Economics 113 Prof. R. Starr UCSD Spring 2011

Lecture Notes for May 2 and 4, 2011

A market economy

Firms, profits, and household income H, F, $\alpha^{ij} \in \mathbf{R}_+$, $\sum_{i \in H} \alpha^{ij} = 1$,

$$\overline{H}$$
, F , $\alpha^{ij} \in \mathbf{R}_+$, $\sum_{i \in H} \alpha^{ij} = 1$,

$$r \equiv \sum_{i \in H} r^i.$$

$$\tilde{\pi}^j(p) \equiv \sup\{p \cdot y | y \in \mathcal{Y}^j\} \equiv p \cdot \tilde{S}^j(p)$$

Theorem 13.1 Assume P.II, P.III, and P.VI. $\tilde{\pi}^{j}(p)$ is a well-defined continuous function of p for all $p \in \mathbf{R}_+^N, p \neq 0$. $\tilde{\pi}^j(p)$ is homogeneous of degree

$$\tilde{M}^{i}(p) = p \cdot r^{i} + \sum_{j \in F} \alpha^{ij} \tilde{\pi}^{j}(p).$$

$$P = \left\{ p \mid p \in \mathbf{R}^N, p_k \ge 0, k = 1..., N, \sum_{k=1}^N p_k = 1 \right\}.$$

Excess demand and Walras' Law

Definition The excess demand function at prices $p \in P$ is

$$\tilde{Z}(p) = \tilde{D}(p) - \tilde{S}(p) - r = \sum_{i \in H} \tilde{D}^i(p) - \sum_{j \in F} \tilde{S}^j(p) - \sum_{i \in H} r^i.$$

Lemma 13.1 Assume C.I-C.V, C.VI(SC), C.VII, P.II, P.III, P.V, and P.VI. The range of Z(p) is bounded. Z(p) is continuous and well defined for all $p \in P$.

Proof Apply Theorems 11.1, 12.2, 13.1. The finite sum of bounded sets is bounded. The finite sum of continuous functions is continuous. QED

Theorem 13.2 (Weak Walras' Law) Assume C.I-C.V, C.VI(SC), C.VII, P.II, P.III, P.V, and P.VI. For all $p \in P$, $p \cdot \tilde{Z}(p) \leq 0$. For p such that $p \cdot \tilde{Z}(p) < 0$, there is k = 1, 2, ..., N so that $\tilde{Z}_k(p) > 0$.

Proof of Theorem 13.2 $p \cdot \tilde{D}^i(p) \leq \tilde{M}^i(p) = p \cdot r^i + \sum_{j \in F} \alpha^{ij} \tilde{\pi}^j(p)$. $\sum_{i \in H} \alpha^{ij} = \sum_{j \in F} \tilde{T}^i(p)$ 1 for each $j \in F$.

2

$$\begin{split} p \cdot \tilde{Z}(p) &= p \cdot \left[\sum_{i \in H} \tilde{D}^i(p) - \sum_{j \in F} \tilde{S}^j(p) - \sum_{i \in H} r^i \right] \\ &= p \cdot \sum_{i \in H} \tilde{D}^i(p) - p \cdot \sum_{j \in F} \tilde{S}^j(p) - p \cdot \sum_{i \in H} r^i \\ &= \sum_{i \in H} p \cdot \tilde{D}^i(p) - \sum_{j \in F} p \cdot \tilde{S}^j(p) - \sum_{i \in H} p \cdot r^i \\ &= \sum_{i \in H} p \cdot \tilde{D}^i(p) - \sum_{j \in F} \tilde{\pi}^j(p) - \sum_{i \in H} p \cdot r^i \\ &= \sum_{i \in H} p \cdot \tilde{D}^i(p) - \sum_{j \in F} \left[\sum_{i \in H} \alpha^{ij} \tilde{\pi}^j(p) \right] - \sum_{i \in H} p \cdot r^i \\ &= \sum_{i \in H} p \cdot \tilde{D}^i(p) - \sum_{i \in H} \left[\sum_{j \in F} \alpha^{ij} \tilde{\pi}^j(p) \right] - \sum_{i \in H} p \cdot r^i \\ &\text{Note the change in the order of summation} \\ &= \sum_{i \in H} p \cdot \tilde{D}^i(p) - \sum_{i \in H} \left\{ \left[\sum_{j \in F} \alpha^{ij} \tilde{\pi}^j(p) \right] + p \cdot r^i \right\} \\ &= \sum_{i \in H} p \cdot \tilde{D}^i(p) - \sum_{i \in H} \tilde{M}^i(p) \\ &= \sum_{i \in H} \left[p \cdot \tilde{D}^i(p) - \tilde{M}^i(p) \right] \leq 0. \end{split}$$

since $p \cdot \tilde{D}^i(p) \leq \tilde{M}^i(p)$ This proves the weak inequality as required.

We now must demonstrate the positivity of some coordinate of $\tilde{Z}(p)$ when the strict inequality holds. Let $p \cdot \tilde{Z}(p) < 0$. Then $p \cdot \sum_{i \in H} \tilde{D}^i(p) , so for some <math>i' \in H$, $p \cdot \tilde{D}^{i'}(p) < \tilde{M}^{i'}(p)$. Now we apply Lemma 5.3. We must have $|\tilde{D}^{i'}(p)| = c$. Recall that c is chosen so that |x| < c (a strict inequality) for all attainable x. But then $\tilde{D}^{i'}(p)$ is not attainable. For no $y \in \mathcal{Y}$ do we have $\tilde{D}^{i'}(p) \leq y + r$. But for all $i \in H$, $\tilde{D}^i(p) \in \mathbf{R}^N_+$. So $\sum_{i \in H} \tilde{D}^i(p) \geq \tilde{D}^{i'}(p)$. Therefore, $\tilde{Z}_k(p) > 0$, for some $k = 1, 2, \ldots, N$.

General equilibrium of the market economy with an excess demand function Existence of equilibrium

$$P = \left\{ p \mid p \in \mathbf{R}^N, p_k \ge 0, k = 1 \dots, N, \sum_{k=1}^N p_k = 1 \right\}.$$

$$\tilde{Z}(p) = \sum_{i \in H} \tilde{D}^i(\cdot) - \sum_{j \in F} \tilde{S}^j(\cdot) - r.$$

Definition $p^{\circ} \in P$ is said to be an equilibrium price vector if $\tilde{Z}(p^{\circ}) \leq 0$ (the inequality holds coordinatewise) with $p_k^{\circ} = 0$ for k such that $\tilde{Z}_k(p^{\circ}) < 0$.

Weak Walras' Law (Theorem 13.2): For all $p \in P$, $p \cdot \tilde{Z}(p) \leq 0$. For p such that $p \cdot \tilde{Z}(p) < 0$, there is $k = 1, 2, \ldots, N$ so that $\tilde{Z}_k(p) > 0$, under assumptions C.I–C.V, C.VI(SC), P.II, P.III, P.V, and P.VI.

Continuity: $\tilde{Z}(p)$ is a continuous function, assuming P.II, P.III, P.V, P.VI, C.I–C.V, C.VI(SC) and C.VII (Theorems 4.1, 5.2, and 6.1).

Theorem 9.3 Brouwer Fixed-Point Theorem: Let S be an N-simplex and let $f: S \to S$, where f is continuous. Then there is $x^* \in S$ so that $f(x^*) = x^*$.

Theorem 14.1 Assume P.II, P.III, P.V, P.VI, C.I–C.V, C.VI (SC), and C.VII. There is $p^* \in P$ so that p^* is an equilibrium.

Proof Let $T: P \to P$, where $T(p) = (T_1(p), T_2(p), \ldots, T_i(p), \ldots, T_N(p))$. $T_i(p)$ is the adjusted price of good i, adjusted by the auctioneer trying to bring supply and demand into balance. Let $\gamma^i > 0$; γ^i has the dimension, 1/i. The adjustment process of the ith price can be represented as $T_i(p)$, defined as follows:

$$T_i(p) \equiv \frac{\max[0, p_i + \gamma^i \tilde{Z}_i(p)]}{\sum_{n=1}^N \max[0, p_n + \gamma^n \tilde{Z}_n(p)]}.$$
 (14.1)

In order for T to be well defined, we must show that the denominator is nonzero, that is,

$$\sum_{n=1}^{N} \max[0, p_n + \gamma^n \tilde{Z}_n(p)] \neq 0.$$
 (14.2)

In fact, we claim that $\sum_{n=1}^{N} \max[0, p_n + \gamma^n \tilde{Z}_n(p)] > 0$. Suppose not. Then for each n, $\max[0, p_n + \gamma^n \tilde{Z}_n(p)] = 0$. Then all goods k with $p_k > 0$ must have $\tilde{Z}_k(p) < 0$. So $p \cdot \tilde{Z}(p) < 0$. Then by the Weak Walras' Law, there is n so that $\tilde{Z}_n(p) > 0$. Thus $\sum_{n=1}^{N} \max[0, p_n + \gamma^n \tilde{Z}_n(p)] > 0$.

4

By Lemma 13.1, $\tilde{Z}(p)$ is a continuous function. Then T(p) is a continuous function from the simplex into itself since continuity is preserved under the operations of max, addition, and division by a positive-valued continuous function.

By the Brouwer Fixed-Point Theorem there is $p^* \in P$ so that $T(p^*) = p^*$. But then for all k = 1, ..., N,

$$T_{i}(p^{*}) \equiv \frac{\max[0, p_{i}^{*} + \gamma^{i} \tilde{Z}_{i}(p^{*})]}{\sum_{n=1}^{N} \max[0, p_{n}^{*} + \gamma^{n} \tilde{Z}_{n}(p^{*})]}.$$
(14.3)

We'll demonstrate that $\tilde{Z}_n(p^*) \leq 0$ all n.

Looking at the numerator in this expression, we can see that the equation will be fulfilled either by

$$p_k^* = 0 (Case1)$$

or by

$$p_k^* = \frac{p_k^* + \gamma^k \tilde{Z}_k(p^*)}{\sum_{n=1}^N \max[0, p_n^* + \gamma^n \tilde{Z}_n(p^*)]} > 0 \qquad (Case2).$$
 (14.5)

CASE 1 $p_k^* = 0 = \max[0, p_k^* + \gamma^k \tilde{Z}_k(p^*)]$. Hence, $0 \geq p_k^* + \gamma^k \tilde{Z}_k(p^*) = \gamma^k \tilde{Z}_k(p^*)$ and $\tilde{Z}_k(p^*) \leq 0$. This is the case of free goods with market clearing or with excess supply in equilibrium.

CASE 2 To avoid repeated messy notation, let

$$\lambda = \frac{1}{\sum_{n=1}^{N} \max[0, p_n^* + \gamma^n \tilde{Z}_n(p^*)]} > 0$$
 (14.6)

so that $T_k(p^*) = \lambda(p_k^* + \gamma^k \tilde{Z}_k(p^*))$. We'll demonstrate that $\tilde{Z}_n(p^*) \leq 0$ all n. Since p^* is the fixed point of T we have $p_k^* = \lambda(p_k^* + \gamma^k \tilde{Z}_k(p^*)) > 0$. This expression is true for all k with $p_k^* > 0$, and λ is the same for all k. Let's perform some algebra on this expression. We first combine terms in p_k^* :

$$(1 - \lambda)p_k^* = \lambda \gamma^k \tilde{Z}_k(p^*), \tag{14.7}$$

then multiply through by $\tilde{Z}_k(p^*)$ to get

$$(1 - \lambda)p_k^* \tilde{Z}_k(p^*) = \lambda \gamma^k (\tilde{Z}_k(p^*))^2, \tag{14.8}$$

and now sum over all k in Case 2, obtaining

$$(1 - \lambda) \sum_{k \in \text{Case2}} p_k^* \tilde{Z}_k(p^*) = \lambda \sum_{k \in \text{Case2}} \gamma^k (\tilde{Z}_k(p^*))^2.$$
 (14.9)

The Weak Walras' Law says

$$0 \ge \sum_{k=1}^{N} p_k^* \tilde{Z}_k(p^*) = \sum_{k \in \text{Case1}} p_k^* \tilde{Z}_k(p^*) + \sum_{k \in \text{Case2}} p_k^* \tilde{Z}_k(p^*).$$
 (14.10)

But for $k \in \text{Case } 1$, $p_k^* \tilde{Z}_k(p^*) = 0$, and so

$$0 = \sum_{k \in \text{Case1}} p_k^* \tilde{Z}_k(p^*). \tag{14.11}$$

Therefore,

$$\sum_{k \in \text{Case2}} p_k^* \tilde{Z}_k(p^*) \le 0. \tag{14.12}$$

Hence, from (14.9) we have

$$0 \ge (1 - \lambda) \cdot \sum_{k \in \text{Case2}} p_k^* \tilde{Z}_k(p^*) = \lambda \cdot \sum_{k \in \text{Case2}} \gamma^k (\tilde{Z}_k(p^*))^2.$$
 (14.13)

The left-hand side ≤ 0 . But the right-hand side is necessarily nonnegative. It can be zero only if $Z_k(p^*) = 0$ for all k such that $p_k^* > 0$ (k in Case 2). Thus, p^* is an equilibrium. This concludes the proof.

QED

Lemma 14.1 Assume P.II, P.III, P.V, P.VI, C.I-C.V, C.VI(SC), and C.VII. Let p^* be an equilibrium. Then for all $i \in H$, $|\tilde{D}^i(p^*)| < c$, where c is the bound on the Euclidean length of demand, $D^{i}(p^{*})$. Further, in equilibrium, Walras' Law holds as an equality: $p^* \cdot \tilde{Z}(p^*) = 0$.

Proof Since $\tilde{Z}(p^*) \leq 0$ (coordinatewise), we know that

$$\sum_{i \in H} \tilde{D}^i(p^*) \le \sum_{j \in F} \tilde{S}^j(p^*) + \sum_{i \in H} r^i,$$

where the inequality holds coordinatewise. However, that implies that the aggregate consumption $\sum_{i \in H} D^i(p^*)$ is attainable, so for each household i, $|\tilde{D}^i(p^*)| < c$, where c is the bound on demand, $\tilde{D}^i(\cdot)$.

We have for all $p, p \cdot \tilde{Z}(p) \leq 0$. In equilibrium, at p^* , we have $\tilde{Z}(p^*) \leq 0$ (coordinatewise) with $p_k^* = 0$ for k so that $\tilde{Z}_k(p^*) < 0$. Therefore $p^* \cdot \tilde{Z}(p^*) = 0$. QED