Answers to Exam No. 1 on Topics from Chapters 2 through 8

- I. 1. $\boldsymbol{s}_{t}^{2} = \boldsymbol{a}_{1} + \boldsymbol{a}_{2} pop_{t} + \boldsymbol{a}_{3} pop_{t}^{2}$.
- 2. The null hypothesis is $\boldsymbol{a}_2 = \boldsymbol{a}_3 = 0$.
- 3. The test statistic is $LM = 51 \times 0.119 = 6.069$.
- 4. Under the null, LM is distributed as Chi-square with 2 d.f.

5. For a 5 percent level, the critical $LM^* = 5.99146$. Because $LM > LM^*$, we reject the null hypothesis and conclude that there is significant HSK.

6. Using the auxiliary regression, estimate the residual variance as

$$\hat{s}_{t}^{2} = -1.37791 + 1.37239 pop_{t} - 0.04124 pop_{t}^{2}$$

Next compute $w_t = 1/\sqrt{\hat{s}_t^2}$. Finally, regress ($w_t \text{EXPTRAV}_t$) against w_t and ($w_t \text{ INCOME}_t$), with no constant term.

II.

 $S_t = \mathbf{a} + \mathbf{b}A_t + u_t$ and $\mathbf{s}_t^2 = \mathbf{s}^2 / N_t$. Let $w_t = 1/\sqrt{1/N_t} = \sqrt{N_t}$. Next regress $w_t S_t$ against $w_t S_t$, and $w_t A_t$, without a constant term. Because we are using known weights, OLS estimators are unbiased, consistent, most efficient, and BLUE. Also all tests of hypotheses are valid.