Answers to Exam on Topics from Chapters 2 through 13

The model equations are reproduced below.
(1) $\mathrm{Y}_{1}=\alpha_{1}+\alpha_{2} \mathrm{X}_{1}+\alpha_{3} \mathrm{X}_{2}+\alpha_{4} \mathrm{X}_{3}+\mathrm{u}$
(2) $\quad Y_{2}=\beta_{1}+\beta_{2} Y_{3}+\beta_{3} X_{2}+v$
(3) $\quad Y_{3}=Y_{2}-Y_{1}$

1. The first equation is already in reduced form. Substitute for Ys from the first and second equations into the third. We have,

$$
\begin{aligned}
Y_{3} & =\beta_{1}+\beta_{2} Y_{3}+\beta_{3} X_{2}+\mathrm{v}-\left(\alpha_{1}+\alpha_{2} X_{1}+\alpha_{3} X_{2}+\alpha_{4} X_{3}+\mathrm{u}\right) \\
& =\left(\beta_{1}-\alpha_{1}\right)+\beta_{2} Y_{3}-\alpha_{2} X_{1}+\left(\beta_{3}-\alpha_{3}\right) X_{2}-\alpha_{4} X_{3}+(\mathrm{v}-\mathrm{u})
\end{aligned}
$$

Solving for Y_{3}, we obtain the reduced form for Y_{3} as follows.

$$
\begin{align*}
Y_{3} & =\frac{\left(\beta_{1}-\alpha_{1}\right)}{\left(1-\beta_{2}\right)}-\frac{\alpha_{2}}{\left(1-\beta_{2}\right)} X_{1}+\frac{\left(\beta_{3}-\alpha_{3}\right)}{\left(1-\beta_{2}\right)} X_{2}-\frac{\alpha_{4}}{\left(1-\beta_{2}\right)} X_{3}+\frac{(v-u)}{\left(1-\beta_{2}\right)} \tag{4}\\
& =\pi_{1}+\pi_{2} X_{1}+\pi_{3} X_{2}+\pi_{4} X_{3}+\varepsilon_{1}
\end{align*}
$$

The reduced form for Y_{2} is obtained by substituting for Y_{3} from the above equation into the second equation.

$$
\begin{align*}
Y_{2} & =\beta_{1}+\beta_{2}\left(\pi_{1}+\pi_{2} X_{1}+\pi_{3} X_{2}+\pi_{4} X_{3}+\varepsilon_{1}\right)+\beta_{3} X_{2}+v \tag{5}\\
& =\left(\beta_{1}+\beta_{2} \pi_{1}\right)+\beta_{2} \pi_{2} X_{1}+\left(\beta_{2} \pi_{3}+\beta_{3}\right) X_{2}+\beta_{2} \pi_{4} X_{3}+\varepsilon_{2} \\
& =\mu_{1}+\mu_{2} X_{1}+\mu_{3} X_{2}+\mu_{4} X_{3}+\varepsilon_{2}
\end{align*}
$$

2. Because the first equation does not involve any endogenous variables that are correlated with the error terms, we can apply OLS estimation and obtain estimators that are BLUE.
3. The second equation has Y_{3} on the right hand side, which is correlated with v (as seen from the reduced form equation for Y_{3}). Therefore, OLS estimators are biased and inconsistent.
4. First estimate the reduced from for Y_{3} by regressing it against a constant, X_{1}, X_{2}, and X_{3} and save the predicted value as $\hat{Y}_{3}=\hat{\pi}_{1}+\hat{\pi}_{2} X_{1}+\hat{\pi}_{3} X_{2}+\hat{\pi}_{4} X_{3}$. Next regress Y_{2} against a constant, \hat{Y}_{3}, and X_{2}.
5. The first equation is already in reduced form and hence it is uniquely estimable. Since $\mu_{2}=$ $\beta_{2} \pi_{2}$, we can estimate β_{2} as $\hat{\mu}_{3} / \hat{\pi}_{2}$. However, this is not unique because we also have $\tilde{\beta_{2}}=$ $\hat{\mu}_{4} / \pi_{4}$. Because β_{1} and β_{3} depend on β_{2}, their estimates too are not unique. This is because the second equation is over-identified and hence TSLS is the appropriate estimation procedure for that equation.
