ECON 120C, FALL 2003, HOMEWORK \#2 - PART II

This is due at the same time as the empirical part.

Consider the following simultaneous model's structural equations.

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{t}}=\alpha_{0}+\alpha_{1} \mathrm{X}_{\mathrm{t}}+\alpha_{2} \mathrm{Y}_{\mathrm{t}-1}+\mathrm{u}_{\mathrm{t}} \\
& \mathrm{X}_{\mathrm{t}}=\beta_{0}+\beta_{1} \mathrm{Y}_{\mathrm{t}}+\beta_{2} \mathrm{X}_{\mathrm{t}-1}+\mathrm{v}_{\mathrm{t}}
\end{aligned}
$$

1) Derive the reduced form equations for X_{t} and Y_{t}. Note that you should express them only in terms of a constant term, $\mathrm{X}_{\mathrm{t}-1}, \mathrm{Y}_{\mathrm{t}-1}$, and the errors. Use the notation used in class for the reduced form parameters ($\pi \mathrm{s}$ and $\mu \mathrm{s}$).
2) Derive expressions for the $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ in terms of the $\pi \mathrm{s}$ and $\mu \mathrm{s}$. Are the structural equations under-identified, exactly identified, or over-identified?
