General Equilibrium Theory: An Introduction

by Ross M. Starr, Cambridge University Press, 1997

CORRIGENDUM

compiled by Jonathan Weare

Copyright © 1999 Ross M. Starr

Errata:

Page	Line	Current Text	Correct Replacement Text
26	9	x	X
	9	y	Y
34	18	0 [italic]	0 [roman]
37	14	(1.13)	(1.37)
51	17	of subsets of $\mathbf{R}^{\mathbf{N}}$	of some subsets of $\mathbf{R}^{\mathbf{N}}$
54	19	closedness of S	compactness of S
78	2		$\mathrm{p} \neq 0$ [additional text]
85	22	Let X^{h} and	Let $X^{h}=\mathbf{R}_{+}^{\mathrm{N}}$ and
91	32	Note that under C.IV and CVIII, $p^{\circ} \cdot \widetilde{D}^{i}\left(p^{\circ}\right)>p^{\circ} \cdot x$.	case 1: If $p^{\circ} \cdot \widetilde{D}^{i}\left(p^{\circ}\right)<\widetilde{M}^{i}\left(p^{\circ}\right)$ then by continuity of $\widetilde{M}^{i}(\bullet)$ and $p^{v} \rightarrow p^{\circ}$, for v large we have $p^{v} \cdot \widetilde{D}^{i}\left(p^{\circ}\right)<\widetilde{M}^{i}\left(p^{v}\right)$. In this case let $w^{v}=\widetilde{D}^{i}\left(p^{\circ}\right)$. case 2: If $p^{\circ} \cdot \widetilde{D}^{i}\left(p^{\circ}\right)=\widetilde{M}^{i}\left(p^{\circ}\right)$ then by C.VIII $p^{\circ} \cdot \widetilde{D}^{i}\left(p^{\circ}\right)>p^{\circ} \cdot \hat{x}$
96	2	Chapter 5	Chapter 4
	2	Chapter 6	Chapter 5

[^0]| 97 | | Chapter 6 |
| :---: | :---: | :---: |
| | 11 | Chapter 5 |
| | 17 | and 6.2 |
| | 22 | and 6.2 |
| 98 | 24 | $y \in Y$ |
| 114 | 17 | $\left\|\widetilde{y}^{0 j^{j}}\right\|$ |
| 115 | 10 | $y^{v}, y^{v_{1}}, y^{\nu_{2}}, \ldots, y^{v_{j}}$ |
| 124 | 17 | we must have $D^{i}(p) \succ_{i} \widetilde{D}^{i}(p)$ |
| | 18 | $\alpha D^{i}(p)+(1-\alpha) \widetilde{D}^{i}(p)$ |
| | 19 | $\alpha D^{i}(p)+(1-\alpha) \widetilde{D}^{i}(p)$ |
| 135 | 18 | by theorems 8.3(b) and 9.1(b) |
| 139 | 5 | $y^{\text {oi }}$ |
| 139 | 26 | $M^{i}(p)=(1-\tau) p \cdot\left(r^{i}-x^{i}\right)_{+}+T$, |
| 139 | 29 | $\mathrm{T}=(1 / \mathrm{H}) \tau \sum_{i=1}^{H}\left(p \cdot\left(r^{i}-x^{i}\right)_{+}\right)$ |
| 145 | 2 | Assume C.IV and C.V |
| 148 | 9,10 | nonnegative elements of $Y+\{r\}$. We will denote this set as $B=(Y+\{r\}) \cap \mathbf{R}_{+}^{\mathbf{N}}$, a convex set. |
| 148 | 21 | Let $B=Y+\{r\}$. |
| 150 | 3 | |
| 150 | 3 | bolds |

Chapter 5
Chapter 4
and 4.1
and 4.1
$y \in \mathrm{Y}$
$\left|\widetilde{y}^{v j}\right|$
$y^{v}, y^{v 1}, y^{v 2}, \ldots, y^{v j}, \ldots, y^{v * F}$
there exists an $x^{i} \in B^{i}(p) \cap X^{i}$ with $x^{i} \succ_{i} \widetilde{D}^{i}(p)$
$\alpha x^{i}+(1-\alpha) \widetilde{D}^{i}(p)$
$\alpha x^{i}+(1-\alpha) \widetilde{D}^{i}(p)$
by theorem 8.3(b)
$y^{\text {g }}$
$M^{i}(p)=p \cdot r^{i}-\tau p \cdot\left(r^{i}-x^{i}\right)_{+}+\sum_{j \in F} \alpha^{i j} p \cdot y^{j}+T, 0<\tau<1$,
$\mathrm{T}=(1 / \# \mathrm{H}) \tau \sum_{i=1}^{H}\left(p \cdot\left(r^{i}-x^{i}\right)_{+}\right)$

Assume C.I, C.II, C.IV, and CV

nonnegative elements of $Y+\{r\}$ including free disposal. We will denote this set as $B=\left(Y+\{r\}+\mathbf{R}_{-}^{\mathbf{N}}\right) \cap \mathbf{R}_{+}^{\mathbf{N}}$, a convex set, where $\mathbf{R}_{-}^{\mathbf{N}}$ is the nonpositive quadrant of $\mathbf{R}^{\mathbf{N}}$.

Let $B=\left(Y+\{r\}+\mathbf{R}_{-}^{\mathbf{N}}\right) \cap \mathbf{R}_{+}^{\mathbf{N}}$.
$p_{k}=0$ for k so that $\sum_{i \in H} x_{k}^{* i}<\sum_{j \in F} y_{k}^{* j}+r_{k}$. [additional text]
holds

2
$M^{i}(p)=p \cdot \hat{r}^{i}-\tau p \cdot\left(r^{i}-x^{i}\right)_{+}+T$
$\sum_{h \in H q=1} \sum^{Q} x^{h, q}=\sum_{h \in H q=1} \sum_{i} r^{h}$.
$\frac{1}{Q} \sum_{h \in H q=1}^{Q} x^{h, q}=\sum_{h \in H} r^{h}$.
$\sum_{h \in H} \bar{x}^{h}=\sum_{h \in H} \frac{1}{Q} \sum_{q=1}^{Q} x^{h, q}=\frac{1}{Q} \sum_{h \in H q=1}^{Q} x^{h, q}=\sum_{h \in H} r^{h}$.
Theorem 2.14
(We ignore for convenience regions where Γ^{i} may coincide with a boundary derived from X^{i})

H-Q
For functions (point-valued correspondences) they are equivalent

Fig 17.1
$\min _{y \in \varphi(x)}\left|f^{\nu}(x)-y\right|<1 / \nu$
$\min _{y \in \varphi(x)}\left|f^{v}(x)-y\right|<1 / v$
We have $f^{v}\left(x^{v}\right)=x^{v} \ldots$ and we have $x^{*} \in \varphi\left(x^{*}\right)$.
$M^{i}(p)=p \cdot r^{i}-\tau p \cdot\left(r^{i}-x^{i}\right)_{+}+T$
$\sum_{h \in H q=1} \sum^{Q} x^{h, q} \leq \sum_{h \in H q=1} \sum_{i=1}^{Q} r^{h}$.
$\frac{1}{Q} \sum_{h \in H q=1}^{Q} x^{h, q} \leq \sum_{h \in H} r^{h}$
$\sum_{h \in H} \bar{x}^{h}=\sum_{h \in H} \frac{1}{Q} \sum_{q=1}^{Q} x^{h, q}=\frac{1}{Q} \sum_{h \in H q=1} \sum_{i=1}^{Q} x^{h, q} \leq \sum_{h \in H} r^{h}$.
Theorem 14.2
(We ignore for convenience regions where Γ^{i} may coincide with a boundary derived from X^{i}. A more precise statement is that -- under C.IV, C.V -- Γ^{i} and Γ have non-empty interiors and $0 \notin$ interior(Γ))

Q-H
For functions (point-valued correspondences) into a compact range they are equivalent
$\max _{x \in S} \min _{x^{\nu} \in S, y^{\nu} \in \varphi\left(x^{\nu v}\right)}\left|\left(x, f^{v}(x)\right)-\left(x^{/ v}, y^{\nu v}\right)\right|<1 / v$
$\max _{x \in S} \min _{x^{v} \in S, y^{N} \in \varphi\left(x^{/ v}\right)}\left|\left(x, f^{\nu}(x)\right)-\left(x^{N}, y^{/ v}\right)\right|<1 / v$
We have $f^{v}\left(x^{v}\right)=x^{v}$. Recall that there is $y^{\nu} \in \varphi\left(x^{/ v}\right)$ so that $\left|\left(x^{v}, f^{\nu}\left(x^{\nu}\right)\right)-\left(x^{\nu \nu}, y^{\prime \nu}\right)\right|<1 / v$. Then $x^{N}, y^{\nu \nu} \rightarrow x^{\circ}$. But by upper hemicontinuity of $\varphi(\cdot)$, the properties $x^{\nu v} \rightarrow x^{\circ}, y^{/ v} \in \varphi\left(x^{/ v}\right)$, $y^{/ \nu} \rightarrow x^{\circ}$, imply $x^{\circ} \in \varphi\left(x^{\circ}\right)$. Hence, choose $x^{*}=x^{\circ}$ and we have $x^{*} \in \varphi\left(x^{*}\right)$. QED
hemicontinuous at each $\mathrm{x} \in \mathbf{R}$
$S^{j}\left(p^{y}\right)$
$a x+b y$
$x^{\prime} \in \operatorname{interior}\left(X^{i}\right)$ [additional text]

Note on sections 17.3-17.4: many of the results in these sections rely on our choice of boundary, c, and therefore require assumptions P.I-P.IV. This correction concerns Theorems 17.2-17.6, Lemmas 17.4, 17.5, 17.7, and 17.8.

Revised Assumptions:

The following results are valid as stated, but not all of the assumptions listed in the text are required.
Lemma $10.1 \quad$ Can delete C.V and C.VII.
Theorem $12.1 \quad$ Can delete C.V.
Lemma 12.1 Can delete C.I, C.III, C.V, and C.VI.
Theorem 12.2 Can delete P.II-P.IV, inasmuch as the Separating Hyperplane Theorem requires only that A and B be non-empty, convex, and disjoint.

Corollary 12.1 Can delete P.II-P.IV.

[^0]: ${ }^{1}$ It is a pleasure to thank Prof. Peter Sørensen of the University of Copenhagen. We are deeply indebted to Prof. Sørensen for his time and extensive constructive criticisms. Many of them are embodied below in the 'Errata' and 'Revised Assumptions' sections. Thanks also to Luis Pinto, Adam Sanjurjo, and Steven Sumner. Remaining errors are our own.

