Answers to Exam No. 1 on Topics from Chapters 2 through 9

1. $\quad \mathrm{SR}_{\mathrm{t}}=\mathrm{RFR}_{\mathrm{t}}+\alpha \mathrm{MR}_{\mathrm{t}}-\alpha \mathrm{RFR}_{\mathrm{t}}+\mathrm{v}_{\mathrm{t}}=\mathrm{RFR}_{\mathrm{t}}(1-\alpha)+\alpha \mathrm{MR}_{\mathrm{t}}+\mathrm{v}_{\mathrm{t}}$

Therefore, $\beta_{1}=0, \beta_{2}=\alpha$, and $\beta_{3}=1-\alpha$. The relevant restrictions are $\beta_{1}=0$ and $\beta_{2}+\beta_{3}=1$.
2. First regress SR_{t} against a constant, MR_{t}, and $\mathrm{RFR}_{\mathrm{t}}$, and save the error sum of squares as ESSA. Next generate $\mathrm{Y}_{\mathrm{t}}=\mathrm{SR}_{\mathrm{t}}-\mathrm{RFR}_{\mathrm{t}}$ and $\mathrm{X}_{\mathrm{t}}=\mathrm{MR}_{\mathrm{t}}-\mathrm{RFR}_{\mathrm{t}}$. Then regress Y_{t} against X_{t} without a constant term and save the error sum of squares as ESSB.
3. Compute $\mathrm{F}_{\mathrm{c}}=\frac{(E S S B-E S S A) / 2}{E S S A /(52-3)}$.
4. Under the null hypothesis, F_{c} has the F-distribution with 2 d.f. for the numerator and 49 d.f. for the denominator.
5. Look up the F-table and find $F_{2.49}^{*}$, the point at which the area to the right is 0.05 . From the table, we interpolate it to be approximately 3.19. Reject the null hypothesis that $\beta_{1}=0$ and $\beta_{2}+\beta_{3}=1$ if $\mathrm{F}_{\mathrm{c}}>3.19$.
6. The transformed model is:
(C) $\quad \mathrm{SR}_{\mathrm{t}}-\rho \mathrm{SR}_{\mathrm{t}-1}=\beta_{1}(1-\rho)+\beta_{2}\left(\mathrm{MR}_{\mathrm{t}}-\rho \mathrm{MR}_{\mathrm{t}-1}\right)+\beta_{3}\left(\mathrm{RFRt}-\rho \mathrm{RFR}_{\mathrm{t}-1}\right)+\varepsilon_{t}$

Step 1 Fix the value of ρ. Then generate $\mathrm{SR}^{*}=\mathrm{SR}_{\mathrm{t}}-\rho \mathrm{SR}_{\mathrm{t}-1}, \mathrm{MR}^{*}=\mathrm{MR}_{\mathrm{t}}-\rho \mathrm{MR}_{\mathrm{t}-1}$ and RFR $^{*}=R F R t-\rho R_{\text {R }}^{t}-1$.
Step 2 Regress SR^{*} against a constant, MR^{*}, and RFR^{*}, and get $\hat{\beta_{1}}, \hat{\beta}_{2}$, and $\hat{\beta}_{3}$.
Step 3
Vary ρ at broad steps from -0.99 through +0.99 , say, at steps of length 0.1 . Choose the $\hat{\rho}$ that minimizes ESSC as the starting point of a Cochrane-Orcutt iteration.
Step $4 \quad$ Repeat Step 2 after using this $\hat{\rho}$ in Step 1 and compute

$$
\hat{u}_{t}=\mathrm{SR}_{\mathrm{t}}-\hat{\beta_{1}}-\hat{\beta_{2}} \mathrm{MR}_{\mathrm{t}}-\hat{\beta}_{3} \mathrm{RFR}_{\mathrm{t}} .
$$

Step $5 \quad$ Get new estimate $\hat{\rho}=\frac{\sum \hat{u}_{t} \hat{u}_{t-1}}{\sum \hat{u}_{t-1}^{2}}$.
Step 6 Repeat Steps 1, 2, 4, and 5, using new $\hat{\rho}$ values and iterate $\hat{\rho}$ from two successive iterations do not change by more than say 0.001 .
Step $7 \quad$ Using this final $\hat{\rho}$ estimate Model C.
7.

Testing
Step 1 Regress SR_{t} against a constant, MR_{t}, and $\mathrm{RFR}_{\mathrm{t}}$, and save the error term as \hat{u}_{t}.
Step 2 Regress \hat{u}_{t} against a constant, $\hat{u}_{t-1}, \hat{u}_{t-2}, \hat{u}_{t-3}, \hat{u}_{t-4}, \mathrm{MR}_{\mathrm{t}}$, and $\mathrm{RFR}_{\mathrm{t}}$ using observations 5 through 52 .
Step 3 Compute $L M=52 R^{2}$, where R^{2} is the unadjusted goodness of fit in Step 2.
Step 4 Reject the null hypothesis of no serial correlation if LM >9.48773, the point on the Chi-square distribution with 4 d.f. with an area of 0.05 to the right of it.

Estimation

Step 1 Regress SR_{t} against a constant, MR_{t}, and $\mathrm{RFR}_{\mathrm{t}}$, and save the error term as \hat{u}_{t}.

Step 2

Step 3

Step 4

Step 5
Step 6
Step 7 Stop when the error sum of squares from Step 4 does not change by more than a pre-specified percent, say 0.01 .

