Answers to Exam on Chapter 2 Topics

I..

We know that subtracting the mean and dividing by the standard deviation results in a distribution with mean 0 and standard deviation 1. Thus, the area between 375 and 400 in a normal distribution with mean 352 and standard deviation 31 is equivalent to the area between $(375-352) / 31=0.74$ and $(400-352) / 31=1.55$. From Table A.1, this is the area from 0 to 1.55 minus the area from 0 to 0.74 , which is, $0.4394-0.2704=0.169$.
II.
$E(Y)=\sum_{i=1}^{n}\left(a+b x_{i}\right) f\left(x_{i}\right)=a \sum_{i-1}^{n} f\left(x_{i}\right)+b \sum_{i=1}^{n} x_{i} f\left(x_{i}\right)=a+b \mu$, because probabilities sum to 1 and the second summation is $E(X)=\mu$. By proceeding similarly, it is easy to verify that $E\left(Y^{2}\right)=$ $\sum_{i=1}^{n}\left(a+b x_{i}\right)^{2} f\left(x_{i}\right)=a^{2}+2 a b E(X)+b^{2} E\left(X^{2}\right)=a^{2}+2 a b \mu+b^{2} E\left(X^{2}\right)$. Therefore, $\operatorname{Var}(Y)=$ $E\left(Y^{2}\right)[E(Y)]^{2}=a^{2}+2 a b E(X)+b^{2} E\left(X^{2}\right)-(a+b \mu)^{2}=b^{2}\left[E\left(X^{2}\right)-\mu^{2}\right]=b^{2} \sigma^{2}$.
III.

$$
\begin{array}{ll}
\text { First location: } & E(\text { Profit })=\frac{1}{2} 20000-\frac{1}{2} 2000=9,000 \\
\text { Second location: } & E \text { (Profit })=\frac{1}{2} 25000-\frac{1}{2} 5000=10,000
\end{array}
$$

Because the expected profit is higher in the second location, the company should locate there.
IV.
$E\left(\hat{\mu}_{1}\right)=0.2 \mu+0.3 \mu+0.5 \mu=\mu . E\left(\hat{\mu}_{2}\right)=0.4 \mu+0.2 \mu+0.4 \mu=\mu . E\left(\hat{\mu}_{3}\right)=0.3 \mu+$ $0.3 \mu+0.3 \mu=0.9 \mu$. It is evident that $\hat{\mu}_{3}$ is biased. $\operatorname{Var}\left(\hat{\mu}_{1}\right)=0.2^{2} \sigma^{2}+0.3^{2} \sigma^{2}+0.5^{2} \sigma^{2}=$ $0.38 \sigma^{2} . \operatorname{Var}\left(\hat{\mu}_{2}\right)=0.4^{2} \sigma^{2}+0.2^{2} \sigma^{2}+0.4^{2} \sigma^{2}=0.36 \sigma^{2}$. Because $\hat{\mu}_{2}$ has a smaller variance, it is more efficient.
V.

In this binomial example, $n=18$ and $p=0.6$. Let $E=9$ or fewer of customers prefer Brand A.
We want $P(E)$ when $p=0.6$. The expression for the binomial probability is given in Section 2.1. We
Have,

$$
P(E)=\sum_{i=0}^{9}\binom{n}{i} p^{i}(1-p)^{n-i}=\sum_{i=0}^{9}\binom{18}{i} 0.6^{i} 0.4^{18-i}
$$

Calculating this is obviously cumbersome. However, standard statistical tables provide tabulations of the values of the cumulative binomial distribution for different values of n, i, and p. Appendix Table A. 6 has

$$
P\left(X \geq x^{\prime}-1\right)=\sum_{x=x^{\prime}}^{n}\binom{n}{x} p^{x}(1-p)^{n-x}
$$

for different values of n and x^{\prime} and selected values of $p \leq 0.5$. But this is not exactly what we want (our p is greater than 0.5). The trick is to resort to the symmetry of the binomial distribution to get what we want. For example, let $x=18-i$. Then, noting that $\binom{n}{x}=\binom{n}{n-x}$, we have,

$$
\binom{18}{i} 0.6^{i} 0.4^{18-i}=\binom{18}{18-x} 0.6^{18-x} 0.4^{x}=\binom{18}{x} 0.4^{x} 0.6^{18-x}
$$

Hence,

$$
P(E)=\sum_{x=10}^{18}\binom{18}{x} 0.4^{x} 0.6^{18-x}
$$

This has the form of the binomial with $p=0.4$, which is tabulated in Table A.6. By referring to it we find that $P(E)=0.1347$. Thus there is a 13.47% chance of erroneously concluding that Brand A is not preferred.

