Econ 120C
Fall 2003

Ramu Ramanathan Second exam answers

I.

In an aggregate economy, let M^{*} be the desired stock of money, Y per capita income, and r the interest rate. The long-run equilibrium relationship for the desired stock of money is given by the double \log model (where $\mathbf{L N}$ stands for natural \log)

$$
\begin{equation*}
L N M_{t}^{*}=\alpha+\beta L N Y_{t}+\gamma L N r_{t}+u_{t} \tag{1}
\end{equation*}
$$

Because of market frictions, the desired stock of money can be attained only through dynamic adjustments. Consider the following partial adjustment mechanism that determines the actual stock of money $\left(L N M_{t}\right)$.

$$
\begin{equation*}
L N M_{t}=L N M_{t-1}+\lambda\left(L N M_{t}^{*}-L N M_{t-1}\right) \quad 0<\lambda<1 \tag{2}
\end{equation*}
$$

Ia (8 points). Derive an estimable econometric relation of the form

$$
\begin{equation*}
L N M_{t}=\beta_{1}+\beta_{2} L N M_{t-1}+\beta_{3} L N Y_{t}+\beta_{4} L N r_{t}+u_{t} \tag{3}
\end{equation*}
$$

in which the coefficients of equation (3) are expressed in terms of α, β, γ, and λ (show your derivation). Express each β_{i} in terms of α, β, γ, and λ.

$$
\begin{aligned}
L N M_{t} & =L N M_{t-1}+\lambda\left(L N M_{t}^{*}-L N M_{t-1}\right)=(1-\lambda) L N M_{t-1}+\lambda L N M_{t}^{*} \\
& =(1-\lambda) L N M_{t-1}+\lambda\left(\alpha+\beta L N Y_{t}+\gamma L N r_{t}+u_{t}\right) \\
& =\lambda \alpha+(1-\lambda) L N M_{t-1}+\lambda \beta L N Y_{t}+\lambda \gamma L N r_{t}+\text { error }
\end{aligned}
$$

Therefore, $\beta_{1}=\lambda \alpha, \beta_{2}=1-\lambda, \beta_{3}=\lambda \beta$, and $\beta_{4}=\lambda \gamma$.
Ib (8 points). With quarterly data for 89 observations, the following estimated relation was obtained by the OLS procedure.

$$
\widehat{L N M_{t}}=-0.077+0.799 L N M_{t-1}+0.172 L N Y_{t}-0.077 L N r_{t}
$$

Carefully calculate the estimates of α, β, γ, and λ.
$\hat{\lambda}) \quad=1-\hat{\beta}_{2}=1-0.799=0.201$
$\hat{\alpha}) \quad=\hat{\beta_{1}} / \hat{\lambda}=-0.077 / 0.201=-0.383$

$$
\begin{aligned}
& \hat{\beta})=\hat{\beta}_{3} / \hat{\lambda}=0.172 / 0.201=0.856 \\
& \hat{\gamma})=\hat{\beta}_{4} / \hat{\lambda}=-0.077 / 0.201=-0.383
\end{aligned}
$$

Ic (4 points). Compute the long-run elasticities of income and interest rate.
Income) It is the same as $\hat{\beta}=0.856$

Interest rate) It is the same as $\hat{\gamma}=-0.383$

Id (3 points). Because the data are quarterly, I suspected serial correlation of order 4. Write down the auxiliary equation for the error term and state the null hypothesis of no serial correlation.

$$
\begin{aligned}
& u_{t}=\rho_{1} u_{t-1}+\rho_{2} u_{t-2}+\rho_{3} u_{t-3}+\rho_{4} u_{t-4}+\varepsilon_{t} \\
& H_{0}: \rho_{i}=0 \quad \text { for } i=1,2,3,4 .
\end{aligned}
$$

Ie (12 points). The unadjusted R^{2} for the auxiliary regression was 0.0946 . Compute the LM test statistic, state its distribution under the null including d.f., and carry out test at the 5 percent level. Do you conclude that there is significant autocorrelation? In the light of your conclusion, was OLS acceptable or should some other procedure have been used? If the latter, state the name of the procedure that should be used (you need not describe it).
$L M=(n-p) R^{2}=85 \times 0.0946=8.041$
Under the null, LM has the chi-square distribution with 4 d.f.
$L M^{*}=9.48773$. Because $L M<L M^{*}$, we cannot reject H_{0}.
The conclusion is that there is no significant serial correlation of order 4.
This implies that OLS procedure is acceptable.

II.

Consider the following simultaneous equation model.
(2) $\quad \mathbf{X}_{\mathbf{t}}=\beta_{0}+\beta_{1} \mathbf{X}_{\mathbf{t}-1}+\beta_{2} \mathbf{Y}_{\mathbf{t}-1}+\mathbf{v}_{\mathbf{t}}$
u_{t} and v_{t} are the random error terms. The reduced form equation for Y_{t} is of the form

$$
\begin{equation*}
\mathbf{Y}_{\mathbf{t}}=\pi_{0}+\pi_{1} \mathbf{X}_{\mathbf{t}-\mathbf{1}}+\pi_{2} \mathbf{Y}_{\mathbf{t}-1}+\text { error } \tag{3}
\end{equation*}
$$

IIa (10 points). Explicitly derive the reduced form equation for Y_{t} and express the $\pi \mathbf{s}$ in terms of the $\alpha \mathrm{s}$ and $\beta \mathrm{s}$. You need not do the same for \mathbf{X}_{t} because it is already in reduced form (since it does not contain Y_{t}).

Substitute (2) in (1) for X_{t}, to get $\quad Y_{t}=\alpha_{0}+\alpha_{1}\left(\beta_{0}+\beta_{1} X_{t-1}+\beta_{2} Y_{t-1}+v_{t}\right)+u_{t}$ Grouping terms, $\quad Y_{t}=\left(\alpha_{0}+\alpha_{1} \beta_{0}\right)+\alpha_{1} \beta_{1} X_{t-1}+\alpha_{1} \beta_{2} Y_{t-1}+$ error
We thus have, $\pi_{0}=\left(\alpha_{0}+\alpha_{1} \beta_{0}\right), \pi_{1}=\alpha_{1} \beta_{1}$, and $\pi_{2}=\alpha_{1} \beta_{2}$

IIb (5 points). Suppose you have estimates of the reduced form equations for X_{t} and Y_{t}, that is, you have the $\hat{\pi}$ s and the $\hat{\beta}$ s. Using the relationships you derived in IIa, obtain the expressions for $\hat{\alpha}_{0}$ and $\hat{\alpha}_{1}$ in terms of the $\hat{\pi} \mathrm{s}$ and the $\hat{\beta} \mathrm{s}$. Is Equation (1) exactly identified, under identified or over identified?

Solving backwards we get, $\quad \hat{\alpha}_{1}=\hat{\pi}_{1} / \hat{\beta}_{1}, \quad \hat{\alpha}_{1}=\hat{\pi}_{2} / \hat{\beta}_{2}$, and $\hat{\alpha}_{0}=\hat{\pi}_{0}-\hat{\alpha}_{1} \hat{\beta}_{0}$.
Because there are two estimators for α_{1}, the model is over-identified.

