Ramu Ramanathan
Answers to Exam \#2
I.

Let X and Y be two random variables, with means μ_{x} and $\mu_{y}, \operatorname{Var}(X)=\sigma_{X}^{2}=\mathbf{E}\left(X^{\mathbf{2}}\right)-$ $\mu_{X}^{2}, \operatorname{Var}(\boldsymbol{Y})=\sigma_{Y}^{2}=\mathbf{E}\left(\boldsymbol{Y}^{\mathbf{2}}\right)-\mu_{Y}^{2}$, and $\operatorname{Cov}(\boldsymbol{X}, \boldsymbol{Y})=\sigma_{X Y}$. Now make the transformations $\boldsymbol{U}=\boldsymbol{X}+\boldsymbol{Y}$, and $\boldsymbol{V}=\boldsymbol{X}-\boldsymbol{Y}$.
(a) (3 points) Derive $\mathbf{E}(\boldsymbol{U})$ and $\mathbf{E}(\boldsymbol{V})$ in terms of μ_{X} and μ_{Y}.

$$
\begin{aligned}
& E(U)=E(X+Y)=E(X)+E(Y)=\mu_{X}+\mu_{Y} \\
& E(V)=E(X-Y)=E(X)-E(Y)=\mu_{X}-\mu_{Y}
\end{aligned}
$$

(b) (5 points) Derive $\mathbf{E}(\boldsymbol{U} \boldsymbol{V})$ in terms of $\mu_{X}, \mu_{Y}, \sigma_{X}^{2}$ and σ_{Y}^{2}.
[Hint: you want the expected value of \boldsymbol{U} times V. Use the definitions at the top of the page.]
$E(U V)=E[(X+Y)(X-Y)]=E\left(X^{2}-Y^{2}\right)=E\left(X^{2}\right)-E\left(Y^{2}\right)$
Since $\sigma_{X}^{2}=E\left(X^{2}\right)-\mu_{X}^{2}$, we have, $E\left(X^{2}\right)=\sigma_{X}^{2}+\mu_{X}^{2}$, similarly for $E\left(Y^{2}\right)$.
$E(U V)=\sigma_{X}^{2}+\mu_{X}^{2}-\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)$
(c) (6 points) Derive $\operatorname{Cov}(\boldsymbol{U}, \boldsymbol{V})$ in terms of σ_{X}^{2} and σ_{Y}^{2} only.

$$
\begin{aligned}
& \operatorname{Cov}(U, V)=E(U V)-[E(U) E(V)] \\
& =\sigma_{X}^{2}+\mu_{X}^{2}-\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)-\left(\mu_{X}+\mu_{Y}\right)\left(\mu_{X}-\mu_{Y}\right) \\
& =\sigma_{X}^{2}+\mu_{X}^{2}-\left(\sigma_{Y}^{2}+\mu_{Y}^{2}\right)-\left(\mu_{X}^{2}-\mu_{Y}^{2}\right)=\sigma_{X}^{2}-\sigma_{Y}^{2}
\end{aligned}
$$

(d) (4 points) What is the condition under which U and V will be uncorrelated (that is, have zero correlation) and why?

Since uncorrelated means $\operatorname{Cov}(X, Y)=0$, required condition is $\sigma_{X}^{2}=\sigma_{Y}^{2}$.
II.

Let $x_{1}, x_{2}, \ldots, x_{n}$ be a random sample drawn from a population with mean μ and variance σ^{2}. In other words, $\mathbf{E}\left(x_{i}\right)=\mu$, and $\operatorname{Var}\left(x_{i}\right)=\sigma^{2}$ for $\mathbf{i}=1,2, \ldots, n$, and the \boldsymbol{x} 's are all independent of each other. Let $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ be the sample mean.
(a) (4 points) Show that $\mathrm{E}(\bar{x})=\mu$.

$$
E(\bar{x})=E\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}\right)=\frac{1}{n} E\left(\sum_{i=1}^{n} x_{i}\right)=\frac{1}{n} \sum_{i=1}^{n} E\left(x_{i}\right)=\frac{1}{n} n \mu=\mu
$$

It is possible to show that $\operatorname{Var}(\bar{x})=\frac{\sigma^{2}}{n}$, but you need not prove it.
(b) (4 points) Let $Z=\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}$. Show that $\mathbf{E}(\mathbf{Z})=0$.

$$
E(Z)=E\left(\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}\right)=\frac{\sqrt{n}}{\sigma} E(\bar{x}-\mu)=0 \text { because } E(\bar{x})=\mu \text {. }
$$

(c) (4 points) Show that $\operatorname{Var}(Z)=1$.

$$
\begin{aligned}
\operatorname{Var}(Z) & =E\left[\left(\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}\right)^{2}\right]=\left(\frac{\sqrt{n}}{\sigma}\right)^{2} E\left[(\bar{x}-\mu)^{2}\right] \\
& =\frac{n}{\sigma^{2}} \operatorname{Var}(\bar{x})=\frac{n}{\sigma^{2}} \frac{\sigma^{2}}{n}=1
\end{aligned}
$$

III.
X and Y are random variables with means μ_{x} and μ_{y}, variances σ_{X}^{2} and σ_{Y}^{2}, and covariance $\sigma_{X Y}$, all fixed constants. Consider the new random variable $\boldsymbol{U}=\left(\boldsymbol{Y}-\mu_{Y}\right)-\boldsymbol{b}\left(X-\mu_{\mathrm{x}}\right)$, where \boldsymbol{b} is a fixed constant that I choose. It follows that $U^{2}=\left(Y-\mu_{Y}\right)^{2}-2 b\left(X-\mu_{\mathrm{x}}\right)\left(Y-\mu_{Y}\right)+b^{2}\left(X-\mu_{\mathrm{x}}\right)^{2}$.
[Hint: Do not expand this expression. Keep the terms grouped as they are.]
(a) (4 points) Derive the expected value of U.

$$
\begin{aligned}
E(U) & =E\left[\left(Y-\mu_{Y}\right)-b\left(X-\mu_{x}\right)\right]=E(Y)-\mu_{Y}-b E\left(X-\mu_{x}\right) \\
& \left.\left.=E(Y)-\mu_{Y}-b\left[E(X)-\mu_{x}\right)\right]=\mu_{Y}-\mu_{Y}-b\left[\mu_{x}-\mu_{x}\right)\right]=0
\end{aligned}
$$

(b) (7 points) Derive σ_{U}^{2}, the variance of \boldsymbol{U}, in terms of $\boldsymbol{b}, \sigma_{X}^{2}, \sigma_{Y}^{2}$ and the covariance $\sigma_{X Y}$.

$$
\begin{aligned}
\sigma_{U}^{2} & =E\left[U^{2}\right]-[E(U)]^{2}=E\left[U^{2}\right] \text { because the second term is zero. } \\
& =E\left[\left(Y-\mu_{Y}\right)^{2}-2 b\left(X-\mu_{x}\right)\left(Y-\mu_{Y}\right)+b^{2}\left(X-\mu_{x}\right)^{2}\right] \\
& =E\left[\left(Y-\mu_{Y}\right)^{2}\right]-2 b E\left[\left(X-\mu_{x}\right)\left(Y-\mu_{Y}\right)\right]+b^{2} E\left[\left(X-\mu_{x}\right)^{2}\right] \\
& =\sigma_{Y}^{2}-2 b \sigma_{X Y}+b^{2} \sigma_{X}^{2}
\end{aligned}
$$

(c) (6 points) Suppose I want to choose \boldsymbol{b} in order to minimize σ_{U}^{2} with respect to b, treating everything else as fixed. Derive the value of \boldsymbol{b} that minimizes this variance. [Hint: Your answer will depend only on σ_{X}^{2} and $\sigma_{X Y}$].

$$
\frac{\partial \sigma_{U}^{2}}{\partial b}=0=-2 \sigma_{X Y}+2 b \sigma_{X}^{2} \quad \text { or } b \sigma_{X}^{2}=\sigma_{X Y}
$$

Solving for b, we get $b=\sigma_{X Y} / \sigma_{X}^{2}$.
(d) (3 points) Be sure to check the second-order condition also.

$$
\frac{\partial^{2} \sigma_{U}^{2}}{\partial b^{2}}=2 \sigma_{X}^{2} \quad \text { which is positive and hence a minimum is attained. }
$$

