Answers to Exam No. 1 on Topics from Chapters 2 through 9

1.
$$SR_t = RFR_t + a MR_t - a RFR_t + v_t = RFR_t(1-a) + a MR_t + v_t$$

Therefore, $\boldsymbol{b}_1 = 0$, $\boldsymbol{b}_2 = \boldsymbol{a}$, and $\boldsymbol{b}_3 = 1 - \boldsymbol{a}$. The relevant restrictions are $\boldsymbol{b}_1 = 0$ and $\boldsymbol{b}_2 + \boldsymbol{b}_3 = 1$.

2. First regress SR_t against a constant, MR_t , and RFR_t , and save the error sum of squares as *ESSA*. Next generate $Y_t = SR_t - RFR_t$ and $X_t = MR_t - RFR_t$. Then regress Y_t against X_t without a constant term and save the error sum of squares as *ESSB*.

3. Compute
$$F_c = \frac{(ESSB - ESSA)/2}{ESSA/(52-3)}$$

4. Under the null hypothesis, F_c has the F-distribution with 2 d.f. for the numerator and 49 d.f. for the denominator.

5. Look up the F-table and find $F_{2,49}^*$, the point at which the area to the right is 0.05. From the table, we interpolate it to be approximately 3.19. Reject the null hypothesis that $\boldsymbol{b}_1 = 0$ and $\boldsymbol{b}_2 + \boldsymbol{b}_3 = 1$ if $F_c > 3.19$.

6. The transformed model is:

(C)
$$SR_t - rSR_{t-1} = \boldsymbol{b}_1(1 - r) + \boldsymbol{b}_2(MR_t - rMR_{t-1}) + \boldsymbol{b}_3(RFRt - rRFR_{t-1}) + \boldsymbol{e}_3$$

- <u>Step 1</u> Fix the value of \mathbf{r} . Then generate $SR^* = SR_t \mathbf{r}SR_{t-1}$, $MR^* = MR_t \mathbf{r}MR_{t-1}$ and $RFR^* = RFRt - \mathbf{r}RFR_{t-1}$.
- <u>Step 2</u> Regress SR^{*} against a constant, MR^{*}, and RFR^{*}, and get \hat{b}_1 , \hat{b}_2 , and \hat{b}_3 .

Step 3Vary r at broad steps from -0.99 through + 0.99, say, at steps of length 0.1. Choose
the \hat{r} that minimizes ESSC as the starting point of a Cochrane-Orcutt iteration.

<u>Step 4</u> Repeat Step 2 after using this $\hat{\mathbf{r}}$ in Step 1 and compute

$$\hat{u}_t = \mathbf{SR}_t - \hat{\boldsymbol{b}}_1 - \hat{\boldsymbol{b}}_2 \mathbf{MR}_t - \hat{\boldsymbol{b}}_3 \mathbf{RFR}_t$$

<u>Step 5</u> Get new estimate $\hat{\mathbf{r}} = \frac{\sum \hat{u}_{i} \hat{u}_{i-1}}{\sum \hat{u}_{i-1}^2}$.

Step 6Repeat Steps 1, 2, 4, and 5, using new \hat{r} values and iterate \hat{r} from two successive
iterations do not change by more than say 0.001.Step 7Using this final \hat{r} estimate Model C.

7. **Testing**

Step 1	Regress SR _t against a constant, MR _t , and RFR _t , and save the error term as \hat{u}_t .
Step 2	Regress \hat{u}_t against a constant, \hat{u}_{t-1} , \hat{u}_{t-2} , \hat{u}_{t-3} , \hat{u}_{t-4} , MRt, and RFRt using
<u>Step 3</u> Step 4	observations 5 through 52. Compute $LM = 52 R^2$, where R^2 is the unadjusted goodness of fit in Step 2. Reject the null hypothesis of no serial correlation if $LM > 9.48773$, the point on the Chi-square distribution with 4 d.f. with an area of 0.05 to the right of it.

Estimation

he error term as \hat{u}_t .
ng observations
$\hat{\boldsymbol{r}}_4$.
4
RFR _{t-4}
$\hat{\boldsymbol{b}}_1, \ \hat{\boldsymbol{b}}_2, \text{ and } \ \hat{\boldsymbol{b}}_3.$ Note
n Step 4 by
below applies.
hange by more than a