ), A;(v;, @) is minimized for other value
profiles. As before, when v = (0,0), the SVO is minimzed when the total supply of the good
is not fully allocated, or when nya; 4+ 1m2a2 < 1. When v = (1,0), the SVO is minimzed when
the total supply of the good is not fully allocated in the first stage, or when 79(a; 4+ as) < 1.
Together, these equations imply that

)\1(0) = )\1(1) —m and XQ(O) = Xz(l) — 12.

As before, the allocation sensitivities relate to the spread of the optimal SVO’s. Using the

fact that >, Ai(1) = A(1), we can write the lower bound on the guarantee of the mechanism

9Note that we are overloading our notation from the previous section.
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G(M(p,m)) = Y - N(1) + (1 =5) - A(0)

ie{1,2}

= A1) = (I =v)m — (1 = 02)7p.

To focus on the benefits of exploiting the asymmetry between the buyers, we simply vary the
difference between allocation sensitivities while keeping the average allocation sensitivity the
same as that from the optimal proportional auction when v; = v = 1/2. There will always
be a strict increase in the lower bound of the guarantee. For an example of this, consider
setting 71 = 77+ € and 1y = 7 — €. For the case of v; = 3/5 and v, = 2/5, we have plotted
in Figure [2l how the guarantee varies with e. The optimal value of € is approximately 0.170,
which gives a guarantee of 0.270, strictly greater than the value of 0.253 when e = 0.
Setting the sensitivities equidistant around 77 is not optimal; it is a simple perturbation
that illustrates how assortatively matching higher allocation sensitivities with higher ex-
pected values can raise the guarantee. We return to this example and describe the globally

optimal sensitivities in Section

0.25

0.2

0.15

> 3l >3

0.1F

0.05

| | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

m — 12 = 2€

Figure 2: A lower bound on the revenue guarantee of the two-round CPA as a function of
n — 12, with v1 = 3/5 and vy = 2/5. In red is the contribution to the guarantee from the
first round, and in blue is the contribution from the second round, with the total guarantee
in cyan.

The takeaways from the example are that the proportional auction remains optimal even

if the buyers have symmetric interdependent values. If the buyers are asymmetric, then it is
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possible to achieve a higher revenue guarantee by adding an extra “round” to the auction.
In our main results, we generalize this idea to construct compound proportional auctions
for many buyers. Our main result is that these mechanisms, with appropriately chosen

sensitivities, maximize the revenue guarantee.

4 Compound Proportional Auctions

4.1 Definition and Interpretation

We now formally define and characterize the CPA.

Definition 1. The compound proportional auction (CPA ) with allocation sensitivity n € Rf
(withmy > -+ > ny > vy = 0) and aggregate transfer rules T* : R?> - R fori=1,...,N
1s defined as follows: At the action profile a, let

The allocation and transfer rules of the CPA are:

N N
gi(a) =Y q'a), tia) =Y t(a),
n=1 n=1
where for alln < N,

n - IIn ai Z T.L_ n — Nn a; < Sn a ’
qf(a) = ]I(Z < n, Sn(a) > O) . (77 n +1)' f 22_1(77 n +1) J ( )
5"(a) - Z}Z aj if Zj:l(nn — Npt1)@5 > S™(a),

ti(a) =1(: <n,S"(a) >0) - Z%Z%T” (Z aj, S”(a)) .

J=1

The CPA can be understood as a series of proportional auctions conducted over N rounds.
After each round, the weakest buyer (meaning the one with the lowest expected value and
also the lowest sensitivity) drops out, while the rest of the buyers proceed to the following
round. Rounds are indexed by the number of buyers participating. Thus, the auction starts

with round N and ends with round 1.
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We call buyer ¢ active in round n if he participates in round n (i < n) and inactive
otherwise (i > n). At round n, C"(a) is the “committed” supply allocated to the inactive
buyers, Y | 410 is the supply allocated to the active buyers in the previous rounds, and
S™(a) is the “residual” supply which is still to be allocated to the remaining active buyers

At round n, we attempt to allocate (1, — 7,41)a; of the residual supply to each active
buyer in {1,2,...,n}. If we cannot do this without running out of the good (meaning that
(T = Mnt1) 25—y @ > S"(a)), we allocate the residual supply S™(a) proportionally between
the n active buyers and the auction ends. But if the good does not run out, and n > 1, we
proceed to round n — 1 with one fewer active buyers, and new residual supply S" !(a) =
S™@a) = (Nn — Mnt1) 25—y ;. After round 1, the auction ends, even if the good is not fully
allocated. Regardless of the round, the active buyers make proportional payments ¢'(a) for
the good they are allocated in round n.

In a CPA, each buyer’s action can be viewed as a (rescaled) demand for a quantity of
the good, where buyer ¢’s action a; corresponds to a total demand of 7;a;. But within a
given round, the good is allocated among the buyers using the proportional auction as if the
active buyers have submitted demands (7, — 7,4+1)a;. For example, in the first round N, a
maximum of nya; is allocated to each buyer. For buyers with ¢« < N, this may not satisfy all
of their demand, and so they are permitted to participate in the next round. To account for
the fact that buyer i’'s demand has been partially satisfied, they enter the next round with
a residual demand of (1; — nn)a;. The auction continues in this fashion, treating actions
symmetrically in each round and allowing buyers who still have residual demand to progress
to further rounds/l

Note that the class of CPAs includes proportional auctions as a special case: If all buyers
have the same allocation sensitivity, then after round N, no buyers will have any residual
demand so the subsequent rounds will not allocate any proportion of the good. On the other
hand, if my =m0 = -+ =1y > Npy1 = N2 = - -+ = 1w, the CPA has only two rounds: round
N where all buyers participate, and round n where only buyers 1,...,n participate. It is
also possible for some buyers to have a sensitivity of 0, in which case the first rounds of the
auction are degenerate, no good is allocated, and no payments are made. This is equivalent
to excluding the zero-sensitivity buyers from the auction altogether.

We emphasize that while the auction clears according to a sequential algorithm, the
mechanism itself is static: The buyers simultaneously submit bids, and the same bids are

used in all rounds. Any true sequentiality, in which the buyers can submit different bids in

10 An equivalent implementation of the CPA would allow each buyer to directly submit a demand d; € R
that is in units of the good, and the rules of the auction would be the same as if buyer i played the action
a; = d;/n;. Equivalently, buyer i’s demand is split across rounds, with a fraction (9, — 7,+1)/n; of their
demand being used in round n.
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different rounds or get feedback about the progress of the algorithm, would give the buyers
a richer space of strategies that they could exploit to manipulate the outcome and could

change the auction’s guarantee.

4.2 CPA with Balanced Transfers

Given an allocation sensitivity vector € RY where 1y > -+ -ny > ny41 = 0, we next define
a particular set of aggregate transfer rules that equalize the SVO across all action profiles
when v; = U, and across all action profiles with n7-a < 1 when v; = 0. We refer to a CPA for
which the SVO has this property as being balanced.

To derive the balanced CPA, first note that the divergence of the allocation ¢" in round
n, V-q"(a) = Zf\il %(a), only depends on the total action of the active buyers > "  a;
and the supply committed to the inactive buyers C"(a):

. 0 if S"(a) <0;
V ’ qn (Z @i, C”(a)> = n(nn - 7]n+1) 1f (nn - 77n+1) Z?:l a; < S”(a);
i=1
ht Sn(&) — Mnyrif (nn - 77n-i-l) Z?:l a; 2 Sn(a> >0,

i=1 %

where S™(a) =1 — C™(a) — Nps1 Y5, @; is the residual supply at round n. Our convention
is that V- ¢" (7,C) = 0 if C' # C™(a) for every a such that >  a; = 7.
We define the expected continuation guarantee A" : R, — R by

A"(C) = E/ ZV " (Z a;,C + Z mai> exp (—Zai> da. (5)

a€RY =1 i=1 i=r+1 i=1

Also define A" : (—o0, 1] — R by

AN(0) n = N;
A(S)=q (a1 - L +1)"(A"(1—5)) 0<n<N;
0 n =20,
where % is the derivative operator and 1 is the identity operator. Next, we define the

round-based aggregate excess growth Z" : R, x (—o00,1] — R as

oV g (1,1 =8 = np17) — (A(S) = A" HS — (1 — Wpga)7))  if S > 0;
0 if S < 0.

=7, S) =
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With these expressions, we can write the balanced transfer rule for round n as:

1 on
T (z,,5) = / =7, S + a1 (xn — 7)) gn(7)dT, 6
@08) = s [ 28 + @ = M)l ©)
where
$n_1€_T
gn(7) = n!

is the probability density function for the Erlang distribution (i.e., the density of the sum of
n i.i.d. unit exponential random variables).

By construction, T"(} ", a;, S"(a)) is a bounded and continuous function of @, and
(31, a;, S™(a)) = 0 whenever S™(a) < 0, i.e., whenever round n does not occu'’} More-

over, as in a standard proportional auction, 7™ is designed for the transfer to satisfy

i (gf (a) - ty(a)) _= <i o, S"(a)) |

=1

Thus, the SVO of a balanced CPA is
Z Ai(vi, a)
Ol M
=22 ( o (@ + (@)~ 5 <a>)

- (Z UG @) =TV - (0,1 = 87(@) = ) + V(7)) - A“—%S"—l(a)))
= Y (- D 3E ) + AY(0), )

where z, = Y"1 | a.

It is easy to check that

Lemma 1. For the compound proportional auction, we have

0g;

( =m n-a< L
aai(w

<mn n-a=1l

Lemmal[l]implies that the SVO is balanced as discussed in the beginning of the subsection,

11See Lemmas and [5|in the Appendix for details
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and the lowest SVO is:

min > (v, a) = AV (0) — Zm(@ — ).

N
a€RY p

Let us write AY(0;7) = AN(0) to emphasize its dependence on the parameter 7. As in
Section , we denote the balanced CPA with aggregate transfer defined by @ as M(n)
Using the fact that the revenue guarantee is at least the expected lowest SVO (formally
estabished as Lemma |§| in the Appendix), we then have:

Theorem 1. For n € RY,, with n, > ny > -++ > ny, the revenue guarantee G(M(n)) of the
balanced CPA M(n) is at least

A (05m) = 3o = 5. ®)

Theorem |1| allows us to calculate a lower bound on the guarantee for M(n) However,
it does not tell us the optimal choice of the sensitivities n, which depends on the expected
values. In the next section, we will determine the optimal 7. It should be noted that while
we have established a lower bound on the guarantee for a balanced CPA M (n), we have not
shown this bound is tight nor that this guarantee is optimal. Both will be shown in the next

section.

5 Optimality of the CPA

We now show that the revenue guarantee of the CPA in Theorem [I] is unimprovable, by
identifying an information structure I and sensitivities 77 for which the potential is equal to
. In this information structure, the signal space of each buyer 7 is S; = R,. In addition,
the marginal distribution of the signals is an independent product of standard exponential
distributions (i.e., the probability density function for a signal profile s € RY is exp(—Xs)).

The interim expected value of buyer i given s is also parametrized by a vector n € ]Rf , and

12\Whereas before 1 was a scalar, now it is an N-vector of sensitivities. In the case where all the entries of
7 are the same, the definition reduces to the proportional auction with sensitivity equal to that of common
value.

BTheorem (1| does not use the assumption of ¥y > ¥y > --- > Uy and works for any expected values
V1,V2,...,UN.
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is of the form

omin{(exp(n-s—1)Y" 1} ifp; > 0;
wi(s;m) =40 ifn,=0andn-s <1, (9)

Vi

f{seRf\n.szl}exp(—Es)dS ifn; =0andn-s>1.

The parameters n € Rf are chosen so that each interim expected value has the correct

ex-ante expectation:
/ w;(s;n) exp(—Xs)ds = v;. (10)
RY

We can equivalently interpret w;(s;n)/v as the probability that v; = ¥ conditional on s, with
the complementary probability on v; = 0.

The following Lemma asserts that such sensitivities exist:

Lemma 2. For any v € [0, 1]V, there exists ann € Rf such that the mean constraints (|10)

are satisfied for every i. If v =y = - -+ = Uy, then we can take n; =ny = -+ = ny.

We let 7 denote a solution to the system , which we hold fixed throughout the rest
of the analysis, and we denote by I the information structure with iid standard exponential
signals and interim value functions w;(s;7). Clearly, because of the assumption v; > vy >
-+ > Uy, we have 7j; > 7y > --+ > 7. Moreover, in the symmetric case where all buyers
have the same expected value ex ante, the information structure I features pure common
values. Also note that some of the sensitivities may be zero, in which case those buyers are
excluded from the auction.

We now proceed to characterize the potential of 1.

Proposition 1. The revenue potential of the information structure I is at most

R 6/ exp(—2s)ds. (11)
{seRY [7-s>1}

The proof of Proposition |I| in the Appendix proves the even stronger result that R is
an upper bound on revenue across all incentive compatible and interim individually rational
mechanisms. Indeed, R is the expected highest virtual value of the buyers. Following
Myerson, (1981)) and Bulow and Klemperer| (1996), the virtual value of buyer i is

Tols) — 1—Fi(8i)@ s
wz( ) fz(51> aSz‘( )
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where F; and f; are respectively the marginal cumulative distribution and density of buyer
i’s signal. Plugging in the functional forms for w; in (9)), and F(s;) = 1 — exp(—s;) and
fi(si) = exp(—s;) for the exponential distribution, we conclude that this expression is exactly
zero when 7 - s < 1, and is exactly v if 7- s > 1. Thus, the expected highest virtual value is
simply v times the probability that 77-s > 1.

Clearly, the potential of I (or of any information structure) is an upper bound on the
guarantee of any mechanism M for which an equilibrium exists of the game (M, I). Remark-
ably, the balanced CPA M (%) attains this upper bound:

Proposition 2. The guarantee of M (%) is at least

N
AN (0;7) — Zﬁi (v—1;) = @/ exp(—Xa)da = R.
i=1 {aeRY [7-a>1}

From Propositions|l|and [2f we can nearly conclude that the revenue guarantee of the CPA
M (7) is unimprovable, and I is a worst-case information structure for M (7). However, for
both of these conclusions, we would have to know that an equilibrium exists at (M (%), I),
so that the guarantee of M (7) is at most R. This is what we now establish.

Following Brooks and Dul (2021b)), a strong mazmin solution is a tuple (M, I,b), consisting

of a mechanism M, and information structure I, and a strategy profile b in (M, I'), such that
(i) bis an equilibrium of (M, I);
(ii) The revenue guarantee of M is at least R(M, I,b);

(iii) The revenue potential of I is at most R(M,I,Db).

Clearly, at a strong maxmin solution (M, I,b), the revenue guarantee of M and the revenue
potential of I are both equal to R(M, I,b), and this is true for any equilibrium b of (M, I).
Moreover, M maximizes the guarantee among all mechanisms that have an equilibrium in 7,

and I minimizes the potential among all information structures with an equilibrium for M.

Theorem 2. Let I be the information structure from Proposition |1, M (%) the compound
proportional auction from Proposition @ and b the profile of truthful strategies in (M, 1)
for which b;({s;}|s;) = 1 for all i and s;. Then (M(7),1,b) is a strong mazmin solution.
The revenue guarantee/potential of this solution is (L1).

Thus, the strong maxmin solution (M (%), I, b) exhibits a kind of “double revelation prin-
ciple”: M () is a revenue-maximizing, direct revelation mechanism on I (subject to incentive
compatibility and individual rationality constraints), while I is a revenue-minimizing Bayes

correlated equilibrium on M (%) (Bergemann and Morris, 2016).
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Finally, we have the following straightforward corollary of Theorem [2| that in the sym-

metric case, the proportional auction maximizes the revenue guarantee:

Corollary 1. If the buyers are symmetric, meaning V1 = Uy = --- = Uy, then in the strong
mazmin solution described in Theorem|d, the buyers have common values and the mechanism

18 a proportional auction.

Let us now return to the two buyer example where v1 +v; = 1 and v = 1. When v; = 3/5
and vy = 2/5, we showed in Section |3| that it was possible to improve on the proportional
auction with a CPA in which the buyers’ sensitivities were perturbed by equal amounts. This
achieved a guarantee of 0.270, with sensitivities of 7, = 0.546 and 7, = 0.205. The globally
optimal sensitivities are 77; = 0.572 and 7, = 0.211, which gives an optimal guarantee of
0.271.

In the top panel of Figure |3] we have plotted the optimal sensitivities 77 as a function of
the difference in values v; — V5. As we can see, 7j; is increasing and 7], is decreasing. Once
the difference in values exceeds a threshold that is approximately 0.36, 7, is equal to zero,
meaning that buyer 2 is excluded from the auction and the problem collapses to one with
a single buyer. Once this happens, the sensitivity of buyer 1 continues to rise, and in fact
diverges to infinity as v; approaches 1. In the bottom panel of Figure 3|, we have plotted the
corresponding optimal guarantee, which approaches 1 as v; — vy approaches 1, since in this

case U; &~ v = 1, and there is no uncertainty about buyer 1’s value.

6 Other Guarantee-Maximizing Mechanisms

In this section, we describe a more general class of guarantee-maximizing mechanisms, which
includes the CPA. For a v; € [0, 7], let us define

Xi(v) = — + (v — )7 (12)

=2 =l

Theorem 3. Suppose that M = (RY, q,t) satisfies the following conditions:

1. ¢i(0,a—;) =0 for all i and a_;, Y, q;(a) =1 if 7-a > 1, g(a) is continuously right-

differentiable in a;, gg? () =7, fT-a<1,and 0 < %(a) <7 ifn-a>1.

2. t;(a) is right-differentiable in a;, t;(a) and gzi, (a) are bounded, t;(0,a—;) = 0, and

V- t(a) — Zti(a) =V -q(a) — in(ﬁ) for alla € RY. (13)
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1.5

0.5

U1 — D9

Figure 3: Top: Optimal sensitivities 77 as a function of v; — Uy, with the restriction that
U1 + U5 = 1. Bottom: Optimal guarantee.

Let I be the information structure from Proposition and b the truthful strategy profile. Then
(M, 1,b) is a strong mazmin solution, and the revenue guarantee/potential of this solution
is (T1).

Moreover, for any allocation rule q satisfying Condition |1}, there exists a transfer rule t

satisfying Condition [3

A leading example of a mechanism satisfying the hypotheses of Theorem [3]is the balanced
CPA defined by Equation @: Condition (1| clearly holds by Lemma (1| and the fact that if
n-a > 1, then the CPA must terminate in a round where all residual supply is exhausted.
Condition [2f follows from Equation (7)) and Proposition . Thus, Theorem [2| follows from
Theorem [3

There are other allocation rules that satisfy Condition [1jof Theorem [3|and hence are part
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of a guarantee-maximizing mechanism. One example is

;i

O ey

which reduces to the proportional allocation rule when 7,’s are all equal. It is straightforward

to verify that %(a) < 7;, with an equality when 77 - a < 1.
Another example is the following Shapley 'ruleﬁ: Each buyer submits a message a;.
Buyers are then randomly ordered, with all orders being equally likely. Let us denote by i

the kth buyer in the realized order. Then buyer i;’s allocation is equal to

qz(a) = min {ﬁia,-,max {1 — Zﬁik,aik,, 0}} .

k'<k

In words, each buyer ¢ demands 7,a; units of the good, buyers are “served” in order, and
on their turn a buyer receives the lesser of their demand and the remaining amount of the

good. Clearly, if 7-a < 1, then all buyers demands are met, regardless of the order, and

9q;
da;

amount. When this happens, the buyer’s allocation is insensitive to their action. Hence, for
aqi (a) <7

every action profile, 51
Yet another example is the “consistent” rule of |[Aumann and Maschler| (1985)), which

(a) =m;. If 7-a > 1, then under every order, some buyer will not receive their demanded

reduces to the Shapley rule when N = 2 but differs for N > 2. In particular, if we let
fi(di,...,dy) denote the share of buyer ¢ under the consistent rule when there is a unit
surplus to be divided among the N buyers, and each buyer ¢ demands d;. As shown by
Aumann and Maschler, df;(d)/0d; € {0,1/2,1}. Thus, if we define the allocation rule
¢(a) = f;(Mya1,...,Myayn), then ggi (a) € {0,7,/2,7,}, as required by Theorem .

In equations — in the proof of Theorem , we construct the transfers for these

allocation rules to satisfy Condition[2] Unfortunately, the construction is rather complicated,

and the resulting transfer does not reflect the structure of the corresponding allocation rule.
Moreover, as the asymmetry in v; vanishes, the resulting mechanisms do not converge to
the proportional auction. The CPA on the other hand has a more transparent relationship
between the allocation and the transfer, where the latter can be implemented as a constant
price-per-unit that depends only on the residual supply and the aggregate action among the

remaining buyers. Thus, the CPA is distinguished by admitting transfers that depend on

Bergemann, Brooks, and Morris| (2016) show that the Shapley rule with the symmetric 7, is part of a
guarantee-maximizing mechanism in the common value model when there are two buyers; this is generalized
to many buyers in an early working paper version of [Brooks and Du (2021b) (available from the authors
upon request). It is also an immediate corollary of Theorem since the information structure I in Theorem
is a common value information structure when all 7,’s are the same.
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relatively low dimensional features of the action profile. It remains an open question whether
there exist similarly appealing transfer rules for other guarantee-maximizing allocation allo-

cation rules.

7 Discussion

The main contribution of our paper is to describe and characterize compound proportional
auctions. Not only can these mechanisms be rationalized as optimal, but they also maximize
the guarantee for revenue under the basic assumption that each buyer’s expected value is
known. They are therefore a strong candidate for practical implementation, when the seller is
uncertain about the precise form of private information. Moreover, the theoretical arguments
underlying the performance of the CPA only rely on the fact that in equilibrium, buyers must
be playing local best responses. In that sense, our arguments do not use the full force of
equilibrium.

In a CPA, each buyer will in general be allocated only a portion of the good. This seems
relatively easy to implement in a setting where the good is divisible, e.g., a commodity like
wheat or corn, shares of common stock, or dollars of government debt. The CPA may be
less compelling in settings where the good is individisible and the allocation is interpreted
as a probability of being allocated the entire unit.

We regard it as a strength of our theory that the CPA has so few parameters, which are
just the sensitivities and the aggregate transfer rules. Moreover, when restricting attention
to balanced CPAs, the space of parameters is reduced to just the vector sensitivities. To
determine the optimal sensitivities, one only needs to know the expected value of each buyer
and an upper bound on buyers’ values. Thus, the degree of understanding of the environment
that is required in order to calibrate the CPA is relatively modest, especially compared to the
standard model in which the optimal auction depends on the entire structure of higher-order
beliefs. For future work, we think an important direction is to consider further restrictions
on fundamentals, such as specifying either the full marginals of each buyer’s value or the full

joint distribution.
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A Omitted Proofs

A.1 Section

Proof of Lemmalll Fixm >mn9 > -+ >nn > nny1 = 0 for a CPA.
Ifn-a <1, then g,(a) = 3, ¢/ (a) = mia
Now suppose - a > 1.
If the CPA ends in round n < 4, then we also have g;(a) = SN ¢/ (a) = n,a:.
If the CPA ends in round n > 4, where S"(a) > 0 but S !(a) < 0, then

Qi(a) = Mn+1G4 + = Z (1 - Z NrQyr — Mn41 Z > .
Jj= 1

r=n-+1

S”(a)

Let j sum over {1,...,n}, we have

N
9y g;éz ay a;
a; (@) = Nt + L- Z TG = Tnt1 Z aj | = 77n+1m

r=n+1 7

(Zj aj> r=n+1

<n

— ny

since S"1(a) =1 — Zfinﬂ M@y —Mn Y5 a; < 0. Thus we have gZ? (a) < mn; since i < n.
[

Lemma 3. For n < N we have A"(1) = 0. Moreover, if n > 2, then 22(1) = 0 for every

m.

Proof of Lemmal[3 If nn41 > a; + C > 1, then round n of CPA will not occur, and thus
V-q¢"(>"a;,C) = 0. Thus the first part of the lemma follows. The second part of the
lemma follows from ¢, (0) =0 if n > 2. O

Lemma 4. Forn < N and S > 0, we have

S/"7ﬂ+1 _ ~
/ NS = np1T) go(T)dT = A"(1 = S).
0

Proof of Lemma[f. Denote F™(S) = (nnﬂd% + 1)™(A*(1 = S)), so F*(S) = A*(S). We
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claim .
S/Nnt1 5 -
/ F™(S = 0py1T) gm(m)dT = A" (1 = S),
0

for every m < n. We proceed by induction on m.

If m = 1, by integration by parts we have

S/mn+1 L
/ F*(S = pya7) gi(7)dr
0

S /M1 - ~
-/ (nn+1d%A”<1 (S ) + AR - (5 — nnm)) g1 (7)dr

5/?7n+1

= —A"(1 = (5 = p17))g1(7) )

= An(l - S)a
since A"(1) = 0 by Lemma [3]

Now suppose the claims are true for m — 1, where m > 2 and n > 2. We have
S/nn+1 -
/ F™(5 — fas17) gu(7)dr
0

S/mn+1 d " s
-/ (%Hﬁ(fm_ (8 = i) + F (5—nn+17)) g(7)d
0

~ S /41
= _Fm_l(s - 77n+17')9m(7')

0

S/mn+1 - ~
+ / (F™ (S — 1apr7) g (7) + F™ (S — i 7) g (7))
0

S /M1 LA
:/ F™ (S = 0ps1T) gm—rdT
0

= A"(9)

where we used the facts that F~1(0) = 0 for n > 2 (by Lemmaf3)), g,,,(2)+gm(x) = gm-1(),
and applied the inductive hypothesis.

]

Lemma 5. Forn < N and S € [0, 1], we have

5/17n+1 -
/ EN1,S = Npaa7)gn(T)dT = 0.
0

29



When n = N, we have
/ =" (1, 1)gn(r)dr = 0.
0
Proof of Lemma[3. For n < N, we show that
S/Un+1 ~ - -
/ <V (1,1 = 8) = NS = npyaT) + ATTHS — nn7)> gn(T)dT = 0.
0

By Lemma 4| the second term above integrates to —A™(1 — S). From the same lemma,

we can express the third term as

S/nn (g_nnan)/nn - g/nn B
/ / NS = mpan — 907 g1 (7)) d7' | e da,, = / A" 1—S+n,a,)e " day,
0 0 0

From the definition of A™, the difference between these terms is
- g/nn -
A"(1-29)— / A1 = S + nuay)e " day,
0

:/ iv.qr <iai’1—§+ imai>exp<—iai>da
a i=1

€RY r=1 i=r+1 i=1
g/nn n—1 r n—1 n—1
— / (/ Z V-q (Z ai,1— 8+ Nl + Z mai) exp <— Za,) da) e “"da,
0 a€R}™ T T i=1 i=r+1 i=1

S/nn+l -
_ / Vg (r1 - §)gu(r)dr,
0

which proves the first part of the lemma.
When n = N, since AV (1) = AN(0) by definition, we need to show that

/000 (V gV (1, 1) = AN(0) + AV (1 - nNT)) gn(T)dT =0,

where the third term integrates to

1/nn (1-nnan)/nn 1/nn
/ / M1 —nyvany — T )gn-1(7) d7’ | e Nday = / A (nyan)e "V day.
0 0 0

Thus, the second part of the lemma follows from the proof of the first part when n = N and

S=1. [l
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Lemma 6. Fiz a mechanism M = (RY q,t) whose allocation and transfer functions are

right-differentiable and have bounded right-derivatives. Define the strategic virtual objective:

Mt ) = 1(a) + 5 @) = 57 (a)

Suppose infaeRf > i Aiviy a) is an affine function of v. Then the revenue guarantee of M is
at least

inf )\Z i)\i, a).

aeRi’ i ( )
Proof of Lemmal[fl Fix an information structure I and equilibrium b of (M, I). For the
information structure I, let m(ds) be the marginal distribution of signals s and w;(s) a
version of the conditional expectation of v; given s.

For all A > 0, the fact that b is an equilibrium implies that

//RN Z w;i(s)(qi(a; + Aya—;) — qi(a)) — (ti(a; + A) — t;(a))]b(da|s)m(ds) < 0.

+ =1

94i

ot;
e and

Since 5. are bounded, we conclude that the integrand in left-hand side of the

preceding inequality is bounded by KAb(da|s)m(ds) for some constant K. We can divide
through by A. The limit of the left-hand side as A — 0 must be non-positive as well. Finally,

the Dominated Convergence Theorem implies

[ [ 0= 2 tafreta <o

Therefore

[ Ztentadlsyatas //Z{ ) + ()32 0) — 5 (0)| bdals)r(ds)

//}RNZ)\M )b(dal|s)m(ds)
Z/Sigfzx\i(wi(S),a)W(dS)
Zigfz;\i(a)

where in the last line we use the assumption that inf, ). A\i(v;, @) is an affine function of
. [

Proof of Theorem[1]. Tt is easy to check that the allocation and transfer functions in M (n)
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are right differentiable with bounded right derivatives. The proof of Theorem [I| then follows
from the discussion on page [1§ and Lemma [6] O

A.2 Section

In the remaining sections let us introduce some notations to streamline the exposition.
For a function f : RY — RY. Let us denote V,fi(z) = %(a:) for z € RY, Vf(z) =
(Vifi(@),....Vnfn(x)), and V- f(z) = 3, Vi fi(x). Moreover, for z € RY, let Sz = Y, 2;.

Proof of Lemma[g Let 1 € R, such that

U/ min{ (exp(fs; — 1))7, 1} exp(—s1)ds; > ;.
s1=0
Such a 7 exists because as 17 — oo, the integrand converges monotonically pointwise to 1, so
by the Dominated Convergence Theorem the integral converges monotonically to v, which
is strictly greater than the right-hand side.

Now, let us define the mapping G; : [0,7]Y — R according to

@fsekﬁ min {(eXp(n ©S = 1)1/% ) 1} exp(—Xs)ds if n; > 0;

Gi(n) =
Ef{seRﬂn_i-s_,-zl} exp(—Xs_;)ds_; if n; = 0.

Note that G; is continuous and strictly increasing in n; for n; > 0. Moreover, the Dominated

Convergence Theorem implies that
lim G;(n;,n-i) = Gi(0,m-4),
n;—0

so that G; is continuous at n; = 0.
Define the mapping F' : [0, 7] — [0,7]" as follows: For fixed n € [0,7]", we define F}(n)
as the solution 7, € [0,7] to

Gi(n;;n-i) = max {2, Gi(0,7-) } - (14)

Note G;(n) is strictly increasing in 7;, so if a solution to exists, it is unique. Moreover,
G, is increasing in 7_;, so from how we have defined 7), there exists a 7, > 0 that satisfies
as an equality if and only if G;(0,7_;) is weakly less than v;. Otherwise, the unique
solution is 7, = 0.

Since the left-hand side of is strictly increasing in 7, the Implicit Function Theorem
in Kumagai| (1980)) implies that F;(n) is continuous. The Brouwer Fixed-Point Theorem then
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implies that F" has a fixed point, which necessarily solves the system ([14]).
We next claim that for any 7 that is a fixed point of F', n; = 0 if and only if

@/ exp(—Xs)ds > ;. (15)
{seRY n-s>1}

For if this condition is satisfied and 7; > 0, then G;(n) is strictly greater than the left-hand
side of (L5]), which is in turn weakly greater than G;(0,7_;). Thus, G,(n) is strictly greater
than both terms on the right-hand side of , which contradicts the hypothesis that 7
satisfies (14)). (Note that G;(0) = 0, so there must be at least one ¢ for which 7; > 0.)
Finally, if 7 is a fixed point of F, then w;(-|n) satisfies for all ¢ such that i, > 0. And
since is satisfied for any i such that n, = 0, w;(s;n) € [0,7] for all s, and also satisfies

(T0). =

Proof of Proposition [l Fix an incentive compatible and individually rational direct mecha-

nism (q,t) and define

Ui(si, s5) = / (Wi(s5,5_4)qi(st.53) — ti(sh, s_)) exp(—Xs_;)ds_;,
S_i

and U;(s;) = U;(s;, s;). Incentive compatibility says that for all i, s;, and s},

Ui(si) > Ui(si, s) = Ui(s)) +/ (Wi (i, 5-i) — Wi($;, $-))qi (s}, S—i) exp(—2s_;)ds_;.
S_;

and individual rationality says that U;(s;) > 0. Thus, for all A > 0,

U; = /S Ui(s;) exp(—s;)ds;
> / B [Ui(si — A) 4+ (Wi(s4,5-5) —wWi(s; — A, s3))qi(si — A, ;)] exp(—2s)ds
{s€S|s;i>A}
= exp(—A) (Ui + /S(Ei(si + A, s;) —wi(s))gi(s) exp(—Es)ds) :

Rearranging, we have
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Since total surplus is

Z/S@i(s)qz-(S) exp(—Ys)ds,

we conclude that an upper bound on profit is

Z/S {mi(s) - ;(@i(si + A, s ) —wi(s))) | 4i(s) exp(—Xs)ds.

exp(A) — 1

To apply the Dominated Convergence Theorem and take A — 0, we just need to show that

the discrete derivative is bounded:

1

) (T B ) ~ )
<T max ———(exp(7- 8)/7; + A) — exp((7 - 5)/7)

{seSl7-s<1} exp(A) — 1

=7 max exp((ﬁ : 5)/@')
{seS|n-s<1}
=vexp(1/m;).

Thus, the limit of the profit upper bound as A — 0 is

Z /S [wi(s) — Viwi(s)] qi(s) exp(—Xs)ds

=7 qi(s) exp(—Xs)ds
/{sesmszl} ;

< 6/ exp(—Ys)ds = R.
{seSm-s>1}

Proof of Proposition[d Since

AV =7 [ V- gl exp(~Sa)da

N
R+

where ¢ is the allocation rule for the CPA M (7), we need to show that
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N
T V - q(a) exp(—Xa)da — Z n - (T—10;) = E/ exp(—Xa)da = R.
i=1 {aGRﬂ\n-aZl}

N
]R+

This is implied by Lemma |7, which states that (cf. equations and ([16))

T V - q(a) exp(—Ea)da = }_% + Z(EL - i)\z)ﬁz

N
RY

Proof of Theorem[J. The proof follows from Theorem O

A.3 Section @

Given an allocation rule ¢ that satisfies Condition 1 of Theorem [3, we define its associated
aggregate excess growth function Z: RY — R to be the right-hand side of , ie.,

Z(a) =0V - q(a) — Y _ Ni(D). (16)
Also, given an information structure I = (.5, o), we denote by 7(ds) the marginal of o on S,

and we let w;(s) be a version of the conditional expectation of v; given s.

Proposition 3. Suppose that M satisfies the hypotheses of Theorem[3. Then for any infor-
mation structure I and equilibrium b of (M, I), R(M,I,b) > R.

Proof of Proposition[3. By Condition 2 of Theorem [3] the SVO of M is
> Xi(vi,a) = v - Vg(a) — E(a) = Y _(v; — D) Vig(a) + Xi(D).
Since V;q;(a) < 7;, with an equality if 77- a < 1, we have

ing)\i(vi,a) = (i =07+ X(@) = Y Nilwy). (17)

) %

Then Lemma |§| implies that R(M,1,b) > >°. \i(v;) = R.
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Lemma 7. Suppose that q satisfies Condition 1 of Theorem[3. Then
/ =(a) exp(—Xa)da = 0.
Y
Proof of Lemma[7. Equation implies that
N —
> N(wi(a)) = w(a) - Vg(a) — Z(a)
i=1

for all @ € RY, since w;(a) = v whenever 77-a > 1.

The ex ante expectation of = is therefore the sum over ¢ of the integrals
/ Wi (a)Vigi(a) exp(—Xa)da — \i(T;).
RY

Integrating by parts and using the fact that ¢;(0,a_;) = 0 and the definition of );, this is

2| =

/RN1 (/R+ (wi(a) — Viw(a))gi(a) eXp(—ai)dai> exp(—Sa_;)da_; —

Summing across ¢, we get

N
/ S (@i (a) — Viw(a))gi(a) exp(—Sa)da — R
RY
+ =1
N
= / EZ gi(a) exp(—3a)da — R = 0,
{acRY [7a>1} 4
since W;(a) — V;w(a) =0 when - a < 1, and w;(a) =7 and ¥¢(a) =1 when7j-a>1. O
Proposition 4. Suppose that M satisfies the hypotheses of Theorem[3. Then the truthful
strategy profile b is an equilibrium of (M, T).

Proof of Proposition[j). We first derive an expression for the interim expected transfer in
terms of the allocation (equation ) Define the individual excess growth as

§ia) =V t(a) —t;(a).
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With the assumption that ¢;(0,a_;) = 0, the above equation is equivalent to

t;(a) = exp(a;) N &i(s;,a_;)exp(—s;)ds;. (18)

5;=0

Therefore, we can write the interim expected transfer of buyer i in (M, I) as
tz(az) = / ti(ai, S—i) exp(—Es_i)ds_i
RY 1
= / exp(a;) / &i(si, 5—;) exp(—s;)ds; exp(—Xs_;)ds_;.
RY! $i=0

Since t; is bounded in equation , it must be that

€;i(s;,5-;) exp(—s;)ds; =0 (19)

5;=0

for all j and s_;. Hence, we can rewrite the interim expected transfer as

i=a;

ti(a;) = — /]RN1 exp(a;) /00 &i(8i,5—;) exp(—s;)ds; exp(—Xs_;)ds_;

== &i(a; + s4,5-;) exp(—Xs)ds

N
R+

= - / (i(a; + 55, 5-3) + 26 (a;i + 54, 5-;)] exp(—Xs)ds
RY

= —/ Ei(a; + si, s_i) exp(—Xs)ds,
RY

where we applied equation to each j # i in the third line, and used the assumption of
3¢ = = in the fourth line.
Using the definition of =, we get

ti(a;) = — / (OV - qla; + si,5-;) — TA(1)) e *ds — / (=XX(0)) e > ds
{m-s+m;a:>1}

{7-s+m;0:<1}

= / (OV - q(ai + i, 5-5) — ¥7) e ds + X(0),
{7-s+7;a;>1}

where in the second line we used the fact that (1) = X7 + XA(0), and {7 - s + 7,a; > 1}
is a shorthand for {s € RY |- s +7;a; > 1}.
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Integrating by parts, we have

/ V- qla; + 55, 5_5)e >ds

{7s+7;0:>1}

N o0
—Xs
E /RN_I/(IW%WJ”SN Viq(a; + si,s_;)e”*dsjds_;
1 S§= J

Jj= + n

1— ﬁ.a- — ﬁ_. .S + 7(1—mai—ﬁfi‘87¢)+ s
:/ [_qi(ai+( i~ Woi 5 5| e i o
RN-1

i

oo
—Xs
+ (a; + 8;,8_;)e ~°ds; | ds_;
. (A—Tya;—7_z-s_;)F qz( 1 (3] z) i 1
4

]_ __al ___, S + _(1*ﬁiaifjfj'5—j>+_ s

O Ol I Y (R ey [
N-1 ’[’]
R J

J#i

=

+ / g;(a;i + s, Si)ezsdsj] ds_;

_(=mgag—m_js_ )t
=

— — + a7 s )
B (1 —na; —T_; - S_i) —M—Esﬂ-
== q | a; + — ;8—i]e i ds_;
RN_I
Jr

J

T
_ (=7, —7_j-s_;) T

— Z/ (1—Ta; —7_; - s—;)7e 7 e ds_; + / e ds,
RY? 7-s+7,0i>

J#i

CHa—T_ s )t _
where in the last line, we used the facts that g; (ai + 34, (=7 ﬁn i83) ,s_,-_j> = (1-7,a; —
J

M- s-;)" and Zj-vzl qj(a; + s;,s—;) = 1 whenever 7 - s + 7,a; > 1.

Therefore, we have the following expression for the interim expected transfer:

1— n.a; —N_. - S_; + _(1_ﬁiai_ﬁ—i's—i)+_ o
ti(a;) :5/ i (ai + (L= _n_l ) ;5i> e i Pids
RY™! i

(. v

X
_Ome et
) @Z /RNl(l e T S_j>+€ m; Tds_ (20)
+

J#i

J/

-~

Y

- @/ (1 —¥7)e >*ds +XA(0).
75-+7,0;>1

~
Z

Next, we show there is no incentive to locally deviate from truthtelling (equation (21))).
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We calculate

0X
_ Vig(ar s_i)e >ids
da; (7i_ss_i+ma;>1}
1-ma;,—7M_;-s_; .
{ﬁ_i~57i+ﬁiai<l}
where we used the fact that g; (ai + (1_mai_jii.87i)+ ) S—i) = L= s st Tias < 1.
Likewise,
oy Sl R N S P
- / (=7;)e " ’ "ds
(‘9ai oy {ﬁ7j~87j+ﬁiai<1}
B S N SR 7 3
—l—/ (I —ma; =7 - s—j)e K : J@dsfj
{7_j-s—j+mai<1} &
and

aZ 3 o —\ _—s; —Xs_;
8ai _aaz‘ [/Ri[l </s-(1m%‘n—i's_i)+ (1 B Zn)e dsl) ’ dSZ]

3 ﬁl
:/ (1—-X7)e i ' “'ds_;.
{n_i-s—itma:<1}

In the expression for g—};, we change the variables from s_; = (s_;_;, s;) to s_; = (s_;_;, 5)

. . 1-m,a;—1;8;—M_;_;-S—i—j
by leaving s_; ; unchanged and defining s; = —~ 1 T=izi®—i)

. This change of variable

j
implies:
l—ﬁiaz—ﬁ_] S_j n
N\ T s
/ (—T7h)e " "ds_;
{n_j-s—j+ma;<1}
1-mja;—n_;-s_;
_ B -
-, e
{n_;s—i+m;a;<1}
and

_ 1*@“1:?7]"87]‘ —¥s_; ﬁz

/ (=T =Ty e 7 s
{ﬁ,j~s_j+mai<1} 17;

J
= / 7;85€
{M_is—i+ma;<1}
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Combining the above expressions of %, % and % with equation (20)), we get

_ /) Sl = S S VR
+v ;e i “ds_; (21)
{n_is—it+ma:<1}
= ) Viq(a, s_)Wi(ai, s_i)e =*~ids_,

N—
]R+

where in the second equality we used the fact that V;q(a;,s_;) = 7, and w;(a;, s_;) =
Miai+m_4s_i—1
ve i if7_, - s +ma; <1, and w;(a;,s—;) =0 if 7_; - s_; + M;a; > 1.
Finally, suppose a buyer receives a signal s; in I; by bidding s/ instead of s; in M, their

interim expected transfer is changed by

tz’(SQ)—tz‘(Si)Z/i ti(ai)da;

i=5i

s
— —Xs_
= /N ) Viq(ai,s,i)wi(ai,S,i)daie ids_;
R a;=s;
+ 1 1
s’
2
— -5
> /N 1/ Viq(ai, s_;)Wi(si, s—i)da; e ‘ds_;
R~ a;=s;
+ T K2

= / (gi(s}, 5—i) — qi(si, 5—2))W (4, 5 )e > ~ds_;
RY™!

where we applied and exchanged the order of integration in the second line, and the
inequality in the third line follows because V;q(a;, s_;) > 0 and w;(a;, s_;) increases with a;.
This shows that the truthtelling b is an equilibrium of (M, I). O

Proof of Theorem[3 Fix a mechanism M that satisfies the hypotheses of Theorem 3] Propo-
sition (1| implies Condition 1 for (M, I,b) to be a strong maxmin solution, Proposition
implies Condition 2, and Proposition [4] implies Condition 3. This proves the first part of
Theorem [3

Now fix an allocation rule ¢ that satisfies Condition [I]of Theorem [3, and let Z be its asso-
ciated aggregate excess growth function. Let Z denote the set of permutations of {1,..., N}

with a typical element (. We denote by

[C <k ={j 1<) <k},
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and analogously define [( > k]. Next, let

Tek(a) = /RN_k E(ag<r), Tie>k) exp(=ET (k) AT c>n), (22)
+
and
1
§i(a) = 7 2 [recw(@) — a1 (a)] (23)
‘ez

Finally, define the transfer rule:
ti(a) = exp(ai)/ &i(xy, a_y) exp(—x;)dx;. (24)
x; =0
We show that Condition [2[ of Theorem [3]is satisfied. Equation implies that

for all a € RY. Given the definition of &(a) in [23), V - t(a) — Zt;(a) = E(a) follows by
telescoping the summation over ¢ for each fixed permutation ¢ and noticing that 7 y(a) =
E(a) and 7¢o(a) = 0 (by Lemma (7). Finally, to show that ¢ is bounded, by equation (24
and the fact that = is bounded it suffices to show that

/ &i(xy, a_y) exp(—x;)dx; = 0,
z;=0

for every a_; € ]Rf ~!. The above equation follows from the definition of & in since it is

easy to see that

/ T¢ ¢ (d) (.’IZ’, CL,Z’) exp(—xi)dxi = 7'474(7;),1(@1‘, a,i),

Ty =0

where the right-hand side does not depend on a;. O]
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