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Abstract |

We study the loss of information in estimating the central tendency of a normal population
when a discrete indicator rather than the underlying continuous response variable is used. The
threshold levels which define the value taken by the discrete indicator are shown to affect the
efficiency of the parameter estimates. Several methods for choosing thresholds are compared and
the potential efficiency gains from optimally choosing the thresholds are shown to be large. The

robustness of different design criteria to incorrect information about the parameters is explored.




1. Introduction

Consider the linear regression model:

ey Y =xy+e,
where x; is a vector of fixed regressors and the disturbance terms €, are i1.d. with expectation
zero and scale parameter G. Suppose that instead of observing the continuous response y;,
one observes a binary indicator variable I [y,' ;c,.] equal to 1 if y; is greater than or equal to a
threshold ¢, and O otherwise.

In economics, the random variable y’often relates to some aspect of an agent's utility
level while the indicator variable typically denotes whether the agent engages in some activity
of interest. In labor economics, for instance, under certain assumptions, the optimal behavior
on the part of a job applicant engaging in a job search is to accept a job offer when the offered
wage rate is greater than the agent's reservation wage rate. The offered wage rate takes the
role of the threshold; the indicator variable takes on a value of 1 if the job applicant accepts the
job and a value of 0 otherwise. Similarly, a person decides to participate in a welfare program
if the financial aid provided by the program is higher than the effective income from an
alternative source such as a regular job. In the market for a particular good, a buyer purchases
a unit of the good when the buyer's underlying willingness to pay is higher than the threshold
represented by the selling price. In a referendum on a program of public interest, the voter
compares the perceived benefits with the additional tax the voter must pay if the plan is
approved and votes in favor of the proposition if the former is greater. Economic theory
postulates that the economic agent, when confronted with a choice among alternatives,
chooses the one associated with the higher utility level. The indicator variable denotes which
alternative was preferred.

We will be particularly interested in situations where the choice of the threshold(s) c is
under the researcher’s control. In marketing research, for instance, price is often manipulated,

and one observes consumer response to different prices in terms of buying or not buying the




good (Cameron and James, 1987b). Another area where researchers are in control of the ¢,'s is
in contingent valuation surveys (Mitchell and Carson, 1989), an increasingly popular technique
used to measure the benefits from providing environmental amenities. In this context, instead
of directly eliciting a respondent's maximum willingness to pay for the proposed project,
researchers are turning to a discrete choice approach that mimics a referendum voting
situation. Each respondent is asked whether he would vote favorably on a proposition which, if
approved, would provide the project and pass the costs on to the respondent, usually in the
form of higher taxes or prices. Another significant area in which researchers have some control

over the choice of the ¢,'s is in the large scale social experiments undertaken by the

government to assess the effects of a certain policy on a sample of individuals (Ferber and
Hirsch, 1982). Researchers also have direct control over the choice of the c,'s used in
laboratory economic research (Smith, 1980). A less obvious instance is the elicitation of
responses to common survey questions: often particular qualitative classifications, e.g., "more
or less than 5", are used in lieu of continuous quantitative variables such‘as "duratién of the
unemployment spell in weeks" or "number of monthly visits to an automatic teller machine”.

Even when possible, attempting to obtain the underlying y° may not always be
desirable. Several factors, including a respondent's desire to protect privacy, a diminished
opportunity for strategic behavior, a reduction in the likelihood that the observations y; will be
contaminated by various experimental or survey response effects, and the added cost of
obtaining continuous response answers, may make it more desirable to have the
econometrician look at discrete data.

As in other experimental sciences, the threshold ¢, can often be thought of as the
"dose" of a certain treatment or stimulus that is applied to subject i. Each of the i=1,2,...,n

agents in the sample can potentially be randomly assigned to a different threshold level c;,.
Whether by explicitly setting a value for the threshold or by using some qualitative
classification, the researcher will try to control the fractions of the sample that fall into the

"one" group and the "zero" group.




Our work may be seen as an extension, in the direction of discrete choice csﬁmation, of
earlier work by econometricians (Conlisk, 1973; Aigner and Morris, 1979) on optimal design
for economic experiments with continuous response variables. Our results are complementary
to earlier work on choice-based sampling (Manski and Lerman, 1977; McFadden, 1981) in
that, instead of designing sampling schemes and estimation strategies which exploit the known
choice patterns of agents, we are influencing the choices of agents through the designation of
¢; by the survey designer or experimenter. Throughout our paper, we draw heavily from the
biometrics literature (Finney, 1978; Silvey, 1980) on the optimal design of dose-response
experiments.

The paper is organized as follows. Section 2 illustrates the problem of estimating an
unobservable random variable by means of a binary data model, introduces some notation, and
provides one simple example that illustrates the effect of the thresholds on the efficiency of the
estimate. Section 3 establishes an optimality result which shows that typically two threshold
levels are all that are needed to minimize the variance of the estimate of a. particular quantile,
such as the median. We find the optimal thresholds for the median of a normal variable y’
using numerical optimization methods. Section 3 also surveys design methods and looks at the
implications of different concepts of optimality on the design chosen, considers problems
arising in the presence of covariates, and introduces the problem of uncertainty surrounding the
true parameter values when determining the set of ¢;'s to use. The findings from a large
simulation study that compares the different approaches to optimal experimental designs are

described in Section 4. Section 5 provides some concluding remarks.

2. Discrete choice model estimation of quantiles
2.1 Notation and formulation of the problem

Assume y’ is a random variable from the location-scale family of distributions, and let
H and o be the particular distribution's location and scale parameters: y =l +€. Let F be the

known cdf of €/¢. While y”cannot be observed directly, we assume that observations on the




indicator variable y, take on a value of 1 if the latent y; is greater than the threshold ¢, and 0

otherwise. The mapping from the original latent variable to the available observations can be

written as E(y,) =Pr(y,=1)=1-F(a+fc,), where o=~ /c and f=1/0.
Suppose that the econometrician is interested in estimating the 100pth quantile of the

F(p)-a
B

interpreted as the level of the effective threshold that generates an observed value of 1 in

distribution of y*, that is, g=F'(p)o+u= This quantity g may also be

100(1-p) percent of the population. Assuming that the unknown parameters 8 =(o.,3) are
estimated by maximum likelihood (ML) techniques and that the vector of derivatives with
respect to the parameters dg/d0 has constant rank in any open neighborhood of the true

parameters, the approximate variance for g can be expressed as

~_ 08 108
Ve =27 -2
(2 ar(g) s (9) 3

where /(0) is the Fisher information matrix for the parameters from the log likelihood for the

binary discrete choice model. 7(6) is here equal to:

-\ A (a+Be) I-l €
@ 1) = S Farpoyi=FavBonlle, ¢’

where ¢, is the threshold assigned to the ith sample unit.

The thresholds affect the variance of the ML estimates & and ﬁ and enter in the
determination of the variance of § (2) via the information matrix (3). Expression (3) shows
that the variance also depends on both parameters of the distribution of the latent y~. While
these parameters ()L and ©) are not under the researcher's control, the thresholds are assumed

to be.
An experimental design can thus be defined as the list of the thresholds c, assigned to

each sample unit (i=1, 2, ..., n). As an alternative, letting c;, for j from 1 to &, denote the




distinct values of the thresholds, an experimental design can also be defined as the set of pairs

{c;(n),n;(n)}, j=1,2,...,k, where n;(n) is the number of observations associated with

k
threshold ¢;(n) and an(n)=n. Assuming that the sample size n is given, the goal is to

j=1
determine the thresholds and number of observations assigned to each threshold that ensure

maximum efficiency of the estimate g.

2.2 One simple example

The role of the thresholds can be readily grasped by considering one simple example.
Consider first the model y; =p+¢€,, i=1,2,...,n, where each €, is iid. normal with mean
zero and kﬁown variance 1. Assume each unit in the sample is assigned to a single threshold c.
The corresponding discrete choice model is the probit equation E(y,) = ®(i-c). The threshold
c is absorbed into the constant term of the probit equation. The variance for the intercept term

is then given by

D -1 -D(n—c)]
no*(u—c)

The variance of the same intercept term estimated by ML from the uncensored sample is given

4

by 1/n, which, divided by (4), yields the relative efficiency of the estimates for . The solid line
in Figure 1 plots the relative efficiency for |t as a function of the split between positive

responses (ones) and negative responses (zeros), the split being determined by the value of the

threshold. The minimum level of the variance is achieved when ¢ =, which is the level of the

threshold that corresponds to a 50%-50% split. Extreme splits (i.e., 90%-10%) result in much

larger variance estimates for [1.

3. Optimal design criteria




Relative Efficiency

Figure 1.

Relative Efficiency of the Estimate of the Median.
Probit Model with Constant Threshold c.
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With the distribution of y° belonging to a location-scale family of distributions,
symmetric, and involving no covariates, we will assume that the statistic of interest g is a
function of both parameters, pand 6, of the distribution of the underlying y*.! These

parameters are identifiable in the binary discrete choice model if ar least two distinct thresholds

¢; are randomly assigned to the sample. Under these conditions, the threshold ¢, may be
treated as an additional regressor in the binary data model E(y,)=1-F (x+Bc;). The
regression parameter 3 attached to the regressor c, is the reciprocal of the scale parameter ©
of the underlying distribution, while the constant term & divided by —B gives the estimate for
K.2 Cameron and James (1987) apply this result to dichotomous choice contingent valuation
survey data to obtain the median/mean of a normal or logistic willingness to pay (WTP).3
Although many of our results can be generalized in a straightforward manner to other
quantiles and distributions, to keep the notation manageable throughout the remainder of this
paper we will assume that our quantile of interest is the median of a normal distribution. The
associated probit model is Pr(y, 2c,) = E(y,) = (o +Pc¢;), where (by av slight change with
respect to our previous notation) *=U/c and f=-1/0. The median can be written as

i =-0o/P and estimated by the method of maximum likelihood as fi =—& /.4

Iwe will follow the standard statistical practice (Silvey, 1980) of writing out the expressions for the
experimental designs for non-linear functions in terms of the model's parameters. In general, some or all of
those parameters will be unknown. The implications of unknown parameters in the expressions for the
thresholds are taken up in Section 3.7.

ZVariation in the thresholds is essential to estimate it and o separately. Suppose that a single value of the
threshold is used for all the respondents. In that case the single threshold becomes absorbed into the constant
term of the discrete choice model. The intercept becomes (U-c)/G : it may be seen from this expression that
only if either j1 or o are known to the researcher prior to the investigation, is it possible to uniquely disentangle
the other parameter from the estimate for the constant term. If the design involves only a single threshold
value, the information matrix (3) becomes singular.

3In a binary discrete choice contingent valuation survey the respondent is asked whether or not he would pay a
specific amount for a proposed change in the provision of a public good. The proposed amount, which is varied
across the respondents, is the threshold in the discrete choice model, and the population's willingness to pay for
the good in question, which is of primary interest to the researcher, is the latent variable. This eliciting
procedure is also sometimes referred to as the "closed-ended”, "take-it-or-leave-it", or "referendum” method.
“The median is the quantile corresponding to p=0.5; for symmetric distributions like the normal the median is
equal to the mean of the population.




There are several objectives that one may want to pursue with respect to the choice of
the thresholds. One of the most obvious is to choose them so as to directly minimize the
asymptotic variance around our parameter of interest. This objective defines c-optimal designs
(Silvey, 1980). In general such designs vary with the statistic of interest. As an intuitive
example, one may think that designs that are supposed to produce good estimates for the
center of a distribution are likely to concentrate the thresholds around that center, whereas the
thresholds are more likely to be spread out if the goal is to estimate the variance efficiently.

The asymptotic variance may be replaced with other related criteria. For instance,
inst;ad of minimizing the length of the standard confidence interval about the median as
follows from the direct variance minimization approach, one may choose to minimize the
length of the fiducial interval around the median, a related concept frequently used in the
biometrics literature, particularly when dealing with the ratio of two parameters (Finney,
1978).5

Another alternative is that the researcher seeks an optimality critcriéh that is unattached
to any particular value of p or statistic of interest g. For example, if he wishes to consider a
design that attempts to estimate both the median y and the scale parameter ¢ efficiently, a
design criterion known as d-optimality is often used. D-optimal designs minimize the
confidence ellipsoid around 9 for a given confidence level. The confidence ellipsoid is defined
by the set of values of 6 such that (68— é)‘ 1(6)(8 —é) is less than a constant value that depends
on the confidence level. Since the volume of the ellipsoid is proportional to [I1(8)I]™, the
criterion reduces to the maximization of the determinant (or the log determinant) of the Fisher

information matrix.

SFiducial inference, proposed by Fisher (1956), is interpreted by some as a sort of a compromise between
classical and Bayesian inference. In general, fiducial inference allows for uncertainty about the parameter by
supposing that the parameters are unknown and that the only information available about them is the sample
draw. Given, for instance, a single draw x from a normal population with mean p and standard deviation 1,
then x is considered fixed and W is assumed distributed as a normal random variable with mean p and
variance 1, and x £1.96, the fiducial limits, include all but 5% of the distribution. Fiducial and classical
confidence limits coincide in a number of cases, the most notable being that of the mean of a normal
distribution with unknown variance ¢?, given a sample of observations on a continuous scale.




All of the design criteria presented above assign thresholds to the experimental subjects
to optimize the value of some functional defined on the information matrix.6 It is also possible
to pursue designs without explicit reference to an optimality criterion. Experimental designs
based on dividing the respondents (usually uniformly) among a preselected, larger number of
thresholds (usually regularly spaced), such as the ones we consider in Section 3.4, are
intuitively appealing. In practice the latter designs are frequently preferred to the designs that
optimize a specific objective function on the grounds of their comparable or better
performance over a wider range of quantiles (Section 4.2), and when there is some uncertainty
about the distribution of the latent variable (Section 3.6).

In what follows, we assume, as is common in surveys or experiments, that the total
sample size n is predetermined and given to the survey or experiment designer. Another
element of the design that is often predetermined is k, the total number of distinct thresholds
allowed. We will further assume that an equal number of sample units are randomly assigned
among the thresholds. The assumption of an equal division among the thresholds is not
restrictive if the distribution is symmetric, the statistic of interest is the median, and there are
an even number of thresholds.” Otherwise, optimal designs may require a non-equal division of

the observations among the thresholds.®

6 In addition to c-optimal and d-optimal designs, and designs that minimize the length of the fiducial interval
around the median, a number of design criteria also defined on the information matrix are available, such as e-
optimal and g-optimal designs (Silvey, 1980). These criteria for optimality involve statistics of interest that are
linear combinations a’6 of the parameter vector 9. For fixed vector a, the variance of the linear combination is
a’l(0)a. If a number of alternative a's are considered over the design space, the design that minimizes the
maximum of a’7™ (6)a over ail a's is the g-optimal design. The c-optimality criterion is a special case of the g-
optimality criterion. Another special case of g-optimality is the e-optimal design, which imposes the additional
constraint that a'a = 1 and is equivalent to maximizing the minimum eigenvalue of 1(6).

"The framework developed in this paper readily extends to the log-normal distribution, frequently assumed for
many economic variables. The c-optimal, fiducial and d-optimal designs will consist of two design points, each

with an equal number of observations, placed symmetrically around the median of the log of the distribution but
asymmetrically around the actual median.

8Fiducial designs for percentiles other than the median will generally require an unequal division of sample
units between two thresholds placed asymmetrically around the percentile of interest. This division of sampling
units between the two design points becomes more unequal as the percentile of interest moves away from the
median. Duffield and Patterson (1991) consider a problem where the sample size is assumed to be given and




As a measure of the efficiency loss when moving to situations in which only the

indicator variable y, can be observed, we will use an operative version of the Pitman relative
efficiency (Lehmann, 1983). The specific relative efficiency measure we use is the ratio of the
asymptotic variance of the MLE for g=p from the uncensored data to the asymptotic

variance of the probit MLE for the same g:

) RE=—2WD)
Var(uiy;sc,)

The reciprocal of the relative efficiency provides an index which has an immediate
interpretation in terms of how much larger, in percentage terms, the sample size should be with

binary indicator observations relative to the size required to achieve the same level of efficiency

with observations on y; .

3.1 C-optimal designs.
The c-optimality approach is structured to find the design that directly minimizes the
variance around the statistic of interest. We can exploit the parametric nature of our problem

of estimating the median of a normal distribution to estimate g by the method of maximum

likelihood and find the design that minimizes the variance of 2. To do so, we must first
determine the distribution of ¢ and find the expression for the variance of §. The large sample
properties of the MLE may be invoked to show that under suitable regularity assumptions®
(6.—or) and ([3—[3) converge in distribution at rate vz to a bivariate normal variable centered

around zero and with covariance matrix equal to the inverse asymptotic Fisher information

matrix. The distribution of g(&,ﬁ) may be derived after approximating g with a Taylor series

the number of thresholds to be used and their values are also predetermined. In this situation, one will also
generally get an unequal division of sample units to the thresholds, even for the median of a symmetric
distribution, unless by chance the predetermined thresholds are symmetrically distributed around the median.
9See Amemiya (1985). Among the other conditions, the asymptotic information matrix is required to be finite
and nonsingular.
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expansion of g around the true value of the parameters. Typically such a series is truncated at
a finite order, say r. If g is continuously differentiable on the parameter space and dg/20 has
always full rank, a first-order approximation is deemed sufficient, all higher-order terms being
negligible for large sample size (White, 1984). In that case, the normality result for g(Q, ﬁ)
and the asymptotic variance given in Section 2.1 hold.

To derive the c-optimal design for ¢ we use a standard theorem from the optimal
design literature, Caratheodory's theorem (see Silvey, 1980, or Chemoff, 1979), which
establishes that the c-optimal design for g requires no more than two design points. This
finding agrees with the intuitive notion that only two points are needed to fit a straight line
with intercept o and slope B, which is the argument of the standard normal cdf ®(.) in our
binary choice model. We denote those thresholds by ¢, and ¢,.1 Because of the symmetry of
the normal distribution and the fact that the quantile of interest is the median, without loss of

generality those thresholds are constructed to be symmetric about the median of the population
(Finney, 1978). Let § be the distance between each threshold and the median: ¢, =H,y+0, and

¢, =K, — 08, where L, is the suspected median of the underlying distribution. With a slight
change of notation we now rewrite the log likelihood function for this problem as
m, log ®(0,)+m, log®(0,), with & the cdf of the standard normal distribution,
8, =B, —u+9d] and 6, =P[n,-pn—-8], P being the negative reciprocal of the scale
parameter o, and m; and m, being the counts of the responses at ¢, and ¢,. Provided that
neither observed response rate m, /n, or m,/n, is zero or one, the MLE's él, 62 are well-
behaved and asymptotically normal (see Amemiya, 1985), even if the two thresholds should
coincide. They are also asymptotically independent, as is easily shown by working out the

information matrix for 0, and 8,.
After some algebraic manipulation, |1 can be shown to be equal to 286, /(8, —0,)—c,.
The median is thus estimated by the method of maximum likelihood as 28@1 /(éI - éz)—cl. A

10The optimal design may in some instances turn out to be a one-point design. Our notation is adequate for
those situations, since a one-point design is obtained for ¢, =c,.
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Taylor series expansion of the rth order around the true 8, and 8, can be taken to approximate
258, /(8,-6,) and used to develop an approximation to the distribution of va(fi—p). In
what follows we denote the approximation based on the rth order expansion with vn - V)1

It will be easiest to look at the asymptotic mean square error (MSE) of the maximum
likelihood estimate for . Because the asymptotic MSE is the sum of the squared asymptotic
bias and the asymptotic variance, effectively a design that minimizes the MSE reduces to a c-
optimal design if the estimator is asymptotically unbiased, which we show is the case below.
Applying the properties of asymptotic normality and the asymptotic independence of

Jn (él ~0,) and Vn (62 -0,), we derive the asymptotic mean square error of the estimate for
1 based on the rth order expansion (MSE,,)):

E[J'E (éf - 91)]2j o rt i) 62 E[ Va(d, -, )]2(i+n

MSE,, = E{[+a(i- ”)]:,1} 4|35

~ (el_ez)zoﬂ) ! & (91_92)2(i+j+1) nitit +
i Jad 2i+f) WYt 2j
s zi i f} 62 E[vn®,-6,)] o E[vn(8,-6,)]
o~ (61 _92 )2(i+j+l) ni+j-1 P (91 —62 )2(j+1) nj—l :
After taking the expectations and rearranging terms, we obtain, for r22:
sz 8 02 [2rTe+12)/@  d e [2Tk+1/2)/ (m)
MS&rl 48 {(el _92 )4 Vi + (9l _ez )2(r+l) nr—l +3k=2 (el _92 )2(k+l) nk-l +
| e 02 [2TC+U/@™); & e [2'T*+1/2)/ (")
+48 e - 4 v2 + e _e 2(r+1) r~1 +3 e _e 2(k+1) k-1 °
6,-6,) (8,-96,) n =2 (6, -8,) n
and, for r=1:

MSE,, = 48* 6, v, + 6 V.
)] (61 - 92 )4 1 (el _ 92 )4 2( -

In the expressions for the MSE, v, is the asymptotic variance of vn (él -8,) and is given by
1/[Aw(8,)]=®(8,)[1-D(8,)]/[A $>(6,)], A is the fraction of the sample size assigned to the
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first threshold, v, is the asymptotic varance of +/n (62 —6,) and is given by
IA=2)w(8,)]= (8, )[1-D(D,)]/[(1-1)0*(0,)], I'(+) is the gamma function, and Int(s)
indicates the integer part of the expression in parenthesis.!!

Note that the terms of order higher than one are negligible for large sample size,
provided that the two thresholds are far apart, since powers of (0, —8,)=2B3 (the distance
between the two design points) appear at the denominator of each term in the MSE. However,
as the thresholds are drawn closer and closer together until they virtually coincide, the first-
order expansion fails to provide an adequate approximation to vr(fi - ), reflecting the fact

oL du ’

that the vector (ﬁ —a—e—) will not have full rank as required for the asymptotic normality
1 2 .

and consistency of 1. We prove the following proposition:

Proposition 1. The c-optimal design for p (if it exists) is a two-point design.
Proof: see Appendix A. (The proof essentially works by using Caratheodory's theorem to
show that the c-optimal design is either a one- or a two-point design, and then rules out the

one-point design.1?)

1The asymptotic bias of the estimate for | may be shown to be, for order of expansion r:

J=l

r12) 0 2T +1/12)1(x™) . 0 2TG+1/12)1(n?)
8 2 - . J + 1 - . J R
* {w,—e,)’“‘ ne " e e)™ ' "
which is zero for any fixed 6, not equal to 8,. As a result, the MSE-minimizing design is equivalent to the c-
optimal variance-minimizing design.

12Caratheodory's theorem states that each point s* in the convex hull S of any subset S of the n-dimensional

H "l
space can be represented in the form s° = Y a5, where o, 20, ia,. =1,and 5,€S. If 5° is a boundary point
- =l

of the set S°, then &, can be set equal to zero. Chernoff explains some implications of Caratheodory's
theorem for information matrices (theorem 2.1.2, p. 66): because of the symmetry of information matrices, if /
is the number of unknown parameters, the information matrix can be completely described by a vector of
I(I+1)/2 elements, and for any experimental design with number of design points exceeding [/(/+1)/2+1] it is
always possible to find a design that produces an identical information matrix but has the number of points less
than or equal to [{()+1)/2+1]. In our problem Caratheodory's theorem implies that the optimal design requires
no more than two design points.
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The c-optimal design point, if it exists, is thus a two-point design (§ > 0). One
additional result that follows from the proof of the proposition (see Appendix A) is that the
situation with 8 = 0 (a one-point design) is an instance in which the approximation to the
asymptotic distribution of v (fL— 1) based on the first-order expansion is inadequate.

Confirming the proposition, at =1 the optimization program for minimum .MSE
essentially fails because, while the distance between the thresholds tends to zero, the objective
function rapidly increases towards infinity. In light of this problem, we examine the issue of
how large r has to be for the approximation of v/n (i — 1) to be adequate when we look for the
values of 6, and 8, that minimize the asymptotic mean square error. We expected that, if the
rth-order approximation is adequate, the optimal design would not change much as higher-
order terms are added, whereas there would be an appreciable change in the optimal design
using an approximation of order r if indeed terms of higher order are not negligible. We found
the optimal design points for increasing values of the order of the expansion, r, over a wide
range of commonly used sample sizes (500, 900, 1,000, 5,000, and 10,000).1* For r=2 there is
a well-behaved and non-degenerate solution consisting of two distinct points. Going to =3,
the two optimal design points are considerably farther away from the median, usually over
30% farther apart. For r>3 the thresholds are placed even further apart; however, the increase
in the distance between the points tends to be quite small relative to that observed when
moving from r=2 to r=3. For instance, with n=500, the difference between the optimal &'s at
r=3 and at =16 is 3%, for n=1000 the difference is 2%, for n=10000 it is less than 1%.

Thus it is clear that given our objective function the approximation to r23 is always

justified, and one may want to consider approximations to the fourth or higher orders in small

130nce the optimal 6, and 6, are found, the distance & between the thresholds and the median would be
derived from the optimal 0 using the definitions 8, = B[(1, —p)+8], 8, =B(, —1)— 3], the value of the true
median 1 and that of the assumed median {,. It is obvious that the researcher can do no better than treating
the assumed median, p,, as equal to the true median, . This assumption yields 6, =[5,8, =~ , and the
actual thresholds ¢, = +8 and ¢, =p-35.




14

sample sizes.* As n increases, the distance between the thresholds and the median becomes
smaller.!5 |

Our two-threshold design differs from the single-threshold design often discussed in the
biometrics literature (e.g., Wu, 1988), which implicitly assumes that the information matrix is
always nonsingular and the terms of order higher than one are always negligible. There the
variance minimizing design assigns a single value of the threshold, equal to the median itself, to
all respondents. If, however, we look at a somewhat different design problem where the scale
parameter ¢ of the normal distribution is known and does not have to be estimated, the design
that minimizes the asymptotic variance around the median is indeed the one that concentrates
all the thresholds at the median. The theoretical (i.e., in correspondence to the true values of
the parameters) relative efficiency of the binary choice estimate for W produced by this design
is 2/7 or 0.6366. Such relative efficiency requires that even under the most ideal conditions in
order to preserve the efficiency of the estimate for the median the sample size must be

increased by over 150% when moving from a continuous choice to a binary choice situation .16

14The deviations between the distances from the median with a third-order and higher-order expansions can be
substantially larger for sample size smaller than 100. For instance, for n=50, the difference between the
indicated thresholds for =3 and =16 was about 13%.

15For example, for n=500 the actual thresholds are placed at +0.3333c from the median for r=1, at +0.43746+
u for r=3, at 10.44340+U for r=4, at 10.4492c+) for r=5, at $0.44976+ for r=6, at +0.4502 for r=7 and r=8,
at 30.4503c+u for ~=9 and r=10, and at 10.4504c+\ for r greater than 10. For n=900, the placement of the
thresholds is at $0.2887c+u for r=1, jumps to £0.37920+u for r=2 and quickly converges to +0.3873c+p
(ascending from r=7). For n=1000 the optimal thresholds are 0.2813c+y for =2, 10.3695c+u for r=3 and *
0.37700-+ for r higher than 5. For n=5000 the optimal design starts at +0.1890c+ for r=2, moves to +0.2486
o+t with =3 and quickly attains the values of £0.2508c+4 for r greater than 4. For a sample size of 10,000
the optimal design points are +0.1591c+u for =2, £0.20930+u for r=3, 10.2100c+L for =4 and +0.21066+u
from r=5 and up. (A graph of these design points is available from the Authors.)

16The theoretical relative efficiency for the median attained using the variance-minimizing design is 0.75 for
the logistic distribution, which originates the binary logit model, 0.48 for each of largest and smallest extreme
value distributions, which give rise to the log-log and the complementary log-log link functions, 0.81 for the
Cauchy distribution and 1.00 for the double exponential. With the double exponential distribution, no loss of
efficiency is incurred when moving to a binary data sample because the MLE for the median from uncensored
observations is the sample median (Alberini and Carson, 1991),
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3.2 Fiducial designs.

Closely related to c-optimality is the design method based on minimizing the length of
the fiducial interval around the median for a given fiducial level. Fiducial designs have a long
history in the biometrics literature, going back to R.A. Fisher (1956). Much of the popularity
of fiducial designs is due to Fieller's theorem, which allows one to obtain an expression for the
fiducial limits for the ratio of the mean values of two random variables having a bivariate
normal distribution. Finney (1978) provides an example of its use in deriving the fiducial
interval around the median u =—a./B for a given fiducial level. Minimizing the length of the
fiducial interval with respect to the thresholds is equivalent to minimizing the half-length of the

fiducial interval or its square:

t’s® | Var({l) R ~ A
B se { 2 tzcz[Var(oc) Var(B) - Cov* (@, B)]},

2
where b= Vgr(B) and ¢ is a standard normal deviate. In that expression, b can be rewritten
~ 2
n
as 2 Vargu) as 2 W% and
2” W, (z -2) c [, J][Z w,(z,-2) ]
A A 2,4 ~ 1 Zn w z
Var(a)Var(B) — Cov* (&,B) as ,with z, = oc+[3cj, Z=

GZ[anwj][anwj(z}. -2) ] Zn

w, = ¢ )
1T 0 - D(z,)]

and all the summations are from j=1 to k. The square of the half-

length of the fiducial interval can be equivalently expressed, neglecting the scale factor o2, as
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£ | 1-b . 72
=07 | Xnw, " S nw(z,-2) |

which is a function of the weighted average 7 with weights w ; and the estimated variance from

(6)

the weighted regression of the z;'s on a constant term. The requirement that the design be

symmetric about the median implies that Z = 0, while equal division of the sample units among

the thresholds implies that n, = %for all j's. The objective function (6) thus simplifies to:

t2[2 wjzf] ,
[%Z%-Z? "2][2“’;]

if b is less than 1, which is required to obtain finite fiducial intervals (Abdelbasit and Plackett,

(7

1983). Note that with the fiducial method, the optimal thresholds and the efficiencies depend

on the sample size n.1?

3.3 D-optimal designs.
D-optimal designs maximize the value of the log determinant of the Fisher information
matrix (3). Neglecting the scale factor 67, the expression to be maximized is the log of

o el

i=l i=l i=l

17Each optimal threshold satisfies the first order condition:

"(Z—"f:)[%zwng][Zw,-]-[ZW,-zf][;c’fd—(Z%’?)[zwi]+%[§zwjz}—fﬂ=o

dw; 1-2dlz; dlw?)  dw,
where L= 27w, - w? ( ’) and ( ! ’)=—’z?+2wjzj.

dz; T elz) dz;
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For symmetric distributions, the d-optimal design points are placed symmetrically about
the median. With normal y°, unconstrained maximization of (8) or its log yields a design
which, for n even, places n/2 observations at z = £1.138101 (Ford, Torsney and Wu, 1992). If
the restriction of equal division of the sample units among a predetermined number of
thresholds k is imposed, for k even, the solution to the constrained maximum problem
coincides with the solution of the unconstrained maximum problem (Abdelbasit and Plackett,
1983). For odd k, the constrained d-optimal designs collapse to three-point designs (the
median itself being one such design point). Such simplifications make for easier data collection
planning and are unsurprising since only two points are necessary to estimate the two

parameters that characterize the normal distribution18,

3.4 The "percentiles” method.

All of the designs considered thus far explicitly optimize some functional defined on the
information matrix for the parameters of the model, and require the researcher to make
assumptions on the values of those parameters prior to finding the solutions to the optimization
problems. If the assumed values for the parameters do not coincide with the true values, the
actual thresholds of the two-point designs may turn out to be quite far out in the tails or in only
one tail of the distribution, where they would adversely affect the efficiency of the final
estimate for L.

The designs that we consider in this section are comprised of more than two, regularly
spaced, thresholds, and have been derived following the notion that increasing the number of
thresholds and spreading them more widely around the suspected median of the underlying

distribution may increase the likelihood that at least one of the thresholds used is sufficiently

18The same properties are shown to hold for the fiducial designs (see Abdelbasit and Plackett, 1983) and for the
c-optimal designs of Section 3.1. Each d-optimal threshold satisfies the first order condition,

dz dz,

4

%[Z wjzj]+ d(W,-Zf) [ij]_ Z[Zw,zj]M =0.
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close to the true median. These designs, which we term percentile-based designs, are ad hoc,
but intuitively appealing and allow one to trace out the empirical distribution of the latent
variable.

The percentile method guarantees a fixed number of thresholds, £, to be chosen by the

researcher. The thresholds are then found as the points that cumulate (Fji-—l) 100% of the

normal distribution, for j=1, 2,...k (so that for j=2, ...k CD(Z;') —d)(zj_l)=(k_1|_1) and
d(z,) =—(ﬁl—)’ where, as before, c; is the jth actual threshold, and z; =0a+fc; ): the area

under the probability density function of the latent variable between any two adjacent
thresholds is constant. For instance, if k=4, the design points are the quintiles of the underlying
normal distribution, for 4=3 the design points are the quartiles, for k=9, the design points are
the deciles, etc. The respondents are evenly divided among the thresholds thus found, as is
compatible with the equi-probability requirement imposed to fix the thresholds. The design is

symmetric around the median for any k.

3.5 Covariates.

Econometricians are usually interested in situations in which covariates are present, and
the coefficients on these covariates are often the primary focus of the study. While the issue of
optimal choice of the thresholds has been explored for the simple probit model with two
parameters (ot and f8), one control variable (the threshold), and no other regressors (Chernoff,
1979; Ford, Torsney and Wu, 1992; and Wu, 1988), to our knowledge no solutions to these
problems have been explicitly worked out for situations in which explanatory variables are
present.. In this section, we discuss possible extensions of the case with no covariates to simple

situations in which there are one or more covariates.
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When explanatory variables are present, the key distinction we will be interested in is
whether the individual values of the covariates are known to the researcher in advance of the

choice of the thresholds to be used in the study. With respect to the knowledge of the

individual x;'s prior to the designation of the thresholds, we can consider two states of the

world: (a) one in which the individual x;'s are known in advance of the choice of the

thresholds, in which case the optimal values of the thresholds will in general depend on the
values of the covariates and the parameters, or, equivalently, on the conditional first moments
of the distributions of the y;'s and (b) one in which the individual x,'s are not known in
advance, or cannot be used to create the thresholds. |

The first situation (a) can be seen as the case in which the researcher is able to design
the study conditionally on the regressors. This situation occurs when the values of the
regressors are known prior to conducting the experiment or when they become known to the
researcher and available for design purposes during the course of the experiment. With
computer-assisted telephone interviewing (Frey, 1989), for instance, lthe values of the
regressors reported by the respondents are entered in the computer immediately and could be
used to calculate the optimal thresholds for that respondent. In an experimental setting, it may

be possible to prescreen subjects for the values of the covariates of interest.

Suppose that the true model is y; = x;y+¢,, where x, is a vector of regressors, the
disturbance term €, is normal i.id. with mean zero, indicating that the conditional distribution
of each y; is normal with median x,y and variance 6. Assume that the individual values of
the covariate are known at the stage of creating the design for the survey. The difficulty here
lies in that one is usually interested in the vector of parameters 7, so that a design that aims at
efficiency effectively looks at a covariance matrix of dimension Ixl, [ being the number of
elements of y. One possibility is to use the d-optimality approach to design, and thus look for
the design that maximizes the log determinant of the information matrix for 7.

With the regressors known at the time the design is prepared, an alternative design

possibility might be to concentrate attention on each conditional median m, =x;y. In many
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instances, the experiment is conducted in such a way that there is stratification with respect to
the regressors and one is interested in the median m; in the stratum defined by one of the
possible sets of values of the regressors. In this case, one may choose to specialize the general

c-optimal design method to each stratum, producing an experimental design whereby each

stratum receives two thresholds symmetrically placed around m;. Knowledge of the
conditional medians m, is completely interchangeable with information about the individual
values of the regressor and about the values of the parameters y. The distance between each of
these thresholds and the conditional median is the scale parameter 6, multiplied by a factor
that decreases with the sample size (see Section 3.1). Subjects are to be equally divided
between those two thresholds. Another possibility might be to create a statistic that is believed
to be representative of the population and apply the variance-minimizing approach with
reference to this statistic.

A very simple example of a model with covariates is given by: y; = +7d, +¢,, with €
normal, where 4, the covariate, is a dummy variable that takes on a value of one for half of the
subjects in the sample (say, for i =1,2,...,n/2) and zero for the remainder (i=n/2+1,...,n).
For the first n/2 respondents the conditional median is |+, for the remainder the conditional
median is 1. Identification of the parameters of the model requires that at least two distinct
values of the thresholds are administered to the respondents. Note, however, that if all the
respondents of the first stratum receive a common threshold and all those in the other
subsample receive another common threshold, the parameters are still not identifiable because
the information matrix is singular, even though there are two distinct values of the threshold.
To overcome this problem while keeping our objective function(s) manageable, we first
considered c-optimal designs that impose the restriction that both strata are evenly divided
between two thresholds each and minimize the asymptotic MSE for, in turn, L (the conditional
mean in the second stratum), ¥, {L+Y (the conditional mean in the first stratum), and p+47y

(the overall population mean) for various values of r, the order of the Taylor series expansion
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used to approximate the distribution of the estimates.’ As an alternative to these c-optimal
designs, the fiducial or the d-optimal approach can be used to find the thresholds for the study
(see Appendix B).

The most typical situation in empirical practice is that in which the realizations of the
regressors (or, alternatively, the conditional moments-of the y,.‘ 's) are not known to the
researcher at the time plans are made for the tlﬁesholds, or cannot be used to formulate the
design because of practical concerns. In that case the researcher can do no better than using
information about the unconditional (or population) moments of y“to formulate the statistical
design. To illustrate this situation consider a model similar to that used earlier, with a constant
and a dummy variable y; =7, +7,d,+€,. To keep the discussion simple, assume that G2 is
known to be equal to one. Although we might know that the median y" is equal to vy, in one
stratum of the population and to 7y, +7Y, in the other, we shall assume that it is not known at

the design stage which stratum an individual belongs to. In this situation a reasonable option

for the researcher interested in estimating y, and v, is to choose a design that is based on the

population (or unconditional) moments, such as the single-threshold design consisting of
c=E@y")=v,+Y,E(d)=7v,+0.5y,. The relevant information matrix in a situation in which
the individual values of the covariates are not known prior to the survey is the expected ex
ante information matrix. Its general expression for a model with an intercept term and one

Tegressor is:

— N ¢2 (Z,-) 1 X; = . 1 x
10)= zg; E, { -] [Xi ; }} =nE. {w(z){x. " ]}

19We found that the MSE-minimizing designs followed a pattern similar to that described in Section 3.1: the
optimization routine failed for =1 with thresholds identical to each stratum's conditional mean. For r=2 the

first stratum received two thresholds that were symmetric about the conditional median m, = +v, while the
second stratum received two coinciding thresholds equal to m, =p. A considerable increase in the distance

between the thresholds and m, was noted when moving from r=2 to r=3. The placement was a function of the
sample size.
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where E . denotes the expectation with respect to the distribution of the regressor x” in the
population, z, =y, +7v,x;,—c and z=y,+7,x" —c, and c is the single threshold value used in
the survey. On taking the expectation with respect to the population distribution of the d's (a

binomial with parameter g=0.5), the ex ante information matrix for our model is:

. 1 d 11 10 1 05
1(70,71)=nEd{w(z)[ d dz]}%w(zldﬁl)[l 1]*%‘”(""-':0)[0 o]=”W(°'57‘)[0.5 0.5]

where w(zld, =1) =w(y, +7, —c) =w(0.5y,) and w(zld, =0) =w(y, —c) = w(-0. 5v,) reflect
the fact that (y,+v,d) is equal to (y,+7v,) if d=1 and to vy, if d=0. An additional
simplification of the expression for I'(y,,y,) follows from the symmetry of w(z) around
zero.?0 We note that the present design attains a 50%-50% overall split of the responses
between zeros and ones, but that the split within each stratum may be very different from 50%-
50%. The suggested design clearly uses the unconditional model for the underlying y* and
calculates the threshold as a function of the unconditional first moment of y*. This can be
done either by using the unconditional first moment of y~ directly, or by éalculating it as the
linear combination of the first moment of the regressor and the parameters of the model. For

design purposes, information about the momens of the regressor, combined with knowledge of

the values of the parameters, offers no advantage over using the unconditional moments of y°

directly.

200ther designs are possible in this situation: for instance, one could conceive of single-threshold designs with
C=Y,, Of c=7Y,+7Y,. A quick comparison of the ex ante information matrices associated with those designs,
however, shows that the single threshold design with ¢ =y, +0.5Y, is always better than the other two designs
with respect to v,, and is superior with respect to vy, as well for all the values of Y, in the range between
approximately -2.5 and 2.5. For those values of v, the difference between the information matrix derived from
the design with by ¢=7,+0.5y, and the information matrix for one of the other designs considered is a
positive definite matrix. As an alternative, one may want to assign a threshold equal to Y, to half of the
sample units, and a threshold level of y, +7, to the remainder of the sample. This design is inferior to the
single-threshold design with ¢ =y, +0.57, for any value ofy, in the usual matrix sense (that is, the difference
between the inverse information matrix associated with the design that assigns v, to one half of the sample
units, and Y, +7Y, to the other half, and the inverse information matrix from the design that assigns the
threshold ¢ =y, +0.5Y, to everyone is positive semidefinite).




23

One interesting issue is whether using the c-optimal design that is based on the
unconditional moments of the underlying y” brings about a loss of efficiency for the statistic of
interest with respect to the c-optimal design that is based on the conditional moments.
Intuition suggests that there should be such a loss of efficiency. If, in the model with the
dummy regressor earlier described, the researcher had known which stratum an individual

belongs to at the time of the design, the c-optimal design would have assigned a different level
of the threshold to each stratum: ¢, =y, and ¢, =Y, +7,. This design would have produced

the following information matrix:

11 10
I(yo,yl)=§w(zld,.=1)[1 1]+§w(zld,.=0)[0 O]=

=3w(0)[1 1}+1’-w(0)[1 O}=nw(0)[ 1 0'5] :

2 1 1] 2 00 0.5 0.5

which  follows from z=y,+y,d-c,= YotV —(Yo+7,)=0 if d=1 and
Z=Yo+Yid—c¢ =Y,-Y, =0 if d=0. Clearly, this design would hav&attaincd 50%-50%
overall and stratum splits of the responses between zeros and ones. That the present design is
more informative than that based on the unconditional moments of y' can be seen by
comparing the respective information matrices I(¥,,v,) and I’ (Yo>7Y,): because w(z) has a
maximum at zero, I(Y,,Y,) is greater than I” (Yo,Y,) element by element. The covariance
matrix for ¥, and ¥, obtained by inverting I(Yy,Y,) is thus smaller than that obtained by
inverting I” (Yo-7Y,) in the usual matrix sense, confirming the intuitive notion that when the
design must be based on the unconditional moments of y"there is some loss of information
relative to a design based on the conditional moments. The extent of the loss of efficiency
depends on the value of the parameter Y, and is presumably less serious as y, approaches

zero.2!

21The loss of efficiency of the design based on the unconditional median happens because, when the statistic of
interest is the median, the highest level of information about the center of the distribution is obtained by
choosing the value(s) of the threshold that create a 50%-50% split of the responses between zero and one. Both
the design based on the conditional medians and that based on the unconditional median aim at an overall
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However, even in the situations in which one can do no better than using a design
based on the unconditional moments of y°, after the experiment or survey has been completed
and the binary responses have been observed it is still best to estimate the model including the

covariates. To illustrate this claim, we move to another simple model with an intercept term

and one covariate: y; =Y, +7,x, +€,, with the regressors i.i.d. and normal with mean zero and
variance assumed known and equal to 1. We assume that the parameter of interest is Yo I
the conditional moments (or, equivalently, the individual values of the covariates) are not
known or cannot be used for design purposes, effectively to form the optimal design one refers
to the specification y’ =y, +y,x+e= H,.+M, where [L. =7,+7,E(x) is the unconditional
mean/median of y*. The new error term, 1= Y€, +€, where €_ is the deviation of x from its
mean, has mean zero and variance Yjol+0Z, which is here equal to (Y>+1). The
unconditional model for y* reproduces the situation in which there are no covariates, and

allows one to derive the c-optimal design by applying the results of Section 3.1 in a

straightforward manner: the c-optimal design for 7y, consists of assigning all the observations

to the threshold ¢ = E(y") = M. =Y +1,E(x)=7,. The expected ex ante information matrix

is:

r('Yo"Yl) = l:

[wermeeds  [wernoxeax ][ wirmetods 0
[wrmxedx  [wirx)e(xd 0 Jwrmxo(xdx

where ¢(x) is the standard normal density and w(-) is defined as in Section 3.2. The diagonal
elements of I°(y,,Y,) depend on the value of the parameter Y, a finding that confirms our

results for the model with a dummy regressor. For Y,=1, for instance, this matrix is
approximately equal to:

. 0.48n 0
I (YO’YI)E[ ] ’

0 0.27n

frequency of ones in the sample equal to 50%, but while the design based on the conditional medians attains
likelihood 50% of a one for each individual (or in each stratum of the population), the design based on the
unconditional median cannot ensure this.
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which yields variances for ¥, and ¥, equal to 1/(0.48n) and (1/0.27n). If one uses the same
design (c =7, ) to collect the binary responses and estimates the binary response model without
including the covariate, the estimated model only has the intercept term which is equal to the

ratio of H,./o,. Assuming that the unconditional variance is known, the estimate of the

parameter of interest Y, = W, can be recovered. Its variance is equal to 0',21 ER- = ﬂ, which
. n

n

is larger than 1/(0.48n)=2.08/n obtained earlier because the former contains a larger residual

variance.22

3.6 Uncertainty about the parameter values.
In all of the designs considered thus far, the thresholds are functions of the unknown
parameters L and ¢ of the underlying distribution. For the sake of simplicity we will refer to

the model without covariates from here on. We observe that in the Fisher information matrix

(3), the argument of each w; component is o+ fc,. The objective functions for the c-optimal,

the fiducial and the d-optimal designs are functionals defined on the Fisher information matrix,

2Finally, we can also calculate the loss of efficiency implied by discrete choice estimation of Y, in lieu of
estimating this parameter using a sample of exact numerical values for y'. If the binary response mode!l that
omits the covariate (and uses the design based on the unconditional moment ¢ = Y,) is compared to a
continuous-data model that also omits the covariate, the relative efficiency for v, of the former relative to the

latter is 0.6366. If the covariate is included in the continuous-data model, but not in the binary response model,
the relative efficiency is approximately 0.3289. When the covariate x is included in both models the relative

efficiency for v, is 0.48. The latter relative efficiency is lower than the relative efficiency (0.6366) obtained if
the covariate is included in both models, but the binary response data is collected using the design that does use
information about the conditional moments of y*. This design would present each respondent with a different
threshold that is formed as a function of the respondent's value of x: ¢, =Y, +7Y,X;. To summarize, when we

move from estimating the unconditional model for y* to estimating the model for y' that is conditional on the
covariate, both the binary response and the continuous data estimates gain efficiency. However, the gain is
more pronounced in the continuous data model, which results in a decrease of the relative efficiency of the
discrete choice estimates vis-a-vis the continuous data estimates. To recover the maximum attainable relative
efficiency (0.6366), it is necessary to collect the binary responses using the c-optimal design based on the

conditional moments of the y°.
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which in turn depends on the parameters of the model? If a percentile-based design is
preferred, one still needs to know the values of the location and scale parameters to contruct
the thresholds. Thus, the actual implementation of the design requires knowledge of G and [,
the very parameters the researcher wants to estimate.

Three different approaches have been suggested to tackle this problem. The first
approach simply replaces the unknown parameters with some initial estimates in the expression
for the objective function or the thresholds. This is a one-stage approach in which the initial
estimates for the parameters come from a source such as a previous study, a pilot study, or
perhaps a pure guess and are treated as the true values of the parameters. The second
approach is a sequential one and represents one statistical way of formally treating prior
information and updating it. The sequential approach begins with an initial, possibly arbitrary,
estimate of the parameters which is improved in the course of sequential experiments or
surveys. The data collection effort is divided into stages and the estimates from each stage are
used for design purposes in the next stage. Each step produces estimates that are more
efficient.2* The third approach is a Bayesian one: the researcher following this approach
formally quantifies the level of a priori confidence about the true value of the parameters by

means of a prior distribution on the parameters (Tsutakawa, 1972, 1980; Kanninen, 1991).

23From an operative point of view, (8) and (9) can equivalently be optimized with respect to the z,'s. The
solutions must be rescaled by the standard deviation and shifted by an amount equal to | to be on the same
scale as the underlying y”.

24The total sample size, number of stages, and rule to assign the number of observations to each stage may be
specified prior to the experiment or survey (Abdelbasit and Plackett, 1983; Minkin, 1987). In other cases, the
researcher may keep sampling and repeating the sequential procedure without these constraints and bring the
experiment or survey to an end when a cost constraint becomes binding (McLeish and Tosh, 1990) or when the
precision of the estimate converges to a value that cannot be significantly improved. Using a computer-assisted
telephone interviewing (CATI) system it would be possible to sequentially update the parameter estimates with
each interview. Kanninen (1993) and Nyquist (1992) follow the sequential approach and present an
application to the design of a contingent valuation study in which the variance-minimizing design for p is
adopted at each stage of a sequential design with an updated estimate for M. A sequential approach of this kind
presents the advantage of making the overall design (obtained pooling all the stages) nonsingular while
improving the efficiency of the estimates.
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In this paper, we deal only with the first approach. In addition to examining the
properties of the designs presented when the true values of the parameters are known, we will
also analyze by means of a simulation study the behavior of such designs when incorrect initial
estimates are used. The evidence from this simulation study hints at how robust the alternative
designs are in the presence of biased initial estimates. ‘We hope to deal at length with the

sequential and Bayesian approaches in a later paper.

4. Construction of experiment designs
4.1 The c-optimal, fiducial, d-optimal and percentile design points.

Table 1 reports the optimal design points (in standard units) for three different design
criteria (the fiducial interval, the d-optimal design and the percentile-based approach) for
selected k's. Our optimization routine did not constrain the k optimal thresholds to be all
different from each other. We found that for k even and greater than 2, the c-optimal, the
fiducial method and the d-optimal designs result in only two distinct thrcshold values. These
values are identical to those of the respective unconstrained designs (Sections 3.1, 3.2 and
3.3). For odd & > 3, the constrained designs effectively reduce to three-point designs. We
note here that as k odd is allowed to grow towards n, the c-optimal, fiducial and d-optimal
designs tend to their unconstrained variants, which, as reported in Sections 3.1, 3.2 and 3.3,
consist of two distinct design points. This trend is apparent even at relatively low k's and is
demonstrated in Tables 1 for the fiducial and d-optimal designs for k=3, 5 and 9. Moving
from k=3 to k=5 shows that fewer observations are placed at the center of the distribution, the
remainder being equally divided between two design points that are symmetric around K and
closer to the center than the design points for k=3. The same changes are seen when further
increasing k from 5 to 9. Although we chose not to report the designs for larger values of k (k
odd), it is clear that as k keeps growing, the fraction of the sample assigned to the center tends
to zero and the standardized values of the other two design points approach +0.37 (for the
fiducial design problem) and +1.138 (for the d-optimal design problem).




TABLLE 1.a

L Desiym Points.

Fiducial Method (95 % fiducial level).

k=2,4,6, ... k=3 k=5 k=9
450 300 360 400 +
[0.372581] | 10.458768) | [0.417678] | [0.395715 I
300 180 100
(0] ] {il]

TABLE 1.

Design Points,

D-Optimal Methad.

k=2,d.0,... | k=3 k=5 k=9
450 + 0 + 360 + A0 ¢
[1.138101) [1.2980R01 | [1.231471) 1. 188696
300 IR0 134}
10} [{}]] 10}

TABLE 1.c

Design Points,

Each columin in Table | provides the number of sample units (o
=sign lo Lhe design points (in brackets) for a sefccted & for a stan-
dard normal distribution. The actual thresholds 1o administer (o the
sespondents are oblained by mulliplying these standardized design
points by g and adding p. Thresholds for the fiducial method are for
#=300. For the fiducial mcthod and_ d-optimality, ‘dmigns wilh k
even reduce (o (he respective two-point designs.

Percentiles Method,
k=2 k=3 k=4 k=5 k=6 k=9
450 + 300 + 225 + 180 + 150 + 100 +
(0.43073] [0.67449) | [0.841 62] [0.96742] [1.06757) | {1.28 155}
300 225 + 180 + 150 + 00 +
10} [0.25335] [0.43073] [(.56595] [0.84162)
180 150 + 100 1
[0} (0.18001) [0.52440]
100 £
[0.25335]
100
M




28

The thresholds obtained with the c-optimal and fiducial method are dependent on the
sample size n. We use a sample size of 900 because this is roughly the size of many moderate
to large surveys and experiments and because 900 is easily divisible by all the values of k in
which we are interested. In the cases we considered the c-optimal designs were always very
similar to the 95% fiducial designs. For instance, the c-optimal designs for sample sizes equal
to 500, 900, 1000, 5000, and 10000 are (in order) u+0.45040, p+0.3873c, uﬂ).37700‘, pt
0.25080, u+0.21060, respectively. The 95% fiducial interval design points are, following the
same order, yu+0.43326, ut0.3726c, u+0.36270, | ut0.24110, and pu+0.20230. Our c-
optimal designs are thus virtually identical to the 95% fiducial designs.ﬁ For this reason we
only present the results for the 95% fiducial designs in tabular form.

Since the actual design points must be on the same scale as the underlying y°, the
numbers in Tables 1 must be scaled through multiplying by ¢ and adding t. When a design
point is zero the corresponding rescaled threshold is the median of y*. Tables 1 show that the
fiducial design points are close to the median while the d-optimal desigﬁ points are farther
away, more toward the tails. This difference in the placement of the design points follows
from the fact that a d-optimal design should by definition obtain reasonably efficient estimates
for both the séalc and the location parameters, while the fiducial design is only trying to obtain
an efficient estimate of the latter.

The relative efficiency for the median with respect to a situation in which the individual
y; 's are observed with the fiducial method is 0.60519 for k = 2 and n = 900. The d-optimal
designs are always less efficient for the median than the c-optimal and the fiducial designs. The
relative efficiency of the d-optimal design is 0.39165 for k=2 or any even k. The highest

25We found that the fiducial and the c-optimal designs are identical when the fiducial level is 96.6%. Given
the sample size, those designs produce a 96.6% classical confidence interval around 1 that has the same length
as the 96.6% fiducial interval around p. The 95% classical confidence interval based on the c-optimal design
and the minimum 95% fiducial interval around L are of almost identical length, the classical interval being
only slightly shorter. Further investigation into the properties of the fiducial design showed that, given the
sample size, the distance of the fiducial points from the median p is an increasing function of the desired
fiducial level.
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relative efficiency afforded by a d-optimal design is achieved with k=3 (0.43657). These
results are not surprising: the d-optimal designs maximize the (log) determinant of 1(8), not
relative efficiency. The variance of the estimated | can, in fact, be expected to decrease when
we move to the d-optimal design with k=3, because this design places a fraction of the
respondents at the median, and clusters the other two design points around the median. The
relative efficiency for a percentile-method design is very close to that of the fiducial points for
k=2 and k=3 (0.59 and 0.57, respectively). For k equal to 4, the relative efficiency is 0.54, for
k equal 6, 0.53, for k equal 8, 0.51. The relative efficiency of the percentile method continues

to decline as k is increased.26

4.2 Efficiencies at other quantiles.

The c-optimal and the fiducial design criteria produce, for any given confidence level,
shorter confidence intervals for that quantile than does the d-optimal design, and are thus the
best candidates for the design if the researcher's interest lies in one parr.icéular quantile of the
distribution. However, it is plausible that the sample of data collected usin g those experimental

-designs may have to be used to predict other quantiles as well.

Figure 2 displays the efficiencies of the estimated inverse normal cdf [®™'( PG +[i]
attained using the design that minimizes the 95% fiducial interval around the median and the d-
optimal design, as well as the placement of the respective design points. We have used the
unconstrained versions of these designs (k=2). The fiducial design for p = 0.50 ensures the

most efficient estimates of the median, as expected, and quantiles defined by values of p around

26We note here that the close proximity of the c-optimal and fiducial design points to the median tends to result
in poor estimates for the variance parameter. The relative efficiency for 6 from these designs is approximately
0.04, while with the d-optimal design it is 0.25. The c-optimal design which minimizes the variance about o2
by equally splitting the observations between +1.57c +p attains a relative efficiency for 6* of 0.30. The latter
two are considerably farther away from the median than those of the d-optimal design (+1.140 +u). For
comparison, the percentile designs with k = 4 and k = 6 attain relative efficiencies for 6° of 0.10 and 0.11,
respectively.




Figure 2.
Variance of Discrete Data Estimator for Percentiles.

Designs are Optimized for Estimating p=0.5 Using a Max. of Four Thresholds.
C-optimal Designs Points are slightly to the Outside of Fiducial Design Points.
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0.50, but the d-optimal design does better for quantiles farther away from the median (for p
smaller than 0.35 or larger than 0.65). A percentile type of design based on 4 thresholds is
included in Figure 2, and is seen to be the best in the approximate ranges of p between 0.35
and 0.45, and between 0.55 and 0.65, suggesting once again that designs specializing with
respect to the center of the distribution tend to produce inefficient estimates for other quantiles
and are usually outperformed, for those quantiles, by designs whoser placement of the

thresholds is less concentrated around the center.

4.3 The robustness of the alternative designs.

The experimental designs that we studied (c-optimal, d-optimal, fiducial method,
percentiles) can be carried out in practice only if the values of 1 and ¢ are known. Because we
consider designs that are completely specified at the beginning of the study, it is necessary to
assign values to pand 0. As a result we decided to explore the impact on the relative
efficiency for the median occurring when the values assigned to the paraineters at the initial
design stage are different from the true values of the parameters.

To assess the impact of assigning biased initial values, we did a simulation study that
generated 100 replications of samples of 900 independent observations from a normal random
variable with median and standard deviation equal to 10. We then generated the binary
indicators using the thresholds corresponding to the c-optimal, d-optimal and fiducial designs
(at the 95% fiducial level) for k=2 and odd &'s, and the percentile method described in Section
4.3 fork=2,3,4,5,6,7,8,and 9. Our comments are limited to the c-optimal, fiducial and d-
optimal designs with k=2 and the percentile designs with k equal to 2, 4, 6, and 8. The
percentile designs for odd k have characteristics between those of their adjacent k-even
designs, so not much is lost by concentrating attention on the designs for even k.

The first series of replications assumed correct knowledge of the true parameters

=10 and ¢® =100; the others introduced initial estimates for the median and the variance

that in turn overstate and understate the true parameters by 25%, 50%, and 75%. The median,
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the variance, and both parameters simultaneously were assigned the various values of the initial
estimates; this assignment generates 49 different cases. The values assumed as initial estimates
for the median were 2.5, 5, 7.5, 10, 12.5, 15, 17.5, while the initial estimates for the variance
were 235, 50, 75, 100, 125, 150, 175.

Since we are primarily interested in the relative efficiency, for each replication the
estimated variance of [1 from the uncensored data was computed. For each %, the appropriate
thresholds for each method, given the assumed values for p and o, were used to dichotomize
y; , then the variance of the probit estimate for i was computed. The mean relative efficiency
for each design was calculated from the 100 replications.

When the initial estimates were equal to the correct values of the parameters, the |
estimates from the uncensored data, the probit estimates and their relative efficiency were close
to the theoretical values for all the design methods. Figures 3 (fiducial), 4 (d-optimal) and 5
(percentile method for k=4) were obtained by graphing the initial values assigned to L and G
and the resulting average relative efficiencies in a three-dimensional spacc.. It can be seen that
each cross-section of the surface (corresponding to a given initial estimate of G) is symmetric
around the true median. The figure for the fiducial design has a sharp peak in relative efficiency
at the true value of the median while the d-optimal figure is much flatter and the percentile
design for k=4 looks like a flatter version of the fiducial design. _

Table 2 displays the mean relative efficiencies for biases of +25%, +50%, and +75%
of the true median and variance for the different methods. This table collapses some cells to
take account of the symmetry of the effects in over- or understating the initial value of the
median, and is a tabular version of the information displayed in the figures. It also contains the
average relative efficiencies for the percentile method for k=2, k=4, k=6, and k=8. To make
the interpretation of the relative efficiencies easier, the table also reports the sizes of the

samples which would have to be drawn in each situation to achieve the same level of efficiency

as with a sample of 1000 continuous observations y; .




Figure 3.
Relative Efficiency of Discrete Data Estimator
Two-point Fiducial Method (95% fiducial level)
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Figure 4.

Relative Efficiency of Discrete Data Estimator
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Figure 5.
Relative Efficiency of Discrete Data Estimator
Quintiles
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When the initial estimate of the median is correct, the fiducial method is quite robust to
bad initial variance estimates. The fiducial design's relative efficiency is around 0.60 at the true
value of the variance. It improves slightly if the variance is underestimated as its design points
move toward the median and drops sharply as the initial estimate of the median departs from
its true value. In the latter case, overstating the variance spreads the design points more
widely around the assumed median and may push the points far apart enough to place at least
one of them relatively close to the true median.

In comparing Figures 3 and 4 note that the relative efficiency of the d-optimal design is
much lower than that with the fiducial design when the initial estimates of the parameter values
are close to the true ones. For correct guesses concerning | and o, the d-optimal approach
requires a sample size over 50% larger than the fiducial design for the same relative efficiency.
Understating the variance with the d-optimal design tends to result in more efficient designs as
the two d-optimal design points are drawn closer to the median. The lowest relative
efficiencies for the fiducial method are observed when there is a large bias in the initial estimate
for the median and an understated variance. The poor performance of the fiducial method in
this situation is related to the placement of its two design points, which are very close to each
other and far away from the true median. On the other hand, the lowest relative efficiencies for
the d-optimal design occur with a large bias in the initial median estimate and an overstated
variance. The poor performance of the d-optimal design in this situation is due to placing one
of the two design points far out in one of the tails. The fiducial design dominates the d-optimal
design in each of the 7 cells where the median is correctly guessed, and 5 of the cells with a
moderate bias and an overstated variance. The d-optimal design dominates in all of the cells
where there is a large bias in the initial estimate of the median.

The percentile method in some instances represents a sort of compromise between the
fiducial (or the c-optimal) and the d-optimal approaches. While the k=2 percentile design does
not have any special merits, being very similar to (if not somewhat inferior to) the fiducial

design (see Tables 2.a and 2.c), the percentile designs with a larger number of thresholds, some




TABLE 2a
Average Relative Efficiency of the Estimated Median
for Given Initial Estimates for p and o.

[in brackets, sample size needed to preserve the efficiency of MLE
estimate of the median from 1000 uncensored observations]

Fiducial Method (k even).

: TABLE 2b
Average Relative Efficiency of the Estimated Median
for Given Initial Estimates for p1 and ©.

[in brackets, sample size needed to preserve the efficiency of MLE
estimate of the median from 1000 uncensored observations]

BIAS OF THE INITIAL VALUE ASSIGNED

D-optimal Design (k even)

BIAS OF THE INITIAL VALUE ASSIGNED

TO THE MEDIAN RELATIVE TO THE TRUE VALUE.

TO THE MEDIAN RELATIVE TO THE TRUE VALUE.

Initial Initial

valueof | 0% 25% 50% 75% valueof | 0% 25% 50% 75%

[s) (o)

5.00 0.6289910 | 0.2791580 | 0.0877610 | 0.0392025 5.00 0.5661480 | 0.4946159 | 0.3658009 | 0.3012762
[1590] [3582] [11395] [25509] [1766] [2022] [2734] [2217)

7.07 0.6126114 | 0.3602740 | 0.1457214 | 0.0679250 7.07 04816706 | 0.4846736 | 0.4250892 | 0.3437231
[1632} [2757] [5862] [14722] [2076} [2063] {2352) [2909]

8.66 0.6057322 | 0.4163159 | 0.1942859 | 0.0951939 8.66 04360513 | 0.4362835 | 0.4214986 | 0.3826452
[1651] [2402] [5147] [10505] [2293] [2292] [2372] [2613]

10.00 0.6031829 | 04412719 | 0.2342360 | 0.1318429 10.00 0.3908402 | 03896147 | 0.3859160 | 0.3777427

[TRUE] | [1658] [2266] [4269] [7585] [TRUE] | [2559] [2567] [2591] [2647]

11.80 0.5949324 | 0.4697909 | 0.2839385 | 0.1572778 11.80 0.3205690 | 0.3207494 | 0.3220435 | 0.3270518
[1681] [2129] [3522] [6358] [3119} {3118] [3105] {3057]

12.25 0.5919563 | 04754225 | 0.2963593 | 0.1672980 12.25 0.3032441 | 03030827 | 0.3042571 | 0.3088714
[1689] [2103] [3374] [5977] [3298] [3299} [3287] [3237]

13.32 0.5825540 | 0.4891099 | 03234109 | 0.1908238 13.32 0.2630080 | 0.2621345 | 0.2609878 | 0.2604021
[1717] [2044] [3092] [5240] {2802] [3815] [3832] [3840]




TABLE 2c
Average Relative Efficiency of the Estimated Median
for Given Initial Estimates for g and o.

(in brackets, sample size needed to preserve the efficiency of MLE
estimate of the median from 1000 uncensored observations]

33% -percentiles (k=2).

. TABLE 2d
Average Relative Efficiency of the Estimated Median
for Given Initial Estimates for p and .

(in brackets, sample size needed to preserve the efficiency of MLE
estimate of the median from 1000 uncensored observations]

BIAS OF THE INITIAL VALUE ASSIGNED

Quintiles (k=4).

BIAS OF THE INITIAL VALUE ASSIGNED

TO THE MEDIAN RELATIVE TO THE TRUE VALUE.

TO THE MEDIAN RELATIVE TO THE TRUE VALUE.

Initial Initial

value of | 0% 25% 50% 75% value of | 0% 25% 50% 75%

(o] ag

5.00 0.6255566 | 0.3096907 | 0.1077331 0.0487906 5.00 0.6023773 | 0.4056219 | 0.1972386 | 0.0988890
[1766] [3229] [9882}] [20495] [1660] [2465] [5070) [10112]

7.07 0.6058384 | 0.4015778 | 0.1788827 | 0.0872073 7.07 0.5882651 0.4681341 0.2947193 | 0.1684757
[1651] [2490] [5590} [11467] [1700] [2136] [3393]) [5936]

8.66 0.6053828 0.4414112 0.2341617 0.1200527 8.66 0.5580085 0.4910441 0.3478878 0.2263948
[1652] [2266] [4271] [8330) [1792] [2036) [2875] [4417)

10.00 0.5947947 | 0.4676236 | 0.2788517 | 0.1524575 10.00 0.5376189 | 0.4951301 0.3786436 | 0.2653765

[TRUE}] [1681] {2139] [3586) [6559] [TRUE] [1860] [2020] [2641) [3768]

11.80 0.5784141 0.4875116 | 0.3301337 | 0.2006705 11.80 0.5196822 | 0.4863396 | 0.4001910 | 0.2935609
[1729] [2051} [3029] [4983] [1924] [2056 } [2499] [3406]

12.25 0.5743022 | 0.4907701 0.3425872 | 0.2119675 12.25 0.5043401 0.4791369 | 0.4078903 | 0.3173975
[1741] [2037] [2919] [4718] [1983] [2087] [2452) [3151)

13.32 0.5634338 | 0.4948203 | 0.3687846 | 0.2397943 13.32 0.4882451 0.4677250 | 0.4130149 | 0.3336771
[1775] [2021} [2712] [4170] [2048] [2138] [2421}] [2997]




TABLE 2e
Average Relative Efficiency of the Estimated Median
for Given Initial Estimates for it and o.

[in brackets, sample size needed to preserve the efficiency of MLE

: TABLE 2f
Average Relative Efficiency of the Estimated Median
for Given Initial Estimates for j and o.

[in brackets, sample size needed to preserve the efficiency of MLE

estimate of the median from 1000 uncensored observations]

estimate of the median from 1000 uncensored observations]

14% -percentiles (k=6).

11%-percentiles (k=8).

BIAS OF THE INITIAL VALUE ASSIGNED

TO THE MEDIAN RELATIVE TO THE TRUE VALUE.

BIAS OF THE INITIAL VALUE ASSIGNED

TO THE MEDIAN RELATIVE TO THE TRUE VALUE.

Initial

value of | 0% 25% 50% 75%

o]

5.00 0.6017511 04167612 | 0.2155374 | 0.1068886
[1662] [2399] [4640} [9356]

7.07 0.5789509 | 0.4764025 | 0.3055655 | 0.1856032
[1727] [2099] [3273] [5388]

8.66 0.5539752 | 0.4920061 0.3618820 | 0.2395791
[1805] [2032] [2763] [4174]

10.00 0.5358414 | 0.4895850 | 0.3913631 0.2782665

[TRUE] [1866] [2042] [2555] [3594)

11.80 0.5147538 0.4824710 04027312 0.3082509
[1943] [2073] [2483) [3244]

12.25 0.4969901 04727377 | 0.4106255 | 0.3273440
[2012] [2115] [2435] [3055]

13.32 04794147 | 04611243 | 0.4115908 | 0.3406947
[2086] [2169}) [2430}] [2935]

Initial

value of | 0% 25% 50% 75%

[s)

5.00 0.5928510 | 0.4398145 | 0.2348644 | 0.1210007
[1686] [2511] [4258] [8264]

7.07 0.5634282 | 0.4837353 | 0.3319495 | 0.2030062
[1775] [2067] [3012) [4926]

8.66 0.5382317 0.4899203 0.3758122 0.2634850
[1858] [2041] [2661] [3795]

10.00 05148922 | 0.4817124 | 0.3991905 0.2977778

[TRUE] [1942] [2075] [2502] [3358]

11.80 0.4945306 | 0.4705580 | 0.4057034 | 0.3230235
[2022] [2125] [2464] [3096]

12.25 0.4747422 | 04569732 | 0.4081252 | 0.3379378
[2106] [2188] [2450] [2959]

13.32 04569439 | 0.4429341 04024695 | 0.3446838
[2188] [2258] [2485)] {2901]
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close to the median and some farther toward the tails, achieve much of the efficiency of the
fiducial design when parameter estimates are approximately correct and much of the
robustness of the d-optimal design when they are not. For instance, for k equal to 4 the
percentile design dominates the fiducial design in 20 out of 28 cells and the d-optimal design in
17 out of 28 cells. The fiducial design continues to offer only a fairly small improvement in
relative efficiency if the initial estimate of the median is correct. The d-optimal designs
primarily outperform the percentile designs when there is a large bias in the median estimate
and the variance is substantially underestimated. Moving from the percentile design with k=2
to the percentile design with k=4 brings about only a small loss of efficiency when the median
is correctly guessed, but allows for a marked gain in efficiency with biased initial guesses for
the parameters. Further increasing & to 6 improves robustness, albeit at the cost of some
efficiency. Increasing & to 8 yields a small gain in robustness while continuing to give up some
efficiency at the correct parameter values. Beyond k=8, one seems to gain little, if any at all,
additional robustness to bad initial parameter estimates while continuing to give up relative
efficiency if the parameter estimates are correct.

The choice between percentile designs with a different number of thresholds depends
on the considerations outlined above in regard to robustness (with respect to biased initial
estimates) versus efficiency (with good initial estimates). In practice, these considerations will
also be weighed against the costs of collecting the data. If increasing the number of distinct
design points for a given sample size is virtually costless (as with a computer-assisted
telephone interview fof which different thresholds can be assigned at almost no extra cost),
then one might opt for a relatively large number of thresholds (up to k=8) to achieve a good
deal of robustness. If the data are collected by means of personal interviews where the cost of
increasing the number of equivalent subsamples (i.e., one for each threshold) for a given
sample size is likely to be substantial, then a design with a lower number of thresholds (such as

k=4) may be preferred.
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5. Concluding remarks

In this paper, we have laid out the basic framework for looking at statistical design
issues for binary response data. In doing so, we have drawn heavily on the biometrics
literature. We hope that the message conveyed to the reader is that choice of an optimal
design for collecting binary data is not a straightforward matter. One must consider specific
objectives, available prior information, the likely accuracy of that information, and the ability to
sequentially improve that information. The judicious choice of a statistical design can result in
dramatic gains in the precision with which model parameters are estimated. We also hope that
our presentation will be a useful starting point for econometricians dealing with more complex
discrete choice problems. One obvious direction for extending these results is to consider
alternative distributional assumptions. Here several frequently used distributions such as the
logistic look fairly straightforward. A more difficult direction involves extension to more than
two categorics of responses. Another direction is to consider the possibility of multiple

responses from the same agents obtained in a contemporaneous sequence or over time.

APPENDIX A

Proposition 1. The c-optimal design for p (if it exists) is a two-point design.

Proof: By Caratheodory's theorem, the c-optimal design for M, if it exists, requires no more
than two design points. We can keep our notation simple by making the assumptions that the
two design point are symmetric around the median and that the sample units are equally
divided between the two design points.’” We can write out a formulation of the problem
which allows for a one-point design or a two-point design by including a parameter § which is

the distance between the two thresholds, with a distance § equal to zero meaning a one-point

2TThese two assumptions are not restrictive and are in fact the result of the more general, unrestricted
optimization problem. If the c-optimal design is indeed a one-point design, then our requirement that the
design points be symmetric around the median means that the optimal design consists of a single threshold that
is equal to the median, and that all respondents will be assigned that value of the threshold,
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design that concentrates the thresholds at the median .28 For the optimal design to consist of
one threshold, it is sufficient to show that the MSE attains a minimum at 8=0. For the c-
optimal design to consist of two points, it is necessary to prove that the MSE does not attain a
minimum at =0, hence the optimal § (if it exists) must be > 0.

The MSE,,, the asymptotic mean square error based on the r-th order expansion

approximation to the distribution of ¥n(fi — 1), is written:

20° 20°T(r+1/2)  w(O)Y o 20T (k+1/2)  w®O)
MSE, . =4§*
SED‘] 5 {(2B8)4 V(e) + ﬁ nr—l (2B8)2(r+1) + 6% JE nk—l (2B8)2(k+1)

2(BS)’
2pd)°

for 122, and MSE, = 482{ v(G)} for r=1, where 6=B3 and

v(0) = 20(0)[1 - D(8)]/ ¢° ().

We will show that %_r% MSE[,]]H” > ngf [MSE[,]]H”, hence the c-optimal design, if it

exists, cannot be a one-point design, and must be a two-point design. _
Because each of the terms entering in the expression for the MSE is easily verified as

non-negative, %1_% [MSE[,]]H_’ 2 %i_rBO[MSE[,]] In order to prove that the c-optimal

any finite r

design must be a two-point design, we must show that lim [MSE[ > inf [MSE[,]] .
-0 r 5 r—yee

’]]any finite

It will be easiest to prove the latter inequality for 7=2. The expression for the MSE,,

2 2 2
MSE,, = 457 { 26 20°T(2+1/2) w(8) }

0)+
apoy @ JT n@2Bo)y
On taking the limit for fixed sample size n,

: . 2| 267 20°T(2+1/2) w(O) || _
o M5 2!‘%‘33{45 [(2[38)“ = n(2[36)6}}—

28Ford, Torsney and Wu (1992) have argued that the c-optimal design for p is a one-point design.
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i) 4 so] 2(B8)? 288’ TR+1/2) v@®)? || _1w©), 8§ 1wO0y'rs/2), &
‘9_‘.‘3{48 [(255)‘ R | P - o~ - e
This is is a 0/0 indeterminate form. The limit can be calculated by rewriting this quantity as

, _1w0). (1/8)*  1w0)’T(5/2),. (1/&)*
ls‘inoMSEm'z B? 11:’33-(1/§)4+4 - /nB* éll-Evz(l/&)6

and applying De L'Hospital rule repeatedly to obtain:

. __l_v(O) 1 v(0)’T'(5/2)., (1/&)* _lv(O) lv(O)ZF(S/Z)
M = T Tt a2 R Td Ve

Therefore, while the first-order term converges to a finite limit, 2—:))2v(0) = 2'2;257

the two design points get closer and closer to the center, the second-order terms explodes.??

(+oo) = +o0,

=1.570% as

Hence the MSE, either for r=2 or for a larger order of the expansion3®, cannot attain a finite

291.576* is in fact the lower bound for MSE,,.

301t can be shown that the terms of order higher than two grow towards infinity at a faster rate than the second-
order term as 8—0. The third-order term, for instance, is:

¢, = 45" {2e=r(3+1/2) w0y }

Jn n*(2B%)
If we take the ratio of this term over the second-order term,

K, = 48,{2921“(2+1/2) v(8)* }

Jr n (2B8)¢

45? {292r(3+1/2) w(0)° }
Jr n’(2pd)*

46,{29’1‘(2“/2) w(8)* }
Jr n (2p6)¢

we obtain «,/x, = For large & this ratio is simplified to

I'(3+1/2) v(0)
T'(2+1/2) n(2p3)
sufficiently large sample size and sufficiently large finite §). If §—0 the limit of this quantity is infinity.

and tends to zero even for relatively small sample sizes (the higher-order terms vanish for
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value as 8—0. This proves that the c-optimal design point, if it exists, is a two-point design (8

> 0). It also proves that lim MSE, ;é[ i MSE[,]] : the MSE based on the first-order
80 0 P00

8>
expansion approximation and the MSE based on a higher-order expansion approximation tend
to different limits as 3—0, and thus that the distribution of Vr(ii-p) is not adequately
approximated using a first-order Taylor series approxim:ition. A one-point design thus violates
the requirement for adequacy of the first-order approximation that the higher-order terms

should vanish,

APPENDIX B.
Fiducial design for each conditional median in a model with regressors.

Consider a model with covariates (Section 3.5) and suppose we choose to minimize the
squared half length of the fiducial interval around each median.}! Assume that the individual
values of the regressors are known prior to the study, so that the objective function for each
m; can be formulated conditionally on the knowledge of such values. Adapting the expression
for the squared half-length of the fiducial interval around the median (Section 3.2) to the model

with covariates, we obtain:

2

a a2 A A
© é{ Var(xjﬁ)+2l:—%E]Cov(xj[§, ﬁ){—%—] Var(Bc)—gI:Var(xjﬁ)_M:”(l_ o,

‘ : var(g,)
' szar<ﬁc)
where §=——=—), t is the value of the standard normal deviate corresponding to the

c

desired fiducial level, B=y/0, and B, =~1/0,. Var(x,3) and Cov(x,B,) can be written

Hence, the terms of order higher than two grow towards infinity at rate faster than the second-order term does
as d tends to zero, but vanish faster than the second-order term does for sufficiently large but finite & .

31The thresholds for the d-optimal design for the case including covariates can be derived in a similar manner,
as the criterion function there, like with the fiducial method, is defined on the information matrix for the
parameters.
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as ijar(ﬁ)x'j and ijov(ﬁ,ﬁc) respectively. The expression for the covariance matrix of

(B.B.) is:

, -1
_ n ¢2 (z,_) X; X; X;C
I(B’ Bc) - [:; d)(zl. )[1 - (I)(Z,' )] [C,--xi, C,~2 }:l ’

where z, =xf+B.c,. Equation (9) shows the optimal thresholds depend on the individual
realizations of the covariates, plus Y and &,. The objective function (9) can be rewritten in the

following fashion:

>

Cov2( l)
(10) *c?| Var| @ +2mCov -71-,% +rﬁ?Var(;)—g Var| =L __170_ (1-g)°
& 6'6) 7 \6 & Var(1/ )

where ; indicates the conditional median of y;,x,.'y. From equation (10), one can compute

the optimal thresholds using complete information on the conditional first

(m,) and the second (6*) moments of the y; which incorporate all the information about the

individual x" s.
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