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A B S T R A C T   

Research has long debated the effectiveness of socio-demographics in understanding purchase behavior, with 
mixed conclusions. The appeal of socio-demographic data for customer relationship marketing is based on its low 
acquisition cost and the growing array of variables on which marketers can condition messages and offers. We 
reinvestigate the value of socio-demographic variables, focusing on the potential of machine learning procedures 
(MLPs) to extract a stronger and reliable signal than the standard linear-in-parameters (logistic) regression 
models. We explore how predictive power can be increased through the nonlinearities and interactions identified 
with MLPs; our experimental set ranges from well-established procedures to newer entrants in this space. We also 
examine causality vis-à-vis predictability using a propensity scoring approach. Empirics are based on six grocery 
product categories and more than 7,000 panelists. We find that, relative to logistic regression models, MLPs using 
demographic variables yield a 20% to 33% improvement in out-of-sample predictive accuracy.   

1. Introduction 

Decades of conventional wisdom in market research suggest that 
demographic variables are of marginal value to most businesses in 
predicting consumer demand. In this paper, we revisit this issue and 
argue that answering the question of usefulness is much more nuanced 
than previously realized. We consider the following three factors un-
derlying this conventional wisdom: 

1. A common empirical finding is that when researchers possess in-
formation on prior purchase behavior, having individuals’ de-
mographic characteristics adds little predictive power (e.g., Ferber, 
1962; Frank, Massy, & Boyd, 1967; Gupta & Chintagunta, 1994; 
Twedt, 1964). However, the argument that demographic variables 
are not useful to a business does not logically follow from these re-
sults. An obvious example is the case of completely new products, for 
which information on past purchases in the category is unavailable; 
similar logic holds for new entrants in an existing category, to the 
extent that they offer a differentiated alternative.  

2. Previous research often fails to recognize the underlying behavioral 
sequence. Demographic variables predict past purchase behavior, 
but, conditional on observing past purchase behavior, these variables 
do not further improve predictability of current purchase behavior. 
Businesses should focus on the following questions: What is the dif-
ference in the predictive power of a model built only on demographic 
variables versus a model based on past purchase behavior, and what 
are the costs of obtaining these two types of variables? Low-cost 
demographic variables for households across many countries are 
now available, but this was far from the case during much of the 
period over which conventional wisdom on this topic developed. The 
variety of socio-demographic variables has also expanded dramati-
cally and introduced new considerations. For example, liking a 
barbecue restaurant’s page on a social media site does not reflect past 
purchase of barbecue sauce in a grocery store, but it may be a good 
targetable predictor of such behavior. 

3. The notion that demographic variables are inadequate for fore-
casting purchase behavior comes from papers using linear-in- 
parameters models (e.g., variants of ordinary least squares [OLS] 
and logistic regression) and written when issues regarding how to 
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select predictive variables from a broad set and avoid overfitting 
were still largely unresolved (Diamantopoulos, Schlegelmilch, Sin-
kovics, & Bohlen, 2003; Laukkanen, 2016; Wheatley, Chiu, & Ste-
vens, 1980; Zwick, 1957). The literature is full of examples in which 
researchers have found deviations from linear-in-parameters models 
to be important in specific situations, such as an inverted U-shaped 
relationship (e.g., Mihalopoulos & Demoussis, 2001; Ricciuto, Tar-
asuk, & Yatchew, 2006), and via interactions with other de-
mographics (Laukkanen, 2016; Verbeke, 2005). Modern machine 
learning (ML) techniques were designed to avoid rigid specifications 
and provide ways to handle an abundance of possible predictors 
while avoiding overfitting, which can lead to poor-quality out-of- 
sample predictions. 

Because most previous research on this topic comes from studies 
involving products sold in grocery stores, it is logical to use this context 
to reexamine the usefulness of traditional socio-demographic variables 
in the age of ML. Our results include a range of common grocery store 
products that can provide a useful benchmark for subsequent in-
vestigations involving substantively different product categories (e.g., 
new cars, mobile service providers) and novel covariates like media 
attention variables and categorizations of small spatial areas. To 
enhance the credibility of our results, we use purchase data of six 
product categories from more than 7000 panelists of Information Re-
sources, Inc. (IRI), one of the best-known commercial sources for the 
type of data we use and an established data source for many academic 
papers. 

Our null hypothesis is sharply focused: Do standard linear-in- 
parameters models extract all the useful information relevant to pre-
dicting the purchase behavior of interest (as many have long contended; 
Dawes & Corrigan, 1974) relative to currently available ML approaches? 
We examine a set of ML techniques because the well-known “no free 
lunch” theorems for optimization (Wolpert & Macready, 1997) suggest 
that different ML algorithms likely have varying strengths and weak-
nesses that are context-specific in the finite samples that characterize 
empirical research. 

The set of ML techniques we consider includes a mix of established 
procedures known to perform well in many contexts, in addition to some 
newer procedures that appear promising for standard marketing 
research applications like ours. Our central focus is the question of 
whether ML procedures can squeeze more information out of standard 
socio-demographic covariates that would be useful for predicting pur-
chases. Comparing and contrasting the relative performance of specific 
ML procedures with respect to individual products is often a useful 
adjunct to that objective. 

We find that, in general, ML procedures do extract substantially more 
information from standard socio-demographic covariates in many in-
stances. This result should lead marketing researchers to give their use a 
fresh look and prompt practitioners to think about the cost of acquisition 
compared with value in targeting. Our experience, and that of many top 
data scientists, indicates that the relative performance of different ML 
procedures across different products displays a fair amount of vari-
ability. Conventional wisdom in the data science community suggests 
that random forests, while not always the best performer, is consistently 
among the best (e.g., Athey & Imbens, 2019; Choudhury, Allen, & 
Endres, 2021). Top analysts likely would have used one or more of these 
ML procedures after seeing our results, and we chose procedures typical 
of what a new MBA student who took one semester of a good data sci-
ence course should know. Thus, we understate the value of standard 
socio-demographic covariates to organizations with top analytical 
modeling teams. 

There also are differences across products in terms of how well our 
set of covariates predicts purchase behavior relative to the predictive 
power of a simple linear model. These differences are related to the 
importance of deviations from linearity, such as including interactions 
with other variables. The practical importance of ML techniques lies in 

whether identified deviations from linearity are targetable in some way 
that advances one or more business objectives. While we cannot answer 
this question in the general sense, we do provide estimates for our set of 
products and covariates from IRI, suggesting that, in many instances, the 
answer is likely to be yes. We further investigate whether the nonlinear 
relationships are causal, in a narrow context based on a widely used 
propensity score–weighting approach, and we find that many are. In 
summary, we have three main objectives: 

(1) to reassess the predictive power of socio-demographic charac-
teristics on purchase decision using a suite of MLPs,  

(2) to explore the nature of some nonlinear relationships between 
socio-demographic variables uncovered by MLPs, and.  

(3) to examine whether socio-demographic variables have a 
narrowly defined demand-side causal effect on the purchase 
decision. 

The paper is organized as follows. First, we briefly review relevant 
literature streams in Section 2. In Section 3, we identify and position our 
theoretical contribution. Section 4 presents our methodological frame-
work and a detailed description of the data obtained from IRI used in our 
analysis. The modeling results are presented in Section 5. This is fol-
lowed by a discussion of the implications of our findings in Section 6 and 
concluding remarks in Section 7. 

2. Literature review 

The first stage of customer relationship management is the identifi-
cation of consumers and their socio-demographic characteristics. The 
importance of focusing marketing activity on consumers with higher 
purchase probabilities is self-evident. It is critical for marketing practi-
tioners to accurately identify which consumers to target and the attri-
bute combinations of a product that consumers are most likely to buy. 
The major challenge retailers face is determining how to better identify 
their potential customers and whether easily accessible socio- 
demographic information can be effectively used to predict consumer 
purchase decisions (Hood, Urquhart, Newing, & Heppenstall, 2020). 

The benefits of targeted marketing based on socio-demographic 
variables are well documented. For example, in an early study, Zwick 
(1957) found that variations in short-run price elasticities for meat, fish, 
and poultry purchases were related to both income and age. In a coupon 
promotion study, Bawa and Shoemaker (1989) found that targeting 
large and educated households greatly increased sales. More recently, 
Dong, Manchanda, and Chintagunta (2009) reported that individual- 
level targeting increased profits by 14% to 23%. 

Prior work exploring the relationship between socio-demographics 
and behavior has mainly focused on two problems: (1) identifying the 
specific buying behavior of interest, and (2) uncovering socio- 
demographic variables that help profile consumers and predict future 
buying behavior. For example, Verbeke (2005) examined the joint 
impact of socio-demographic, cognitive, and attitudinal factors on 
consumer acceptance of functional foods, where the presence of ill 
family members was identified as an important driver; meanwhile, 
socio-demographics such as age did not independently impact consumer 
acceptance but interacted with consumer knowledge to generate an ef-
fect. Myers, Stanton, and Haug (1971) found that income was more 
informative than social class in explaining purchases of low-cost pack-
aged goods. 

Consumer socio-demographic profiles have been constructed for 
many products. Among food products, the effect of socio-demographic 
variables on consumer decisions has been investigated for fruit, vege-
table, and meat consumption (Ricciuto et al., 2006; Vaughan, Collins, 
Ghosh-Dastidar, Beckman, & Dubowitz, 2017), fast-food choices 
(Akbay, Tiryaki, & Gul, 2007), and purchase of organic foods (Massey, 
O’Cass, & Otahal, 2018; Thompson & Kidwell, 1998). In these studies, 
household income, education level, and number of adults and children 
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in a household were consistently reported as strong predictors. Beyond 
food purchase, the impacts of socio-demographics such as gender, in-
come, and age were used to predict e-commerce behavior (Hood et al., 
2020; Soopramanien & Robertson, 2007; Weltevreden, 2007); gender, 
age, and ethnicity were used to predict hedonic consumptions, such as 
choice of movies (Palomba, 2020); occupation, income, and education 
level were used to predict concert attendance (White & Tong, 2019); and 
age and education level predicted use of renewable-energy technology 
(Diamantopoulos et al., 2003; Sardianou & Genoudi, 2013). 

As we have noted, the usefulness of socio-demographic variables in 
predicting consumer decisions has been questioned (e.g., Sheth, 1977). 
Some early work claimed that demographics were poor predictors of 
purchasing decisions for grocery products (Ferber, 1962; Frank 
et al., 1967; Koponen, 1960; Twedt, 1964). For instance, Rossi, McCul-
loch, and Allenby’s (1996) pioneering study of the value of past pur-
chase behavior found that only 7% of the variability in price sensitivity 
was explained by socio-demographics. However, the low predictability 
of socio-demographic variables on purchase decision does not hold 
across product categories or contexts (Ricciuto et al., 2006). For 
example, using choice experiments and real purchase data, Feit, Bel-
tramo, and Feinberg (2010) found that the inclusion of demographic 
variables greatly improved prediction accuracy for minivan sales. Sun 
and Morwitz (2010) found socio-demographic variables such as the 
occupation of the head of household, income, and type of residence 
useful for reconciling differences between purchase intentions and final 
purchase decisions for automobiles and personal computers. In addition 
to predicting purchase behavior, socio-demographics have been shown 
to predict anti-consumption, such as consumer alienation (Lambert, 
1981). Although some researchers have found that socio-demographics 
underperformed against other factors, such as psychographic and pur-
chase history variables (Rossi et al., 1996; Verbeke, 2005), we argue that 
these comparisons overlooked the acquisition costs and access feasibility 
of different data (McDonald & Dunbar, 1998; Sheth, 1977; Wheatley 
et al., 1980). In general, socio-demographic data are more accessible and 
can be acquired at lower cost. 

Finally, and perhaps more relevant to this article, most previous 
studies reporting low predictability of socio-demographic variables 
relied on conventional regression-based econometric and statistical 
models (Diamantopoulos et al., 2003; Laukkanen, 2016; Ricciuto et al., 
2006; Vaughan et al., 2017; Wheatley et al., 1980; Zwick, 1957). For 
example, when focused on discrete choices such as buy–no buy decisions 
or product selection among a set of competitors, the prediction models 
used were often binary and multinomial logit models (Greene, 2018). 
For example, Gupta and Chintagunta (1994) used a multinomial logit 
model to profile segments for a set of competing products using de-
mographic variables. A weakness of these models is that they typically 
capture only linear or linear-in-logit relationships between socio- 
demographics and consumer decisions. If nonlinear relationships 
among variables were captured, the predictive accuracy of the model 
might be enhanced. A nonlinear impact (e.g., inverted U-shape, a 
pattern that increases at a decreasing rate) of income has been observed 
for food product purchases (Ricciuto et al., 2006), and household size 
was found to influence fast-food consumption in an inverted U-shaped 
pattern (Mihalopoulos & Demoussis, 2001). In addition to nonlinear 
relationships, different socio-demographics may interact to affect pur-
chase decisions. Examples include interactions between occupation and 
income, which affect the purchase intentions for household products 
(Namias, 1960); gender and age, which affect the adoption of mobile 
banking services (Laukkanen, 2016); age and consumer knowledge, 
which affect functional food acceptance (Verbeke, 2005); and income 
and customer satisfaction, which affect loyalty within financial services 
(Cooil, Keiningham, Aksoy, & Hsu, 2007). To capture these interaction 
effects, consumer behavior researchers usually rely on theories to make 
predictions and create interaction terms in regression models for further 
tests; however, some insights may not be foreseen by existing theories 
and must first be captured empirically by advanced methods. 

3. Artificial intelligence and machine learning in theory 
building 

Artificial intelligence (AI) represents the broad concept of machines 
carrying out tasks intelligently. Originally dominated by rule-based 
deductive reasoning, over time AI has moved in the direction of induc-
tive reasoning using ML techniques. This change has been driven by the 
technological revolution of the internet digitizing social, economic, 
political, and cultural activities across the world and generating a rich 
repository of digital data as a by-product. Corresponding developments 
in ML to help understand and interpret this data have come from com-
puter science, computational neurosciences, econometrics, and statis-
tics, leading to the emerging field of computational social science (Lazer 
et al., 2020). 

The marketing datasets in these applications are typically numeric, 
but the use of nonnumeric datasets is increasing (Sheth & Kellstadt, 
2021; for a review, see Ma & Sun, 2020). Within ML, there are various 
learning types. Supervised learning is focused on how to predict a 
particular variable of interest given a set of potential predictor variables 
(analogous to stepwise regression), and unsupervised learning focused 
on finding novel patterns (analogous to principal component analysis). 
For a review of AI applications in marketing, see Verma, Sharma, Deb, 
and Maitra (2021). 

The dominant use of MLPs in marketing, and the one we explore in a 
specific context in this article, has been to build supervised learning 
models with flexible, interdependent, and nonlinear relationships not 
specified a priori (Choudhury et al., 2021; Dzyabura & Yoganarasimhan, 
2018). Examples of MLP use in various marketing contexts (e.g., Cui & 
Curry, 2005; Lemmens & Croux, 2006; Schaeffer & Sanchez, 2020) lead 
us to expect that the MLPs will improve the predictive power of socio- 
demographics on purchase decisions. Davenport, Guha, Grewal, and 
Bressgott (2020), for instance, note an approximately 20% increase in 
sales by targeting non-purchasers with MLPs. 

Among others, Hofman et al. (2021) call for an integration of pre-
diction and explanation into a data-driven computational social science. 
In information management, Kar & Dwivedi (2020) and Dwivedi et al. 
(2019) argue that the use of data-driven research should be expanded 
from pattern recognition and prediction to theory building. Shrestha 
et al. (2021) advocate that MLPs can be used to develop theory induc-
tively or abductively, as they make fewer a priori assumptions about the 
functional form of the underlying model that best represents the data. 
More simply, researchers can use MLPs to explore novel and robust 
patterns that may lead to theory building. Despite a rich literature on 
data-driven theory development making the case for using MLPs 
(Eisenhardt, 1989, 2021), in the social sciences the adoption of data- 
driven theory development has been comparatively slow. 

Lehmann (2020) notes that a core objective of marketing theory is to 
couple explanation with storytelling. Achieving this objective may 
precede or follow a data-driven approach to analysis. Previous market-
ing literature (Bass, 1995; Ehrenberg, 1995) has defined science as a 
process of interaction between empirical generalization and theory, 
leading to more advanced theories. However, insistence on theory first 
effectively rules out the deep insights generated by ML coupled with big 
data. We hope that the present research can help change that mindset 
(Breiman, 2001a). 

In this study, we adopt an integrative modeling framework that 
blends data and theory by combining prediction and explanation (see 
Hofman et al., 2021; Kar, & Dwivedi, 2020; Lehmann, 2020). We 
implement seven MLP algorithms to predict consumer purchasing de-
cisions. In so doing, we demonstrate the application of MLPs in three 
modes: pattern discovery, predictive performance, and causal inference. 
Partial dependence plots (PDPs) are an example of pattern visualization 
that can reveal (possibly unexpected) nonlinear and interdependent 
relationships between socio-demographic variables. We use cross- 
validation to measure the accuracy of each MLP’s prediction of the 
outcome variable. Causal inference from observational data is central to 
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many conceptions of theory (Gregor, 2006). As a guide to causality, 
PDPs can be used to visualize the marginal effects of one or more vari-
ables on the outcome variable (see Zhao, & Hastie, 2021). Here, we 
focus on estimating causal effects between socio-demographics (cause) 
and purchasing decisions (effect) using a counterfactual approach. 
Effectively, our approach is to rule out alternative causal explanations 
that are due to confounding variables in our observational data. This 
approach defines a causal effect as the difference in an outcome variable 
(here, to buy or not), where the same unit of observation experiences 
different levels of the causal variable (here, socio-demographic 
variables). 

Our findings reveal nonlinear patterns such as inverted U-shapes and 
interactions of socio-demographics in purchasing decisions that can be 
further extended for theory building. For example, an inverted U-shape 
may arise as a result of an aversion to extremes; countervailing (often 
latent) forces, one positive and one negative (Haans, Pieters, & He, 
2016); or a combination of direct and indirect effects driving the un-
derlying process (Islam, Meade, & Sood, 2022). 

4. Methodological framework, data, and research objectives 

In this section, we describe the linear binary logistic regression 
model that we use as the baseline statistical and econometric classifi-
cation model representing standard practice. The baseline model em-
ploys either an OLS linear probability model or a probit regression that 
produces similar results. Then, we describe seven MLPs: five major MLPs 
used in management research (see Choudhury et al., 2021) and two from 
recent advances in bio-inspired algorithms (Ab Wahab, Nefti-Meziani, & 
Atyabi, 2015; Kar, 2016), genetic algorithms (GAs), and particle swarm 
optimization (PSO). Bio-inspired algorithms are mainly used to solve 
combinatorial and continuous-parameter optimization problems, with 
only a few applications for solving classification problems (Sachdeva, 
Kumar, Gupta, Khandelwal, & Ahuja, 2013). We used multiple MLPs 
because different ML algorithms are likely to have different strengths 
and weaknesses that are context-specific in finite samples (Wolpert & 
Macready, 1997). 

We see traditional statistical models and MLPs as complements and 
use the strengths of each approach to investigate our research questions. 
Although it is possible to use binary logistic models to test nonlinearities 
such as quadratic or interaction effects, they need to be hypothesized a 
priori. Yet, nonlinearities often are unknown beforehand, and the 
number of possible nonlinearities increases dramatically with the 
number of variables. The strength of traditional approaches lies in 
interpretable coefficients that can be used to test hypotheses. MLPs build 
models with flexible, interdependent, and nonlinear relationships that 
maximize the models’ predictive performance. We exploit this strength 
to reveal hitherto unspecified complex relationships between X and Y. 
We test causal relationships between purchase decisions and de-
mographics using inputs from MLPs. Finally, we discuss how the results 
from the estimated models can be used to address the objectives of this 
study. 

4.1. Statistical and machine learning procedures 

Our objective is to model and predict a household’s product pur-
chase/nonpurchase decisions based on a series of household socio- 
demographic variables. Thus, the outcome Y is categorical and binary 
(Y = 1 or Y = 0), and the m predictor variables X1, X2, X3, …, Xm are 
continuous or categorical. We use conventional binary logistic regres-
sion as the benchmark model for estimation and compare its results with 
the performance of five frequently used ML binary classifiers and two 
bio-inspired algorithms. The standard statistics-oriented references for 
the MLPs we use are Hastie, Tibshirani and Friedman (2009) and James, 
Witten, Hastie, and Tibshirani (2013). For each classifier, there are one 
or more hyper-parameters that are optimized using a training sample. 

Binary logistic. We use binary logistic regression to model the 

relationship between a categorical variable with two possible outcomes 
and one or more categorical or continuous predictor variables, analo-
gously to linear regression (Greene, 2018; Hosmer, Lemeshow, & Stur-
divant, 2013). The binary logistic model can be expressed as: 

Pr(Y = 1|X) =
1

1 + exp
(
−
(
β0 +

∑m
i=1βiXi

) ) (1) 

If we denote Pr(Y = 1|X) as π, then the log of the odds ratio for a 
purchase is: 

logit(Y) = ln
( π

1− π
)
= β0 +

∑m
i=1βiXi. (2). 

The relationship between Y and X is specified in terms of the con-
ditional distribution of Y|X. The effect of each predictor is summarized 
by a coefficient that captures the marginal effect of a change in that 
predictor, assuming all other variables are held constant. In addition to 
its restricted functional form, there are several other limitations of this 
model. A common issue is that with multiple categorical predictors, cell 
counts may be too sparse for reliable parameter estimation, making it 
difficult to include high-order interaction effects. 

Random forests. Random forests is an ensemble technique based on 
the use of a set of small classification and regression trees (CARTs) 
(Breiman, Friedman, Stone, & Olshen, 1984). Algorithms using ensem-
bles of trees, such as random forests, can approximate functions more 
smoothly by averaging over the step-functions of single trees, which can 
help capture nonlinearities and complex interactions (Strobl, Malley, & 
Tutz, 2009). 

Fig. 1 presents a simple single classification tree. The socio- 
demographic variables of a household are used sequentially to deter-
mine whether a consumer is a purchaser. The classification is nonlinear 
because, at each node, the sample data are divided into subsets that are 
subsequently treated differently. A random forest effectively averages 
across many bootstrapped classification trees. To classify a household, 
the variables are fed into each tree in the forest, resulting in each tree 
“voting” for a classification (i.e., purchase or nonpurchase). The classi-
fication with the most votes is the choice of the random forest. 

If there are n households in the sample used for testing and m 
characteristics describing the households, and a number m0 (much 
smaller than m) is specified, then each tree in the forest is generated as 
follows: 

n households are sampled with replacement. 
At each node in the tree, m0 characteristics are chosen at random. 
Each tree is grown as far as possible without pruning. 
Breiman (2001b) shows that the error rate of the random forest 

ensemble depends on the correlation between trees and the error rate of 
individual trees. This correlation decreases as m0 increases, and the al-
gorithm optimizes the value of m0. 

For further details concerning random forests, see Lin and Jeon 
(2006), Biau, Devroye, and Lugosi (2008), and Strobl et al. (2009). In 
marketing, Lemmens and Croux (2006) used random forests to model 
churn and found greater classification accuracy compared with con-
ventional binary or multinomial models. Schaeffer and Sanchez (2020) 

X1 < a1 X1 ≥ a1

X2 < a12 X2 ≥ a12

X2 < a11 X2 ≥ a11

Y = 1 Y = 1Y = 0 Y = 0

Fig. 1. An example of a simple classification tree.  
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used random forests, a support vector machine (SVM), and k-nearest 
neighbors to forecast client retention in prepaid services. A key strength 
of random forests is their very effective performance “out of the 
box”—that is, they require relatively little tuning compared with other, 
more complex, methods (Athey & Imbens, 2019). A weakness is their 
relatively low interpretability relative to traditional binary logistic 
models; however, random forests have been successfully extended to 
investigate causality (Wager & Athey, 2017). 

Gradient boosting. Gradient boosting is another widely used ensemble 
approach that relies on combining many relatively weak simple models 
to obtain a stronger ensemble prediction (Schapire, 2003). Boosting is a 
sequential forward-stagewise procedure. Models (e.g., classification 
trees) are fitted iteratively to training data, gradually increasing 
emphasis on observations that are poorly modeled by the existing 
collection of trees. The nonlinearity in this procedure is adaptive 
reweighting, which gives previously misclassified samples an increased 
weight in the next iteration but reduces weight to samples correctly 
classified in the previous iteration. The final classification is based on a 
weighted majority vote of the sequence of classifiers. A gradient- 
descent-based formulation of boosting methods has been derived by 
Friedman, Hastie, and Tibshirani (2000) and Friedman and Meulman 
(2003). To achieve better predictive accuracy both in- and out-of- 
sample, we use a nonparametric classification approach (Friedman, 
2002), also known as extreme gradient boosting. Gradient boosting’s 
strength lies in its origin in learning theory (Valiant 1984), where weak 
learners are “boosted” to produce a strong learner. The algorithm 
generally generates a globally optimal solution but may find only a local 
optimum. Another weakness is that, unlike random forests, boosted trees 
have a correlated structure, making the relative importance of variables 
more difficult to discern (Kuhn & Johnson, 2013). 

Support vector machine. An SVM classifies an observation based on 
where it lies on each side of a hyperplane. The choice of hyperplane 
depends on the accuracy required and the tolerance for misclassifica-
tion. SVMs build optimal separating boundaries by solving a constrained 
quadratic optimization problem, the solution of the following optimi-
zation problem (James et al., 2013, p. 346): 

Maximize D.

Subject to
∑m

j=1
β2

j = 1,

yi(β0 + β1xi1 + β2xi2 +⋯+ βmxim) ≥ M(1 − ∊i)

where ∊i ≥ 0,
∑n

i=1
∊i ≤ C. (3) 

D is the margin, the distance between the observations and the hy-
perplane; m is the number of predictors X (the vector of socio- 
demographic variables); n is the training sample size; Y is the outcome 
variable (purchase, nonpurchase); ∊ are slack variables that allow in-
dividual observations to be on the wrong side of the hyperplane; C is the 
tuning parameter that controls for bias–variance trade-off; and βs are the 
weights associated with predictors X. 

The SVM is effective in high-dimensional spaces and in cases where 
the number of dimensions, m, is greater than the number of samples, n. 
The SVM uses memory efficiently because only a subset of training 
points (the support vectors) is used in the decision function. Functions of 
the distance between predictors are employed to allow the SVM to use 
nonlinear decision boundaries. In particular, two kernels are common in 
empirical work: 

Polynomial Kernel : K(Xi,X ′

i ) =

(

1 +
∑m

j=1
xij, x′

ij

)d  

Radial Basis Kernel : K(Xi,X
′

i ) = exp

(

− γ
∑m

j=1

(
xij − x′

ij

)2
)

where d is the degree of polynomial and is a positive constant. SVM 
combines the strength of conventional theory-driven statistical methods 
and that of data-driven, distribution-free, and robust ML methods 
(Ravisankar, Ravi, Rao, & Bose, 2011). Cui and Curry (2005) noted 
SVM’s strength in solving nonlinear problems using a linear framework 
with kernel transformations but highlighted SVM’s weakness in not 
providing probability estimates or predictive/posterior bounds. 

K-nearest neighbor. The principle behind any nearest-neighbor 
method is first to use a predefined distance metric to identify several 
observations (e.g., households) in the training sample that are closest to 
the new observation. The values of the outcome variable of the identi-
fied observations are then averaged to predict the new observation that 
falls into the neighborhood. The number of observations required for the 
prediction can be a user-defined constant (k-nearest neighbor learning) 
or can vary depending on the local density of points (radius-based 
neighbor learning). For each new observation, the objective is to find K 
nearest neighbors, where the distance metric is chosen in the context of 
the problem; it can be Euclidean for continuous data or a measure of 
similarity for categorical data. Finally, the new observation is classified 
using a majority vote among the K neighbors (Hastie et al., 2009, p. 
463). Viaene, Derrig, Baesens, and Dedene (2002) provide details for a 
business application of K-nearest neighbor. The strength of k-nearest 
neighbors lies in its simple implementation, requiring only two tuning 
parameters, k and the choice of distance measure. However, unlike 
random forests, k-NN requires feature scaling and is sensitive to missing 
observations (Hastie, Tibshirani, & Friedman, 2009). 

Neural network. Neural networks encompass a large class of models. 
A network without a hidden layer is identical to a logistic regression 
model if the sigmoid activation function is used. Here, as an exemplar, 
we use a standard single-layer perceptron, which consists of an input 
layer with a node for each input variable (household characteristic), one 
hidden layer, and an output layer with two nodes in our case (purchase 
and nonpurchase). The one hidden layer we used is generally sufficient 
to classify most datasets (Dreiseitl & Ohno-Machado, 2002). This neural 
network can approximate a wide range of input–output maps. A single 
hidden layer’s vector of outputs (called hidden units), Z, is created from 
linear combinations of the m inputs, X: 

Z = σ
(
α0 +αT X

)

The vector of outcomes, Y, is a function of linear combinations of the 
values of Z: 

Y = g
(
β0 + βT Z

)
(4) 

The vectors α0 and β0 are bias vectors. The function is usually a 
sigmoid, linear, or tanh function. The output function, g(•), allows a 
final transformation using the softmax (normalized exponential) func-
tion, for an element Tk of vector T, 

gk(T) =
eTk

∑K
l=1eTl 

In a classification context, this means the decision boundary can be 
nonlinear, making the model more flexible than logistic regression. For 
further technical details, see Hastie et al. (2009, p. 392); for examples of 
business applications of neural networks, see Ravisankar et al. (2011). 
The primary strength of neural networks is their effectiveness in com-
plex settings with large numbers of features such as image classification, 
text mining, and other large-scale numeric data sets. Neural networks’ 
weakness lies in the domain knowledge and substantial amount of 
tuning necessary in a given application compared with the other MLPs 
used here (Athey & Imbens, 2019). 

Genetic algorithm. Inspired by Darwinian evolution, GAs employ the 
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concepts of inheritance, mutation, and natural selection to iteratively 
improve a solution to an optimization problem. A GA “simulates the 
process observed in a natural system where the strong tend to adapt and 
survive while the weak tend to perish” (Ab Wahab et al., 2015, p. 2/36). 
GAs explore a far greater range of potential solutions than do conven-
tional algorithms (Holland, 1992). For a nonsmooth solution surface, 
they are designed not to be trapped by local optima, where a gradient- 
based method could mistakenly identify a local optimum as a global 
optimum (Meade & Islam, 2006). A GA maintains a population of 
possible solutions that are processed simultaneously and iteratively 
modified by crossover (merging different solutions) or by mutation 
(changing elements of a single solution). The fitness (a model selection 
criterion) of each population member is evaluated, and a survivor se-
lection process favoring fitter solutions forms a new generation of the 
population. The process converges when the fittest solution ceases to 
improve. Grubinger, Zeileis, and Pfeifer (2014) apply a GA to the clas-
sification problem. Like random forests, their GA builds on Breiman 
et al.’s (1984) CART, where rules recursively partition the data into 
groups using a forward-stepwise procedure. The GA uses a population of 
sets of values for the parameters of the rules (like aij in Fig. 1). The 
population is iterated through many generations until no further im-
provements in fitness (classification accuracy) can be found. Kar (2016) 
notes that the strength of a GA is its capability to solve a variety of single 
or multi-objective combinatorial and nondeterministic problems. Its 
main weakness is slow convergence toward an optimal solution due to 
the randomness of crossovers and mutations (Ab Wahab et al. 2015). 

Particle swarm. Swarm optimization is inspired by the ways in which 
insects (for example, ants or bees) communicate the location of a food 
source. A particle swarm optimization (PSO) algorithm uses a swarm 
(set) of particles (candidate solutions). The positions of the particles in 
the search-space are adjusted by following some simple rules. These 
rules are driven by the current best position of the particle and the 
overall best position in the swarm. The adaptive Michigan particle 
swarm optimizer (AMPSO) is specially designed to address the classifi-
cation problem (for details, see Cervantes, Galván, & Isasi, (2009)). This 
algorithm combines elements of k-NN and PSO. Each particle acts as a 
classifier, a vector of attribute values, and a classification—in our case, a 
vector of socio-demographics and either purchase or nonpurchase. At 
each iteration, the sample data are assigned to their nearest particle 
(using Euclidean distance), and the accuracy of the classification of each 
particle is measured. The position of each particle is adjusted by taking 
its previous best position and the previous positions of its nearest 
neighbors. PSO shares several strengths with other MLPs: it can be used 
on noisy and irregular problems; it has few tuning parameters and is 
insensitive to the scaling of design variables; and, because it is reliant on 
social interaction, PSO does not require differentiation, unlike classical 
optimization algorithms (Ab Wahab et al., 2015). Weaknesses of PSO 
include a tendency to result in a fast and premature convergence to a 
suboptimal point, exhibiting a slow convergence in a refined search area 
(Poli, Kennedy, & Blackwell, 2007). 

4.2. Data description 

We accessed purchase data for six grocery product categories from 
IRI, a main source for marketing intelligence data. This dataset was 
obtained as part of a large grant focused on combining stated and 
revealed preference data using discrete choice experiments and volu-
metric choice experiments. For each product category, independent 
random samples of IRI panelists were selected from both the purchaser 
and non-purchaser consumer pools. Consumers were classified into 
these pools depending on whether they had purchased from the 
particular product category at least once in the previous year. The 
product categories are baby formula, single-serving coffee, snacks, 
detergent powder, toothpaste, and canned tuna. These categories differ 
in idiosyncratic ways and span a range of standard shelf-based products. 
Major baby formula brands are Similac, Enfamil, Gerber, and private 

labels. Products vary by size, price, packaging, flavor, sugar content, 
additives, and type of formula. Major single-serving coffee brands include 
Starbucks, Donut House, Folgers, Gevalia, and Green Mountain. Prod-
ucts vary by packaging, flavor, amount of caffeine, and organic infor-
mation, among other attributes. Major snack brands are Atkins, General 
Mills, Clif, Nature Valley, and Kellogg’s. Products vary by size, price, 
packaging, flavor, sugar content, type of coating, fat content, among 
other attributes. Major detergent brands are Tide, All Mighty, Purex, and 
Arm & Hammer. Products vary by size, price, wash load, packaging, 
concentration level, strength, and additives. Major toothpaste brands are 
Colgate, Crest, Aquafresh, Sensodyne, and private labels. Products vary 
by price, flavor, quantity, form, and package size, among other features. 
Canned tuna brands are Starkist, Bumble Bee, Chicken of the Sea, and 
private labels. Products vary by form, whether the tuna is packed in 
water or oil, color, regular type or albacore, and size, among other 
attributes. 

We explore a range of grocery items, but refrigerated products such 
as beer, milk, and fresh fruits and vegetables may show slightly different 
purchase patterns. We chose our product categories because the related 
purchase decisions are believed to be mainly influenced by consumer 
needs in an ordinary consumable sense. The categories do not represent 
all consumer products, but we believe they are sufficiently diverse to 
allow us to draw conclusions about the usefulness of socio-demographics 
in predicting consumer choice. 

The socio-demographic variables are standard ones that IRI routinely 
collects. Table 1 lists the sample size for each product category and 
provides a summary of the socio-demographic variables of buyers and 
nonbuyers. 

The proportion of buyers in each product category is greater than 
60% in all cases, except for canned tuna. The distribution of socio- 
demographic variables exhibits variation across product categories. 
For instance, due to its idiosyncratic nature, baby formula shows a 
different distribution pattern on some attributes. Take the household- 
size variable as an example: only 46% of one- and two-member house-
holds buy baby formula, while more than 70% of purchases for the other 
product categories come from this small household-size group. The full 
dataset is in supplementary appendix A. 

4.3. Research objectives 

We expand on the three main objectives of our research. 
Reassessment of the predictive power of socio-demographic characteristics 

on the purchase decision using a suite of MLPs. In contrast with most of the 
marketing literature, which has emphasized significance testing of co-
efficients more than assessing predictive ability of models, we focus on 
out-of-sample predictive accuracy in distinguishing between purchasers 
and nonpurchasers using socio-demographic variables. We used the 
standard binary logistic model as a benchmark to assess the predictive 
power of the seven MLPs. The key question is whether the assessment of 
the usefulness of socio-demographic variables differs substantively 
depending on the MLP used. We focus on the six product categories, 
which span a range of grocery items. 

Exploration of the nature of some nonlinear relationships between socio- 
demographic variables that are uncovered by MLPs. In a binary logistic 
model (and its close analogues), the effects of independent variables on 
the dependent variable are usually condensed into a single linear index 
function where all observations are used for the estimation of co-
efficients, and all observations are treated alike. MLPs, in contrast, 
depart from linearity in various ways. Tree-based approaches repeatedly 
split datasets into subsets that are analyzed separately. Gradient boost-
ing identifies poorly fitted observations and applies extra focus to them. 
Nearest-neighbor procedures isolate a subset of data as the base for 
predictions, while ignoring the remainder of the dataset. Neural net-
works produce a potentially nonlinear mapping to capture complex in-
teractions between demographic variables. Thus, the potentially 
superior predictive accuracy of MLPs over the conventional models is 
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due in part to their ability to identify one or more nonlinearities among 
variables to improve predictions for at least some subsets of the 
observations. 

Examination of whether socio-demographic variables have a demand-side 
causal effect on the purchase decision. In observational studies, an asso-
ciation between a set of contemporaneously recorded covariates and the 
outcome variable of interest should not be taken as proof of a causal 
relationship. For instance, the value differences in other covariates be-
tween the treatment and control groups may lead to biased estimates of 
treatment effects (D’Agostino, 1998). To address this issue, we use 
propensity scoring to reweight observations to ensure that the distri-
bution of measured baseline covariates is similar between the treatment 
and control groups. Our focus on socio-demographic variables, clearly 
exogenous from the perspective of the decision of interest, also reduces 
the risk of uncovering noncausal relationships. 

5. Results of a comparison between conventional and machine 
learning methods 

We present our analysis in three subsections addressing predictive 
ability, nonlinear patterns found by MLPs, and determination of causal 
inference. To measure and compare predictive ability, we divided the 
dataset into a 70% training sample and a 30% test sample, fit models to 
the training sample, and made predictions in- and out-of-sample. Our 
criterion for prediction accuracy was sensitivity, defined as the pro-
portion of actual purchasers correctly identified. We demonstrated how 
MLPs capture nonlinearities by comparing the models estimated by 
random forests with conventional binary logistic regression. 

We focus much of our discussion on the results for random forests 
because this technique has become the standard workhorse in the ML 
world for our sort of problem, akin to OLS (e.g., Athey & Imbens, 2019; 

Choudhury et al., 2021). It is less of a “black box” than many ML tech-
niques, and random forests uses the concept of a CART (Breiman et al., 
1984), which consists of simple binary splits. Its ensemble notion of 
different trees voting to determine the best predictor makes the tech-
nique (relatively) easy to explain to managers. We used a propensity 
score adjustment to demonstrate how causal relationships can be 
robustly assessed from observational analyses using MLPs. 

5.1. Model estimation and predictive performance 

For each product category, we split the dataset randomly into a 70% 
training sample and a 30% testing sample. Each model (logistic 
regression, random forests, gradient boosting, SVM, k-nearest neighbor, 
neural network, genetic algorithm, and PSO) was first fit to the training 
sample and then used to make purchase predictions both in- and out-of- 
sample. We estimated the binary logistic and first five MLPs using the 
Scikit-learn library in Python in two stages. First, we tuned hyper- 
parameters using cross-validation with GridsearchCV in Scikit-learn. 
Second, we optimized model parameters. The GA solution used the 
evtree package in R (Grubinger et al., 2014). The particle swarm clas-
sifier was programmed in Python for this analysis. 

We display predictive performance using a confusion matrix (see 

Table 1 
Summary of demographics (%).  

Demographics Baby 
Formula 

Canned 
Tuna 

Deter-gent 
Powder 

Single-Serving 
Coffee 

Snacks Tooth- 
paste 

Sample Size 1225 837 1154 1328 1258 1218 
Purchase  Yes 64.5 50.8 63.5 68.8 67.5  66.9 

No 35.5 49.2 36.5 31.2 32.5  33.1 
Household Size  1 to 2 members 46.0 69.5 73.2 75.8 75.0  77.8 

3 members 19.3 13.4 12.5 10.1 12.1  10.8 
4 or more members 34.7 17.1 14.3 14.2 12.9  11.4 

Race  White 76.9 84.1 83.4 86.1 86.8  84.2 
Other 23.1 15.9 16.6 13.9 13.2  15.8 

Ethnicity  Hispanic 9.6 6.1 5.1 4.4 4.1  4.5 
Non-Hispanic 90.4 93.9 94.9 95.6 95.9  95.5 

Affluence  Getting By 53.1 53.4 52.0 55.5 51.3  47.6 
Doing Well 18.9 20.7 21.1 17.2 19.3  24.2 
Comfortable 27.9 25.9 26.9 27.3 29.4  28.2 

Household Income (USD)  <25, 000 12.5 14.9 15.2 12.0 15.2  18.1 
25,000 to 49,000 26.7 27.7 28.3 26.9 29.2  31.4 
50,000 to 69,000 18.0 18.0 19.9 19.9 17.6  18.0 
70,000 to 99,000 21.5 22.6 20.7 22.5 19.3  17.6 
100,000 or more 21.3 16.7 15.9 18.8 18.8  15.0 

Presence of Child < 18 Y Yes 45.1 19.4 16.6 13.6 13.4  12.9 
No 54.9 80.6 83.4 86.4 86.6  87.1 

Age of Head Household <35 Years 23.8 8.5 5.7 4.7 4.9  4.5 
35 to 44 Years 20.8 11.7 9.0 9.2 10.2  8.7 
45 to 49 Years 8.8 8.0 8.8 7.1 8.2  7.0 
50 to 54 Years 9.2 13.6 12.3 9.7 11.6  10.3 
55 to 64 Years 23.6 29.3 35.1 36.8 33.1  33.5 
65 Years or more 13.8 28.9 29.0 32.5 32.0  36.0 

Education of Female 
Household 

Some or Graduated High 
School 

24.0 27.2 28.5 26.1 26.5  30.9 

Some College 28.7 29.5 33.0 31.4 32.4  29.2 
Graduated College 33.0 29.9 26.8 28.9 26.1  26.5 
Post College 14.3 13.4 11.7 13.6 15.1  13.4 

Census (Sampling Regions) Central 27.5 25.4 25.9 26.6 27.0  26.4 
East 16.8 19.1 16.2 19.6 17.2  19.4 
South 39.4 36.7 40.9 36.9 33.6  35.9 
West 16.2 18.8 17.0 16.9 22.1  18.4  

Table 2 
Confusion matrix for evaluation of predictive performance.    

Predicted Class   

Purchase No Purchase 

Actual Class Purchase True Positive (TP) False Negative (FN) 
No Purchase False Positive (FP) True Negative (TN) 

Accuracy = (TP + TN)/(TP + FP + FN + TN); Sensitivity = TP/(TP + FN). 
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Table 2). True positives and true negatives are observations that were 
correctly predicted. Classification procedures are designed to minimize 
false positives and negatives. With balanced data, where purchasers and 
nonpurchasers share equal proportions, predictive performance is usu-
ally measured by accuracy, the ratio of correctly predicted observations 
to total observations. In our data, where there is an imbalance between 
the classes, accuracy is misleading (Choudhury et al., 2021; Saito & 
Rehmsmeier, 2015). Gu, Zhu, and Cai (2009) showed superiority of 
sensitivity over accuracy for imbalanced data like ours. Thus, we use 
sensitivity to evaluate the predictive performance of different models. 
Here, “sensitivity” refers to the correctly identified fraction of all the 
panelists who purchased the product. 

Table 3 shows in-sample and out-of-sample sensitivities of the pre-
dictions by the eight classification procedures for each product category. 
The MLPs clearly outperformed parametric logistic regression. Across 
products, the median improvement in sensitivity by each MLP varies 
from 16% to 42% in-sample and from 20% to 33% out-of-sample. 
Random forests performed well both in- and out-of-sample, achieving 
the highest sensitivity for four product categories and second highest for 
the other two categories. The predictive performance of the SVM is 
comparable to the random forests procedure. Gradient boosting is the 
third most effective model of these procedures. The bio-inspired algo-
rithms both performed similarly to gradient boosting. K-nearest 
neighbor is the least effective of the MLPs, but it still convincingly 
outperforms logistic regression. The neural network is the only model 
with a noticeable deterioration between in-sample and out-of-sample 
performance. 

Results from the MLPs suggest that socio-demographic variables 
exert a nonlinear influence on purchase decisions that is not fully 
captured by the traditional logistic regression model. Furthermore, 
MLPs such as random forests, SVM, and gradient boosting identify in-
teractions between socio-demographics by selecting appropriate subsets 
of the data for estimation. K-nearest neighbor has a similar objective, but 
it is less flexible than the aforementioned MLPs. The algorithms with 
higher model capacity and flexibility, such as neural networks, require 
more observations and expertise to prevent overfitting. The neural 
network was fitted with relatively few observations in our sample and 
tended to overfit the data, leading to a decrease in out-of-sample pre-
dictive accuracy. 

5.2. Nonlinear relationships in the data: A comparison of variable effect 
estimation between the random forest model and binary logistic regression 

We use a simple example to illustrate the differences between a 
conventional linear regression model and an MLP. While the binary 
logistic regression predicts product purchases by using all the values of 
all the socio-demographic variables in an additive linear logit function, 
the random forests procedure makes the purchase prediction of baby 
formula with a subset of four variables and includes them stepwise in the 
prediction model (see Fig. 2). 

We demonstrate how the random forests model works with an 
example tree for baby formula. The tree first separates the data ac-
cording to the variable of presence of a child (two categories: yes vs. no). 
After the first data split, both subsets are further separated using the age 
of the head of household, but with different levels determining the split, 
and neither age split being monotone. After the second split, households 
with heads in specific age groups go directly to the output node, and 
others are further split based on income and then census area. The final 
row of output nodes indicates the probability of purchasing baby for-
mula by a household classified into that node. For example, the output 
node furthest to the right shows that households with a child and a head 
not aged 45–49 years have a purchase probability of 0.84. In summary, 
the data were divided into subsets with subsequent treatment condi-
tional on the values of other socio-demographic variables. Interactions 
between two, three, and four variables are considered in the random 
forests procedure. When classifying an out-of-sample household as a 

potential purchaser or nonpurchaser, we assign each tree one vote, and 
the final classification is decided by a majority vote. 

To compare the effectiveness of the conventional binary logistic 
regression and the random forests model in predicting household pur-
chase of baby formula, we focused on two variables, household income 
and education level of the female head of household, to illustrate use of 
PDPs. Compared with traditional statistical models, MLPs have low 
interpretability; however, the use of partial effects is common in the 
social sciences when model parameters are not immediately interpret-
able (King, Tomz, & Wittenberg, 2000). We use a PDP proposed by 
Friedman (2002) as a visualization tool to contrast nonlinearity and/or 
interactions with the binary logistic. The PDP reveals the marginal effect 
of one or two characteristics on the predicted outcome of an MLP. The 
plot shows whether the relationship between the target and a charac-
teristic is linear, monotonic, or more complex. When applied to a linear 
model (such as the binary logistic), PDPs indicate a linear relationship. 
In Fig. 3, we show the PDP of two demographics and their interactions 
for baby formula. 

Comparing the two left-hand plots for the conventional approach 
and the MLP, we see that the linear dependence of the logistic regression 
approximates the nonlinear effects of household income and education 
level of a female head of household from the random forests. The 
nonlinear effects of the two characteristics, income and education, 
contrast strongly with linear contours from logistic regression. The latter 
imply that, for a given education level, the probability of purchase de-
creases as income increases, whereas the random forests plot shows an 
increase in probability of purchase with increasing income until a sharp 
drop at the highest income level. 

5.3. Causal inference using a propensity score approach 

In observational studies, observed associations between treatments 
(explanatory variables) and outcome variables do not adequately prove 
a causal relationship. Thus, in our case a correlation cannot be used to 
infer causal links between socio-demographic characteristics and the 
purchase decision. There are several threats to any set of linkages 
translating correlations into causation, with a major one being the 
confounding that comes from the differences in observed variables be-
tween treatment and control groups. These differences can lead to 
biased estimates of treatment effects (D’Agostino, 1998).11 Consider the 
following example. Does the presence of a child (i.e., treatment group) 
causally predict the purchase of a product? For an experimental study, 
the treatment condition is the presence of a child and the control condi-
tion is no presence of a child. However, the observed differences in pur-
chase probability could also be attributed to differences in the other 
socio-demographics, such as income and household size, instead of the 
presence of the child itself (see Fig. 4). 

To illustrate how a causal inference can be better established with 
observational studies, we chose to study the effect of presence of a child 
(yes or no) on purchase/nonpurchase decisions. In an ideally controlled 
experiment, households with and without a child would be matched to 
be statistically equivalent on all other potentially relevant socio- 
demographics. Otherwise, any observed effects of the focal variable, 
presence of a child, could be confounded with other socio-demographic 
differences between the two groups (D’Agostino, 1998; Greenland & 
Morgenstern, 2001). However, this confounding issue has largely been 
ignored in prior investigations. For example, in our datasets for baby 
formula, single-serving coffee, and canned tuna, the imbalance is 
evident for two socio-demographic variables, household size and age of 
the head of household (see Table 4). This imbalance is mainly due to the 
correlations between some socio-demographic characteristics. For 

1 There are, of course, many other threats to identification of causal re-
lationships, particularly in revealed preference data, that require a panel 
structure to sort out (Greene, 2018). 
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instance, the presence of each child increases the size of the household, 
and parents with only one child tend to be younger than 35 years old. 
Although the rationale for the imbalance is explicable, obtaining unbi-
ased estimates of the effects of socio-demographic characteristics may 
require appropriate conditioning on this imbalance in the statistical 
estimation procedure. 

Propensity scores enable us to address the confounding concerns 
explained previously. To help overcome the confounding problem and 
to facilitate the inference of causal relationships in observational 
studies, Rosenbaum and Rubin (1983) defined propensity score as Pr(Z 

= 1 | X), the probability of a treatment assignment (treatment, Z = 1; 
control, Z = 0) given an observed covariate, X. Austin (2011) noted that 
propensity is a balancing score and, once made conditional on this score, 
the distribution of observed baseline variables will be similar between 
treatment and control groups (e.g., households with or without a child), 
thus allowing for the inference of causal effect. Under the assumption of 
no unmeasured confounding, Rosenbaum and Rubin showed that the 
propensity score approach yields unbiased estimates in the presence of 
confounding. Hence, for our dataset, comparing households with iden-
tical propensity scores but different realized purchasing decisions is 

Table 3 
Comparison of sensitivity for in- and out-of-sample predictive performance.   

Classifiers Baby 
Formula 

Canned 
Tuna 

Deter-gent 
Powder 

Single- Serving 
Coffee 

Snacks Tooth- 
paste 

Median 
% Improve-ment over 
Binary Logistic 

Average 
Rank 

In-sample 
sensitivity 

Binary Logistic  0.785  0.577  0.814  0.797  0.537  0.579   7.8 
Random Forest  0.959  0.790  0.971  1.000  0.990  0.948  31.2  1.7 
Gradient 
Boosting  

0.938  0.733  0.944  0.976  0.957  0.919  24.7  3.8 

SVM  0.926  0.790  0.952  1.000  0.969  0.888  31.2  3.2 
k-NN  0.887  0.577  0.927  0.950  0.957  0.912  16.5  5.5 
Neural 
Network  

0.947  0.937  0.973  0.970  0.964  0.966  42.0  2.0 

Genetic 
Algorithm  

0.892  0.946  0.928  0.904  0.941  0.711  21.0  5.7 

Particle 
Swarm  

0.858  0.935  0.921  0.955  0.916  0.790  27.1  5.3 

Out-of-sample 
sensitivity 

Binary Logistic  0.740  0.560  0.816  0.705  0.533  0.567   7.7 
Random Forest  0.892  0.704  0.958  0.992  0.950  0.957  33.2  1.5 
Gradient 
Boosting  

0.865  0.640  0.915  0.953  0.913  0.901  26.0  3.8 

SVM  0.879  0.680  0.948  0.995  0.888  0.906  31.3  3.0 
k-NN  0.825  0.520  0.840  0.907  0.883  0.927  20.1  5.7 
Neural 
Network  

0.749  0.728  0.811  0.833  0.796  0.871  24.1  6.3 

Genetic 
Algorithm  

0.865  0.945  0.849  0.898  0.925  0.693  28.9  4.0 

Particle 
Swarm  

0.843  0.910  0.891  0.953  0.879  0.784  34.5  3.8  

Presence of a child

No Yes

Age of head of 
household

Age of head of 
household

50 -54, over 64 Under 50, 55 - 64 45 - 49 Under 45,
Over 49

Household 
income

Household 
income

50-69k, over 99k

Census Area

Central, EastSouth, West

Under 50k, 
70-99k

Under 25k, over 99k 25-99k

No Purchase
.61 .39

20%

No Purchase
.56   .44

7%

Purchase
.41   .59

6%

Purchase
.36   .64

22%

No Purchase
.77   .23

3%

Purchase
.35   .65

2%

Purchase
.16   .84

41%

Fig. 2. Example tree from random forests procedure predicting purchase of baby formula Note: For output nodes, the most likely predicted outcome is given (no 
purchase/purchase), the split [Pr(no purchase), Pr(purchase)] of each type within the node, and percentage of observations in the sample classified as being in this 
output node. 
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analogous to conducting a randomized experiment, and the results ob-
tained provide a valid basis for the inference of causal relationship 
(Bingenheimer, Brennan, & Earls, 2005). 

Propensity score adjustment is a two-stage method. In the first stage, 
confounding variables are balanced across groups. The propensity 
score–adjusted effects are then estimated in the second stage. Logistic 

Binary logistic 

Random forests 

Fig. 3. Partial dependence plots of household income and education level of female head for logistic regression and random forests for baby formula. The vertical axis of 
the two left-hand plots is the predicted probability of purchase given the value of the characteristic. The contour lines in the right-hand plot represent the predicted 
probability of purchase given the values of both characteristics. 

Presence of Child 
(Yes or No)

Buy or No Buy 

Age of Head, 
Household Size, 

Income, etc.

Fig. 4. Potential confounders to the relationship between presence of child (yes/no) and purchase decision.  
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regression is commonly used to estimate the propensity score in the first 
stage. However, if logistic regression’s underlying assumptions of linear 
functional form and specification of interactions are violated, then co-
variate balance will not be achieved, and effect estimates will be biased 
(Drake, 1993; Williamson, Morley, Lucas, & Carpenter, 2012). In 
contrast, regardless of sample size and the extent of nonadditivity or 
nonlinearity, the propensity scores of MLPs such as random forests 
provide excellent covariate balance and effect estimation (Lee, Lessler, 
& Stuart, 2010; Setoguchi, Schneeweiss, Brookhart, Glynn, & Cook, 
2008). 

To provide a benchmark, we use logistic regression to estimate 

characteristic effects using the unweighted data. Then, to turn our 
observational study into a pseudo-randomized study, in the first stage 
we derive MLP propensity scores to achieve covariate balance. In the 
second stage we use logistic regression to test causal effects by 
reweighting samples by propensity scores. We follow the research 
agenda suggested by Wedel and Kannan (2016) for estimation of causal 
effects, using the strengths of both traditional procedures and MLPs. 
Specifically, we use the R package “twang” (McCaffrey, Ridgeway, & 
Morral, 2004) to get propensity scores using boosted trees for binary 
treatments (e.g., presence of a child: yes vs. no) and multinomial 
treatments (e.g., family income groups, education levels). Boosted trees 

Table 4 
For households with a child (yes/no), the percentages for other characteristic levels reveal the extent of the data imbalance.    

Baby Formula Single-Serving Coffee Canned Tuna 

Demographics Households with Child yes no yes no yes no  

Category Levels       
Household Size 1 to 2 members  2.1  79.9  5.0  88.4  7.4  86.0 

3 members  33.0  13.1  24.1  7.6  32.0  9.2 
4 or more members  64.9  7.0  70.9  4.1  60.6  4.8 

Household Income (USD) <25,000  13.4  13.5  9.1  12.3  11.3  14.7 
25,000 to 49,000  28.4  28.8  15.0  24.0  25.1  30.1 
50,000 to 69,000  20.0  17.3  10.8  17.1  16.9  17.3 
70,000 to 99,000  20.3  21.9  22.4  17.3  28.1  21.8 
100,000 or more  17.9  18.5  21.6  16.0  18.6  16.2 

Age of Head Household <35 Years  53.3  14.5  12.7  2.5  19.9  3.9 
35 to 44 Years  30.0  10.0  38.0  4.4  41.1  3.6 
45 to 49 Years  5.5  8.0  20.8  5.4  14.3  4.9 
50 to 54 Years  4.3  12.6  11.9  10.5  16.0  12.3 
55 to 64 Years  5.5  35.6  14.4  39.4  6.1  36.5 
65 Years or more  1.3  19.3  2.2  37.8  2.6  38.8 

Education of Female Head of Household Some or Graduated High School  17.8  28.3  18.3  26.0  17.7  26.9 
Some College  30.8  26.2  30.5  29.4  28.1  25.3 
Graduated College  35.1  28.4  34.9  23.2  39.4  25.5 
Post College  14.1  11.7  13.0  11.4  12.6  11.4  

Table 5 
Estimates of a sample of socio-demographic variables using unweighted data and data reweighted by propensity scores. Agreement on variable significance is shown in 
the right-hand column (Y indicates significance at 5%, N otherwise).     

Binary Logistic – Unweighted Data 
(BL) 

Propensity score adjusted (PA) Agreement /Disagreement    

Estimate(β) p-val Estimate(β) p-val (BL/PA) 

Presence of Child(age < 18 yrs.)  Baby Formula Yes  0.564  0.021  0.975  0.000 YY 
Canned Tuna Yes  0.066  0.815  − 0.652  0.007 NY 
Detergent Powder Yes  − 0.092  0.716  − 0.382  0.328 NN 
Coffee Yes  0.481  0.069  − 0.199  0.583 NN 
Snacks Yes  − 0.200  0.447  − 0.204  0.640 NN 
Toothpaste Yes  0.564  0.021  0.975  0.000 YY 

Household Income Groups Baby Formula 25–49 K  0.062  0.821  0.212  0.336 NN 
50–69 K  0.071  0.839  0.180  0.443 NN 
70–99 K  0.265  0.517  0.348  0.130 NN 
100 K or more  − 0.031  0.940  − 0.014  0.949 NN 

Canned Tuna 25–49 K  0.485  0.074  0.284  0.207 NN 
50–69 K  0.275  0.447  0.038  0.877 NN 
70–99 K  0.154  0.707  − 0.082  0.726 NN 
100 K or more  − 0.145  0.731  − 0.375  0.134 NN 

Detergent Powder 25–49 K  0.372  0.167  − 0.037  0.866 NN 
50–69 K  0.168  0.616  − 0.284  0.215 NN 
70–99 K  − 0.057  0.880  − 0.505  0.026 NY 
100 K or more  − 0.012  0.976  − 0.435  0.068 NN 

Coffee 25–49 K  0.186  0.437  0.406  0.045 NY 
50–69 K  0.106  0.731  0.533  0.014 NY 
70–99 K  − 0.359  0.322  0.351  0.092 NN 
100 K or more  − 0.247  0.506  0.394  0.069 NN 

Snacks 25–49 K  − 0.017  0.942  0.084  0.662 NN 
50–69 K  − 0.053  0.864  0.306  0.154 NN 
70–99 K  − 0.352  0.333  0.263  0.208 NN 
100 K or more  0.033  0.928  0.571  0.009 NY 

Toothpaste 25–49 K  − 0.339  0.372  − 0.015  0.946 NN 
50–69 K  0.314  0.298  0.465  0.015 NY 
70–99 K  0.088  0.733  0.214  0.306 NN 
100 K or more  0.489  0.040  0.351  0.100 YN  
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are a hybrid of random forest and gradient-boosting procedures. We 
compare the estimates of the characteristics using the benchmark (with 
unweighted data) with estimates using data reweighted by propensity 
scores (see Table 5). 

In Table 5, for parsimony we present sample output for two de-
mographics: household income (a multinomial treatment) and the 
presence of a child (a binary treatment). For baby formula, there is no 
disagreement about the significance of a linear effect of the two char-
acteristics; for the other five products there is a disagreement, and in 
most cases a characteristic is found significant using the propensity 
score–reweighted data. In Table 5, there is disagreement for 6 out of 30 
effects (20% disagreement). For all the estimated effects for all the de-
mographics, we find 25% disagreement. These results demonstrate that 
socio-demographics may have a causal influence on purchase decisions 
that is overlooked in logistic regression models due to inadequate 
methodology. 

6. Discussion 

In the prediction of a consumer purchase decision, a major attraction 
of the use of socio-demographic variables, relative to psychographic 
variables, is their low acquisition cost. However, the usefulness of such 
variables in identifying purchasers has long been debated. Early work (e. 
g., Koponen, 1960; Rossi, McCulloch, & Allenby, 1996; Twedt, 1964) 
found that socio-demographic variables had little value in predicting 
consumer decisions, yet later work (e.g., Ricciuto et al., 2006; Feit, 
Beltramo, & Feinberg, 2010) argued that such variables did have pre-
dictive value. Though related, the question we have sought to address 
does not pertain to whether one set of variables is better or whether 
socio-demographics add explanatory power when attitudinal variables 
and past purchase behavior are available. Rather, our question is: Can 
modern ML techniques extract more actionable information from low- 
cost socio-economic variables than traditional tools? 

We investigated the predictive accuracy of seven MLPs for six 
distinct product categories using large industry-standard datasets from 
IRI and obtained a roughly 20%–30% improvement in out-of-sample 
predictive performance with the different MLPs across the six product 
categories. There are two reasons for the enhanced predictive value of 
socio-demographics. First, the MLPs consistently construct (in different 
ways) simple nonlinear response functions from the socio-demographic 
variables, in addition to the linear effects detected by more conventional 
methods. Second, the MLPs detect important interactions between the 
covariates while using different methods to avoid the overfitting that 
would occur from the inclusion of all such interactions. Visualizing the 
patterns of nonlinear relationships and interactions or converting them 
to marginal quantities such as elasticities can enhance understanding. In 
addition, one of the key threats to a causal interpretation of the use of 
socio-demographic variables is selection bias. We show how propensity 
score matching can help address this issue. The low cost of acquiring the 
socio-demographic variables and the convenience of implementing 
MLPs would allow for widespread uptake of this practice among firms 
and could aid to further theory building. 

6.1. Theoretical contributions 

In our analysis, we make theoretical contributions under two of 
Whetten’s (1989) framework items: how variables in the model are 
related conceptually and what key drivers should be considered for a 
conceptual model. Regarding how, we establish the superiority of MLPs 
relative to the commonly used generalized linear models. MLPs capture 
and exploit important nonlinear effects in socio-demographic variables. 
For example, we identify the nonlinear effects of income and education 
and show the strong contrast with the linear effect found by logistic 
regression. Without prior guidance, MLPs identify interactions between 
these variables, resulting in better predictive performance. For example, 
we show that the random forests procedure considered interactions 

between two, three, and four variables when modeling the purchase 
decision. 

Regarding what, we demonstrated that socio-demographic variables 
can be causally linked to purchase decisions, extending the prior 
correlational relationships identified with observational data. This 
approach should be particularly useful for the exploration of how basic 
demographics such as gender, education level, and stage in a family’s 
life cycle influence an individual’s value system and/or psychological 
needs and, thus, their purchase and consumption of goods and services 
(Tharp, 2001; White & Tong, 2019). 

6.2. Implications for practice 

The widespread availability of MLPs can fundamentally change how 
researchers approach the search for nonlinearities when developing 
predictive models. By construction, a simple linear (logistic) model does 
not extract all the information from a set of predictors unless that 
model’s specification matches the true data-generating process. This 
rarely is the case with standard socio-demographic variables because, 
often in complex ways, they underlie attitudes and past purchase be-
haviors that are the more proximate causal variables. MLPs are designed 
to help capture this underlying structure in a way that avoids the 
confirmatory bias that can arise from fitting a large number of oppor-
tunistic models. A perceived disadvantage of MLPs is their “black box” 
nature; these procedures do not deliver the estimated coefficients, 
standard errors, and p-values of conventional statistical models. How-
ever, although not demonstrated here, MLPs can produce marginal odds 
ratios or marginals useful for identifying key socio-demographic char-
acteristics that influence product purchase probabilities, as well as 
standard measures such as price elasticities or gains in lift in response to 
promotions. 

Socio-demographic variables are widely available and relatively 
inexpensive to acquire. These variables, coupled with large datasets, 
form the ideal environment for marketing-related analysis. We have 
demonstrated MLPs’ ability to deliver improved predictions of the 
purchase decisions compared with conventional statistical methods. 
Further, we have provided insights about the relative strengths of the 
seven MLPs considered. Of the more established MLPs, we found 
random forests and gradient boosting to offer greater improvements in 
predictive accuracy over binary logistic regression. We also demon-
strated that neural networks tended to promise more in-sample than was 
delivered out-of-sample. Of the newer procedures we implemented, 
swarm optimization shows great promise. In summary, the use of easily 
available socio-demographic data for segmentation and targeting is 
attractive to marketers, and we show MLPs to be an effective analytical 
tool for targeting potential purchasers and increasing sales. 

6.3. Limitations and future research directions 

We note three key limitations of our work. First, although the six 
product categories we examined represent a reasonably diverse selec-
tion of grocery products, the transferability of our results to contexts 
other than packaged goods is an open question. In particular, we would 
expect MLPs to extract less useful information from socio-demographic 
variables in situations where, for instance, product purchase is mainly 
driven by other marketing communication factors, such as the use of 
celebrity endorsement, instead of basic consumption needs. In addition 
to generalizability, we acknowledge the challenge of comparing algo-
rithms by their performance on relatively small samples of data, as noted 
by Wolpert and Macready (1997). 

Second, the socio-demographic variables that we used are standard 
and have been widely used in marketing. The range of socio- 
demographic variables now available from database vendors is 
dramatically larger at both the individual and small-geographic-unit 
levels. 

Third, establishing causality is a difficult and multifaceted 
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enterprise. We took one step in that direction by using the propensity 
score approach to transform an observational study into a pseudo- 
randomized trial study (Rosenbaum & Rubin, 1983), which yields un-
biased estimates in the presence of measured confounding variables 
(Robins & Greenland, 1992). This is an important point to note, as it is 
not always possible to collect all socio-demographic variables in prac-
tice. We recommend sensitivity analyses to assess the extent to which 
unmeasured confounding variables might change the estimated effects, 
as suggested by Ding and VanderWeele (2016). 

Future research directions should include further probing into the 
nonlinear nature of the relationship between the consumer purchase 
decision and socio-demographic data. The increasing size of databases in 
terms of volume and availability of more variables is likely to make 
further exploration rewarding. Exploration using discrete choice ex-
periments (Louviere, Hensher, & Swait, 2000) with formal randomiza-
tion is likely to further illuminate issues of the causality underlying the 
consumer purchase decision. 

7. Concluding remarks 

After investigating the predictive accuracy of seven MLPs for six 
distinct product categories, we found that all the MLPs exhibited greater 
predictive accuracy both in- and out-of-sample than logistic regression. 
We demonstrated that this superior accuracy was due to the MLPs’ 
ability to better capture the nonlinearities present in the underlying 
data-generating process of purchaser behavior compared with the linear 
framework of logistic regression. It would be interesting to revisit the 
issue of past purchase behavior in terms of how much more these vari-
able(s) add after an appropriate ML approach extracts the signal from 
the socio-demographic variables. 

Conventional statistical procedures such as logistic regression allow 
hypothesis testing to be used for causal inference. We used propensity 
scoring in a two-stage procedure in this context and demonstrated that 
applying an MLP to pre-weight the data improved inference by reversing 
approximately 25% of the conclusions from the unweighted analysis. 
Given the low acquisition cost of socio-demographic variables and the 
ease of using MLPs, our findings suggest that major benefits can be 
derived from their use in predicting purchase/nonpurchase decisions. 
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