ECON 120B, SPRING 2003 --- ANSWERS TO HOMEWORK \#1

Exercise 3.8

The slope of the line connecting the first and second point is $\left(\mathrm{Y}_{2}-\mathrm{Y}_{1}\right) /\left(\mathrm{X}_{2}-\mathrm{X}_{1}\right)$. The slope of the line connecting the second and third points is $\left(\mathrm{Y}_{3}-\mathrm{Y}_{2}\right) /\left(\mathrm{X}_{3}-\mathrm{X}_{2}\right)$. By proceeding similarly, the slope of the line connecting point $t-1$ with t is given by $\left(\mathrm{Y}_{\mathrm{t}}-\mathrm{Y}_{\mathrm{t}-1}\right) /\left(\mathrm{X}_{\mathrm{t}}-\mathrm{X}_{\mathrm{t}-1}\right)$.

The scatter diagram for this is given below.

The average of all the slopes in the scatter diagram is given by

$$
\widetilde{\beta}=\frac{1}{n-1} \sum_{t=2}^{n}\left[\frac{Y_{t}-Y_{t-1}}{X_{t}-X_{t-1}}\right]
$$

To compute the expected value of $\widetilde{\beta}$, we have,

$$
\frac{Y_{t}-Y_{t-1}}{X_{t}-X_{t-1}}=\frac{\alpha+\beta X_{t}+u_{t}-\alpha-\beta X_{t-1}-u_{t-1}}{X_{t}-X_{t-1}}=\beta+\frac{u_{t}-u_{t-1}}{X_{t}-X_{t-1}}
$$

Hence,

$$
\widetilde{\beta}=\beta+\frac{1}{n-1} \sum_{t=2}^{n}\left[\frac{u_{t}-u_{t-1}}{X_{t}-X_{t-1}}\right]
$$

X_{t} is nonrandom and $\mathrm{E}\left(\mathrm{u}_{\mathrm{t}}\right)=\mathrm{E}\left(\mathrm{u}_{\mathrm{t}-1}\right)=0$. Therefore, $\mathrm{E}(\widetilde{\beta})=\beta$, which means that $\widetilde{\beta}$ is unbiased. By the Gauss-Markov Theorem, OLS estimates are most efficient among unbiased linear estimators. This implies that any other such estimator, in particular $\widetilde{\beta}$, is inefficient (or at least is no more efficient) than the OLS estimator.

Exercise 3.10

From the model, $\bar{Y}=\alpha+\beta \bar{X}+\bar{u}$. Therefore, $\widetilde{\beta}=\frac{\bar{Y}}{\bar{X}}=\beta+\frac{\alpha+\bar{u}}{\bar{X}}$. Taking the expected value and noting that X is non-random and that $\mathrm{E}(\bar{u})=0$ because $\mathrm{E}\left(\mathrm{u}_{\mathrm{t}}\right)=0$, we have, $\mathrm{E}(\widetilde{\beta})=\beta+\frac{\alpha}{\bar{X}} \neq \beta$. Therefore $\widetilde{\beta}$ biased.

Exercise 3.28

a) In Section 3.5 we described how to test the model as a whole with an F-test. The null hypothesis is that X and Y are uncorrelated (that is, $\rho_{X Y}=0$) and the alternative is that they are correlated. The test statistic is $\mathrm{F}_{\mathrm{c}}=\mathrm{R}^{2}(\mathrm{n}-2) /\left(1-\mathrm{R}^{2}\right)$. In our example, $\mathrm{n}=427$ and the F -statistics for the three models are, respectively, 84,32 , and 60 . For a 1 percent-level of significance, the critical $F_{1,425}^{*}(0.01)$ is approximately 6.7 . Because the calculated F -values are well above this, we reject the null hypothesis of lack of correlation between X and Y and conclude that they are correlated. This means that all three models are significant overall.
b) The null hypothesis is that a particular regression coefficient is zero. The alternative for a two-tailed test is that it is nonzero. The critical $t_{425}^{*}(0.005)$ is below 2.617. If an observed t-value exceeds this (in absolute terms) we reject the null hypothesis and conclude that the coefficient is statistically significant. The calculated t-values are:

$0.92058 / 0.20463$	$=$	4.50
$0.52417 / 0.05712$	$=$	9.18
$1.99740 / 0.14128$	$=$	14.14
$0.00157 / 0.00028$	$=$	5.61
$1.62845 / 0.15135$	$=$	10.76
$0.00204 / 0.00026$	$=$	7.85

Because all the t-statistics exceed the critical value, every regression coefficient in every model is statistically significantly different from zero.
c) The low values for R^{2} indicate that the independent variables HSGPA, VSAT, and MSAT do not explain much of the variance in COLGPA. We will see in later chapters that a more extended model does better. A multiple regression model specification would be

$$
\mathrm{COLGPA}=\beta_{1}+\beta_{2} \mathrm{HSGPA}+\beta_{3} \mathrm{VSAT}+\beta_{4} \mathrm{MSAT}+\mathrm{u}
$$

