Econ 120B, Fall 2003, Answers to Homework #1

Exercise 3.30

- a. The coefficient for income is $\Delta \hat{Y} / \Delta X = 0.0556$. It is the marginal effect of income on travel expenses. For a one billion dollar increase in aggregate income, expenditure on travel is expected to increase, on average, by 0.0556 billions of dollars or 55.6 millions of dollars. This is quite reasonable.
- b. For α , H_0 : $\alpha = 0$, H_1 : $\alpha \neq 0$. $t_c = 0.4981/0.5355 = 0.93$. Under the null hypothesis t_c has the *t*-distribution with 49 (51-2) d.f. For a 5% level, critical t^* is in (2.000, 2.021). Since $t_c < t^*$, we cannot reject H_0 : $\alpha = 0$. For β , H_0 : $\beta = 0$, H_1 : $\beta \neq 0$. $t_c = 0.0556/0.0033 = 16.85$. Under the null hypothesis t_c has the *t*-distribution with 49 d.f. For a 5% level, critical t^* is, as before, in (2.000, 2.021). Since $t_c > t^*$, we reject H_0 : $\beta = 0$. Thus the conclusion is that α is not statistically different from zero but β is.

c.
$$R^2 = 1 - \frac{ESS}{TSS} = 1 - \frac{417.110}{2841.330} = 1 - 0.147 = 0.853.$$

d. Test statistic is

$$F_c = \frac{R^2}{1 - R^2} (n - 2) = \frac{0.853}{0.147} 49 = 284.33$$

Under the null hypothesis that the correlation between expenses on travel and income is zero, F_c has the *F*-distribution with one d.f. for the numerator and 49 d.f. for the denominator. Critical F^* for 1% level is in (7.08, 7.31). Since $F_c > F^*$, we conclude that correlation between travel expenses and income is significantly different from zero.

e. Let X^* be the new income variable and Y^* be the new expenditure variable. Then $X^* = 1000^2 X$ and $Y^* = 1000^2 Y$. Model is $Y = \alpha + \beta X + u$ and estimated model is $\hat{Y} = \hat{\alpha} + \hat{\beta} X$.

$$\frac{Y^*}{1000^2} = \alpha + \beta \frac{X^*}{1000^2} + u$$
$$Y^* = 1000^2 \alpha + \beta X^* + 1000^2 u$$

We therefore have, $\hat{\alpha}^* = 1000^2 \hat{\alpha} = 498100$, its standard error is 1000^2

0.5355 = 535500. R^2 , $\hat{\beta}$, and its standard error, are unchanged. $ESS^* = 1000^4 ESS = 1000^4 417.11$ and $TSS^* = 1000^4 TSS = 1000^4 2841.33$.