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Coastal wetlands dampen the impact of storm surge and strong
winds. Studies on the economic valuation of this protective service
provided by wetland ecosystems are, however, rare. Here, we
analyze property damage caused by 88 tropical storms and
hurricanes hitting the United States between 1996 and 2016 and
show that counties with more wetland coverage experienced
significantly less property damage. The expected economic value
of the protective effects of wetlands varies widely across coastal
US counties with an average value of about $1.8 million/km2 per year
and a median value of $91,000/km2. Wetlands confer relatively more
protection against weaker storms and in states with weaker building
codes. Recent wetland losses are estimated to have increased prop-
erty damage from Hurricane Irma by $430 million. Our results sug-
gest the importance of considering both natural and human factors
in coastal zone defense policy.

ecosystem services | economic valuation | climate change

Traditional defensive measures against storm surge include
building levees and sea walls. However, such structures can

fail (1), and there are concerns about negative impacts of such
structures on the local environment (2). Planners are looking at
coastal wetlands as potential natural levees for storms due to
their ability to reduce water velocity and wave turbulence (3).
Moreover, wetlands accumulate sediments providing protection
against rising sea levels and local subsidence (4, 5).
Policymakers are often skeptical about employing wetlands as

storm buffers, and hesitant to preserve or restore wetland systems
as part of a storm defense strategy. Previous work has focused on
mechanisms by which wetland plants attenuate storm surge (3–7).
Surprisingly few studies address the economic value of this pro-
tective service. These studies, which we build on, tend to be limited
to a particular type of wetland, such as mangrove forests (8–11),
a few specific disasters (8–10), or specific regions [i.e., certain
tropical countries (8–11) and Louisiana (12–15)]. The exception is
the influential US national study (16), which finds that 1 km2 of
wetlands produce on average $3.3 million annually in storm pro-
tection services. However, this study is limited by the coarse data
employed and imprecise measure of the storm impact region.
Here, we estimate the economic value of coastal wetlands in

storm protection by analyzing all 88 tropical cyclones (of which
34 made landfall as hurricanes) impacting the counties along the
entire Atlantic and Gulf Coasts of the United States between
1996 and 2016 (SI Appendix, Figs. S1 and S2). Tropical storms
are defined as tropical cyclones with maximum sustained winds
of 34 to 63 kt, while hurricanes are those with at least 64 kt (17).
Among the 232 coastal counties experiencing at least tropical-
storm–level winds, 203 experienced property damage at least once,
and 38% of counties suffered damage when hit by tropical-cyclone
winds (SI Appendix, Tables S1 and S2). Many tropical cyclones
hitting the United States are below hurricane strength—the focus
of most previous work (8–16). We show wetlands reduce property
damage proportionately more at the lower end of the tropical
cyclone classification scale, although the absolute magnitude of
damage reduction is larger at the high end of the scale.
By using all of the tropical storms and hurricanes affecting the

United States since 1996, when consistently defined county

estimates of property damage become available, we avoid sample
selection bias issues, whereby damage data were generally
available earlier only for more destructive storms. Areas subject
to flood risk in a county are more accurately estimated, based on
local elevation data and detailed information on individual storm
trajectories that more precisely spatially delineate storm paths
and wind speeds at different distances and directions from the
eye (see Fig. 1 for the example of Hurricane Katrina). Wetland
coverage varies over time and space within a county due to natural
or anthropogenic factors (2). It also effectively varies because each
storm’s flooding area is a function of 1) storm path and 2) wind
intensity. State characteristics remaining unchanged over time and
year-level economic shocks potentially influencing property dam-
age are controlled by using a fixed-effects statistical framework.
Annual expected property damage caused by tropical cyclones

depends on the following: first, the probability that a county
experiences tropical cyclones of different wind velocities—the
wind velocity, in turn, determines the area likely to be flooded by
storm surge; second, the probability that, on experiencing a given
wind speed, damage is nonzero. These relationships are described
by the following:

EðDjX−vÞ =
Z

PðD> 0jv,X−vÞE
�
D
��v,X−v,D> 0

�
f ðvÞdv,

where D represents a county’s property damage when experienc-
ing wind speed v during a tropical cyclone, f(v) represents the

Significance

With rising sea levels and increasingly intense storms associ-
ated with climate change, there is substantial interest in al-
ternative defensive measures for protecting low-lying coastal
communities against coastal flooding. Coastal wetlands are
known to dampen storm surge and wind impacts, but policy-
makers have doubts about employing wetlands as natural le-
vees due to lack of empirical evidence of effectiveness. Using
detailed geospatial data, we explore a comprehensive set of
natural and human factors to examine the role of coastal
wetlands in reducing tropical-cyclone–related property dam-
age. Using all 88 tropical storms and hurricanes hitting the
United States between 1996 and 2016, the expected economic
value of the protective effects of wetlands is estimated for all
counties along the Atlantic and Gulf Coasts.
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annual probability of experiencing wind speed v, and X−v repre-
sents other factors affecting property damage besides wind in-
tensities. Applying the damage function approach developed by
Barbier (11), coastal wetlands may influence property damage
during storms in two ways: first, through the likelihood of a
county experiencing damage in a storm surge; second, if damage
occurs, the amount.

Results
Coastal wetland coverage is associated with statistically signifi-
cant reductions in cyclone-related property damage. A loss of
1 km2 of wetland coverage increases the predicted probability of
experiencing property damage during storms by 0.02% (P < 0.05)
in a county with the average wetland coverage, wind speed, and
flooding area (SI Appendix, Table S3). For coastal communities
suffering from property damage from a storm, a 1% loss of
coastal wetlands is associated with a 0.6% increase in property
damage (P < 0.01), controlling for storm-specific characteristics,
property value under flooding risk, state-specific time-invariant
determinants of property damage, and year-level shocks (Table 1
and SI Appendix, Fig. S3). Coefficient estimates of wind, po-
tential storm surge area, property value under flooding risk, and
being located to the right-hand of the storm path are positive and
significant. The wind effect is particularly large (a 1% increase
increases damage by 7%) and counties on the storm path’s right
side experience 140% (P < 0.01) more property damage than
those on the left.
Coastal wetlands’ protective effects are nonlinear in wind in-

tensity, conditional on damage. This may be because once wet-
land vegetation is fully saturated with water, wave dissipation
effects are weaker (18, 19). To detect this type of nonlinearity,
wetland effects are decomposed by the wind speeds experienced
by a county. Wetlands are effective against storms of all different
magnitudes. The elasticity of property damage with respect to
wetlands is −0.58 for a tropical storm (a 1% decrease in wetlands
is associated with a 0.58% reduction in property damages), −0.55
for a category 1 hurricane, −0.40 for a category 2 hurricane,
and −0.35 for a category 3 to 5 hurricane (Fig. 2A and SI Ap-
pendix, Table S4). This pattern is consistent with laboratory ex-
periments (6). The preventative effect is especially strong for

tropical storms, which happen twice as often as hurricanes.
However, because property damage is rapidly increasing in storm
strength, the absolute magnitude of damages prevented is predicted
to be largest for major hurricanes.
Saltwater wetlands are located closer to the shore than

freshwater wetlands (SI Appendix, Fig. S4), providing the first
line of defense against storm surges. Nevertheless, freshwater
wetlands typically have more coverage than saltwater wetlands,
providing a wider buffer zone, as freshwater wetlands constitute
about 85% of total coastal wetland coverage. We find significant
reductions in property damage for both freshwater and saltwater
wetlands. The difference between their contributions is small and
not significantly different from zero (Fig. 2B; column 3 of Table
1). This is not surprising since storm surge can extend miles in-
land and encompass both types of wetlands.
Forested wetlands, having rougher woody vegetation, may

provide a more effective buffer than emergent or scrub/shrub
wetlands (5, 11, 14, 15). Costanza et al. (16) did not find sig-
nificant evidence that forested wetlands reduced economic losses,
perhaps due to data limitations. We find forested and nonforested
wetlands play similarly protective roles (estimated elasticities
are −0.58 and −0.56, respectively). We cannot reject the hypothesis
that forested wetland reduces damage more than nonforested
wetlands, as suggested by simulation studies (14, 15), although
our result is consistent with that of Gedan et al. (5), who survey
field observation studies and find mangroves and marshes confer
comparable wave attenuation.
Coastal states take different strategies in terms of disaster relief

and preparedness. Some adopt more stringent building codes, e.g.,
requiring building on stilts or setting a minimum construction ele-
vation, while others do not. To investigate whether state-level policy
factors induce heterogeneity in wetland protective effects, coastal
states were separated into two groups based on being above or
below the median assessment score for strictness of the resi-
dential building code and enforcement system (Materials and
Methods). Virginia, Florida, South Carolina, and New Jersey
rank as the top four states, while Texas, Mississippi, Alabama,
and Delaware have no mandatory statewide building code di-
rected toward storm damage prevention. Wetland effects on
property damage reduction are significantly lower in states with

Fig. 1. Coastal wetland distribution and estimated storm surge area near Hurricane Katrina landfall.
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more stringent building codes and enforcement systems, sug-
gesting that building codes are a partial substitute for wetlands in
terms of storm protection (stricter code estimate, −0.50; less
strict code estimate, −0.81), although wetlands still have a sizable
effect even with stricter building codes (Fig. 2D and SI Appendix,
Table S4).
The estimated storm protection effects of wetlands are broadly

robust to the statistical model used (SI Appendix, Alternative
Specifications; SI Appendix, Tables S5–S8) and do not change

substantially when time trends are included instead of year fixed
effects or whether the two largest disasters, Hurricanes Katrina
and Sandy, are excluded. As additional robustness checks, we
examine models that include different types of manmade storm
defenses (levees, hard structures such as sea walls, and beach
nourishment); different treatments of the property value at risk,
which might be important due to the collapse of real estate
markets during the Great Recession; and different substate
regional indicator variables instead of state fixed effects. The

Fig. 2. Elasticity of property damage with respect to coastal wetland coverage by (A) storm intensity, (B) wetland type, (C) vegetation roughness, and (D)
building code stringency. Each panel shows percent reduction (with 95% confidence interval) in property damage per 1% increase in wetland coverage.
Regression coefficients correspond to models estimated in SI Appendix, Table S4, columns 2 to 5.

Table 1. Conditional damage model estimates

(1) (2) (3) (4) (5)

Log(damage) Log(damage) Log(damage) Log(damage) Log(damage)

Log(wetland) −0.5756*** −0.5752*** −0.5805*** −0.5598*** −0.8055***
(0.1840) (0.1718) (0.1836) (0.1805) (0.2029)

C1 hurricanes × log(wetland) 0.0261
(0.0769)

C2 hurricanes × log(wetland) 0.1724*
(0.1029)

C3-C5 hurricanes × log(wetland) 0.2251*
(0.1208)

Saltwater wetlands × log(wetland) 0.0073
(0.0409)

Forested wetlands × log(wetland) −0.0198
(0.0390)

Strict building code × log(wetland) 0.3011*
(0.1545)

Log(wind) 7.1885*** 6.4122*** 7.1928*** 7.1953*** 7.1929***
(0.5653) (0.9744) (0.5683) (0.5668) (0.5668)

Right 0.8821*** 0.8749*** 0.8828*** 0.8880*** 0.8825***
(0.3129) (0.3200) (0.3147) (0.3183) (0.3128)

Log(storm area) 0.4793** 0.4767** 0.4811** 0.4595** 0.4558*
(0.2249) (0.2180) (0.2248) (0.2235) (0.2293)

Log(property at risk) 0.3205*** 0.3135*** 0.3190*** 0.3194*** 0.3179***
(0.0622) (0.0599) (0.0638) (0.0624) (0.0617)

Adjusted R2 0.52 0.53 0.52 0.52 0.52

SEs (in parentheses) are clustered two ways at the county and storm levels. n = 946. All models include state and year fixed
effects. *P < 0.10, **P < 0.05, and ***P < 0.01.
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results of these models have estimated wetland impacts that are
not statistically different from that of our primary specification.
We estimate the marginal value of coastal wetlands for storm

protection for each shoreline county along the Atlantic and
Gulf Coasts. Assuming the local probability of experiencing
different tropical cyclone intensities provided in ref. 20 follows
a gamma distribution, estimated annual marginal values range
from less than $800 to $100 million per km2, with an average of
about $1.8 million and a median value of $91,000 (Fig. 3 and SI
Appendix, Table S9). The heterogeneity in the storm protection
value of wetlands (SI Appendix, Figs. S5 and S6) across counties
is due to the property values at risk, local wetland coverage,
coastline shape, local elevation, building codes, and the prob-
ability of experiencing different wind intensities. The low val-
ued wetlands tend to be located in more rural, less populated
counties, while the converse is true for more highly valued
wetlands.
The marginal value of coastal wetlands for storm pro-

tection over a fixed time period, the relevant quantity for
benefit–cost assessments involving development projects, can
be estimated by discounting the future annual value of wet-
lands over the desired time frame assuming the current an-
nual marginal value remains constant. Using a discount rate
of 2.8% (21), expected storm protection services provided by

1 km2 of coastal wetlands over a 30-y (100-y) period are on av-
erage worth about $36 million ($60 million). The median value is
$2 million ($3 million).

Discussion
Estimates of the marginal economic value of wetland services in
protecting property value can serve many purposes. Federal,
state, and local agencies responsible for wetland management
could employ our estimated expected marginal value when de-
termining the amount and the optimal site of required com-
pensatory mitigation. To achieve the goal of “no net loss” in
both wetland acreage and function, section 404 of the Clean
Water Act requires development projects that could have ad-
verse impacts on wetlands to offset wetland loss by restoring,
creating, enhancing, or preserving wetlands within the same
watershed (22). To determine the amount of compensatory
mitigation for each project, the Army Corps of Engineers con-
ducts a case-by-case evaluation and sets a compensatory mitigation
ratio. The expected marginal value of wetlands in reducing storm
damages estimated in this study should be useful to a federal
agency making such assessments, as well as serving as an input to
risk models of the National Flood Insurance Program. One of our
main findings is that location is a crucial factor in the storm pro-
tection services provided by wetlands. This should be accounted

Fig. 3. Annual county-level marginal value of coastal wetlands for storm protection in (A) northeastern coastal counties, (B and C) eastern and southeastern
coastal counties, and (D) coastal counties from Texas to Florida.
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for when evaluating off-site compensatory mitigations since even
relatively small differences in location between the wetlands lost
and the new wetlands created can substantively influence the
storm protection services provided. Furthermore, a replacement
wetland may take decades to fully develop the functions provided
by the original wetlands. The approach developed here, for a given
discount rate, can be used to obtain a consistent estimate of the
economic value of the storm protection service lost during the time
it takes for the new wetland to fully reach the capacity of the lost
wetland.
Our model can be used to estimate property damage under

different wetland loss scenarios. To illustrate this use, we con-
sider the question of how much property damage from Hurri-
cane Irma, in 2017, which occurred just outside of our sample
period, might have been prevented if there had been no loss of
wetlands in Florida between 1996 and 2016. In the 19 coastal
counties that experienced tropical-storm–level wind speeds when
Hurricane Irma made landfall, wetland coverage was reduced by
2.8% between 1996 and 2016. Absent this reduction in wetlands,
we estimate property damage in these counties would have been
lower by about $430 million (Materials and Methods). This is sub-
stantial for a single storm. For comparison, the Federal Emergency
Management Agency spent $10 billion on preventative hurricane,
storm, and flood mitigation programs from 1989 to 2017 (23). This
suggests that wetland preservation is likely to be a comparatively
effective way of protecting coastal communities against tropical
cyclones. Restoring wetlands may also be a cost-effective policy,
but that action needs to consider the time path noted earlier for
such wetlands to provide storm protection services. The interaction
between building codes, restrictions on building in high-risk loca-
tions, and wetland coverage locations deserves further attention
from a policy perspective.
Our model can also be used to predict the storm protection

value of coastal wetlands in the context of different climate
change scenarios. This can be done in a straightforward manner
for the winds associated with tropical cyclone activity by simply
replacing the actual wind distribution at each location with the
forecast wind distribution based on a particular climate change
scenario and reintegrating property damages estimates over the
desired spatial locations and time frame. It is also possible to use
our model to look at the interaction between changing sea levels
and wetlands in coastal counties by holding the estimated pa-
rameters constant and substituting in a new detailed topographic
map of areas at risk under different storm conditions. With
projections of rising sea levels and increasingly intense storms
associated with climate change (24), low-lying coastal communities
are likely to become more vulnerable to flooding. Model-based
estimates can be calculated for the economic value of preventing
future property damage under specific climate change and miti-
gation scenarios under different assumptions about wetland
coverage.
It is important to recognize storm protection for property is just

one of the ecological services that wetlands provide. Other eco-
system services delivered by wetlands include habitat for fish and
wildlife; filtration of industrial, residential, and agricultural runoff;
outdoor recreational opportunities; and carbon sequestration—all
of which we do not value here. These services are at the heart of
the current controversy over the US Clean Water Act (22, 25).
While we have provided comprehensive estimates for a major
component of wetland services, having values for the entire suite
of these services is needed for effective policy decisions (26),
particularly when unmonetized benefits of wetland services are
likely to be ignored.

Materials and Methods
Data. Information on data sources can be found in SI Appendix, Data.

Data Availability. All data and code necessary for replication of the results in
this paper are available for download at GitHub.

Construction of Potential Flooding Area for Each Storm. For each tropical cy-
clone, the maximum sustained wind speed experienced by each affected
county was estimated based on distance from the storm center and the radii
of different wind intensities. Potential flooding areas for each tropical cy-
clone wind category are estimated based on local elevation since inland
penetration of storm surge is highly dependent on local topography. For each
county, we map the area below each elevation from 0 to 8 m in 0.5-m in-
crements. We then compare the area with the Storm Surge Inundation Map
developed by National Oceanic and Atmospheric Administration Map (27),
which provides the flooding inland extent for different hurricane categories
based on simulated storms, taking into account local topography, elevation,
and other environmental features. We select the elevation for which these
two maps coincide the closest. For tropical storms and category 1 hurricanes,
we select locations with elevation below 1 to 1.5 m as the potential flooding
areas. For category 2 to category 5 hurricanes, we choose elevations ranging
from 2 to 8 m to create the flooding areas. The estimated storm surge im-
pact region for a specific storm is the intersection of the potential flooding
areas and the areas exposed to at least tropical storm strength wind. The
property value at risk for flooding is the value of total housing, estimated
based on US Census Bureau block group housing value data, within the
flood risk area.

Regression Models. To estimate the marginal effects of coastal wetlands in
storm protection along both the extensive and intensive margins, we employ
a Cragg lognormal hurdle model (28, 29) that consists of two parts: a probit
model estimating whether coastal wetlands reduce the likelihood that a
county experiences damage in a storm, and a conditional damage model
estimating to what extent coastal wetlands reduce property damage when
damage occurs. The two models can be expressed as follows:

Pðdamagecsht > 0jXÞ=Φðγ0 + γ1wetlandcsht + γ2windcsht + γ3stormareacsht
+ γ4riskpropertycsht + γ5rightcsht + ηcshtÞ,

[1]

lnðdamageÞcsht = β0 + β1 lnðwetlandÞcsht + β2 lnðwindÞcsht + β3 lnðstormareaÞcsht
+ β4 lnðriskpropertyÞcsht + β5rightcsht + γs + λt + «csht ,

[2]

where damagecsht is the property damage caused by tropical cyclone h
in year t in county c of state s, and X is a vector of all of the regressors in the
probit model. wetlandcsht is the coastal wetland area in county c within
the estimated storm surge impact region of storm h, windcsht is the maxi-
mum sustained wind speed experienced by the county, and stormareacsht is
the area of each county within the potential storm surge impact zone.
riskpropertycsht controls for the total property value under the risk of coastal
flooding for each county. Counties with more property value within the
potential flooding areas are likely to experience greater losses because the
property to be potentially destroyed is of greater value. To control for the
location of a county relative to the storm track, an indicator variable,
rightcsht, is included in the model. rightcsht equals 1 if a county is located to
the right of the storm path, and 0 otherwise. Coastal flooding impacts are
expected to be greater on the right side of the storm path since tropical
cyclones rotate counterclockwise in the Northern Hemisphere with strong
winds pushing water onshore to the right of the storm path, while blowing
water away from the coast to the left (30). γs is a state fixed effect, which
captures state-specific characteristics that are fixed across time. One ex-
ample is the shape of the coastline of each state, which is relatively stable
over time—a state with a coastline curved inward may experience higher
surge levels (thus, more damage) when a tropical cyclone makes landfall,
compared to states with a convex coastline (31). γs also includes factors such as
each state’s historical exposure to storm surges and residents’ culture and at-
titudes toward storms. λt is a year fixed effect, which mainly picks up year
specific factors that affect all counties in the United States. ηcsht and «csht are
error terms, which capture random components with limited long-term fore-
cast in advance such as tides, very specific storm track, wind gusts, and rainfall.
β1 is the coefficient of interest, which captures the elasticity of storm damage
to existing wetland coverage when a county suffers from positive property
damage.

Our model relies on estimation techniques designed for panel data. With
panel data, one needs: a long enough time dimension; a large enough
number of units along the individual unit or spatial dimension; and for the
product of these two dimensions, the number of individual observations, to
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be reasonably large. When either dimension gets to be too small, key sta-
tistical quantities of interest, and particularly fixed effects, are unreliably
estimated in the specific sense that they are not consistent estimates of
quantities. Our number of individual observations is more than 900, and
substantially larger than that used in past studies. Our number of time pe-
riods, 21 y, is also larger than that inmany environmental impact studies using
panel data. Less obvious is the fact that our panel dataset is unbalanced. In
the conditional damage model, an observation is only generated if tropical
stormwinds hit a particular county. Because we have far more tropical storms
than previously used and these storms often hit multiple states, there are
plentiful observations to get consistent state-level fixed effects for all of the
states hit except for NewHampshire,Maine, and Connecticut, whichwere not
hit by many storms. However, this is not the case for individual counties. Forty
counties were hit only once. Adding county-level fixed effects causes these
counties to drop out of the sample because the fixed effect is effectively equal
to the residual. There are another 64 counties that are hit twice. The county
fixed-effect estimate for these counties is unreliable as it is simply the average
of the two residuals for that county. It is only when the number of obser-
vations on which the fixed effect is based gets reasonably large that fixed-
effect estimates become well defined with the signal clearly standing out
from the noise of the error term. Alternative specifications using county-level
and substate-level fixed effects defined in two different ways are explored in
SI Appendix, Alternative Specifications, State-level and Sub-State-level Fixed
Effect Models.

Potential Endogeneity. The main source of random variation that statistically
identifies the impact of wetlands in storm protection is the storm-specific
track for each tropical hurricane. Each storm track (including specific path,
radius, and intensity) puts a different set of wetlands, even within the same
county in the same year, into play exogenously and at different intensity. This
means that, even for the same property, if a storm of a specified intensity
approaches from a different angle or the track shifts a mile or two in one
direction, there might be a different set of wetlands providing protective
services. Exogeneity follows from the assumption that, at the time a particular
storm track becomes manifest, the structures at risk have already been built
and any wetlands providing protective services are in place. The identifying
assumption is that, unlike say a localized pressure zone in front of a storm,
which can shift its track, the configuration of wetlands in front of a storm
does not influences its exact path up until the time the storm hits that area. It
is important to recognize that this source of identifying variation does not
allow us to address the issue of how the structures came to be located where
they are at the time a tropical storm threatens the area. Hence that question
is not the subject of investigation in this paper.

In addition to exploiting random variation in storm tracks, there is also
variation in wetlandcsht that comes from two other sources: 1) natural pro-
cesses such as sunshine, precipitation, nutrition in the water, and coastal
erosion, which all can influence wetland distributions; 2) human activities
including constructing structures, dredging, filling wetland, and building
canals and levees. These alterations to the hydrologic systems influence the
amount of sediments and nutrition brought to wetlands, thus influencing
wetland productivity. (1) is due to exogenous natural factors; endogeneity
concerns are therefore focused on (2). There may be concern that there are
places where wetlands are being drained on a large scale to build structures.
While this did take place in the more distant past, it is not a major issue in
the wake of the 1988 Bush Administration “no net loss” of wetland cover-
age and function policy. To achieve this goal, the Environmental Protection
Agency (EPA) finalized the Clean Water Act section 404 and required permits
for projects with potential negative impacts on wetlands. Furthermore, the
1990 Memorandum of Agreement between the EPA and the Department of
the Army established a three-part process, the mitigation sequence, that
must be followed to offset impacts to wetlands (32). The import of these
regulations during our study period (1996 to 2016) is that while there is
some amount of building of new structures on wetlands in coastal areas,
they almost always involve at most a small number of structures and the
restoration of a close-by wetland within the same watershed. Some states
are better at enforcing laws with respect to wetland loss, but this is picked
up in state fixed effects. National enforcement efforts have some variation
over time, but this is picked up in year fixed effects.

The potential for endogeneity naturally arises in any consideration of
property damage, due tomoral hazard and other concerns. This is largely due
to locational and insurance decisions. However, the housing units at risk have
already been built at their particular location when a storm strikes; each
tropical cyclone’s path is exogenous, providing the randomly assigned wind
treatment. In addition, our damage measure includes total losses, not just
insured losses, and there are reasons to expect the two measures to be quite

different—for example, the probability of households in areas at high risk of
coastal flooding having flood insurance was found to be only about 63%
(33). Furthermore, the government strongly favors an ex post response to
property damage, even though ex ante actions are considerably more ef-
fective, a contradiction largely driven by political considerations (23).

Another possible source of possible endogeneity is that units in areas at
high risk of being hit by tropical cyclones may be better built or located in
areas that are better protected by wetlands and other natural defenses
against storm surge and flooding, although ex ante the opposite scenario is
also plausible. To a large extent, this should be captured by the property value
at risk. Also, state fixed effects capture time-invariant state-level factors
influencing damages. The model results shown in SI Appendix, Table S6,
column 2, go even further by including county level fixed, suggesting that, if
anything, our main estimates for the marginal value of wetlands may be
underestimated.

Marginal Value of Wetlands in Storm Protection. Let Dcsht, Wcsht, Vcsht, Scsht,
Pcsht, and Rcsht refer to damagecsht, wetlandcsht, windcsht, stormareacsht,
riskpropertycsht, and rightcsht, and let α stand for β0 + γs + λt. Based on the
conditional damage model, the expected damage to a county when the
wind speed is v, conditional on experiencing property damage, will be
(omitting subscripts):

EðDjv,X−v , D>0Þ=Wβ1vβ2Sβ3Pβ4eαEðe«Þ. [3]

The underlying statistical framework here is a survival model where the
expected value depends on both the estimated regression parameters and
the estimated variance. There are two standard approaches to obtaining the
estimate of Eðe«Þ. First, we can assume the residuals are normally distributed,
effectively treating the regression model as the maximum-likelihood esti-
mator, which can be sensitive to outliers. Second, we can estimate this
quantity by bootstrapping the empirical residual distribution of the
observed data. This latter approach is more flexible and, in this instance,
more conservative. It produces an estimated value of 10.81 for Eðe«Þ, and
estimates of marginal wetland values that are 17% lower than those
obtained under the assumption that the error terms are normally distrib-
uted. We report the more conservative estimates. The annual expected
property damage due to tropical cyclones to a shoreline county can be cal-
culated by integrating the expected property damage over all of the pos-
sible storm wind speeds that could affect the county:

EðDjX−vÞ =
Z

E
�
D
��v,X−v,D> 0

�
P
�
D> 0

��v,X−v,
�
fðvÞdv. [4]

The marginal value of wetlands in storm protection will be ∂EðDjX−vÞ=∂W,
which can be expressed as follows:

Z �
∂EðDjv,X−v ,D> 0Þ

∂W
PðD> 0jv,X−vÞ+

∂PðD> 0jv,X−vÞ
∂W

EðDjv,X−v ,D> 0Þ
�
fðvÞdv.

[5]

This can be estimated using the expression:

Z
D̂

0
@ bβ1

W
P
� dD> 0jv,X−v

�
+

∂P
� dD>0jv,X−v

�
∂W

1
AfðvÞdv, [6]

where D̂ is the predicted property damage when county c experiences a
storm with wind speed v based on the estimation results of the model in Eq. 2.
In a few instances, the predicted value exceeds total property value under risk.

To control the overprediction problem, D̂ is capped by the total property

value under flooding risk for each wind category. Pð dD> 0jv,X−vÞ and

∂Pð dD> 0jv,X−vÞ=∂W are the predicted likelihood of a county experiencing
damage when hit by wind velocity v and the estimated marginal effect of
wetlands in reducing the probability of suffering property damage based on
the estimation results of the model in Eq. 1.

The annual distribution of wind speeds projected for each county from ref.
20 is assumed to follow a gamma distribution, and we impose 152 kt as the
upper bound wind force (strongest wind speed recorded post World War II
in the United States, which was during Hurricane Camille in 1969). The
Landfalling Hurricane Probability Project estimated the probability of one or
more events bringing three wind intensities, i.e., P(v ≥ 34 kt), P(v ≥ 65 kt),
and P(v ≥ 100 kt), for 11 coastal regions covering all counties in our analysis.
These 11 coastal regions group counties based on the frequency of major
hurricane landfalls from 1900 to 1999. For each region, using these points on
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the cumulative distribution function of wind speeds, the parameters of the
best fit gamma probability distribution function of wind speeds are backed
out using the minimum distance estimation method (34). The R-squared
reported is the average over regressions from 11 different wind regions
(20). As a robustness check, Weibull and log-normal distributions are fit for
each county as well. These have slightly lower R2 compared with that of the
gamma distribution and generate similar estimates for the marginal value of
wetlands (SI Appendix, Table S10).

The annual expected property damage due to tropical cyclones to a
shoreline county can be calculated by integrating the expected property
damage over all of the possible storm wind speeds that could affect the
county. It would be straightforward to use alternative projections for future
wind intensities in the modeling framework put forward here.

The marginal value of coastal wetlands across time is estimated by dis-
counting the future annual value ofwetlands to the current period. Assuming
that the annual marginal value of wetlands for storm protection stays the
same in the future, then the formula can be expressed as follows:

XT

t=0

1

ð1+ rÞt
∂EðDjX−vÞ

∂W
, [7]

where r is the discount rate and t refers to year.

Wetland Loss in Florida and Hurricane Irma. The expected change in property
damage can be forecasted under different wetland loss scenarios for a given
storm. Hurricane Irma made landfall in Florida on September 10, 2017, as a
category 4 hurricane (35) and influenced 19 coastal counties at its landfall
locations (SI Appendix, Fig. S7). Since the storm path and wind speed radius
data from refs. 36 and 37 have not been updated, we estimated wind in-
tensity experienced by each affected county using Hurricane Irma Advisory
Archive data from the National Hurricane Center (35). We used our usual
methodology for the remaining explanatory variables. Total property
damage caused by Hurricane Irma is also not yet known; therefore, we
predict it using the model for two different scenarios: first, using 2010
coastal wetland coverage; second, using coverage in 1996, that is, assuming
no loss. From 1996 to 2010, the total wetland coverage within the potential
flooding area was reduced by about 500 km2 (from 17,900 to 17,400 km2), a
loss about 2.8% of wetland coverage in 1996. The forecasted property
damage is $19.07 billion based on the wetland coverage in 1996 and $19.50
billion based on the wetland coverage in 2010. Thus, our model predicts that
property damage caused by Irma would have been reduced by $430 million,
if the 500 km2 of wetlands lost between 1996 and 2010 had been
maintained.
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Data 

Coastal wetlands. Included in this study are saltwater and freshwater wetlands located within the 

coastal watershed boundary of U.S. states (1). The wetland coverage data is extracted from digital 

land cover maps provided by the NOAA Coastal Change Analysis Program (2). These land cover 

maps are created based on 30-meter Landsat imagery and are updated every five years since 1996.  

Wetlands are classified to palustrine and estuarine wetlands based on the salinity level where they 

located, and each group is further categorized based on their vegetation types – forested, 

scrub/shrub, and emergent wetlands. Fig. S8 shows the distribution of wetland changes during 

1996 to 2010 in the typical flooding area when a tropical storm or Category 1 Hurricane hits a 

county. This analysis includes counties with more than a de minimis [over .2 km2 (50 acres)] 

coastal wetland coverage within the flooding area during a Category 5 hurricane. 

Tropical cyclones. Storm trajectories, intensities and radii of various wind speeds are collected 

from the International Best Track Archive for Climate Stewardship Dataset (3) and the Extended 

Best Track Dataset (4).  

Storm damage. Storm property damage for each coastal county is from the Storm Event Database, 

which is an official publication by the National Weather Service (NWS) of NOAA (5). To ensure 

that the database is as accurate as possible, NWS has established detailed instructions on collecting 

statistics on property damage. Though NWS uses the best available information, measurement 

error in estimating disaster damage is no doubt present. From a statistical perspective, random 

measurement error in the dependent variable does not bias OLS estimates of the impact of wetlands 

on storm protection. This type of measurement error will make estimates less precise, reducing the 

power of statistical tests. A constant percentage underestimate will be absorbed into the constant 

term. Difficulties can arise if there is consistent underestimation of damages whose magnitude is 

tied to covariates in the model. Over time, NWS has improved data quality control procedures for 

damage estimation accuracy over time. NWS goes through considerable effort to obtain estimates 

of both insured and uninsured loss. Large uninsured losses and, particularly those requiring 

www.pnas.org/cgi/doi/10.1073/pnas.1915169117
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building permits, are generally included. Smaller uninsured losses may be under counted. To the 

extent that the magnitude of underestimation has change over time this should be captured by year 

fixed effects (Table S4 Column 1) or time trend (Table S4 Column 2). Note that the cost of 

economic disruption included in (6) is not covered here. These costs tend to be inaccurately 

estimated and, given the need to evacuate people in the face of high winds and large scale loss of 

utility services, may not be heavily influenced by wetland coverage. There are also injuries and 

deaths associated with tropical cyclones but again these are less clearly tied to wetland coverage 

than evacuation success. To the extent economic disruption cost and direct harm to people are 

influenced by wetland coverage, our estimates will represent a lower bound.      

 

Property value. The property values were estimated from two sources: the 2000 and 2010 

Censuses and annually released ACS 5-Year Estimates from 2005-2014. The 2000 U.S. Census 

data is retrieved from the IPUMS National Historical Geographic Information System (7), while 

the rest of the housing data is from the U.S. Census Bureau Topologically Integrated Geographic 

Encoding and Referencing (TIGER) Product (8). The main advantage of using these datasets is 

that they collect housing values and the number of housing units at the census block group level, 

which allows us to estimate the total property value under coastal flooding risk in each block group, 

then aggregate to the county level during each storm event. For each of the ACS 5-Year Estimates, 

data is collected during a 60-month time period. For example, the 2010-2014 ACS 5-Year 

Estimates data was collected between January 1st, 2010, and December 31st, 2014. For each ACS 

5-Year Estimates dataset, we assign the housing data to the mid-year, for example, we use ACS 

2010-2014 data as the housing data for 2012. For years with no Census or ACS 5-Year Estimates 

data available, we interpolate the housing value based on the annual growth rate of the state-level 

House Price Index (HPI) from the Federal Housing Finance Agency (9), which is based on housing 

transaction data. 

 

Elevation. Elevation data is based on the National Elevation Dataset (NED) produced by the 

United States Geological Survey (10). 

Storm probability. Annual storm probability data for each coastal county is collected from the 

United States Landfalling Hurricane Probability Project (11). 

Building codes. The stringency of building codes for Atlantic and Gulf Coast states is measured 

based on an assessment report by the Insurance Institute for Business and Home Safety in 2015 

(12). This report ranks hurricane-prone states on a scale of 0-100 based on the effectiveness of the 

states’ residential building code adoption and enforcement systems. The building code stringency 

dummy variable “code” equals to 1 for states with an assessment score above the median score 

and 0 otherwise.  

 

Levee. The length and age of levees in each coastal county along the Atlantic and Gulf Coast is 

collected from the National Levee Database (NLD) published by the U.S. Army Corp of Engineers 

(13). NLD is a congressionally authorized database that documents U.S. levees.  

 

Hard Shoreline Structures. The length of shorelines armored with man-made storm defensive 

structures for each coastal county is estimated by (14), based on the Environmental Sensitivity 

Index (ESI) geo-databases from the NOAA Office of Response and Restoration. Hard shoreline 



 

 

structures include seawalls, bulkheads, and riprap structures (revetments, breakwaters, 

groins/jetties). 

 

Beach Nourishment. The information of beach nourishment projects during our study period is 

collected from a comprehensive beach nourishment database in the U.S. through the Program for 

the Study of Developed Shorelines (PSDS) at Western Carolina University (15). The volume of 

sediment emplacement in each nourishment episode is aggregated to the county-year level and 

merged to our county-storm year level dataset. 

 

Alternative Specifications 

 

Time Trends, Dropping Largest Storms, a More General Functional Form and Selection Bias  

 

Estimation results of Eq. (2), as well as a few alternative specifications are shown in Table S5. 

Adding linear and quadratic time trends as controls instead of time fixed effects does not 

substantively change the estimation of the protective effects of wetlands (Column 2). Figure S2 

reflects one important feature of tropical cyclones – a highly skewed distribution of outcomes (16). 

To check whether the regression results in Table 1 are driven primarily by only a few extremely 

large disasters, observations corresponding to the highest and second highest damage storms are 

dropped (Columns 3-4). The coefficient estimates remain stable across the columns, suggesting 

that the main regression results are not largely driven by a few devastating storms.  

 

The appropriateness of the log-log damage model specification was checked by estimating a Box-

Cox model (17). We found that the null hypothesis of a log-log specification cannot be rejected 

(P=0.88). To check for whether it was necessary to account for possible correlation, conditional 

on included covariates, between the first and second stages of the Cragg lognormal hurdle model, 

we estimated a Heckman model which allows for potential correlation between the two stages. We 

can not reject the null hypothesis using a Wald test that the error terms of the two stages are 

independent (P=0.55). Hence, we use the Cragg lognormal hurdle model as our main model in the 

analysis. 

 

State-level and Sub-State-level Fixed Effect Models 

 

To capture the observed and unobserved features specific to a county, county fixed effects are 

included in the model instead of state fixed effects (Table S6 Column 2). The identifying variation 

comes from within-county differences in wetland coverage across storms, induced by differences 

in the flooding area at risk. The elasticity of property damage with respect to wetlands changes to 

-1.69. That is, rather than controlling for time invariant factors that may affect damage at the state 

level, when we attempt to more precisely control for such factors at the county level, the wetland 

effect becomes larger. While this may suggest the elasticity in the main specification is 

underestimated, the sample is effectively different because many counties appear only for one 

storm and, more generally, the identification of the county-level fixed effects is tenuous (with 

state-level fixed effects, New Hampshire is the only state that effectively drops out of the model). 

 

A very optimistic rule of thumb is that at least five observations per estimated parameter (e.g., 

fixed effects) are needed before there is a reasonable chance that the parameter is consistently 



 

 

estimated. Dropping counties that are hit less than five times drops out 24% of the sample. The 

more frequently advanced 10 observation rule of thumb drops out 76% of the sample if our fixed 

effects are at the county level. We do have some confidence in county-level fixed effects because 

when we drop out counties with fewer than five observations, we get very similar estimates (Table 

S6 Columns 3 and 4) to our models using the full sample with state fixed-effects (Table S6 Column 

1) and with county-fixed effects (Table S6 Column 2). At the more standard ten or more 

observations per parameter (18), we only have 19 counties left, and much of the variation in 

wetlands is lost. Thus, while we think there is some statistical support from the county-level fixed 

effects models (Table S6 Columns 2 and 4) for the hypothesis that the protective effect of wetlands 

is considerably larger than that from our state-level fixed effects model (Table S6 Column 1), that 

estimate is underpowered. There may be utility in using the estimate based on controlling for 

county-level fixed effects as an upper bound for the protective role of wetlands with respect to 

property damage. 

 

The only definitive way to resolve this conflict between the influence of wetlands controlling for 

state-level and county-level fixed effects is with a substantial amount of additional data. Since we 

include all tropical storms during 1996 to 2016, the only realistic way for this to happen is by 

augmenting the current sample with the set of future U.S. tropical storms that occur over next ten 

years or so.  

 

We take an intermediate strategy of including sub-state fixed effects by placing counties in groups. 

Adjacent counties are not necessarily alike due to county boundaries sometimes defining abrupt 

shifts in ecological conditions or population characteristics, so there is no single defensible strategy 

for defining subregions. That said, we pursue two reasonable versions of this strategy to check the 

robustness of our main results and to shed some light on the state versus county fixed effects 

conflict for our wetland impact estimate. Both support the magnitude of the wetlands estimate 

using state-level fixed effects. The first test is done by noting that two states, Florida and Texas, 

have much longer coastlines than the remaining states and have long recognized regional 

differences that can be used. It is reasonable to expect there maybe unobserved characteristics that 

are very different in far western Florida compared to Miami, or along the Gulf coast compared to 

the Atlantic coast. A natural test then is to divide Florida into three regions: Florida Panhandle, 

East Florida Gulf Coast and East Florida Atlantic Coast. Texas is similarly divided into West Texas 

(Cameron to Jackson) and East Texas (Matagorda to Orange). For the remaining states, there is 

still a single state dummy. This allows us to capture substate variation in fixed characteristics, at a 

level between state fixed effects and county fixed effects. The estimated wetland effect is a bit 

smaller, but not statistically different, than our original estimates (Table S6 Column 1) using these 

sub-state dummies instead of the state-level dummies (Table S6 Column 5). 

 

For the second test, the 17 coastal states analyzed in the main model are categorized into 25 sub-

state regional dummies based on their probability of being stricken by a tropical cyclone in any 

particular year. These sub-state dummies are constructed as follows. Hurricane frequency data is 

collected from the Landfalling Hurricane Probability Project which categorizes the entire US 

coastline into 11 regions of contiguous counties based on frequency of intense or major hurricane 

landfalls during the 20th century (11). Since these regions may cross state borders, we interact them 

with state dummies, which leaves us with 25 hurricane frequency-by-state regions. In addition to 

capturing sub-state regional variation, it also controls for fixed characteristics common to all 



 

 

counties with different probabilities of being hit by a storm (e.g., high likelihood counties may 

take common approaches to storm defense, regardless of their state). The estimate of the wetland 

effect is a bit smaller, but not statistically different, than our original estimate using this second set 

of sub-state dummies (Table S6 Column 6). 

 

Other Coastal Defensive Measures 

 

Wetlands are not the only coastal defense against property damage from tropical cyclones. We 

investigate whether inclusion of other man-made coastal defensive measures in the model changes 

the estimated protective effects of wetlands. We first look at the most common hard structure to 

protect against water damage – levees – and ask whether incorporating the extent of levee system 

as a control variable influences our estimated wetland coefficient. To do this, we collected the 

length of levees in each coastal county along the Atlantic and Gulf Coast from the National Levee 

Database (13). There are about 3171 miles of levee systems in the coastal counties. Palm Beach 

County and Miami-Dade County of Florida, and Plaquemines Parish and Lafourche Parish of 

Louisiana rank as the top four counties in terms of the total length of levees while about 60% of 

coastal counties do not have any levee systems.  

 

The first important stylized fact to note is that almost all levee systems were built much earlier 

than our study period (1996-2016), with an average age about 45 years old among those with age 

information available in the database. Effectively, we have a county-level cross section of levee 

lengths, where some of levees may not be relevant if they are located far enough inland from the 

coast. Since the levee system is essentially static in our representation, it will also be picked up to 

some extent in the state fixed effects. The relevant part of the levee system also enters into the 

SLOSH map based on which we calculate the area at risk of flooding. Both of these considerations 

suggest that we might not expect to see the addition of a county level levee variable play much of 

a role in terms of changing the estimated wetland impact coefficient. We test this in two ways. 

 

First, we estimated an expanded model that includes the log of the total levee length (+1) in each 

county as an additional control variable (Table S7 Column 2). The impact of levee length on 

property damage is quite small and not statistically significant. The coefficient on wetlands is 

virtually unchanged. 

 

Second, we test whether presence of a levee system in the county rather than the number of miles 

of levee improves the fit of the model or substantively influences the estimated wetland coefficient. 

This test is performed by inclusion of an indicator variable for whether the county has a levee 

system (about 60% do) and an interaction of this indicator variable and the log of wetlands which 

allows wetlands to play a different role in counties with levee systems. Results in Table S7 Column 

3 show that neither of these two additional variables accounting for the role of levees approaches 

statistical significance and the coefficient on wetlands is almost the same as in our main 

specification.   

 

While levees are likely to be the most important man-made coastal defense measure since they 

line the coastal rivers, which are often the major path for large scale storm surge events, they are 

not the only one. About 90% of coastal counties in the conditional damage model are armored with 

some type of man-made storm defensive structures. These are seawalls, bulkheads, and riprap 



 

 

structures (revetments, breakwaters, groins/jetties) according to (14) who recently assembled a 

cross-sectional database of these structures. For an average coastal county in our analysis, 15% of 

the length of its shorelines is equipped with hard structures (with a median of 11%). Again, the 

limitation of this dataset is that it represents a single recent cross-section.  

 

In Table S7, Column (4) shows that the new variable representing the share of the shoreline 

armored with hard structures in each county is insignificant. The coefficient on wetlands has 

increased about 20% in magnitude but is not statistically different from that in our main 

specification. A variant of this model that includes an interaction with wetlands is insignificant 

and produces in little change in the estimated wetland coefficient. 

 

Another man-made coast defense is known as beach (re-) nourishment, whereby sand is brought 

to a beach to replace sand lost to erosion and storms. In Table S7, the model in Column (5), a 

variable for the total volume of sand (measured in cubic yards) added in beach nourishment 

episodes during the specific year. Unlike the previous variables, this one has both cross sectional 

and time series variation. The difficulty with the time series variation is that the rate at which sand 

is lost over time is likely to be beach specific. The results here show that the log of the quantity of 

sand (+1) put on beaches in the county is insignificant and the coefficient on wetlands is almost 

identical to that in our primary model specification. 

 

The last column of Table S7 includes a set of variables representing levees, hardened shorelines 

and beach nourishment projects. The results here suggest that none of the variables in this set are 

statistically significant individually nor as a set. The coefficient estimate on wetlands is a little 

over 20% higher than the base model suggesting the possibility that inclusion of these factors 

produces a somewhat larger estimate of the protective effective of wetlands but the difference 

between this estimate and our base model is not statistically different. 

 

Use of Alternative Property Value Series 

 

Census and ACS housing value data have been used in the empirical literature on a wide range of 

research topics and form the basis of the capital value of the U.S. housing stock in national income 

accounts. However, housing values recorded in the Census and ACS are homeowner self-reported 

data. The accuracy of homeowner-reported housing value has been examined by researchers since 

the 1950s. Several studies examine the self-reported home value bias by comparing housing sales 

pricing data with owner-assessed home values from national representative surveys such as Survey 

of Consumer Finance (19), Census (20), and American Housing Survey (21-25). Most of these 

studies find that homeowners provide good quality estimates of the value of their homes but that 

these home value estimates are larger by about 2% to 8% than estimates derived from repeated 

sales data. This should provide an upper bound on potential overall bias, since dwelling units in 

worse internal condition and with negative externalities like traffic noise and bad neighbors that 

require physical verification sell more often, and hence are include in the repeat-sales index more 

often than other properties. (21) shows that indexes based on the Census owner-assessed value 

estimates tend to closely track the Case-Shiller repeat home sales indices on a percent change 

basis. (20) finds that homeowners tend to rely on somewhat outdated information, which is not 

surprising given the lag period between the listing of a home at a price and its eventual sale price. 

This leads to reported home values potentially lagging behind market prices during housing booms 



 

 

and reported home values that are potentially higher than that reflected by sales prices during 

housing busts. Our current method, by using Census block group level data, provides high level 

spatial resolution for property values. Its weakness is being relative unresponsive temporally to 

market sales information when markets are quickly moving up and, particularly down, during an 

illiquidity crisis in the housing market.  

 

As noted above, we examine alternative sources of housing price information and perform 

additional statistical tests to examine the robustness of our conclusions to allowing our home value 

at risk measure to become more responsive to boom-bust cycles. We consider three specific 

robustness checks. First, to investigate whether the recession during our study period influences 

our estimates on wetland effects, we drop the official NBER Great Recessions dates of 2007-2009 

and find the coefficient on wetlands is stable (Table S8 Column 2). 

 

We can also investigate whether property value under flooding risk has a different impact on 

property damage depending on housing boom and bust. We run a model where we include an 

additional interaction term: property value under flooding risk interacted with an indicator of 

whether the storm happens during the 2006-2012 housing bust (Table S8 Column 3). The 

interaction term, while negative in sign, is not statistically significant, suggesting there is no 

evidence that the property value at risk effect is different in this time period. Moreover, the 

coefficient estimate for the wetland effect is very close to that in our primary specification.  

 

As a third robustness check, we use an alternative method to calculate the change in housing prices 

over time. Using the 2000 Census estimates as the cross-sectional base at the Census block level, 

we scale these estimates annually to reflect changes in the county-level annual Housing Price Index 

growth rate. This method effectively substitutes greater spatial information over time at the Census 

block group level for greater temporal resolution at the county level. The county-level HPI index 

was recently released by the Federal Housing Finance Agency and is a broad measure of the 

movement of single-family house prices in the United States (26). The HPI is a weighted, repeat-

sales index, meaning that it measures average price changes in repeat sales or refinancing on the 

same properties. The mortgage information used for it is repeat mortgage transactions on single-

family properties whose mortgages have been purchased or securitized by Fannie Mae or Freddie 

Mac.  

 

The HPI is available on a much more spatially disaggregated level, counties, than the better-known 

Case-Shiller repeat sales home price index, which is available only nationally and in 20 

metropolitan areas.  Its drawback is that while a large part of the housing market goes to Fannie 

Mae and Freddie Mac, not all of it does. The subset of houses that do not may appreciate 

differently. Relative to the ACS, the county-level HPI data allows for housing values to change 

more frequently (annually rather than a five-year average) and accounts for the role that liquidity 

effects had on current housing sales prices.   

 

For each county, we use housing value collected from the 2000 Census as the base value and 

estimate the housing value for other years based on the HPI annual growth rate of the county. A 

small number of counties have missing HPI data in a specific year due to having too few 

transactions. We impute annual HPI growth rate in such cases using the average annual HPI growth 

rate of the neighboring coastal counties within the same state, weighted by the length of their 



 

 

border with the county. For each county-by-storm observation, we calculate the total property 

value under coastal flooding risk, using the newly estimated property value and the number of 

properties within the potential flooding area. The wetland storm protection effects do not change 

much after adopting the new method of estimating property value under flooding risk (Table S8 

Column 4).  

 

To conclude here, we find that neither dropping the Great Recession, allowing the housing bust 

period to behave differently nor substituting the trend in housing prices reflected by the HPI for 

that reflected in the ACS substantively changes either our wetland impact or property value at risk 

coefficients. In retrospect, the reason for this result is clear. The different time series for housing 

value are highly correlated because spatial variation in population and average housing price is the 

dominate source of variation in the property at risk variable. Our time fixed effects are picking up 

the large national swing in housing values.  

 

 

 

Fig. S1. Paths of tropical cyclones hitting the United States (1996-2016). 

 

 

 

  



 

 

Fig. S2. Property damage to U.S. shoreline counties during tropical cyclones from 1996 to 2016. 
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Fig. S3. Observed vs. predicted log property damage for each observation in the conditional 

damage model, Eq. (2). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. S4. Coastal wetland coverage along the Atlantic and Gulf Coasts (2010). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. S5. Annual county-level wetland values for storm protection services along Atlantic and 

Gulf Coasts. 

 
 

 

 

  



 

 

Fig. S6. Kernel density plot of log of county level marginal wetland value. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. S7. Coastal wetlands distribution and storm surge area near Hurricane Irma landfall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. S8. Coastal Wetland Change in Counties along Atlantic and Gulf Coasts (1996-2010). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S1. Variable definitions and summary statistics of the conditional damage model. 

Variable Description Units Mean SD Min Max 

Property 

damage 

County property damage during a storm. Millions of 

2016 

dollars 

122.75 792.22 0.00 12340.91 

Wind Maximum sustained wind speed experienced 

by a county. 

knots 
56.22 16.40 34.00 125.00 

Storm area Potential storm surge area. km2 620.76 906.76 0.92 5178.02 

Wetland  
Coastal wetland coverage within the estimated 

storm surge area of a county. km2 377.63 593.99 0.30 3636.25 

Property at 

risk 

Total amount of property value under the risk 

of flooding during a storm. 

Millions of 

2016 

dollars 

5437.80 16998.40 0.77 193456.90 

Right 

0-1 dummy variable, equal to 1 if a county is 

located to the right side of the storm path and 0 

otherwise. 

 

0.54 0.50 0 1 

Freshwater 

wetlands 

0-1 dummy variable, equal to 1 if freshwater 

wetlands are dominant within the storm surge 

area of a county and 0 otherwise. 

 0.66 0.47 0 1 

Saltwater 

wetlands 

0-1 dummy variable, equal to 1 if saltwater 

wetlands are dominant within the storm 

surge area of a county and 0 otherwise. 

 

0.34 0.47 0 1 

Forested 

wetlands 

0-1 dummy variable, equal to 1 if forested 

wetlands are dominant within the storm 

surge area of a county and 0 otherwise. 

 

0.41 0.49 0 1 

Non-forested 

wetlands 

0-1 dummy variable, equal to 1 if emergent 

and shrub wetlands are dominant within the 

storm surge area of a county and 0 

otherwise. 

 

0.59 0.49 0 1 

Tropical 

storms 

0-1 dummy variable, equal to 1 if a county 

experienced tropical storm level wind intensity 

(34-63 knots) and 0 otherwise. 

 

0.70 0.46 0 1 

Category 1 

hurricanes 

0-1 dummy variable, equal to 1 if a county 

experienced Category 1 level wind 

intensity (64-82 knots) and 0 otherwise. 

 

0.22 0.41 0 1 

Category 2 

hurricanes 

0-1 dummy variable, equal to 1 if a county 

experienced Category 2 level wind 

intensity (83-95 knots) and 0 otherwise. 

 

0.06 0.24 0 1 

Category 3-5 

hurricanes 

0-1 dummy variable, equal to 1 if a county 

experienced Category 3-5 level wind 

intensity (≥  96 knots) and 0 otherwise. 

 

0.02 0.15 0 1 

Strict 

building 

codes 

0-1 dummy variable, equal to 1 if 

observation is in a state with above median 

building code assessment score and 0 

otherwise. 

 

0.81 0.40 0 1 

Less strict 

building 

codes 

0-1 dummy variable, equal to 1 if 

observation is in a state with below median 

building code assessment score and 0 

otherwise. 

 

0.19 0.40 0 1 

 

 

  



 

 

Table S2. Summary statistics for property damage across different tropical cyclone classes. 

 

 Observations For counties experiencing property damage 

Cyclone Class Total Without 

damage 

With 

damage 

Median 

 

Mean  Min Max  SD  

Tropical Storm 1164 855 309 0.03 25.56 0.00 6845.40 389.64 

C1 Hurricane   506 242 264 0.78 90.98 0.00 10497.57 913.36 

C2 Hurricane   536 306 230 5.36 77.80 0.01 3189.76 302.88 

C3 Hurricane   252 126 126 8.34 475.13 0.01 12340.91 1462.66 

C4 Hurricane    25    7   18 3.51 364.68 0.06 3827.71 1051.08 

Sample is comprised of 2,483 county by storm observations, of which 947 observations (38% of total 

observations) experienced property damage (millions of 2016 dollars).  

 

Table S3. Probit model assessing effect of wetlands on reducing probability of experiencing 

property damage during a tropical cyclone hitting the U.S. from 1996 to 2016. *P<0.10, **P<0.05, 

***P<0.01. Robust standard errors are given in parenthesis. 

 
 (1) 

 Prob(damage) 

  

Wetland -0.001** 

 (0.0003) 

  

Wind 0.035*** 

 (0.0026) 

  

Storm area 0.001*** 

 (0.0002) 

  

Property at risk -0.000 

 (0.0000) 

  

Right 0.492*** 

 (0.0554) 

  

Constant -2.414*** 

 (0.1373) 

Log-likelihood -1403.412 

N 2483 

 

 

  



 

 

Table S4. Conditional damage model estimates (with the marginal effects of wetlands reported in 

the table). Standard errors (in parentheses) are clustered two-ways at the county level and storm 

level. *P<0.10, **P<0.05, ***P<0.01.  

 

 (1) (2) (3) (4) (5) 

 log(damage) log(damage) log(damage) log(damage) log(damage) 

log(wetland) -0.5756***     

 (0.1840)     

      

Tropical storms × log(wetland)  -0.5752***    

  (0.1718)    

      

C1 hurricanes × log(wetland)  -0.5491***    

  (0.1876)    

      

C2 hurricanes × log(wetland)  -0.4029**    

  (0.1724)    

      

C3-C5 hurricanes × log(wetland)  -0.3501*    

  (0.1873)    

      

Freshwater wetlands × log(wetland)   -0.5805***   

   (0.1836)   

      

Saltwater wetlands × log(wetland)   -0.5731***   

   (0.1863)   

      

Non-forested wetlands × log(wetland)    -0.5598***  

    (0.1805)  

      

Forested wetlands × log(wetland)    -0.5796***  

    (0.1857)  

      

Strict building codes × log(wetland)     -0.5044** 

     (0.1979) 

      

Less strict building codes × log(wetland)     -0.8055*** 

     (0.2029) 

      

Right 0.8821*** 0.8749*** 0.8828*** 0.8880*** 0.8825*** 

 (0.3129) (0.3200) (0.3147) (0.3183) (0.3128) 

      

log(wind) 7.1885*** 6.4122*** 7.1928*** 7.1953*** 7.1929*** 

 (0.5653) (0.9744) (0.5683) (0.5668) (0.5668) 

      

log(storm area) 0.4793** 0.4767** 0.4811** 0.4595** 0.4558* 

 (0.2249) (0.2180) (0.2248) (0.2235) (0.2293) 

      

log(property at risk) 0.3205*** 0.3135*** 0.3190*** 0.3194*** 0.3179*** 

 (0.0622) (0.0599) (0.0638) (0.0624) (0.0617) 

State FE Yes Yes Yes Yes Yes 

Year FE Yes Yes Yes Yes Yes 

N 946 946 946 946 946 

Adjusted R2 0.52 0.53 0.52 0.52 0.52 



 

 

Table S5. Regression results for alternative specifications of the conditional damage model. 

Standard errors (in parentheses) are clustered two-ways at the county and storm level. *P<0.10, 

**P<0.05, ***P<0.01. Column 2 includes both linear and quadratic time trends, the coefficients 

of which are significant different from zero jointly at the 95% confidence level.  
 (1) (2) (3) (4) 

 Base Model Add time 

trends 

Drop Katrina Drop Katrina & 

Sandy 

log(wetland) -0.5756*** -0.6149*** -0.5733*** -0.6089*** 

 (0.1840) (0.1659) (0.1890) (0.1936) 

     

log(wind) 7.1885*** 7.2137*** 7.0594*** 7.0405*** 

 (0.5653) (0.6587) (0.5858) (0.6182) 

     

Right 0.8821*** 0.6610* 0.8151** 0.7844** 

 (0.3129) (0.3668) (0.3151) (0.3340) 

     

log(storm area) 0.4793** 0.5448*** 0.4775** 0.4772* 

 (0.2249) (0.1980) (0.2283) (0.2397) 

     

log(property at risk) 0.3205*** 0.2835*** 0.3110*** 0.3068*** 

 (0.0622) (0.0736) (0.0622) (0.0664) 

State FE Yes Yes Yes Yes 

Year FE Yes  Yes Yes 

County FE     

Time trends  Yes   

N 946 946 920 866 

Adj. R2 0.52 0.48 0.50 0.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S6. Regression results for alternative specifications of the conditional damage model with 

county-level or sub-state-level fixed effects. Standard errors (in parentheses) are clustered two-

ways at the county and storm level. *P<0.10, **P<0.05, ***P<0.01. 
 (1) (2) (3) (4) (5) (6) 

 Base 

Model 

County 

FE 

Drop County 

Hit <5 Times 

(State FE) 

Drop County 

Hit <5 Times 

(County FE) 

Sub-State FE 

(FL, TX) 

Sub-State FE 

(landfall 

probability) 

log(wetland) -0.5756*** -1.6945* -0.5778*** -1.7495* -0.4821*** -0.4726** 

 (0.1840) (0.9116) (0.1922) (0.9100) (0.1505) (0.2060) 

       

log(wind) 7.1885*** 7.5881*** 7.4167*** 7.7629*** 7.2548*** 7.2085*** 

 (0.5653) (0.5715) (0.5428) (0.5493) (0.5252) (0.5473) 

       

Right 0.8821*** 1.0383*** 0.8877** 0.9301** 0.9472*** 0.9349*** 

 (0.3129) (0.3250) (0.3549) (0.3756) (0.3069) (0.3213) 

       

log(storm area) 0.4793** 1.5418 0.4225 1.4809 0.3516** 0.3500 

 (0.2249) (1.0237) (0.2702) (1.0176) (0.1704) (0.2403) 

       

log(property at risk) 0.3205*** 0.0709 0.2737*** 0.0953 0.2720*** 0.3248*** 

 (0.0622) (0.2674) (0.0729) (0.2955) (0.0566) (0.0585) 

State FE Yes  Yes    

County FE  Yes  Yes   

Sub-State FE     Yes Yes 

Year FE Yes Yes Yes Yes Yes Yes 

N 946 906 715 715 946 946 

Adjusted R2 0.52 0.49 0.52 0.50 0.53 0.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S7. Regression results for alternative specifications of the conditional damage model with 

other coastal defensive measures. All models include state-level and year-level fixed effects. 

Standard errors (in parentheses) are clustered two-ways at the county and storm level. *P<0.10, 

**P<0.05, ***P<0.01. 
 (1) (2) (3) (4) (5) (6) 

 Base 

Model 

Levee 

Length 

Levee 

Indicator 

Hard 

Shoreline 

Beach 

Nourishment 

All Man-

made 

Defensive 

Measures 

log(wetland) -0.5756*** -0.5757*** -0.5878** -0.6959*** -0.5686*** -0.7015*** 

 (0.1840) (0.1829) (0.2279) (0.2556) (0.1843) (0.2635) 

       

log(wind) 7.1885*** 7.1885*** 7.1885*** 7.1673*** 7.1894*** 7.1652*** 

 (0.5653) (0.5658) (0.5667) (0.5649) (0.5652) (0.5663) 

       

log(storm area) 0.4793** 0.4798** 0.4848** 0.5703** 0.4713** 0.5647** 

 (0.2249) (0.2210) (0.2322) (0.2577) (0.2262) (0.2548) 

       

log(property at risk) 0.3205*** 0.3207*** 0.3205*** 0.3618*** 0.3273*** 0.3725*** 

 (0.0622) (0.0646) (0.0637) (0.0764) (0.0663) (0.0829) 

       

Right 0.8821*** 0.8821*** 0.8834*** 0.8824*** 0.8846*** 0.8855*** 

 (0.3129) (0.3130) (0.3135) (0.3113) (0.3134) (0.3117) 

       

log(levee length + 1)  -0.0012    0.0209 

  (0.0650)    (0.0693) 

       

Has Levee × log(wetland)  

 

  0.0155    

  (0.1112)    

       

Has Levee   -0.0708    

   (0.5405)    

       

Share of Hard Shorelines    -0.7988  -0.9074 

    (0.8199)  (0.8782) 

       

log (Beach Nourishment + 1)   -0.0079 -0.0100 

  (0.0238) (0.0243) 

N  946 946 946 946 946 

Adjusted R2  0.52 0.52 0.52 0.52 0.52 

 

 

 

 

 

 

 

 



 

 

Table S8. Regression results for alternative specifications of the conditional damage model. 

Standard errors (in parentheses) are clustered two-ways at the county and storm level. All models 

include year-level and state-level fixed effects. In Columns 1-3, property at risk is estimated using 

the same method as in the original paper. In Column 4, property at risk is estimated based on 

county-level HPI annual growth rate. *P<0.10, **P<0.05, ***P<0.01. 
 (1) (2) (3) (4) 

 Base 

Model 

Drop Recession 

2007-2009 

Housing Bust 

Indicator 

Newly Estimated 

Property Value 

log(wetland) -0.5756*** -0.5494** -0.5354*** -0.5742*** 

 (0.1840) (0.2208) (0.1705) (0.1862) 

     

log(wind) 7.1885*** 6.7809*** 7.1939*** 7.2629*** 

 (0.5653) (0.6255) (0.5670) (0.5484) 

     

log(storm area) 0.4793** 0.4353* 0.4315** 0.4237* 

 (0.2249) (0.2574) (0.2078) (0.2319) 

     

log(property at risk) 0.3205*** 0.3719*** 0.3729*** 0.3429*** 

 (0.0622) (0.0614) (0.0751) (0.0702) 

     

Bust × log(property at risk)   -0.1596  

   (0.1357)  

     

Right 0.8821*** 1.1591*** 0.9211*** 0.8891*** 

 (0.3129) (0.3288) (0.3157) (0.3124) 

N 946 822 946 946 

Adjusted R2 0.52 0.49 0.52 0.53 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table S9. Annual, 30-year and 100-year marginal value of coastal wetlands for storm protection 

for Atlantic and Gulf shoreline counties (thousands of 2016 dollars per km2). 

County Annual 30-year 100-year 

Alabama    

Baldwin 177 3,552 5,908 

Mobile 189 3,803 6,325 

Connecticut   

Fairfield 1,100 22,122 36,792 

Middlesex 138 2,772 4,610 

New Haven 195 3,930 6,536 

New London 189 3,797 6,316 

Delaware    

Kent 17 351 584 

New Castle 70 1,403 2,334 

Sussex 91 1,834 3,050 

District of Columbia  
District of 

Columbia 3,184 64,060 106,540 

Florida    

Bay 231 4,643 7,722 

Brevard 54 1,083 1,801 

Broward 284 5,718 9,511 

Charlotte 305 6,132 10,199 

Citrus 77 1,546 2,571 

Clay 368 7,410 12,325 

Collier 38 764 1,271 

Dixie 28 570 949 

Duval 270 5,441 9,049 

Escambia 720 14,484 24,089 

Flagler 156 3,142 5,226 

Franklin 36 733 1,220 

Gulf 31 615 1,022 

Hernando 92 1,857 3,089 

Hillsborough 987 19,847 33,009 

Indian River 593 11,919 19,824 

Jefferson 12 242 402 

Lee 321 6,452 10,731 

Levy 17 341 566 

Liberty 5 92 153 

Manatee 806 16,207 26,954 

Martin 1,617 32,535 54,110 

Miami-Dade 138 2,776 4,616 

Monroe 81 1,628 2,707 

Nassau 89 1,788 2,973 

    

Okaloosa 8,028 161,493 268,584 

Palm Beach 3,360 67,599 112,425 

Pasco 928 18,668 31,048 

Pinellas 2,406 48,412 80,515 

Putnam 69 1,381 2,296 

Saint Johns 290 5,829 9,695 

Saint Lucie 383 7,711 12,825 

Santa Rosa 262 5,277 8,777 

Sarasota 763 15,355 25,538 

Taylor 16 329 548 

Volusia 98 1,976 3,286 

Wakulla 52 1,047 1,741 

Walton 588 11,828 19,672 

Georgia    

Brantley 28 565 940 

Bryan 25 507 843 

Camden 7 140 232 

Charlton 16 325 541 

Chatham 17 341 568 

Glynn 15 298 496 

Liberty 8 160 267 

McIntosh 5 107 178 

Wayne 3 58 97 

Louisiana    

Ascension 205 4,117 6,847 

Assumption 39 791 1,316 

Calcasieu 159 3,203 5,327 

Cameron 3 66 111 

Iberia 43 865 1,439 

Jefferson 392 7,889 13,120 

Jefferson Davis 171 3,443 5,727 

Lafourche 28 573 953 

Livingston 69 1,380 2,295 

Orleans 1,139 22,905 38,094 

Plaquemines 23 454 755 

Saint Bernard 36 721 1,199 

Saint Charles 88 1,769 2,942 

Saint James 58 1,167 1,941 

Saint John the 

Baptist 97 1,947 3,238 

Saint Martin 23 457 760 



 

 

Saint Mary 30 594 988 

Saint Tammany 289 5,806 9,655 

Tangipahoa 73 1,473 2,450 

Terrebonne 24 480 798 

Vermilion 19 383 637 

Maine    

Cumberland 2 37 62 

Hancock 2 39 65 

Knox 2 50 83 

Lincoln 3 52 86 

Sagadahoc 1 19 31 

Waldo 8 158 263 

Washington 1 14 24 

York 2 47 79 

Maryland   

Anne Arundel 181 3,646 6,063 

Baltimore 302 6,066 10,089 

Calvert 98 1,963 3,265 

Caroline 29 593 987 

Cecil 86 1,735 2,885 

Charles 32 653 1,086 

Dorchester 4 71 118 

Harford 48 966 1,606 

Kent 50 1,009 1,679 

Prince George's 61 1,227 2,041 

Queen Anne's 95 1,919 3,192 

Saint Mary's 74 1,490 2,477 

Somerset 6 113 188 

Talbot 65 1,298 2,159 

Wicomico 16 318 529 

Worcester 31 615 1,024 

Massachusetts   

Barnstable 915 18,405 30,610 

Bristol 1,118 22,487 37,399 

Dukes 2,578 51,856 86,244 

Essex 137 2,752 4,577 

Middlesex 77,783 1,564,761 2,602,406 

Nantucket 2,330 46,869 77,950 

Norfolk 3,239 65,163 108,376 

Plymouth 915 18,409 30,617 

Suffolk 15,019 302,147 502,511 

Mississippi   

Hancock 153 3,085 5,131 

Harrison 800 16,098 26,773 

Jackson 161 3,232 5,376 

New Hampshire   

Rockingham 30 600 998 

Strafford 137 2,764 4,597 

New Jersey   

Atlantic 79 1,598 2,658 

Bergen 1,699 34,173 56,834 

Burlington 100 2,005 3,335 

Camden 2,164 43,525 72,388 

Cape May 113 2,267 3,770 

Cumberland 13 254 422 

Gloucester 157 3,156 5,249 

Hudson 31,456 632,802 1,052,434 

Middlesex 522 10,501 17,465 

Monmouth 1,858 37,375 62,160 

Ocean 203 4,075 6,778 

Salem 40 801 1,333 

Somerset 100,155 2,014,829 3,350,930 

Union 11,758 236,540 393,397 

New York   

Bronx 1,984 39,903 66,365 

Dutchess 1,003 20,180 33,562 

Kings 6,202 124,757 207,487 

Nassau 77 1,557 2,589 

New York 27,139 545,955 907,997 

Orange 1,677 33,738 56,112 

Putnam 440 8,843 14,707 

Queens 582 11,711 19,477 

Richmond 166 3,340 5,556 

Rockland 1,035 20,830 34,643 

Suffolk 31 620 1,031 

Ulster 650 13,084 21,760 

Westchester 2,412 48,514 80,686 

North Carolina   

Beaufort 63 1,259 2,093 

Bertie 2 36 60 

Brunswick 174 3,499 5,819 

Camden 5 95 158 

Carteret 62 1,243 2,067 

Chowan 19 379 630 

Craven 103 2,072 3,446 

Currituck 9 179 298 

Dare 31 618 1,027 

Gates 4 71 118 



 

 

Hertford 5 110 182 

Hyde 8 160 265 

Jones 45 900 1,496 

New Hanover 454 9,140 15,202 

Onslow 144 2,900 4,824 

Pamlico 38 757 1,259 

Pasquotank 26 517 859 

Pender 51 1,030 1,713 

Perquimans 15 307 511 

Pitt 107 2,156 3,586 

Tyrrell 7 136 227 

Washington 32 644 1,071 

Rhode Island   

Bristol 1,033 20,775 34,551 

Kent 2,814 56,600 94,133 

Newport 707 14,219 23,647 

Providence 4,914 98,861 164,418 

Washington 826 16,609 27,623 

South Carolina   

Beaufort 50 997 1,658 

Berkeley 61 1,235 2,054 

Charleston 36 720 1,198 

Colleton 19 375 624 

Dorchester 170 3,427 5,700 

Georgetown 34 680 1,132 

Hampton 80 1,603 2,666 

Horry 116 2,328 3,871 

Jasper 15 303 504 

Texas    

Aransas 267 5,378 8,944 

Brazoria 146 2,931 4,875 

Calhoun 93 1,873 3,115 

Cameron 470 9,462 15,736 

Chambers 54 1,084 1,802 

Galveston 1,242 24,990 41,562 

Harris 5,904 118,764 197,521 

Jackson 39 779 1,296 

Jefferson 134 2,698 4,488 

Kenedy 6 123 204 

Kleberg 34 693 1,152 

Matagorda 72 1,440 2,394 

Nueces 2,965 59,642 99,193 

Orange 224 4,515 7,508 

Refugio 11 217 361 

San Patricio 249 5,007 8,327 

Victoria 27 548 911 

Willacy 14 290 483 

Virginia    

Accomack 8 155 258 

Alexandria 40,812 821,025 1,365,475 

Arlington 8,042 161,785 269,071 

Caroline 14 287 478 

Charles City 9 183 304 

Chesapeake 45 909 1,511 

Chesterfield 69 1,393 2,317 

Essex 22 435 724 

Fairfax 518 10,425 17,338 

Gloucester 35 711 1,182 

Hampton 686 13,791 22,936 

Hanover 57 1,153 1,918 

Henrico 80 1,608 2,675 

Hopewell 751 15,104 25,119 

Isle of Wight 87 1,751 2,912 

James City 74 1,494 2,485 

King and Queen 11 221 368 

King George 52 1,050 1,746 

King William 19 389 648 

Lancaster 124 2,491 4,142 

Mathews 51 1,026 1,706 

Middlesex 120 2,421 4,027 

New Kent 31 626 1,041 

Newport News 317 6,378 10,608 

Norfolk 6,714 135,072 224,643 

Northampton 11 213 354 

Northumberland 120 2,407 4,003 

Poquoson 136 2,743 4,562 

Portsmouth 3,118 62,720 104,311 

Prince George 15 302 503 

Prince William 493 9,917 16,492 

Richmond 16 314 523 

Spotsylvania 771 15,514 25,803 

Stafford 150 3,014 5,013 

Suffolk 101 2,042 3,396 

Surry 17 333 553 

Virginia Beach 116 2,326 3,869 

Westmoreland 84 1,686 2,805 

Williamsburg 1,418 28,530 47,448 

York 210 4,224 7,025 



  

 

 

Table S10. Summary statistics of the estimated marginal value of wetlands in storm protection for 

each coastal county based on the best fit gamma distribution, log-normal distribution and Weibull 

distribution (thousands of 2016 dollars). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Best fit wind 

probability distribution 

 R-squared Mean 

MV 

Median 

MV 

SD 

MV 

Min 

MV 

Max 

MV 

Gamma 0.9995 1785 91 9085 0.7 100155 

Log-normal 0.9982 1727 90 8558 0.7   91551 

Weibull 0.9980 1769 93 8873 0.7  96335 
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