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1 Introduction

Credit default swaps (CDS) are default insurance contracts between buyers of protection

(“CDS buyer”) and sellers of protection (“CDS seller”), written against the default of firms

or countries. Since the financial crisis, CDS have been one of the financial innovations that

received the most policy attention and regulatory actions.1 As of December 2015, global

CDS markets have a notional outstanding of $12.3 trillion and a gross market value of $421

billion.2

This paper studies the design of CDS auctions, a unique and unusual mechanism that

determines the post-default recovery value for the purpose of settling CDS. Since the recovery

value is a fundamental parameter for the pricing, trading and clearing of CDS contracts,

achieving a fair, unbiased auction price is crucial for the proper functioning of CDS markets.

For example, using a sample of U.S. corporate bond defaults, Gupta and Sundaram (2012)

find that “information generated in CDS auctions is critical for post-auction market price

formation.” In addition to price discovery, an auction protocol also has a key benefit of

facilitating cash settlement by producing a transparent price, hence overcoming the difficulty

of physical settlement when the outstanding amount of CDS exceeds the supply of bonds

(see Creditex and Markit (2010)).3

The current CDS auction mechanism was initially used in 2005 and hardwired in 2009

as the standard method used for settling CDS contracts after default (ISDA 2009). From

2005 to May 2016, CDS auctions have settled 121 defaults of firms (such as Fannie Mae,

Lehman Brothers, and General Motors) and sovereign countries (such as Greece, Argentina,

and Ukraine). For many firms, separate CDS auctions are held for senior and subordinate

debt.

As explained in Section 2, the current mechanism consists of two stages. The first stage

of the auction solicits market orders, called “physical settlement requests,” to buy or sell

1For example, the Dodd-Frank Act of United States has mandated and later implemented mandatory
central clearing of standard over-the-counter derivatives, including CDS. In its Financial Markets Infrastruc-
ture Regulation, the European Commission states: “Derivatives play an important role in the economy but
are associated with certain risks. The crisis has highlighted that these risks are not sufficiently mitigated
in the over-the-counter (OTC) part of the market, especially as regards credit default swaps (CDS).” See
http://ec.europa.eu/internal market/financial-markets/derivatives/index en.htm. In 2012, European regu-
lators also made a controversial move of banning “naked” sovereign CDS in the EU.

2See the latest semiannual OTC derivatives statistics, Bank for International Settlements,
http://www.bis.org/statistics/derstats.htm.

3As noted by Creditex and Markit (2010), in the physical settlement of CDS, if the CDS outstanding
amount exceeds the supply of defaulted bonds, the bonds need to be recycled multiple times to settle all
CDS contracts, leading to endogenous scarcity of the bonds and artificially high prices.
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defaulted bonds. The net market order is called the “open interest.” Simultaneously, dealers

quote prices on the bonds, and a price cap or floor is calculated from these quotes. The

second stage is a (one-sided) uniform-price auction, subject to the price cap or floor. If the

final auction price is p∗ per $1 of face value, the default payment by CDS sellers to CDS

buyers is 1− p∗.
The primary objective of this paper is to evaluate CDS auctions from a theoretical and

market-design perspective. We show that the current design of CDS auctions leads to biased

prices and inefficient allocations of defaulted bonds. The primary reason is that various

restrictions imposed on the auctions prevent certain investors from participating in the price-

discovery and allocation process. Moreover, the current design leaves ample scope for dealers

to strategically manipulate the price in order to profit from their existing CDS positions.

Finally, we suggest a double auction design that delivers more efficient prices and allocations.

Our analysis is built on a simple model of divisible auctions, which works roughly as

follows. There are two dates, t ∈ {0, 1}, and a continuum of infinitesimal traders. At t = 0,

everyone has the same probability distribution over the default of a risky bond. The traders

are endowed with iid private values {bi} for buying or selling CDS on the bond. Each trader

incurs a per-unit cost in trading CDS contracts and a quadratic inventory cost of holding

CDS positions. The CDS positions are determined optimally in a double auction, taking

into account the actions at t = 1. At t = 1, with some probability, the bond defaults

and the traders are endowed with high or low valuations {vi} for owning the defaulted

bonds. Immediately afterward, a CDS auction is held. Traders select the optimal physical

requests in the first stage and the optimal demand schedules in the second stage. Like

CDS positions, traders also incur quadratic costs for buying or selling defaulted bonds in

the auction. Optimal strategies in the CDS auction as well as the pre-default CDS trading

are solved in a subgame-perfect equilibrium. For simplicity, our model is solved without

imposing the price cap or floor in the second stage.

To see why the price is biased and allocations are inefficient, consider the strategy of

a trader who has a high value for owning the defaulted bonds at t = 1. There are three

possibilities of the trader’s CDS position: CDS buyer, CDS seller, or zero CDS. For simplicity,

let us consider a high-value trader with zero CDS position. In practice, this trader could be

a specialist in distressed debt who does not trade CDS. This high-value trader wishes to buy

defaulted bonds, but the current design of the CDS auction stipulates that only CDS sellers

can submit physical requests to buy (i.e., market orders to buy) in the first stage. Thus,

the demand to buy bonds from this high-value trader is suppressed completely in the first
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stage of the auction. If the open interest is to buy, the auction protocol also stipulates that

only orders in the opposite direction, i.e., sell limit orders, are allowed in the second stage.

Thus, the demand to buy bonds from this high-value trader is suppressed in the second

stage of the auction as well. Clearly, the same argument applies to a high-value CDS buyer.

Consequently, if the open interest is to buy, high-value traders with positive or zero CDS

positions are completely excluded in the auction, leading to a downward biased final auction

price.4

This result applies symmetrically if the open interest is to sell, but in this case it is the

low-value traders with zero or negative CDS positions who are excluded in both stages of

the auction. Thus, the auction final price is upward biased if the open interest is to sell.

Inefficient allocations naturally follow from biased prices, and the directions of the inef-

ficiency are summarized in Table 1. In particular, high-value traders’ allocations are almost

always too low (with the only exception of high-value CDS sellers in the high state), and low-

value traders’ allocations are almost always too high (with the only exception of low-value

CDS buyers in the low state).

Table 1: Summary of price bias and inefficient allocations in CDS auctions (without price
cap or floor). See Section 5.2 for details.

State Open Price Allocations
interest bias High-value traders Low-value traders

CDS buyer zero CDS CDS seller CDS buyer zero CDS CDS seller

High buy downward too low too low mixed too high too high too high
Low sell upward too low too low too low mixed too high too high

The restrictions imposed in CDS auctions also have an unintended consequence in CDS

markets before default. Because a larger CDS position (in absolute value) relaxes participa-

tion constraints in the first stage of CDS auctions, traders with moderate values of trading

CDS establish CDS positions that are larger in magnitude than the socially optimal level.

We emphasize that although investors can buy and sell defaulted bonds in the secondary

markets, doing so incurs nontrivial transaction costs. For example, Feldhutter, Hotchkiss,

and Karakas (2013) find that the round-trip bid-ask spread of defaulted bonds are about 1.5%

of market value near default dates. The Amihud illiquidity measure also roughly doubles in

4We can show that other types of traders—including low-value traders (regardless of CDS positions) and
high-value CDS sellers—either fully or partially participate in either stage of the auction.
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the week of default, suggesting a higher price impact costs of trading large quantities. More

recently, Bao, O’Hara, and Zhou (2016) find that the price impact of trading corporate bonds

after downgrades has increased after the enaction of post-crisis regulation. Dick-Nielsen and

Rossi (2016) find similar results in the “intertemporal bid-ask spread” following the index

exclusion of some corporate bonds.

By contrast, trading in CDS auctions incurs zero spread and is hence desirable from

a social perspective. As long as transaction costs prevent the realization of some gains

from trade, the qualitative nature of inefficient allocations would carry through in a model

extension with bond trading in the secondary market.

We do not explicitly model price caps or floors. Although they are used in practice,

price caps and floors are difficult to set correctly in the first place. Even if they were,

allocations would remain inefficient.5 In fact, since the price caps or floors are determined

by dealers’ quotes in the first stage, this arrangement leaves ample room for dealers to

manipulate the final auction price. This manipulation incentive is similar to that in survey-

based financial benchmarks, such as the London Interbank Offered Rate (LIBOR). Since

LIBOR manipulation is already an established fact,6 the current CDS auction design raises

similar questions.

Our model generates a number of novel predictions regarding quoting behavior, price

biases, and post-auction trading activity. For example, in the first stage, dealers who are

CDS buyers quote relatively low prices, whereas dealers who are CDS sellers quote relatively

high prices. Moreover, if the open interest is to buy, low-value CDS traders get too much

allocation in the auctions and will sell bonds after the auctions. If the open interest is to sell,

high-value CDS traders get too little allocation in the auctions and will buy bonds after the

auctions. These predictions are unique to our model and new to the literature. The tests

of these predictions require data on CDS positions by identity or bond transaction data by

identity. These types of data are available to regulatory agencies.

Our analysis suggests that a double auction design reduces price biases and improves

allocative inefficiency. A double auction design is by no means unusual or exotic; instead,

it is used in open auctions and close auctions on stock exchanges. Under a double auction

design, limit orders in the second stage can be submitted in both directions, buy and sell,

regardless of the open interest. Two-way orders allow broader investor participation in the

price-discovery process. We also argue that the price caps or floors should be dropped (or

5Details of this result are available upon request.
6See, for example, Market Participants Group on Reference Rate Reform (2014) and Official Sector

Steering Group (2014) for the institutional details and suggested reforms on reference rates such as LIBOR.
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modified to a wide two-way price band) to weaken dealers’ ability to manipulate the price

in any particular direction. The double auction design could, however, still allow physical

settlement requests and dealers’ quotes to help aggregate information in the first stage.

Relation to the literature

To the best of our knowledge, there are two other theoretical models of CDS auctions in

the existing literature. The model of Chernov, Gorbenko, and Makarov (2013) (CGM) is

an extension of the strategic bidding models of Wilson (1979) and Back and Zender (1993).

CGM (2013) have an important insight that CDS auction participants have incentives to

manipulate the second-stage price in order to profit from their existing CDS positions. Such

manipulation is possible and effective because the second stage of the auction is one-sided,

namely only buy orders or only sell orders are allowed. Moreover, CGM (2013) also model

constraints to buy and to sell defaulted bonds (short-sale is impossible, and certain investors

cannot buy the defaulted bonds at all). Combining these two features, CGM (2013) conclude

that the final auction price can be either higher or lower than the bond fundamental value.

More recently, Peivandi (2015) studies CDS auctions using a mechanism-design approach,

putting an emphasis on participation. He assumes that any subset of CDS traders may settle

among themselves away from the CDS auction, in a “blocking mechanism,” if doing so gives

them a better payoff than settling in the CDS auction. In particular, a large CDS trader

may use side payments to prevent some of his CDS counterparties from participating in CDS

auctions so that the large trader can manipulate the CDS auction price to his advantage.

Peivandi (2015) shows that the only way to ensure full participation in CDS auctions is to

use a fixed price, which is independent of agents’ signals of the defaulted bond value. That

is, in Peivandi’s model, full participation and price discovery cannot be achieved together.

Table 2 compares the economic channels of this paper to CGM (2013) and Peivandi

(2015). As we can see, CGM (2013) and Peivandi (2015) share the common feature that

the second stage of the CDS auction has positive price impact, whereas our model has zero

price impact. With zero price impact, CGM’s model would only generate underpricing for an

open interest to sell (because of funding constraint), and Peivandi’s model would not generate

block settlement away from the auction (because no one can affect the final auction price).

Therefore, our model with zero price impact illustrates the economic insights of this paper

in the cleanest and most transparent way. For a similar reason, we do not model constraints

in buying or selling bonds, or side settlement. Of course, in practice, all of the economic

channels listed in Table 2 are probably at play. Thus, our results are complementary to, and
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not disputing with, those of CGM (2013) and Peivandi (2015).

Table 2: Economic channels of this paper (Du and Zhu 2016) relative to CGM (2013) and
Peivandi (2015).

Price Constraints to Nonparticipation Price Allocative
impact buy/sell bonds of a block discovery efficiency

CGM (2013) Yes Yes No No No
Peivandi (2015) Yes No Yes No No
Du and Zhu (2016) No No No Yes Yes

More specifically, our results reveal a few new insights not in CGM (2013) and Peivandi

(2015). First, we show a new reason why CDS auctions generate biased prices: various

restrictions prevent the participation of certain types of traders, even without price impact.

In CGM (2013), the fundamental bond value is commonly known after default, so CDS

auctions provide no additional price discovery. Second, results on allocative inefficiency are

unique to our model because models of CGM (2013) and Peivandi (2015) have common

values. Our allocative-inefficiency results provide new empirical predictions that can be

tested in the data. Third, we show that traders have “excessive CDS positions” before

defaults because a higher CDS position (in absolute value) relaxes participation constraints

in the first stage of CDS auctions. Endogenous CDS positions are not modeled by CGM

(2013) and Peivandi (2015). Lastly, we suggest a double auction design, which is different

from CGM’s proposal of alternative allocation rule (following Kremer and Nyborg (2004))

and state-dependent price cap.

Empirically, CGM (2013) find that in 26 CDS auctions on U.S. firms from 2006 to 2011,

CDS auction prices tend to be lower than secondary market bond prices before and after

auction dates. In CGM’s model, this price pattern is generated by strategic bidding and

some investors’ inability to buy bonds. The V-shaped price pattern is confirmed by Gupta

and Sundaram (2012) (GS), who also conduct a structural estimation of CDS auctions. GS

(2012) further examine Vickery auction and discriminatory auction as alternative formats

in the second stage, holding the first-stage strategies fixed. In earlier empirical papers with

smaller samples, Helwege, Maurer, Sarkar, and Wang (2009) find that CDS auction prices

and bond prices are close to each other, and Coudert and Gex (2010) provide a detailed

discussion on the performance of a few large CDS auctions.
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2 The Institutional Arrangements of CDS Auctions

This section provides an overview of CDS auctions. Detailed descriptions of the auction

mechanism are also provided by Creditex and Markit (2010).

A CDS auction consists of two stages. In the first stage, the participating dealers7

submit “physical settlement requests” on behalf of themselves and their clients. These

physical settlement requests indicate if they want to buy or sell the defaulted bonds as well

as the quantities of bonds they want to buy or sell. Importantly, only market participants

with nonzero CDS positions are allowed to submit physical settlement requests, and these

requests must be in the opposite direction of, and not exceeding, their net CDS positions.

For example, suppose that bank A has bought CDS protection on $100 million notional of

General Motors bonds. Because bank A will deliver defaulted bonds in physical settlement,

the bank can only submit a physical sell request with a notional between 0 and $100 million.

Similarly, a fund that has sold CDS on $100 million notional of GM bonds is only allowed

to submit a physical buy request with a notional between 0 and $100 million.8 Participants

who submit physical requests are obliged to transact at the final price, which is determined

in the second stage of the auction and is thus unknown in the first stage. The net of total

buy physical request and total sell physical request is called the “open interest.”

Also, in the first stage, but separately from the physical settlement requests, each dealer

submits a two-way quote, that is, a bid and an offer. The quotation size (say $5 million)

and the maximum spread (say $0.02 per $1 face value of bonds) are predetermined in each

auction. Bids and offers that cross each other are eliminated. The average of the best halves

of remaining bids and offers becomes the “initial market midpoint” (IMM), which serves as

a benchmark for the second stage of the auction. A penalty called the “adjustment amount”

is imposed on dealers whose quotes are off-market (i.e., too far from other dealers’ quotes).

The first stage of the auction concludes with the simultaneous publications of (i) the

initial market midpoint, (ii) the size and direction of the open interest, and (iii) adjustment

amounts, if any.

Figure 1 plots the first-stage quotes (left-hand panel) and physical settlement requests

7For example, between 2006 and 2010, participating dealers in CDS auctions include ABN Amro, Bank
of America Merrill Lynch, Barclays, Bear Stearns, BNP Paribas, Citigroup, Commerzbank, Credit Suisse,
Deutsche Bank, Dresdner, Goldman Sachs, HSBC, ING Bank, JP Morgan Chase, Lehman Brothers, Merrill
Lynch, Mitsubishi UFJ, Mizuho, Morgan Stanley, Nomura, Royal Bank of Scotland, Société Générale, and
UBS.

8To the best of our knowledge, there are no formal external verifications that one’s physical settlement
request is consistent with one’s net CDS position.
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(right-hand panel) of the Lehman Brothers auction in October 2008. The bid-ask spread

quoted by dealers was fixed at 2 per 100 face value, and the initial market midpoint was

9.75. One dealer whose bid and ask were on the same side of the IMM paid an adjustment

amount. Of the 14 participating dealers, 11 submitted physical sell requests and 3 submitted

physical buy requests. The open interest to sell was about $4.92 billion.

Figure 1: Lehman Brothers CDS Auction, First Stage
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In the second stage of the auction, all dealers and market participants—including those

without any CDS position—can submit limit orders to match the open interest. Nondealers

must submit orders through dealers, and there is no restriction regarding the size of limit

orders one can submit. If the first-stage open interest is to sell, then bidders must submit

limit orders to buy. If the open interest is to buy, then bidders must submit limit orders to

sell. Thus, the second stage is a one-sided market. The final price, p∗, is determined as in

a usual uniform-price auction, subject to a price cap or floor. Specifically, for an open sell

interest, the final price is set at

p∗ = min (M + ∆, pb) , (1)

where M is the initial market midpoint, ∆ is a pre-determined “spread” that is usually $0.01

or $0.02 per $1 face value, and pb is the limit price of the last limit buy order that is matched.

If needed, limit orders with price p∗ are rationed pro-rata. Symmetrically, for an open buy
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interest, the final price is set at

p∗ = max (M −∆, ps) , (2)

where ps is the limit price of the last limit sell order that is matched, with pro-rata allocation

at p∗ if needed. If the open interest is zero, then the final price is set at the IMM. The

announcement of the final price p∗ concludes the auction.

After the auction, bond buyers and sellers that are matched in the auction trade the

bonds at the price of p∗; this is called “physical settlement.” In addition, CDS sellers pay

CDS buyers 1− p∗ per unit notional of their CDS contract; this is called “cash settlement.”

Figure 2 plots the aggregate limit order schedule in the second stage of the Lehman

auction. For any given price p, the aggregate limit order at p is the sum of all limit orders

to buy at p or above. The sum of all submitted limit orders was over $130 billion, with limit

prices ranging from 10.75 (the price cap) to 0.125 per 100 face value. The final auction price

was 8.625. CDS sellers thus pay CDS buyers 91.375 per 100 notional of CDS contract.

Figure 2: Lehman Brothers CDS Auction, Second Stage
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3 A Model of CDS Auctions

In this section we describe the model. For analytical simplicity, price caps or floors are not

formally modeled here but are discussed in Section 6.
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There is a unit mass of infinitesimal traders on [0, 1]. There are two dates, t = 0, 1. At

t = 0, before the potential bond default, each trader i ∈ [0, 1] is endowed with a benefit

bi ∈ [−b, b], b > 0, for buying a unit of CDS contract. A positive bi means trader i is a

potential CDS buyer, such as an institution that wishes to hedge its credit exposure. A

negative bi corresponds to a potential CDS seller, such as an institution that wishes to

create a synthetic credit exposure through derivatives. We assume that bi is symmetrically

distributed around 0: P(bi ≤ z | bi ≥ 0) = P(bi ≥ −z | bi ≤ 0) ≡ F (z) for every z ≥ 0.

Moreover, trading each unit of CDS incurs a cost of c > 0,9 and holding q unit of CDS

contracts incurs an inventory cost of γ
2
q2, with γ > 0. The linear cost c is a proxy for

trading or operational cost, and the quadratic inventory cost is a proxy for convex margin

or collateral cost. Each trader i chooses an endogenous CDS position Qi ∈ R, where Qi > 0

means to buy CDS and Qi < 0 means to sell CDS. We assume that b > c, so some traders

will choose Qi 6= 0 in equilibrium. But because c > 0, we expect traders with sufficiently

small |bi| to hold zero CDS position.

At t = 1, the bond defaults with probability π; if the bond does not default, it pays the

face value 1. Conditional on default, there are two states for the defaulted bonds, high (H)

and low (L), with equal ex ante probability. In the high state, a fraction m > 1/2 of the

traders have value vH for holding the defaulted bonds, and the remaining fraction 1 − m

have value vL, where vH > vL. In the low state, a fraction m of the traders have value

vL, and the rest have value vH . Each trader observes his value for the bond right after a

default, and each trader i’s value vi for the defaulted bond is independent of his value bi for

buying or selling CDS. In practice, a trader’s value vH or vL may reflect, for example, this

trader’s expertise in managing the complicated legal process of restructuring or liquidation.

Hence, reallocating the defaulted bonds to investors who can extract a higher recovery value

is socially beneficial.

After default and the private values {vi} are realized, the following two-stage auction is

held:

1. In stage 1, each trader i ∈ [0, 1] submits a physical settlement request ri that satisfies

ri ·Qi ≤ 0 and |ri| ≤ |Qi|.

Let

R ≡
∫
i

ri di (3)

9The qualitative nature of the equilibrium would be the same if one assumed a fixed transaction cost, or
the sum of fixed cost and proportional cost.
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be the open interest in the first stage of the auction.

2. (a) If R < 0, then in stage 2 each trader i ∈ [0, 1] submits a demand schedule xi :

[0, 1]→ [0,∞) to buy bonds.

(b) If R > 0, then in stage 2 each trader i ∈ [0, 1] submits a supply schedule xi :

[0, 1]→ (−∞, 0] to sell bonds.

3. The final auction price p∗ is defined by∫
i

ri + xi(p
∗) di = 0. (4)

4. The bond allocation to trader i is ri + xi(p
∗).

We assume that buying or selling a net position q of defaulted bonds in the CDS auction

incurs the inventory cost of λ
2
q2, for some λ > 0, with the same motivation of convex collateral

or margin cost.

Summarizing, the time-0 expected utility of trader i is:

Ui = (bi − pCDS)Qi − c|Qi| −
γ

2
Q2
i (5)

+ π · E
[
(1− p∗)Qi + (vi − p∗)(ri + xi(p

∗))− λ

2
(ri + xi(p

∗))2
]
.

The first line of Ui summarizes the time-0 profit of trading Qi units of CDS, including the per-

unit cost and quadratic inventory cost. The second line of Ui summarizes the profit of trader

i in the CDS auction: (1− p∗)Qi is the payout from CDS settlement, (vi− p∗)(ri + xi(p
∗)) is

the profit of trading the defaulted bonds, and λ
2
(ri+xi(p

∗))2 is the inventory cost of creating

the bond position ri + xi in CDS auctions. This type of linear-quadratic utility is also used

by Vives (2011), Rostek and Weretka (2012), and Du and Zhu (2016), among others. The

two constants γ and λ that dictate the inventory costs are required to be positive, but can

be arbitrarily small.

We make two final remarks on the model setup. First, we do not explicitly model initial

bond positions because they are not an essential element for our main result. One could

add initial bond positions to the model by assuming that trader i is endowed with initial

bond position zi, such that
∫
i
zi di = Z, the total bond supply. Exogenous initial bond

positions like these could come from institutional constraints. For instance, if a corporate

bond fund receives money inflows or outflows, then it has to buy or sell corporate bonds. The
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quadratic cost λ
2
(ri + xi(p

∗))2 should be interpreted as the cost of creating a bond position

in CDS auctions that is above and beyond the pre-default bond holdings. With initial bond

positions, the utility function Ui becomes

U ′i = (bi − pCDS)Qi − c|Qi| −
γ

2
Q2
i (6)

+ (1− π)zi · 1 + π · E
[
vizi + (1− p∗)Qi + (vi − p∗)(ri + xi(p

∗))− λ

2
(ri + xi(p

∗))2
]
.

Clearly, the extra term involving zi is (1−π+πE[vi])zi at t = 0 and is either vizi (if default)

or zi (if no default) at t = 1. Hence, the part of the utility function U ′i involving zi is a

constant to dealer i on each date and does not affect his optimal strategies. Without loss of

generality, we can work with Ui in (5).

Second, we do not explicitly model the trading of bonds after default but before the

CDS auction. This time window is fairly short in reality (about three weeks in the case

of Lehman Brothers). Moreover, as discussed in the introduction, trading defaulted bonds

in the secondary market is costly, which prevents some beneficial trades from taking place

before the auction. Hence, the qualitative nature of our results is likely to carry through if

bonds are also traded after default but before the CDS auction.

4 The Competitive Equilibrium Benchmark

As a benchmark, we first consider the competitive equilibrium. In our setting with infinites-

imal traders, the competitive equilibrium at t = 1 can be implemented by a double auction,

in which each trader submits an unconstrained demand schedule, taking the bond price as

given. The first order condition of Ui with respect to bonds gives the demand for bonds:

xci =
vi − p
λ

. (7)

Given the market clearing condition
∫
i
xci di = 0, the competitive equilibrium prices in the

high state and low state are, respectively,

pcH = mvH + (1−m)vL, (8)

pcL = (1−m)vH +mvL. (9)
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The allocations in the competitive equilibrium are efficient, so trader i’s efficient allocation

of defaulted bonds is (vi − pcH)/λ in the high state and (vi − pcL)/λ in the low state.

Next, we turn to the competitive equilibrium at t = 0 in the CDS market before a default.

Trader i’s competitive (i.e., efficient) allocation of defaulted bonds is clearly independent of

his CDS position Qi. It implies that the last two terms in the expectation, E[(vi − p∗)(ri +

xi(p
∗))− λ

2
(ri +xi(p

∗))2], are not functions of Qi. Moreover, E[1− p∗] is equal to the ex-ante

mean, 1 − (vH + vL)/2. Thus, the first order condition of Ui with respect to Qi gives the

following demand for CDS:

Qi =

 1
γ

max
(
bi − pCDS − c+ π

(
1− vH+vL

2

)
, 0
)

if bi ≥ 0

1
γ

min
(
bi − pCDS + c+ π

(
1− vH+vL

2

)
, 0
)

if bi ≤ 0
. (10)

Since the distribution of bi is symmetric around 0, the market-clearing condition
∫
i
Qi di =

0 for CDS implies:

pCDS = π

(
1− vH + vL

2

)
. (11)

Thus, in the competitive equilibrium trader i chooses

Qc
i =

 1
γ

max (bi − c, 0) if bi ≥ 0

1
γ

min (bi + c, 0) if bi ≤ 0
. (12)

In summary, the strategy (12) at t = 0 and the strategy (7) at t = 1 constitute the unique

equilibrium in the competitive benchmark.

5 Equilibrium of CDS Auctions and Pre-Default CDS

Trading

This section provides an equilibrium analysis of CDS auctions and pre-default CDS trading.

5.1 Intuition of the equilibrium in a numerical example

Before formally stating the equilibrium strategies, we first describe the intuition of the equi-

librium outcomes based on a numerical example and a few plots. The formal statements of

equilibrium strategies are in Section 5.2 and Section 5.3. Since this discussion of intuition is

presented before the formal results, we will focus on the most salient features of the equilib-
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rium in this subsection and leave details to the next two subsections. This sequence is chosen

to prioritize the general intuition of the equilibrium over (certain complicated-looking) math-

ematical formulas. Readers who prefer to see the formal results first may jump to Section 5.2

and Section 5.3 and return to this subsection.

Throughout this subsection, we will focus on the comparison between the equilibrium

behavior and the hypothetical efficient benchmark shown in Section 4. We use the following

parametrization for the numerical examples: vH = 1, vL = 0, λ = 1, γ = 1, π = 0.5, c = 1.2,

and b is uniformly distributed on [−2, 2].

Pre-default CDS trading. Figure 3 shows the time-0 equilibrium choice of CDS position,

Qi, as a function of the benefit of CDS trading, bi. The thin solid line is the efficient

benchmark of Section 4, and the thick dashed line is the equilibrium CDS positions.

Figure 3: CDS positions from Proposition 4 (left) and Proposition 5 (right). Parameters:
vH = 1, vL = 0, λ = 1, γ = 1, π = 0.5, c = 1.2, and b is uniformly distributed on [−2, 2].
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The main observation from this figure is that only traders with sufficiently positive or

sufficiently negative bi trade CDS. The rest hold zero CDS positions. Because of the CDS

auction rule that |ri| ≤ |Qi|, these zero-CDS-position traders cannot submit physical settle-

ment request in the first stage of CDS auctions. We thus anticipate, and will see shortly,

that these traders suffer from inefficient allocations of defaulted bonds.

A secondary observation from Figure 3 is that, for certain range of bi, traders tend to

hold “too much” CDS positions relative to the efficient benchmark (i.e., more positive Qi

if bi > 0 and more negative Qi if bi < 0). Again, this is because of the CDS auction rule
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|ri| ≤ |Qi|. As we explain in more detail later, by trading too much CDS, a trader gets some

flexibility in the CDS auctions. This incentive of trading too much CDS does not apply to

traders with bi close to zero, because of the trading cost c; nor does it apply to any trader

with a large |bi|, since such a trader already picks a large |Qi| that does not constrain him

in the CDS auction.

CDS auction strategies. Now we turn to the strategies in the CDS auction. The intuition

here is best understood by asking: which types of traders are constrained in the two stages?

Figure 4 plots the first-stage physical requests and second-stage allocations in equilibrium,

both as functions of bi. Here, we have “plugged in” the equilibrium mapping from bi to

Qi, as shown in Figure 3. The three left-hand subplots correspond to the parameter case

with a sufficiently large m, shown formally later in Proposition 1. The three right-hand

subplots correspond to the parameter case with a sufficiently small m, shown formally later

in Proposition 2.

The top two subplots of Figure 4 show the first-stage physical request ri as a function

of bi. As we show in Section 5.3, traders with moderate bi choose Qi = 0 because of the

cost of trading CDS. Since |ri| ≤ |Qi|, those traders are forced to pick ri = 0, i.e., they

are completely prevented from participating in the first stage. Moreover, a trader with a

sufficiently positive bi will choose a positive Qi and can only submit a sell physical request

(because ri and Qi must have opposite signs). If, however, this trader turns out to have a

high value for holding the bonds and wishes to buy, the constraint riQi ≤ 0 prevents him

from sending a physical request to buy. As a result, a high-value trader with sufficiently

positive bi chooses ri = 0. Similarly, a low-value traders with sufficiently negative bi chooses

ri = 0. The only traders who send a nonzero physical requests are those who have: (i) a

sufficiently positive bi and a realized low value vL; or (ii) a sufficiently negative bi and a

realized high value vH .

The next four subplots of Figure 4 show the second-stage allocations, depending on

whether m is high or low and depending on whether the open interest is to buy or to sell.

Let us first focus on high state, which leads to an open interest to buy (R > 0). In this case,

the two middle subplots show that all high-value traders are prevented from participating

in the second stage. This is because only sell orders are allowed for R > 0 but high-value

traders only wish to buy. By contrast, all low-value traders participate in the second stage.

Consequently, in the second stage the ratio of high-value traders to low-value ones is too

low, leading to a downward biased auction price.
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The opposite case, the low state, has a symmetric behavior. The two bottom subplots

show that all low-value traders are prevented from participating in the second stage because

the open interest is to sell (R < 0). As a result, the final auction price is too high.

Biased auction price. Figure 5 shows the final auction price as a function of m. The

high-state equilibrium price is denoted p∗B since the open interest is to buy, and the low-

state equilibrium price is denoted p∗S since the open interest is to sell. We observe that

p∗B < pcH and p∗S > pcL for all m ∈ (0.5, 1). Again, because the high state leads to an open

interest to buy and only low-value traders are willing to sell (at the equilibrium price) in the

second stage, the final auction price is downward biased, relative to the efficient benchmark.

Likewise, the low state produces an upward biased price.

We also observe from Figure 5 that the price bias is the most severe for m close to 1/2.

This is because an m close to 1/2 generates a very small open interest in magnitude. Indeed,

as m → 1/2, R → 0. In the high state, if R is small, then the substantial participation of

low-value traders in the second stage dominates the small open interest to buy. As a result,

the auction price is heavily downward biased. Similarly, in the low state, there is a very

small open sell interest, and high-value traders dominate price discovery in the second stage,

resulting in a heavily upward biased price.

Inefficient allocations. It is therefore not a surprise that the equilibrium allocations of

bonds are inefficient. Figure 6 depicts the final allocations. In the high state, allocations

to low-value traders are uniformly too high. High-value traders either buy too much (if Qi

is sufficiently negative) or too little (if Qi is positive or mildly negative). In the low state,

allocations to high-value traders are uniformly too low. Low-value traders either sell too

much (if Qi is sufficiently positive) or too little (if Qi is negative or mildly positive).
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Figure 4: First-stage physical requests and second-stage allocations, given the CDS positions
from Figure 3. Parameters: vH = 1, vL = 0, λ = 1, γ = 1, π = 0.5, c = 1.2, and b is uniformly
distributed on [−2, 2]. Left panels are from Proposition 1 (α = 1), and right panels are from
Proposition 2.
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Figure 5: Final auction prices (parameters are the same as in Figure 4)
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Figure 6: Total allocations in two stages (parameters are the same as in Figure 4).
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5.2 Equilibrium of the two-stage CDS auction

Having illustrated the intuition of the results through an numerical example, we now provide

the formal equilibrium results for the two-stage CDS auction. In this subsection we take the

pre-auction CDS positions as given. In particular, we suppose that the pre-default CDS

positions {Qi} are symmetrically distributed around 0: P(Qi ≤ z | Qi ≥ 0) = P(Qi ≥
−z | Qi ≤ 0) ≡ G(z) for every z ≥ 0. The distribution of CDS positions is endogenized in

Section 5.3.

Given the first-stage open interest, the second stage strategy is straightforward. Since

traders are infinitesimal, each trader takes the price p∗ in the second stage as given and

wants to get as close as possible to his optimal bond allocation, vi−p∗
λ

.

Lemma 1. Let R be the open interest. In any equilibrium, each trader i submits in the

second stage the demand/supply schedule:

xi(p) =

max
(
−ri + vi−p

λ
, 0
)
, if R < 0;

min
(
−ri + vi−p

λ
, 0
)
, if R > 0.

(13)

The following propositions show the equilibrium strategy in both stages of the CDS

auction. Proposition 1 corresponds to the case p∗B ≥ p∗S and the left-hand subplots of Figures

3, 4 and 6. Proposition 2 corresponds to the case p∗B < p∗S and the right-hand subplots of

Figures 3, 4 and 6.

Proposition 1. Suppose

− (1−m)
vH − vL

2λ
+
m

2

∫
Qi≥0

min

(
Qi,

vH − vL
2λ

)
dG(Qi) ≥ 0. (14)

Let p∗B and p∗S be the unique solution to:

(1−m)
vL − p∗B

λ
+
m

2

∫
Qi≥0

min

(
Qi,

vH − p∗B
λ

)
dG(Qi) = 0, (15)

p∗S = vL + vH − p∗B. (16)

We have the following equilibrium in the two-stage auction:
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• In the first stage, every trader i submits:

ri =


min

(
−Qi,

vH−αp∗B−(1−α)p
∗
S

λ

)
if vi = vH , Qi < 0

max
(
−Qi,

vL−αp∗S−(1−α)p
∗
B

λ

)
if vi = vL, Qi > 0

0 otherwise

, (17)

for any α ∈ [0, 1].

• In the second stage, every trader i submits the demand schedule in Equation (13). In

the high state, the open interest is to buy, and the final price is p∗B; in the low state,

the open interest is to sell, and the final price is p∗S. We have p∗B ≥ p∗S.

• The equilibrium outcome is unique, in the sense that the total allocations of bonds

ri +xi(p
∗) and the prices p∗B and p∗S are the same for any choice of α in the first stage.

Proposition 2. Suppose

− (1−m)
vH − vL

2λ
+
m

2

∫
Qi≥0

min

(
Qi,

vH − vL
2λ

)
dG(Qi) < 0. (18)

Let p∗B and p∗S be the unique solution to:

1−m
2

vL − p∗B
λ

+
2m− 1

2

∫
Qi≥0

min

(
Qi,

vH −mp∗B − (1−m)p∗S
λ

)
dG(Qi)

+
1−m

2

∫
Qi≥0

min

(
vL − p∗B

λ
+Qi, 0

)
dG(Qi) = 0, (19)

p∗S = vL + vH − p∗B. (20)

We have the following equilibrium in the two-stage auction:

• In the first stage, every trader i submits:

ri =


min

(
−Qi,

vH−mp∗B−(1−m)p∗S
λ

)
if vi = vH , Qi < 0

max
(
−Qi,

vL−mp∗S−(1−m)p∗B
λ

)
if vi = vL, Qi > 0

0 otherwise

. (21)
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• In the second stage, every trader i submits the demand schedule in Equation (13). In

the high state, the open interest is to buy, and the final price is p∗B; in the low state,

the open interest is to sell, and the final price is p∗S. We have p∗B < p∗S.

Proposition 3. In both Proposition 1 and Proposition 2, the equilibrium price p∗S in the low

state is higher than the competitive price pcL; and the equilibrium price p∗B in the high state

is lower than the competitive price pcH .

Moreover, the equilibrium allocation of bonds is inefficient in both Proposition 1 and

Proposition 2, in the following manner:

State Open Allocations

interest High-value traders Low-value traders

CDS buyer zero CDS CDS seller CDS buyer zero CDS CDS seller

High buy too low too low mixed too high too high too high

Low sell too low too low too low mixed too high too high

The general shapes of the equilibrium behaviors in Proposition 1, Proposition 2 and

Proposition 3 are described in the previous subsection, so let us now look at the equations

in more detail.

Starting from Condition (14) of Proposition 1. This condition guarantees that p∗B ≥ p∗S.

To see why, consider the allocation of bonds at the hypothetical price (vH +vL)/2, and in the

high state. The first term on the left-hand side of Condition (14) is the total allocation for

the low-value traders. Those traders are not constrained in the high state, so their allocation

is (1 −m)vL−(vH+vL)/2
λ

= −(1 −m)vH−vL
2λ

. The second term on the left-hand side of (14) is

the total allocation for the high-value CDS sellers, who have submitted buy physical request

but do not buy in the second stage because the open interest is to buy. High-value CDS

buyers are prevented from trading altogether. Thus, Condition (14) says that at a price

of (vH + vL)/2, there is excess demand for bonds, so p∗B ≥ (vH + vL)/2. But since the

equilibrium is symmetric, p∗B ≥ (vH + vL)/2 if and only if p∗S ≤ (vH + vL)/2, or p∗B ≥ p∗S. By

a similar argument, if the state is low, Condition (14) implies an excess supply of bonds at

the hypothetical price (vH + vL)/2; hence, p∗S ≤ (vH + vL)/2, also leading to p∗B ≥ p∗S.

The equation defining p∗B, (15), simply follows from market clearing at the second stage.

In the high state, the two terms on the left-hand side (15) represent the allocations of low-

value traders and high-value CDS sellers, respectively, at the price p∗B. Then, p∗S follows from

symmetry.
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Likewise, Condition (18) in Proposition 2 guarantees that p∗B < p∗S. The equation that

defines p∗B, (19), is similar to (15) but involves three terms. By comparing the top-right and

top-left subplots of Figure 6, we see that the extra term comes from more “subtypes” of

low-value traders. Again, p∗S follows by symmetry.

Now let us move to first-stage strategies. There is a subtle difference between the two

cases of equilibrium. In Proposition 1, with p∗B ≥ p∗S, traders are indifferent between a

range of physical requests. For example, a high value trader with a highly negative Qi (that

does not constrain any ri) is indifferent between ri =
vH−αp∗B−(1−α)p

∗
S

λ
for every α ∈ [0, 1].

This is because he can sell back xi = −ri +
vH−p∗B

λ
< 0 units if R > 0 and buy back

xi = −ri +
vH−p∗S

λ
> 0 units if R < 0, where the two inequalities follow from p∗B ≥ p∗S, so his

total allocation of bonds is the same.

In Proposition 2, with p∗B < p∗S, a high-value trader does not wish to trade more in stage

2 given a physical request ri =
vH−αp∗B−(1−α)p

∗
S

λ
, for any α ∈ [0, 1]. To see this, note that

ri =
vH−αp∗B−(1−α)p

∗
S

λ
∈ [

vH−p∗S
λ

,
vH−p∗B

λ
]. If R > 0, the price is p∗B and the high-value trader

can only sell; but his first-stage trade ri is already smaller than his desired trade
vH−p∗B

λ
.

Symmetrically, if R < 0, the price is p∗S and the high-value trader can only buy; but at p∗S
his first-stage trade ri is already larger than his desired trade

vH−p∗S
λ

. Thus, in both cases,

the high-value trader does not trade in the second stage. The unique optimal ri is obtained

by taking α = m because by Bayes’ rule the high-value trader believes that the high state

occurs with probability m.

5.3 Pre-default CDS trades

We now endogenize the distribution of CDS positions {Qi}, or the function G in the previous

section. At t = 0, trader i chooses Qi based on the benefit bi and cost c of trading CDS, while

also taking into account the equilibrium outcomes in the CDS auction if a default occurs.

As before, there are two cases of equilibrium.

Proposition 4. Suppose

− (1−m)
vH − vL

2λ
+
m

2

∫ b

0

min

(
(bi + πm(vH − vL)/4− c)+

γ + πmλ/2
,
vH − vL

2λ

)
dF (bi) ≥ 0. (22)
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Let p∗B and p∗S be the unique solution to:

(1−m)
vL − p∗B

λ
+
m

2

∫ b

0

min

(
(bi + πm(vH − p∗B)/2− c)+

γ + πmλ/2
,
vH − p∗B

λ

)
dF (bi) = 0, (23)

p∗S = vL + vH − p∗B. (24)

We have the following equilibrium:

• Before the auction, we have for bi ≥ 0:

Qi(bi) =


(bi+πm(p∗S−vL)/2−c)

+

γ+πmλ/2
> bi−c

γ
if bi ≤ c+

γ(p∗S−vL)
λ

bi−c
γ

if bi > c+
γ(p∗S−vL)

λ

, (25)

Qi(bi) = −Qi(−bi) if bi ≤ 0, and

pCDS = π

(
1− vH + vL

2

)
. (26)

• Equilibrium strategies in CDS auction are given by Proposition 1, where p∗B is the

final auction price in the high state, p∗S is the final auction price in the low state, and

p∗B ≥ p∗S.

Proposition 5. Suppose

− (1−m)
vH − vL

2λ
+
m

2

∫ b

0

min

(
(bi + πm(vH − vL)/4− c)+

γ + πmλ/2
,
vH − vL

2λ

)
dF (bi) < 0. (27)

Let p∗B and p∗S be uniquely defined by:

1−m
2

vL − p∗B
λ

+
2m− 1

2

·
∫ b

0

min

(
(bi + πm(vH − p∗B)/2− c)+

γ + πmλ/2
,

(bi + π(vH −mp∗B − (1−m)p∗S)/2− c)+

γ + πλ/2
,
vH −mp∗B − (1−m)p∗S

λ

)
dF (bi)

+
1−m

2

∫ b

0

min

(
vL − p∗B

λ
+

(bi + πm(vH − p∗B)/2− c)+

γ + πmλ/2
, 0

)
dF (bi) = 0, (28)

p∗S = vL + vH − p∗B . (29)

We have the following equilibrium:

23



• Before the auction, we have for bi ≥ 0:

Qi(bi) =



(bi+(p∗S−vL)πm/2−c)
+

γ+πmλ/2
> bi−c

γ
if

(bi+(p∗S−vL)πm/2−c)
+

γ+πmλ/2
≤ p∗B−vL

λ

bi+(mp∗S+(1−m)p∗B−vL)π/2−c
γ+πλ/2

> bi−c
γ

if
p∗B−vL
λ

<
bi+(mp∗S+(1−m)p∗B−vL)π/2−c

γ+πλ/2
≤ mp∗S+(1−m)p∗B−vL

λ

bi−c
γ

if
mp∗S+(1−m)p∗B−vL

λ
< bi−c

γ

,

(30)

Qi(bi) = −Qi(−bi) if bi ≤ 0, and

pCDS = π

(
1− vH + vL

2

)
. (31)

• Equilibrium strategies in CDS auction are given by Proposition 2, where p∗B is the

final auction price in the high state, p∗S is the final auction price in the low state, and

p∗B < p∗S.

While Proposition 4 and Proposition 5 contain quite a few equations, most of them are

analogous to those in Proposition 1 and Proposition 2. For example, (22) follows from

substituting (25) into (14), and (27) follows from substituting (30) into (18). The equations

defining p∗B in the two cases are obtained similarly.

Therefore, the only equations left to discuss are the equilibrium choices of Qi. Although

the equilibrium price of CDS in Proposition 4 and Proposition 5 is the same as that in a

competitive equilibrium (see Section 4), the equilibrium CDS positions are generally larger

in magnitude than the competitive counterparts.

Let us first examine Proposition 4 and, without loss of generality, consider a potential

CDS buyer with bi ≥ 0. Traders anticipate equilibrium behavior from Proposition 1 in the

CDS auction after a default. Suppose that the state of the default is low and trader i also

has a low value for the bond. Then in Proposition 1 trader i has a total bond allocation of

max(−Qi, (vL− p∗S)/λ) in the auction. Thus, if Qi > (p∗S − vL)/λ, his CDS position Qi does

not affect his bond allocation. In this case, Qi is purely determined by the cost c and benefit

bi of trading CDS before default, exactly as in the competitive equilibrium. This corresponds

to the second case in Equation (25). If Qi < (p∗S − vL)/λ, then increasing Qi moves trader

i’s bond allocation closer to the optimal quantity of (vL − p∗S)/λ in the low state, and such

incentive results in a larger Qi compared with a competitive equilibrium. This corresponds
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to the first case in Equation (25).

In Proposition 5, traders anticipate equilibrium behavior from Proposition 2 in the CDS

auction after default. If 0 ≤ Qi ≤
p∗B−vL
λ

for a low value CDS buyer, then in Proposition 2

Qi only affects his total bond position in the low state as before; this corresponds to the

first case in Equation (30). If
p∗B−vL
λ

< Qi <
mp∗S+(1−m)p∗B−vL

λ
, then in Proposition 2, −Qi

is the total bond allocation in both high and low states for a low value CDS buyer, which

causes additional distortion in the pre-auction incentive for Qi as summarized in the second

case in Equation (30). Finally, if Qi ≥
mp∗S+(1−m)p∗B−vL

λ
, the bond allocation in the auction is

unaffected by Qi; this is the third case in Equation (30).

In sum, as we discussed in the previous subsection, traders with moderate bi enter pre-

default CDS positions that are too large (in magnitude) relative to the first best. This is

because a larger CDS position relaxes a trader’s constraint in CDS auctions.

5.4 A short discussion of multiple equilibria

The equilibrium characterized in this section can generate both directions of open interest,

R > 0 and R < 0, depending on the underlying state being high or low. This equilibrium

can therefore match the empirical observation that some CDS auctions have open interest

to sell and some open interest to buy.

This equilibrium is not the only one, however. In the supplementary appendix of this

paper, we characterize two one-sided equilibria and show that they also do not yield the

competitive price or competitive allocation. In one equilibrium, the open interest is always

to buy regardless of the state; and in the other, the open interest is always to sell regardless

of the state. Intuitively, these equilibria may arise due to coordination. For example, if low-

value traders only participate in the second stage (using limit orders) and high-value traders

participate in both stages, the open interest is always to buy. And conditional on always

having a buy open interest, it is self-fulfilling that: (i) high-value traders always submit buy

market orders in the first stage, anticipating the low-state price (their second-stage limit

orders are executed in the high state, selling back some of their first-stage orders); and (ii)

low-value traders always submit limit sell orders in the second stage (there is no benefit for

them to use the first stage). A symmetric self-fulfilling logic applies to the equilibrium that

always has an open interest to sell. Clearly, both one-sided equilibria are counterfactual.

The equilibrium of this section and the two one-sided equilibria in the supplementary

appendix are the only equilibria under pure strategies (see the supplementary appendix for

more discussions). Since only the equilibrium characterized in this section can generate both
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directions of open interest, we have used it throughout the paper.

6 A Brief Discussion of Price Cap/Floor and Dealers’

Incentive to Manipulate the First-Stage Quotes

In Section 5 we have shown that the two-stage CDS auctions without price cap or floor lead

to biased prices and inefficient allocations. In this section we briefly discuss the effect of

imposing a price cap or floor, formed by dealers’ quotes in the first stage of the auction.

Since the price cap or floor could be binding in the second stage, dealers may have incentives

to manipulate the first-stage quotes to push the second-stage price in their favor.

Let the price cap be p, which applies if R < 0, and let the price floor be p, which applies if

R > 0. Given the auction rule, if R < 0, the final auction price is min(p, p∗S), where p∗S is the

hypothetical market-clearing price without the price cap; if R > 0, the final auction price

is max(p, p∗B), where p∗B is the hypothetical market-clearing price without the price floor.

Since the price cap or floor is determined by a relatively small group of dealers, it leads to

manipulation incentives. For example, suppose that dealers are predominantly CDS buyers.

Because they benefit from a low final auction price p∗, dealers have incentives to quote prices

that are too low in the first stage, leading to a p and a p that are also too low. All else

equal, a strictly lower p or p means, respectively, a weakly lower min(p, p∗S) or max(p, p∗B),

hence a lower expected final auction price. Conversely, if dealers are predominantly CDS

buyers, they tend to quote prices that are too high in the first stage, leading to an inflated

price cap/floor and a higher expected final auction price. These theoretical results are not

reported but are available upon request.

Manipulation incentives like these are more than theoretical possibilities. A close analogy

is the London Interbank Offered Rate (LIBOR), an interest rate benchmark underlying

trillions of dollars of derivatives contracts like interest rate swaps. Every day, LIBOR is

fixed at a truncated mean of quoted interest rates from LIBOR panel banks, just like the

CDS auction midpoint price is fixed at a truncated mean of dealers’ quotes. The difference is

that LIBOR is the price at which the derivatives contracts settle on, whereas the CDS auction

midpoint (adjusted by the cap amount) provides a one-way bound on the final auction price.

But similar to the CDS auction setting, the LIBOR panel banks’ profits and losses from

their own derivatives books depend on LIBOR, so the LIBOR fixing method induces strong

manipulation incentives. Unsurprisingly, manipulations of LIBOR did happen, and banks

26



involved in the scandals paid billions of dollars in fines.10 Although this analogy is by no

means evidence of manipulation in CDS auctions, it serves as a fresh reminder that certain

incentives created by market designs are too strong to resist.

7 Empirical Implications

This section discusses empirical predictions of our model. The following two propositions

follow from the formal analysis of Section 5 and the discussion of Section 6.

Prediction 1. All else equal:

1. If the open interest is to buy, low-value traders get too much allocation in the auctions

and will sell bonds after the auctions. This effect is stronger for CDS sellers and traders

with zero CDS positions.

2. If the open interest is to sell, high-value traders get too little allocation in the auctions

and will buy bonds after the auctions. This effect is stronger for CDS buyers and

traders with zero CDS positions.

Prediction 2. All else equal:

1. In the first stage, dealers who are net CDS buyers quote lower prices than dealers who

are net CDS sellers.

2. The final auction price is lower if dealers’ pre-auction CDS positions are more positive

(or less negative).

The publicly available CDS auction data report the first-stage market orders and second-

stage limit orders by dealer name. These data do not distinguish dealers’ own orders and

customers’ orders that are channeled through dealers.

To test Prediction 1, one needs proxies for who are high-value traders and who are

low-value traders. For dealers, valuations may be inferred from their trading behaviors

before CDS auctions. A higher-value dealer would be one that buy bonds at higher prices,

controlling for other covariates. Alternatively, to the extent that dealers wish to keep a small

absolute inventory level, a higher-value dealer would be one that has abnormally low (or

negative) bond inventory. These proxies will require proprietary data that report dealers’

10For a comprehensive review, see https://en.wikipedia.org/wiki/Libor scandal.
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identities in the secondary corporate bond markets, such as the unfiltered TRACE data,

managed by FINRA and available to regulators.

To test Prediction 2, one would need to combine publicly available CDS auction data with

dealers’ CDS positions. CDS positions exist in DTCC’s Trade Information Warehouse and

other regulatory agencies (at least for relatively recent CDS auctions). Note that Prediction 2

does not make a direct statement on the level of quotes or final prices in CDS auctions

because, as we discussed in the introduction, a few other economic channels also potentially

affect them. It would be ideal to test Prediction 2 controlling for those channels.

8 Discussion: Current CDS Auction Design versus Dou-

ble Auction

We have shown that the current design of CDS auctions leads to biased prices and inefficient

allocations of defaulted bonds. Various restrictions imposed on both stages of CDS auctions

prevent certain investors from fully participating in the price-discovery process. Moreover,

since dealers’ first-stage quotes may bind the auction final price from above or below, this

design also leaves ample room for potential manipulation. In our model, a double auction

achieves the first best (see Section 4). It is worth noting that these results are obtained in

a model with infinitesimal traders who have zero impact on the price.

In markets with imperfect competition, a double auction is not fully efficient. This is

because the strategic avoidance of price impact makes trading too slow relative to the first

best. This result is shown in static models of Vives (2011), Rostek and Weretka (2012), and

Ausubel, Cramton, Pycia, Rostek, and Weretka (2014), as well as dynamic models of Vayanos

(1999) and Du and Zhu (2016), among others. Appendix B reproduces the argument in a

static setting, showing that the allocative inefficiency in double auctions is of order O(1/n),

where n is the number of auction participants.

Since the double auction protocol is not fully efficient, it is not obvious that it is better

than the current CDS auction design. In particular, one may suspect that the current

format of CDS auctions is designed to address some practical concerns not covered in our

model. In the remainder of this section, we discuss potential reasons that may motivate the

current CDS auction design, and discuss whether a double auction design can achieve the

same objective equally well or better. Although this section involves no formal modeling,

we draw upon the widespread implementation of double auctions in stock exchanges as a

natural comparison to CDS auctions. Our general conclusion is that even after taking into
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account various practical considerations, a double auction design—enriched, if necessary—is

still more efficient than the current CDS auction design.

8.1 A double auction design

Let us start by proposing a double auction design of CDS auctions:

DA-1(a). In the first stage, physical settlement requests may still be submitted, and they are

filled at the final auction price.

DA-1(b). In the first stage, simultaneous to Step DA-1(a), dealers may still make quotes on the

defaulted bonds, but their quotes no longer bind the second-stage price.

DA-2. In the second stage, traders can submit both buy and sell limit orders, regardless of

the open interest from the first stage. There is no price cap or floor. The final auction

price matches supply and demand.

This double auction design is nothing exotic or unusual. It is similar to the standard

and dominant mechanism used in open auctions and close auctions in stock exchanges like

NYSE and NASDAQ, with minor difference in details.

In principle, the only essential step in a double auction design is Step DA-2, as in Sec-

tion 4. By including Steps DA-1(a) and DA-1(b), the above implementation preserves the

first-stage physical requests and quotes in the current CDS auction design. Note that given

Step DA-2, Step DA-1(a) is in fact unnecessary. A trader can move his market order in Step

DA-1(a) to Step DA-2, with no effect in the equilibrium outcome. In this sense, one may

also add arbitrary restrictions on Step DA-1(a), such as requiring that a trader’s physical

settlement request must be opposite in direction to his CDS position. Moreover, the deal-

ers’ quotes in Step DA-1(b) could be useful for reducing information asymmetry. In models

with asymmetric information and price impact, a lower degree of asymmetric information

typically improve allocative efficiency (see Du and Zhu (2016) and references therein).

Before elaborating the difference between the one-sided CDS auction design and the

double auction design, let us emphasize that both mechanisms overcome the concerns that

give rise to CDS auctions in the first place. Creditex and Markit (2010) explain two main

reasons why an auction protocol was introduced. First, an auction protocol produces a unique

price at which investors can choose to cash settle. Second, if CDS outstanding is greater than

the volume of bonds outstanding, in bilateral physical settlements “the bonds would have to

be ‘recycled’ a number of times through the market to settle all the CDS trades” (Creditex
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and Markit (2010)). This recycling of bonds creates an endogenous supply shortage and may

artificially raise the price of defaulted bonds. By concentrating all buyers and sellers to one

point in time, an auction protocol effectively eliminates the supply shortage problem.

While these reasons justify an auction protocol to settle CDS, they do not justify a one-

sided auction design. Let us now turn to the comparison between the one-sided CDS auction

and the double auction.

8.2 Why impose restrictions in CDS auctions?

Compared with the above double auction design, the current CDS auction design introduces

two inter-connected restrictions:

1. In the first stage, dealers’ quotes form a one-sided price constraint (cap or floor) on

the final auction price.

2. In the second stage, only limit orders that are on the opposite side of the open interest

are permitted.

Below, we discuss a few practical considerations that may motivate these two restrictions.

Price manipulation in the second stage. According to Creditex and Markit (2010), the

price cap and floor are introduced to “avoid a large limit order being submitted off-market

to try and manipulate the results, particularly in the case of a small open interest.” For

instance, a large CDS seller benefits from a higher final auction price, and a large CDS buyer

benefits from a lower final price. They thus have the corresponding incentive to manipulate

the price.

It is far from clear that a one-way price constraint is the best way to mitigate manipulation

incentives. First, finding the correct price cap or floor is not easy. If the price cap is set

too high, CDS sellers can still manipulate the price upward; but if the price cap is set too

low, the price cap itself becomes an inefficient constraint.11 A similar problem applies for

the price floor. Second, using a price cap or floor gives dealers the ability to manipulate the

final auction price, as we have explained in Section 6.

A more natural way to mitigate price manipulation is to allow limit orders in both

directions in the second stage of the double auction (Step DA-2 above). Because CDS

11In our simple model with two states, the open interest reveals the efficient price. But in reality, traders’
values for the bonds are likely more complicated, and finding the efficient price cap or floor is likely much
more difficult.
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contracts have zero net supply, the increased profit to all CDS sellers of pushing the price up

by ε is equal to the increased profit to all CDS buyers of pushing the price down by ε. That is,

manipulation incentives apply to both sides and they should offset each other, at least partly.

In Appendix B we solve an extended double auction model with imperfect competition, and

show that, although each trader’s demand schedule reflects his CDS position, these CDS

positions have a zero net effect on the final auction price because they add up to zero.

Supply or demand shock. In practice, a price constraint could be useful to guard against

an unexpected supply or demand shock. For example, if only a very small fraction of in-

vestors show up in CDS auctions (for rational or behavioral reasons), the resulting price

may overshoot either way. In this case, a two-way price constraint seems more suitable

than a one-way price constraint because, again, the latter gives dealers too much discretion

in moving the price in a certain direction. With a two-way price constraint, the midpoint

could be calculated from dealers’ quotes or secondary market prices (where data available),

and the “spread” should be wide enough to reflect the volatility of the defaulted bonds and

discourage incentives to manipulate the quotes.

The U.S. equity markets offer some useful comparisons on such price constraints. For

instance, in the NASDAQ closing auction, the lowest permissable price is the NASDAQ best

bid minus the greater of $0.50 and 10% of the NASDAQ midpoint price, and the highest

permissable price is the NASDAQ best ask plus the the greater of $0.50 and 10% of the

NASDAQ midpoint price.12 Therefore, the price range in a NASDAQ close auction is at

least 20% of the NASDAQ midpoint. In NYSE Arca close auctions, the price range is from

10% below to 10% above the last transaction price if the stock price is above $10, and 25%

below to 25% above the last transaction price if the stock price is below $10.13 During the

continuous trading hours, the two-way price range of individual stocks is governed by the

limit up-limit down mechanism, which sets three levels of price bands: 5%, 10%, and 20%

of the average price of the stock over the immediately preceding five minutes. If these price

bands are breached for more than 15 seconds, trading is halted for five minutes.14 All these

price ranges are designed to prevent extreme volatility in equity markets that may not be

12See http://www.nasdaqtrader.com/content/productsservices/trading/crosses/openclose faqs.pdf
13See https://www.nyse.com/publicdocs/nyse/markets/nyse-arca/NYSE Arca Auctions Brochure.pdf
14The limit up-limit down mechanism for individual stocks should be distinguished from the market-wide

circuit breaker, which is triggered if the S&P 500 index has a single-day decline by more than 7%, 13%,
and 20% relative to the prior day’s closing price. Breaching the 7% and 13% thresholds leads to a market-
wide trading halt for 15 minutes, whereas breaching the 20% threshold ends the market-wide trading for the
remaining of the day. For more details, see https://www.sec.gov/investor/alerts/circuitbreakersbulletin.htm.
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driven by fundamentals.

Given the illiquidity of defaulted bonds or loans, it seems reasonable to set a two-way

price range that is comparable to equities or wider. In the current CDS auctions, the “cap

amount” of $0.01 or $0.02 per $1 face value seems quite low.

Participation. In informal conversations, a couple of market participants have suggested

that an advantage of the two restrictions—one-way price constraint and one-sided limit

orders in the second stage—is to create additional uncertainty about price and allocation in

the second stage of the auction. This uncertainty would, in turn, encourage CDS buyers and

CDS sellers to participate in the first stage of CDS auctions. For example, a CDS buyer who

also holds defaulted bonds may find it risky to wait until the second stage to sell the bonds,

because he will not be allowed to submit sell orders if the open interest is to sell. This risk

may prompt the CDS buyer to submit physical settlement request in the first stage. If all

CDS traders participate in the first stage and submit full physical settlement requests (i.e.,

ri = −Qi), then the net open interest would be zero, and CDS auctions would achieve the

same outcome as cash settlement.

Although we do not formally model the cost of participating in CDS auctions, our model

can be viewed as one with zero participation cost. We show that the restrictions imposed in

CDS auctions reduce participation by certain types of CDS traders, instead of encouraging

participation (see Section 5). This leads to biased prices and inefficient allocations. Moreover,

the open interest is rarely zero in the data, suggesting that the restrictions in CDS auctions

cannot entice full participation in the first stage of the auction. By contrast, the double

auction design allows every CDS trader to participate if the cost of doing so is zero. By

continuity, we infer that as long as participation cost is not too high, the double auction

design is still better than the current design in encouraging broad participation.

Summary. In summary, we have difficulty justifying the one-sided CDS auction design,

even after considering some frictions and practical concerns. To be clear, while we argue that

the double auction design is an improvement over the current CDS auction design, we are

by no means arguing that the double auction design is the optimal mechanism in practice.

Finding the optimal mechanism in dynamic markets with frictions is a separate and difficult

problem that is beyond the scope of this paper.
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A Proofs

A.1 Proof of Proposition 1

We conjecture that p∗S ≤ p∗B and that in the high state R > 0, and in the low state R < 0.15

We derive the equilibrium based on this conjecture, and then verify this conjecture under

some parameter conditions.

We first show that the first-stage strategy in (17) is optimal, which has four cases.

1. If the trader has a high value for the bond and is a CDS seller, then he wants to

buy bonds but is constrained to buy at most −Qi unit in the first stage. Given this

constraint, it is optimal for him to submit ri = min(
vH−αp∗B−(1−α)p

∗
S

λ
,−Qi) for any

α ∈ [0, 1]. Indeed, if the open interest is to buy, then he sells back some of his ri, i.e.,

xi = −min(
vH−αp∗B−(1−α)p

∗
S

λ
,−Qi) +

vH−p∗B
λ
≤ 0, which gets him a total allocation of

min((vH − p∗B)/λ,−Qi), which is as close as possible to his optimal allocation (vH −
p∗B)/λ. If the open interest is to sell, then he buys xi = −min(

vH−αp∗B−(1−α)p
∗
S

λ
,−Qi) +

vH−p∗B
λ
≥ 0 additional units in the second stage, exactly achieving his optimal allocation

(vH − p∗S)/λ.

2. The case for a low-value CDS buyer is analogous to case 1.

3. If the trader has a high value for the bond and has a positive or zero CDS position,

then he cannot submit buy orders in the first stage. clearly, his optimal request is to

set ri = 0 in the first stage.

4. The case for a low-value trader with a zero or negative CDS position is analogous to

case 3.

Aggregating the allocations across the two stages we have the following market-clearing

condition given an open interest to buy (i.e., in the high state):

(1−m)
vL − p∗B

λ
+
m

2

∫
Qi≥0

min

(
Qi,

vH − p∗B
λ

)
dG(Qi) = 0. (32)

15In equilibrium we cannot have R < 0 in the high state and R > 0 in the low state. Because high-value
traders want to buy, if R > 0 in the low state, then we must have R > 0 in the high state as well (since
there are more high-value traders in the high state). However, we do have an one-sided equilibrium in which
R > 0 in both high and low states, and an equilibrium in which R < 0 in both high and low states. See the
supplementary appendix for those equilibria.
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In Equation (32), all low-value traders sell in the second stage (regardless of their physical

requests in the first stage) and achieve their optimal allocation of (vL−p∗B)/λ (the first term).

High-value traders with positive or zero CDS positions do not trade in either stage: they

only want to buy, are constrained to sell in the first stage because of their CDS positions,

and are constrained to sell in the second stage because of the open interest to buy. In the

second term of (32), high-value CDS sellers buy in the first stage; they sell in the second

stage and achieve their optimal allocation of (vH − p∗B)/λ if −Qi ≥ (vH − p∗B)/λ (if Qi = 0

the integrand is just zero).

Analogously, the market-clearing condition given an open interest to sell (i.e., in the low

state) is:

(1−m)
vH − p∗S

λ
+
m

2

∫
Qi≥0

max

(
−Qi,

vL − p∗S
λ

)
dG(Qi) = 0. (33)

The left-hand side of Equation (32) is clearly decreasing in p∗B, is positive when p∗B = vL,

and is negative when p∗B = vH . Thus, there exists a unique p∗B ∈ (vL, vH) that satisfies

Equation (32). Likewise, the left-hand side of Equation (33) is clearly decreasing in p∗S,

is positive when p∗S = vL, and is negative when p∗S = vH . Thus, there exists a unique

p∗S ∈ (vL, vH) that satisfies Equation (33). Moreover, the solution (p∗B, p
∗
S) clearly satisfies

vH − p∗S = p∗B − vL. Thus, p∗B ≥ p∗S if and only if p∗B ≥ (vH + vL)/2, i.e., the left-hand side

of Equation (32) is non-negative when p∗B = (vH + vL)/2; this is simply Condition (14).

Finally, given the identity vH − p∗S = p∗B− vL, the first-stage strategy in (17) implies that

R > 0 in the high state and R < 0 in the low state, as we have conjectured.

This completes the derivation and verification of the equilibrium in which p∗B ≥ p∗S.

A.2 Proof of Proposition 2

We conjecture that p∗B < p∗S and that in the high state R > 0, and in the low state R < 0.

We derive the equilibrium based on this conjecture, and then verify this conjecture under

some parameter conditions.

We first show that the first-stage strategy in (21) is optimal, which has four cases.

1. If trader i has a high value for the bond and is a CDS seller, then he wants to buy

bonds but is constrained to buy at most −Qi unit in the first stage. For any ri ∈
[(vH − p∗S)/λ, (vH − p∗B)/λ], by (13) trader i buys 0 following a sell open interest,

because −ri + (vH − p∗S)/λ ≤ 0, and sells 0 following a buy open interest, because

−ri+(vH−p∗B)/λ ≥ 0, where we have used the conjecture that p∗B < p∗S. That is, trader

i does not trade in the second stage. By Bayes’ rule, trader i puts the probability m on
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the high state (R > 0). Hence, his unconstrained optimal ri is (vH−mp∗B−(1−m)p∗S)/λ,

and his constrained optimal ri is min((vH −mp∗B − (1−m)p∗S)/λ,−Qi).

2. The case for a low-value CDS buyer is analogous to case 1.

3. If the trader has a high value for the bond and has a positive or zero CDS position,

then he cannot submit buy orders in the first stage. Clearly, his optimal request is to

set ri = 0 in the first stage.

4. The case for a low-value trader with a zero or negative CDS position is analogous to

case 3.

Aggregating the allocations across the two stages, we have the following market-clearing

condition given a buy open interest (i.e., in the high state):

1−m
2

vL − p∗B
λ

+
1−m

2

∫
Qi≥0

max

(
−Qi,

vL −mp∗S − (1−m)p∗B
λ

)
dG(Qi)

+
1−m

2

∫
Qi≥0

min

(
vL − p∗B

λ
+Qi, 0

)
dG(Qi) +

m

2

∫
Qi≥0

min

(
Qi,

vH −mp∗B − (1−m)p∗S
λ

)
dG(Qi)

= 0. (34)

In Equation (34), low-value traders with negative or zero CDS positions trade only in

the second stage and achieve their optimal allocation of (vL − p∗B)/λ; see the first term and

the Qi = 0 part of the third term of (34). The second term of (34) are the total physical

requests from low-value CDS buyers (if Qi = 0, the integrand is just zero). In the third term

of (34), low-value CDS buyers with physical request ri = −Qi ≥ (vL − p∗B)/λ submits sell

order in the second stage and end up trading (vL − p∗B)/λ − (−Qi) ≤ 0. Low-value CDS

buyers do not trade in the second stage because they have sold too much in the first stage.

The fourth term of (34) is the total physical request from high-value CDS sellers (if Qi = 0,

the integrand is just zero); they do not trade in the second stage because they want to buy

but the open interest is also to buy. High-value CDS buyers do not trade in either stage.

Analogously, the market-clearing condition given a sell open interest (i.e., in the low
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state) is:

1−m
2

vH − p∗S
λ

+
1−m

2

∫
Qi≥0

min

(
Qi,

vH −mp∗B − (1−m)p∗S
λ

)
dG(Qi)

+
1−m

2

∫
Qi≥0

max

(
vH − p∗S

λ
−Qi, 0

)
dG(Qi) +

m

2

∫
Qi≥0

max

(
−Qi,

vL −mp∗S − (1−m)p∗B
λ

)
dG(Qi)

= 0. (35)

To solve Equations (34) and (35) we define the following functions. For any fixed value

of p∗S − vL, let h1(p
∗
S − vL) be the value of vH − p∗B such that Equation (34) holds. (This is

well defined because the left-hand side of (34) is decreasing in p∗B.) Likewise, for any fixed

value of vH − p∗B, let h2(vH − p∗B) be the value of p∗S − vL such that Equation (35) holds.

By inspecting Equations (34) and (35) we see that h1 = h2; moreover, h1 and h2 are strictly

increasing functions. This implies that any solution (p∗B, p
∗
S) to Equations (34) and (35)

satisfies the symmetry condition

vH − p∗B = p∗S − vL. (36)

If not (suppose vH − p∗B > p∗S − vL), then we have p∗S − vL = h2(vH − p∗B) > h1(p
∗
S − vL) =

vH − p∗B, i.e., a contradiction.

Under Condition (36), Equation (34) and (35) simplify to:

1−m
2

vL − p∗B
λ

+
2m− 1

2

∫
Qi≥0

min

(
Qi,

vH −mp∗B − (1−m)p∗S
λ

)
dG(Qi)

+
1−m

2

∫
Qi≥0

min

(
vL − p∗B

λ
+Qi, 0

)
dG(Qi) = 0. (37)

Under Condition (36), mp∗B + (1 − m)p∗S is increasing in p∗B since m > 1/2. Thus, under

Condition (36), the lefthand side of Equation (37) is decreasing in p∗B, is positive when p∗B =

vL, and is negative when p∗B = vH , so Equation (37) admits a unique solution p∗B ∈ (vL, vH).

Moreover, this solution satisfies p∗B < (vH + vL)/2 (i.e., p∗B < p∗S) if and only if the lefthand

side of Equation (37) is negative when p∗B = (vH + vL)/2, which is equivalent to Condition

(18) by simple algebra.

Finally, given Equation (36), the first-stage strategy in (21) implies that R > 0 in the

high state and R < 0 in the low state, as we have conjectured.

This completes the derivation and verification of the equilibrium under which p∗B < p∗S.
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A.3 Proof of Proposition 3

In Proposition 1, the final price p∗B in the high state is defined by Equation (32), which

excludes some high value traders; that is, for every value of p∗B the left-hand side of Equation

(32) is strictly less than

(1−m)
vL − p∗B

λ
+m

vH − p∗B
λ

. (38)

The above expression is equal to zero when p∗B = pcH . Therefore, the solution p∗B that satisfies

Equation (32) must be less than pcH . Since p∗S = vH + vL − p∗B and pcL = vH + vL − pcH , we

have p∗S > pcL for Proposition 1.

In Proposition 2, we have p∗B < (vH + vL)/2 < p∗S. Since pcH > (vH + vL)/2 > pcL by

definition, we also have p∗B < pcH and p∗S > pcL.

The inefficiency of allocations directly follows from the biases in prices. Let us focus on

the high state, since the proof for the low state is symmetric and hence omitted.

1. Low-value traders: In Proposition 1, a low-value trader gets a bond allocation of
vL−p∗B
λ

>
vL−pcH

λ
. In Proposition 2, a low-value trader gets a bond allocation of at

least
vL−mp∗S−(1−m)p∗B

λ
, which is larger than the efficient allocation of

vL−pcH
λ

because

mp∗S + (1−m)p∗B = mp∗S + (1−m)(vL + vH − p∗S) < mvH + (1−m)vL = pcH .

2. High-value CDS buyers and zero-CDS-position traders: in both Proposition 1 and

Proposition 2 they are prevented from participating in the auction and receive zero

allocation, which is clearly lower than their efficient allocation of
vH−pcH

λ
.

3. High-value CDS sellers: in Proposition 1, their allocation is min(−Qi,
vH−p∗B

λ
) which

can be either lower than or higher than their efficient allocation of
vH−pcH

λ
. Specifi-

cally, if |Qi| is sufficiently small, min(−Qi,
vH−p∗B

λ
) = −Qi <

vH−pcH
λ

; if |Qi| is suffi-

ciently large, min(−Qi,
vH−p∗B

λ
) =

vH−p∗B
λ

>
vH−pcH

λ
. In Proposition 2, their allocation is

min(−Qi,
vH−mp∗B−(1−m)p∗S

λ
) which can be either lower than or higher than their efficient

allocation of
vH−pcH

λ
, for a similar reason.

A.4 Proof of Proposition 4

Suppose in the CDS auction we have the equilibrium in Proposition 1 (where p∗B ≥ p∗S).

Without loss of generality let us focus on an investor with a benefit bi ≥ 0 (wanting to

buy CDS). Investor i chooses Qi ≥ 0 and obtains the following quantity of bonds from the

two-stage auction: We can see that the only possibility that Qi plays a role in the auction
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investor i with Qi ≥ 0 ri + xi(p
∗)

high state, vi = vH 0
high state, vi = vL (vL − p∗B)/λ
low state, vi = vH (vH − p∗S)/λ
low state, vi = vL max((vL − p∗S)/λ,−Qi)

stage is low state and vi = vL.

Investor i solves the following problem at stage 0 (ignoring terms that are independent

of Qi):

max
Qi≥0

(bi − pCDS − c)Qi −
γ

2
(Qi)

2 + πQi

(
1− vH + vL

2

)
(39)

+
πm

2

(
(vL − p∗S) max

(
vL − p∗S

λ
,−Qi

)
− λ

2
max

(
vL − p∗S

λ
,−Qi

)2
)
,

where by symmetry p∗B + p∗S = (vH + vL)/2.

Define

b′i ≡ bi − pCDS − c+ π

(
1− vH + vL

2

)
. (40)

There are two cases, depending on the value of max
(
vL−p∗S
λ

,−Qi

)
.

First, conjecture Qi ≤
p∗S−vL
λ

. The problem (39) reduces to

max
0≤Qi≤(p∗S−vL)/λ

(
b′i −

πm

2
(vL − p∗S)

)
Qi −

(
γ

2
+
πmλ

4

)
(Qi)

2, (41)

whose solution is

Qi =
(b′i + (p∗S − vL)πm/2)+

γ + πmλ/2
≤ p∗S − vL

λ
, (42)

where the last inequality is equivalent to

b′i
γ
≤ p∗S − vL

λ
. (43)

Second, conjecture Qi >
p∗S−vL
λ

. The problem (39) reduces to

max
Qi>(p∗S−vL)/λ

b′iQi −
γ

2
(Qi)

2, (44)
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whose solution is

Qi =
b′i
γ
>
p∗S − vL

λ
, (45)

where the last inequality is just the complement of the condition for the first case.

Therefore, the solution to (39) is:

Qi =


(b′i+(p∗S−vL)πm/2)

+

γ+πmλ/2
if b′i ≤

γ(p∗S−vL)
λ

b′i
γ

if
γ(p∗S−vL)

λ
< b′i

. (46)

When bi < 0, the optimal Qi is computed symmetrically. To clear all CDS positions Qi

we must have:

pCDS = π

(
1− vH + vL

2

)
. (47)

Given the strategy in (46) and the counterpart when bi < 0, the market-clearing condition

for the auction price p∗B in the high state is Equation (23). Clearly, the left-hand side of

Equation (23) is strictly decreasing in p∗B, is positive when p∗B = vL, and is negative when

p∗B = vH . Thus, it has an unique solution in p∗B. Moreover, this solution p∗B is larger

than p∗S = vH + vL − p∗B if and only if the left-hand side of Equation (23) is positive when

p∗B = (vH + vL)/2, i.e., Condition (22).

A.5 Proof of Proposition 5

Suppose in the CDS auction we have the equilibrium in Proposition 2 (where p∗B < p∗S).

Without loss of generality let us focus on a trader with a benefit bi ≥ 0 (wanting to

buy CDS). Trader i chooses Qi ≥ 0 and obtains the following quantity of bonds from the

two-stage auction: Among the four possibilities, two involve Qi.

investor i with Qi ≥ 0 ri + xi(p
∗)

high state, vi = vH 0
high state, vi = vL (vL − p∗B)/λ if (vL − p∗B)/λ ≤ −Qi

max((vL −mp∗S − (1−m)p∗B)/λ,−Qi) if (vL − p∗B)/λ > −Qi

low state, vi = vH (vH − p∗S)/λ
low state, vi = vL max((vL −mp∗S − (1−m)p∗B)/λ,−Qi)

Investor i solves the following problem at stage 0 (ignoring terms that are independent
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of Qi):

max
Qi≥0

(bi − pCDS − c)Qi −
γ

2
(Qi)

2 + πQi

(
1− vH + vL

2

)
(48)

+
π(1−m)

2

(
(vL − p∗B) max

(
min

(
−Qi,

vL − p∗B
λ

)
,
vL −mp∗S − (1−m)p∗B

λ

)

− λ

2
max

(
min

(
−Qi,

vL − p∗B
λ

)
,
vL −mp∗S − (1−m)p∗B

λ

)2
)

+
πm

2

(
(vL − p∗S) max

(
−Qi,

vL −mp∗S − (1−m)p∗B
λ

)
− λ

2
max

(
−Qi,

vL −mp∗S − (1−m)p∗B
λ

)2
)
,

where by symmetry p∗B + p∗S = (vH + vL)/2.

As in the proof for the previous proposition, define

b′i = bi − pCDS − c+ π

(
1− vH + vL

2

)
. (49)

Similar to the proof of Proposition 4, we solve Problem (48) conditional on three possible

ranges of Qi.

First, conjecture Qi ≤
p∗B−vL
λ

. The problem (48) reduces to

max
0≤Qi≤(p∗B−vL)/λ

(
b′i −

πm

2
(vL − p∗S)

)
Qi −

(
γ

2
+
πmλ

4

)
(Qi)

2, (50)

whose solution is:

Qi =
(b′i + (p∗S − vL)πm/2)+

γ + πmλ/2
≤ p∗B − vL

λ
. (51)

Next, we conjecture
p∗B−vL
λ

< Qi ≤
mp∗S+(1−m)p∗B−vL

λ
. The problem (48) reduces to

max
(p∗B−vL)/λ<Qi≤(mp∗S+(1−m)p∗B−vL)/λ

(
b′i −

πm

2
(vL − p∗S)− π(1−m)

2
(vL − p∗B)

)
Qi (52)

−
(
γ

2
+
πmλ

4
+
π(1−m)λ

4

)
(Qi)

2,

whose solution is:

Qi =
b′i + (mp∗S + (1−m)p∗B − vL)π/2

γ + πλ/2
∈
(
p∗B − vL

λ
,
mp∗S + (1−m)p∗B − vL

λ

]
, (53)
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where in the solution above the condition Qi >
p∗B−vL
λ

is equivalent to:

b′i + (p∗S − vL)πm/2

γ + πmλ/2
>
p∗B − vL

λ
, (54)

and the condition Qi ≤
mp∗S+(1−m)p∗B−vL

λ
is equivalent to:

b′i
γ
≤ mp∗S + (1−m)p∗B − vL

λ
. (55)

Finally, we conjecture Qi >
mp∗S+(1−m)p∗B−vL

λ
. The problem (48) reduces to

max
Qi>(mp∗S+(1−m)p∗B−vL)/λ

b′iQi −
γ

2
(Qi)

2, (56)

whose solution is

Qi =
b′i
γ
>
mp∗S + (1−m)p∗B − vL

λ
. (57)

We see that the parameter conditions for the above three cases complement each other.

Therefore, the solution to (48) is:

Qi =



(b′i+(p∗S−vL)πm/2)
+

γ+πmλ/2
if

b′i+(p∗S−vL)πm/2
γ+πmλ/2

≤ p∗B−vL
λ

b′i+(mp∗S+(1−m)p∗B−vL)π/2
γ+πλ/2

if
p∗B−vL
λ
≤ b′i+(mp∗S+(1−m)p∗B−vL)π/2

γ+πλ/2
≤ mp∗S+(1−m)p∗B−vL

λ

b′i
γ

if
mp∗S+(1−m)p∗B−vL

λ
≤ b′i

γ

, (58)

When bi < 0, the optimal Qi is computed symmetrically. To clear all CDS positions Qi

we must have:

pCDS = π

(
1− vH + vL

2

)
. (59)

Given the strategy in (58) and the counterpart when bi < 0, the market-clearing condition

for the auction price p∗B in the high state is Equation (28).16 Clearly, the left-hand side of

Equation (28) is strictly decreasing in p∗B, is positive when p∗B = vL, and is negative when

16Here we also need the fact that

b′i + (p∗S − vL)πm/2

γ + πmλ/2
≤ p∗B − vL

λ
iff

b′i + (p∗S − vL)πm/2

γ + πmλ/2
≤ b′i + (mp∗S + (1−m)p∗B − vL)π/2

γ + πλ/2
.
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p∗B = vH . Thus, it has an unique solution in p∗B. Moreover, this solution p∗B is larger

than p∗S = vH + vL − p∗B if and only if the left-hand side of Equation (28) is positive when

p∗B = (vH + vL)/2, i.e., Condition (27).

B A More General Double Auction Model

In this appendix we generalize the double auction model in Section 8 by allowing a finite

number n of traders and general distributions of values and CDS positions. We show that

the double auction still has an equilibrium that produces the competitive price, even though

each trader has price impact. Although the allocations in this equilibrium are not fully

efficient, we show that the difference between the equilibrium allocation and the efficient

allocation for each trader is on the order of O(1/n), where n is the total number of traders.

Suppose that there are n ≥ 3 traders. We focus on the date t = 1 after the default of

the bond. As in Section 3, each trader i has a private valuation vi for owning the defaulted

bond, and a CDS position Qi, for 1 ≤ i ≤ n. We allow for any joint probability distribution

of values {vi}1≤i≤n and CDS positions {Qi}1≤i≤n (with the condition that path-by-path,∑n
i=1Qi = 0). Trader i’s utility is still given by (5). The double auction rule is described in

Section 8. The final price p∗ is determined to clear the market:

n∑
i=1

xi(p
∗) +

n∑
i=1

ri = 0. (60)

Notice that with a finite number of traders, each one of them can affect the final price p∗ by

changing his physical request ri or his demand schedule xi(p).

Proposition 6. In the double auction with n ≥ 3 traders, there exists an equilibrium in

which trader i submits a (arbitrary) physical request ri between 0 and −Qi in the first stage,

and submits in the second stage the demand schedule

xi(p) = −ri +
n− 2

λ(n− 1)
(vi − p)−

1

n− 1
Qi. (61)

The equilibrium price is

p∗ =
1

n

n∑
i=1

vi. (62)

Proof. Without loss of generality, suppose that ri = 0.
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Fix a strategy profile (x1, x2, . . . , xn). Given that all other traders use this strategy profile

and for a fixed profile of values (v1, v2, . . . , vn), the payoff of trader i at the price of p is

Πi(p) = (1− p)Qi + (vi − p)

(
−
∑
j 6=i

xj(p)

)
− 1

2
λ

(
−
∑
j 6=i

xj(p)

)2

.

We can see that trader i is effectively selecting an optimal price p. Taking the first-order

condition of Πi(p) at p = p∗, we have, for all i,

0 = Π′i(p
∗) = −Qi − xi(p∗) + (vi − p∗ − λxi(p∗))

(
−
∑
j 6=i

∂xj
∂p

(p∗)

)
. (63)

We conjecture a symmetric linear demand schedule:

xj(p) = avj − bp+ cQi, (64)

where a, b and c are constants. Given this conjecture, trader i’s first order condition (63)

becomes

xi(p
∗) =

(n− 1)b(vi − p∗)−Qi

1 + λ(n− 1)b
, (65)

i.e., when trader i uses the demand schedule in (64) with

a = b =
n− 2

λ(n− 1)
, c = − 1

n− 1
(66)

trader i’s first order condition is always satisfied for every realization of (v1, v2, . . . , vn).

It is easy to verify that under this linear strategy, Π′′i ( · ) < 0 if n > 2.

A notable feature of the equilibrium in Proposition 6 is that it is independent of (and

hence robust to) assumptions about values and CDS positions.

The equilibrium strategy in Proposition 6 clearly converges to the competitive equilibrium

strategy in (7) as the number n of traders tends to infinity. The factor n−2
n−1 in (61) captures

the equilibrium amount of “demand reduction” due to the traders’ price impact in the finite

market. This factor is cancelled out in the determination of the equilibrium price in (62),

and hence the equilibrium price is the same as the competitive price. The final allocation
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from this equilibrium for trader i is

ri + xi(p
∗) =

n− 2

λ(n− 1)
(vi − p∗)−

1

n− 1
Qi, (67)

and the efficient allocation for trader i is

1

λ
(vi − p∗). (68)

The difference between the two allocations is on the order of O(1/n).
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