Answers to Exam No. 2 on Topics from Chapters 2 through 6

1. A simple way is to let $\mathbf{a} = \mathbf{a}_1 + \mathbf{a}_2 N_t$ and $\mathbf{b} = \mathbf{b}_1 + \mathbf{b}_2 N_t + \mathbf{b}_3 Y_t$. Substituting this in the model, we get the unrestricted model (U) as

$$C_{t} = a_{1} + a_{2}N_{t} + Y_{t}(b_{1} + b_{2}N_{t} + b_{3}Y_{t}) + u_{t}$$

$$= \boldsymbol{a}_{1} + \boldsymbol{a}_{2}N_{t} + \boldsymbol{b}_{1}Y_{t} + \boldsymbol{b}_{2}(Y_{t}N_{t}) + \boldsymbol{b}_{3}Y_{t}^{2} + u_{t}$$

2. Differentiating the model partially with respect to *N*, we get $\frac{\partial C_t}{\partial N_t} = \mathbf{a}_2 + \mathbf{b}_2 Y_t$.

3. H_0 : $\boldsymbol{a}_2 = \boldsymbol{b}_2 = 0$. H_1 : At least one is not zero.

4. First regress *C* against a constant and *Y* and save the residuals as $u_t = C_t - \hat{a} - \hat{b}Y_t$. Next estimate the auxiliary regression by regressing u_t against a constant, N_t , Y_t , $Y_t N_t$, and Y_t^2 . Then compute unadjusted R^2 in the auxiliary regression. Test statistic is LM = 40 R^2 .

5. Under H_0 , LM has the c^2 distribution with 2 d.f. From c_2^2 , compute the area to the right of LM. If this is less than 0.10, we reject H_0 .