Answers to Exam No. 1 on Topics from Chapters 2 through 7

1. $H_{0}: \beta_{i}=0$ for $i=6, \ldots ., 10$.
2. Model A is the unrestricted model and Model B is the restricted model. Compute

$$
F_{c}=\frac{(E S S A-E S S B) / 5}{E S S A /(116-10)}=\frac{(5172.56-763.029) / 5}{763.029 / 106}=122.51
$$

Under $H_{0}:, F_{c} \sim F_{5,106}$.
3. From the F-table for 1 percent level, $F_{5,106}^{*}(0.01)$ is between 3.17 and 3.34. Since $F_{c}>F^{*}$, we reject H_{0} and conclude that there has been a significant change in the structure.
4. Six out of the eight model selection criteria choose Model C as the best. But Model C β_{2} and β_{8} with p-values slightly above 10 percent. Omitted variable bias suggests that it is better to leave a variable in a model if it appears to have some effect. Since β_{2} and β_{8} are only slightly insignificant, Model C is the best.
5.

	1980 data	1990 data
Famsize	4.944	$4.944+9.760=14.704$
Highschl	0.223	$0.223+0.199=0.422$
College	0.339	$0.339+0.871=1.210$

6. In 1990, an increase in family size of one person resulted in an average increase of $\$ 14,704$ in median income. This is $\$ 9,760$ more than the same marginal effect in 1980 .

A one percent increase in high school graduates increased median income on average by $\$ 422$ in 1990, which is $\$ 199$ more than the marginal effect in 1980.

A one percent increase in college graduates increased median income on average by $\$ 422$ in 1990, which is $\$ 199$ more than the marginal effect in 1980.

