I. (5+3+7 =15 points)

The continuous random variable X has the geometric distribution with $f(x)=a x^{a-1}$ with $a>0$ and $0<x<1$.
(a) Derive an expression for the $m^{\text {th }}$ moment $\mathrm{E}\left(X^{m}\right)$.

$$
\begin{aligned}
E\left(X^{m}\right) & =\int_{0}^{1} x^{m} f(x) d x=\int_{0}^{1} x^{m} a x^{a-1} d x=a \int_{0}^{1} x^{m+a-1} d x \\
& =a\left[\frac{x^{m+a}}{m+a}\right]_{0}^{1}=\frac{a}{m+a}
\end{aligned}
$$

(b) From that write down $\mathrm{E}(X)$ and $\mathrm{E}\left(X^{2}\right)$, in terms of a.

$$
E(X)=\frac{a}{a+1} \quad E\left(X^{2}\right)=\frac{a}{a+2}
$$

(c) Use these to derive the variance of the distribution.

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-[E(X)]^{2} \\
& =\frac{a}{a+2}-\left[\frac{a}{a+1}\right]^{2}=\frac{a(a+1)^{2}-a^{2}(a+2)}{(a+2)(a+1)^{2}} \\
& =\frac{a\left(a^{2}+2 a+1\right)-a^{2}(a+2)}{(a+2)(a+1)^{2}}=\frac{a}{(a+2)(a+1)^{2}}
\end{aligned}
$$

II. $(6+2+6+2=16$ points $)$

In the TV show "Who wants to be a millionaire", a contestant has earned \$64,000 and is trying for $\mathbf{\$ 1 2 5 , 0 0 0}$. However, she does not know which of the four answers is correct. If she guesses correctly, she will get $\mathbf{\$ 1 2 5 , 0 0 0}$. If she is wrong, she ends up with $\$ 32,000$. Her dilemma is whether to walk away with $\$ 64,000$ (Option A) or take a gamble and choose one answer completely at random (Option B) and with the equal probability of $1 / 4$.
(a) Compute the expected win for each option. Carefully explain.

Option A (walk away with $\mathbf{\$ 6 4 , 0 0 0)}$)
Win $\$ 64,000$ with probability 1 and hence the expected win is $\$ 64,000$.
Option B (gamble for $\mathbf{\$ 1 2 5 , 0 0 0) : ~}$
Probability of guessing correctly is $1 / 4$ and that of guessing wrong is $3 / 4$. If guess is wrong, payoff is $\$ 32,000$ and if guess is correct, payoff is $\$ 125,000$. Therefore,

$$
\begin{aligned}
E(\text { payoff }) & =32000 \times 3 / 4+125000 \times 1 / 4=24,000+31,250 \\
& =55,250
\end{aligned}
$$

(b) If the goal is to maximize the expected value of a win, what is your advice to her? Should she gamble or walk away? Why?

Because $E($ win for $A)>E($ win for $B)$, she should walk away and not gamble.

Suppose, instead of the above scenario, she used the $50 / 50$ lifeline and narrowed the answers to two and wants to guess at random with the equal probability of $1 / 2$ among the remaining two answers (Option C).
(c) Compute the expected win for this option.

Probability of guessing correctly now is $1 / 2$ and that of guessing wrong is $1 / 2$. If guess is wrong, payoff is $\$ 32,000$ and if guess is correct, payoff is $\$ 125,000$. Therefore,

$$
\begin{aligned}
E(\text { payoff }) & =32000 \times 1 / 2+125000 \times 1 / 2=16,000+62,500 \\
& =78,500
\end{aligned}
$$

(d) Now what is your advice, based on maximizing the expected value of wins, between walking away with $\$ \mathbf{6 4 , 0 0 0}$ and choosing Option C?

Because $E($ win for $C)>E($ win for $A)$, she should gamble.
III. $(4+3+3+4+5=19$ points $)$

The probability of a male, age 60 , dying within one year is 0.025 and the probability of a female, age 55 , dying within one year is 0.01 and the two events are independent. If a man and his wife are ages 60 and 55 respectively,
(a) What is the probability that they both die?

Let M be male dying and F be female dying. We need $P(M \cap F)$. Because of independence, $P(M \cap F)=P(M) P(F)=0.025 \times 0.01=0.00025$.
(b) What is the probability that they both survive?
M^{c} is male not dying and F^{c} is female not dying.

$$
\begin{aligned}
& P\left(M^{c} \cap F^{c}\right)=P\left(M^{c}\right) P\left(F^{c}\right)=(1-0.025)(1-0.01) \\
& \quad=0.975 \times 0.99=0.96525
\end{aligned}
$$

(c) What is the probability that only one will die within a year?

$$
\begin{aligned}
P(\text { only one will die }) & =1-P(\text { both die })-P(\text { both survive }) \\
& =1-0.00025-0.96525=0.0345
\end{aligned}
$$

Another way of doing this is to note that only one dying is

$$
\begin{aligned}
(M & \left.\cap F^{c}\right) \cup\left(M^{c} \cap F\right) . \text { Probability is } P\left(M \cap F^{c}\right)+P\left(M^{c} \cap F\right) \\
& =0.025 \times 0.99+0.975 \times 0.01=0.0345
\end{aligned}
$$

(d) Suppose you sell a one year term life insurance of $\$ 25,000$ to each, that is, you pay $\mathbf{\$ 2 5 , 0 0 0}$ to the surviving spouse if only one of them dies, $\mathbf{\$ 5 0 , 0 0 0}$ to their children if both of them die, and nothing if both live through the year. Calculate the expected total payment.

$$
\begin{aligned}
E(\text { payment }) & =50000 \times 0.00025+25000 \times 0.0345+0 \times 0.96525 \\
& =862.50+12.50=875
\end{aligned}
$$

(e) If you want to make an expected total profit of $\$ 200$, what premium should you charge each of them assuming that the premiums are different and in proportion to the respective probabilities of death?

To get a $\$ 200$ profit, the total premium revenue should be 1,075. Prorated charges will be

$$
\begin{array}{ll}
\text { Husband: } & 1075 \times \frac{0.025}{0.025+0.01}=\$ 767.86 \\
\text { Wife: } & 1075 \times \frac{0.01}{0.025+0.01}=\$ 307.14
\end{array}
$$

