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FOREWORD 

These proceedings are a written report of the twenty-first Sawtooth Software 

Conference, held in San Diego, California, September 25-27, 2019. Two-hundred attendees 

participated. 

The focus of the Sawtooth Software Conference continues to be quantitative methods in 

marketing research. The authors were charged with delivering presentations of value to both 

the most sophisticated and least sophisticated attendees. Topics included conjoint analysis, 

surveying on mobile platforms, MaxDiff, market segmentation and classification, 

experimental design, and the perils of establishing causality in observational data. 

The papers and discussant comments are in the words of the authors and very little 

copyediting was performed. At the end of each of the papers are photographs of the authors 

and co-authors. We appreciate their cooperation for these photos! It lends a personal touch 

and makes it easier for readers to recognize them at the next conference. 

We are grateful to these authors for continuing to make this conference such a valuable 

event. We feel that the Sawtooth Software conference fulfills a multi-part mission: 

a) It advances our collective knowledge and skills, 

b) Independent authors regularly challenge the existing assumptions, research methods, and 

our software, 

c) It provides an opportunity for the group to renew friendships and network. 

We are also especially grateful to the efforts of our steering committee who for many 

years now have helped this conference be such a success: Christopher Chapman, Keith 

Chrzan, Eleanor Feit, Joel Huber, and David Lyon. 
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SUMMARY OF FINDINGS 

The twenty-first Sawtooth Software Conference was held in San Diego, California, 

September 25-27, 2019. The summaries below capture some of the main points of the 

presentations and provide a quick overview of the articles available within the 2019 

Sawtooth Software Conference Proceedings. 

A Comparison of PC and Mobile Interviewing Modalities (Deb Ploskonka, Karlan 

Witt, Cambia Information Group): Deb and Karlan noted that the increase in mobile survey 

completions has been accompanied by higher rates of breakoff rates for mobile survey takers.  

To help reduce breakoff rates among mobile survey takers, the authors tested two question 

types among US and Japanese respondents where they see concerning breakoff rates: unaided 

brand awareness and grid-style brand rating questions.  For unaided brand awareness, they 

tested a version of the survey that showed 15 blank entry boxes versus five blank entry boxes 

that expanded with extra entry boxes as respondents filled in the blanks.  There was very low 

abandonment among the US-based respondents, with no difference between the versions.  

Japanese respondents had higher abandonment for the 15 blank entry box approach.  For the 

grid portion of their experiment, Deb and Karlan tested three approaches: standard grid, 

scroll approach with items broken into separate ratings questions, and a “freeze” version 

which was the same as scrolling but left the header portion of the question frozen at the top 

of the screen.  The results were inconclusive regarding which method resulted in the lowest 

dropouts and most consistency between laptop and mobile data.  For future research, Deb and 

Karlan noted that there are other styles of mobile grids (accordion and progressive grids) that 

could be tested. 

*A Researcher's Guide to Studying Large Attribute Sets in Choice-Based Conjoint 

(Megan Peitz, Numerious, Mike Serpetti, Dan Yardley, Gongos): Choice-based methods 

have become dominant in our industry, yet no clear answer has emerged regarding which of 

the many choice-based approaches a researcher should use as the number of attributes 

increases beyond about six.  Megan and co-authors designed an experiment involving choice 

of smartphones by real respondents to compare Partial Profile CBC, Adaptive Choice-Based 

conjoint (both partial-profile and full-profile variants), and Full-Profile CBC for attribute lists 

involving 10, 15, and 20 attributes.  They found that for studies involving 10 attributes, the 

methods were on parity with each other in all respects (holdout predictability, length of 

survey, data quality, and respondent perception).  As the number of attributes increased to 

15+, the results suggested that partial-profile ACBC has a number of advantages over the 

other techniques.  The authors also pointed out the large difference in the predicted None rate 

between ACBC and CBC. 

*Best Presentation based on audience voting. 

What Do South African Medical Students Value in a Rural Internship (Maria Jose, 

University of Cape Town, South Africa): To address inequality in access to healthcare among 

rural populations in South Africa, effective health worker recruitment initiatives to these 
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areas are vital. Maria conducted a Choice-Based Conjoint study (CBC) among final year 

medical students in South Africa to identify their most valued rural health facility attributes 

for internship placement. Results, estimated by hierarchical Bayes estimation, demonstrated 

that the attributes of physical safety at the facility, availability of basic resources, degree of 

practical experience gained at the facility and the availability of personal protective 

equipment against tuberculosis exposure were more valued than the current recruitment 

initiatives of housing provision and rural allowance.  Simulations demonstrated that even if 

rural allowance were to be increased by 20% it would not off-set the disutility of working at 

an unsafe facility, nor one which did not provide personal protective equipment to prevent 

tuberculosis exposure. The study thus provides evidence for policy makers to invest more in 

the working conditions of South African rural healthcare facilities’ infrastructure, security 

and supply chains to the benefit of their patients and staff alike. 

Leadership Qualities: Preferences from the Millennial Generation (Ronald Mellado 

Miller, UVU, Christina A. Hubner, Sawtooth Software Cray Daniel Rawlings, and Maureen 

Andrade, UVU): Ronald and his coauthors drew upon leadership characteristics gathered 

from business researchers and evolutionary psychology, then surveyed business students to 

see which characteristics they would prefer to have in a CEO. Using MaxDiff, respondents 

marked the CEO characteristics that were most and least important to them when considering 

a future job. The authors applied Latent Class Multinomial Logit analysis to discover two 

distinct groups, a “Sensitive Group” and an “Achievement Group,” that preferred contrasting 

traits in a CEO. Ronald and his coauthors also found Gender differences in what respondents 

preferred in a CEO. The study suggests that previous research on preferences in leadership 

may need modification for the Millennial demographic. Studies like their can help businesses 

and other employers understand how to best attract potential candidates by emphasizing 

particular CEO characteristics as well as hiring CEOs that appeal to their future workforce. 

Virtual Reality Meets Traditional Research: or the Reality behind Virtual Reality 

Enhanced Interviews (Alexandra Chirilov, GfK): Alexandra described how VR is becoming 

more widely available to consumers and at the same time more industries are using the power 

of VR. For market researchers, VR offers a new set of tools to provide a richer, more 

immersive experience that allows us to test products in a realistic way that better recreates 

the environment in which the customers experience products. Applications include store 

layout tests to car clinics to product development.  Alexandra conducted an experiment 

comparing VR-enabled CBC with CAPI CBC.  The VR-programmed survey used HTC Vive 

headset and controllers.  VR respondents took a little over 6 minutes on average in a VR 

training room prior to taking the survey.  Once in the survey, VR respondents needed only 

40% more time to answer the questionnaire compared to the CAPI one.  Mode of 

interviewing (CAPI vs VR) didn’t affect the conjoint importances, though the utility scores 

for levels within attributes did change in a few instances.  Preference for model and wheel 

types differed.  Holdout predictability was very similar between VR and CAPI.  Alexandra 

concluded that the use of VR engaged the respondents more fully, creating a more satisfying 

survey environment than CAPI, which in the end translated into a better quality interview. 
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Too Much Information?: The Curious Case of Augmented MaxDiff (Jackie Guthart, 

Curtis Frazier, and Raman Saini, Radius Global Market Research): When the number of 

items in a MaxDiff study is in the range of 30-60, Jackie and her co-authors prefer to use 

Augmented MaxDiff which involves asking preference questions outside the MaxDiff 

section and augmenting the MaxDiff data with that external information.  These external 

questions can be in the form of Q-Sort or ranking questions of items chosen “best” in the 

MaxDiff exercise.  How to add the augmented information to the MaxDiff data was the crux 

of the authors’ investigation covering three augmented MaxDiff studies involving real 

respondents.  If respondents ranked 10 items in the external information, this could involve 

coding all 45 inferred comparisons in the most aggressive treatment.  That most aggressive 

augmentation leads to the highest withing-respondent fit in HB estimation, but may be 

overfitting.  They also tested sparse coding of the augmented information.  Based on different 

treatments across their three MaxDiff studies, the authors recommend against exhaustively 

specifying the inferred pairs for HB estimation.  Rather, they recommended a moderate 

amount of augmentation, such as a differential approach that specifies relatively more 

augmented pairs involving the best-ranked items and fewer augmented pairs involving the 

worst-ranked items. 

Can We Use RLH to Assess Respondent Quality? (Marco Hoogerbrugge and Menno 

de Jong, SKIM):  Marco reviewed previous recommendations for using HB’s RLH fit 

statistic to identify bad or random respondents.  He noted that some bad respondents can 

actually get lucky and obtain reasonable looking RLH scores.  Therefore, Marco stated that 

using HB RLH scores isn’t the best approach to identify bad respondents.  He introduced a 

new approach that involves adding purely random responders to a CBC dataset (at a rate of 

about 1/6 the number of real respondents in the original real dataset), then running a high-

dimensionality Latent Class MNL solution on the combined data set (i.e. involving 20 or 

even 30 groups).  Those groups that are majority composed of random responders are marked 

as “bad” latent class groups.  All real respondents with higher likelihood of belonging to any 

“bad” groups compared to other groups are to be discarded as “bad” or near-random 

responders. 

Bandit MaxDiff: The Effects of Design Parameters on Hit Rates in Diverse Datasets 

(Nico Peruzzi, elucidate): Bandit MaxDiff has emerged as a good method for identifying the 

top (best) items from very large lists (100+ items).  Compared to a fixed sparse design, 

Bandit achieves similar hit rates on top items while using approximately one-fourth the 

sample size.  In this paper, Nico explored the effects of dataset characteristics and Bandit 

parameter adjustments (supported by Sawtooth Software’s implementation) on top item hit 

rates.  The number of items sampled for each respondent to evaluate across the MaxDiff 

questions has little effect on hit rates, whether set at 20, 30 or 40 items.  Reducing the 

number of items shown to each respondent could help reduce cognitive load.  The number of 

sets shown to each respondent does have a negative effect on top item hit rates, however, this 

negative effect is less in the case of fewer items under study (60 vs 120), less error (noise) in 

the dataset, and when sample size is large.  Reducing the number of sets asked of any one 

respondent reduces survey length and can be considered if other parameters are optimally set.  
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When the focus is on identifying top items, Sawtooth Software’s default for Thompson 

sampling featuring 5/6 of the items selected for a respondent to evaluate (relative to 1/6 

selected based on items seen fewest times by previous respondents) performed better than the 

less aggressive setting of half-and-half.  Nico concluded with recommendations for 

approaching a Bandit MaxDiff study based on dataset characteristics and Bandit parameters 

to have the best shot at achieving high hit rates for top items. 

Trees, Forests and Situational Choice Experiments (Keith Chrzan, Sawtooth Software, 

and Joseph Retzer, ACT-Solutions): Keith and Joe described situational choice experiments 

and compared using polytomous multinomial logit and several machine learning methods 

(decision trees, two types of random forests and a gradient boosting method called CatBoost) 

to analyze them.  Across 10 empirical data sets they found that CatBoost had superior 

predictive validity, as it had the highest 10-fold cross validation rates.  In terms of 

explanation, however, Keith and Joe suggested that polytomous MNL and decision trees best 

allow researchers to understand and communicate the respondents’ decision process (both 

enable the analyst to supply the end user with an easy-to-use Excel simulator), with trees 

having the additional benefit of providing an easy-to-communicate visualization of the 

decision process. 

Examining the No-Choice Option in Conjoint Analysis (Maggie Chwalek, Roger A. 

Bailey, and Greg M. Allenby, Ohio State University): Maggie and coauthors stressed that for 

valid economic interpretation a conjoint analysis must include, at a minimum, each 

alternative’s brand name, prices, and an outside “no-choice” option. Respondents use the no-

choice option to indicate that some other offering not included in the choice set is preferred 

to those included in the choice set, or that it is better for them to hold onto their money and 

not make a purchase. Thus, selecting the no-choice option assumes that respondents have 

some knowledge of the prices and features of the real marketplace. Maggie and coauthors 

conducted a choice experiment to examine the effect of providing respondents with 

information about the prices and features of tooth whitening products. They found that 

conjoint estimates are surprisingly robust to the information provided about existing 

marketplace options.  They concluded that screening and qualifying respondents based on 

product participation are sufficient for identifying qualified candidates who are aware of 

marketplace prices such that providing additional pricing and attribute information will only 

minimally affect part-worth estimates.  

Modelling Stockpilable Product Purchase Decisions Using Volumetric Choice 

Experiments (Richard T. Carson, University of California, San Diego, Towhidul Islam, 

University of Guelph, Jordan J. Louviere, University of South Australia): In categories such 

as canned tuna, buyers often decide how many units of a specific good to purchase rather 

than simply deciding whether to purchase it or not.  Richard and coauthors stressed that there 

is much more information in such count data than in traditional discrete choices. They 

designed and implemented a volumetric choice experiment (VCE) defined by price, brand, 

size, and other attributes. The VCE experimental design allowed for identification of over 

100 own- (brand by size) and cross-price elasticities via a multilevel mixed-effects negative 
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binomial regression.  Their VCE design allowed for the estimation of a very rich deeply 

parameterized model, with a focus on being able to provide own-price elasticities for each 

brand-size combination and a complete set of cross-price elasticities.  They concluded that 

modeling differences in own-price elasticities and brand-specific constants provides a much 

richer picture about what is happening in the market than models that only allow for one 

price effect. 

Conjoint Meets AI (Peter Kurz, Stefan Binner, bms marketing research + strategy):  AI 

and Artificial Neural Networks (ANN) have been applied to utility estimation for discrete 

choice experiments, but HB has generally proven more robust.  Peter and Stefan decided to 

investigate whether ANNs could be used in the design of discrete choice experiments, 

especially for alternative-specific designs.  Theoretically efficient designs feature 

orthogonality and level balance, but they often lead to choice tasks featuring dominated 

concepts and lack of utility balance.  The authors argue, however, that either no utility 

balance or too high of utility balance are both bad.  Other complex designs such as line 

pricing (where multiple SKUs’ prices move in tandem) are also out of the range of traditional 

orthogonal plans.  The statistical goal of their design search procedures was to handle 

complex design needs while resulting in utility estimates for purely random data that were as 

close as possible to zero.  To that end, they employed the Softmax procedure from ANN that 

does MNL estimation.  To find optimal designs, ANNs need a large number of versions & 

answers to select the subset of versions and answers that minimize the loss function.  They 

tested their ANN approach to experimental design compared to traditional designs as 

generated by SAS.  Respondents found the ANN designs more realistic, with more products 

available that they would like to buy.  Hit rates of holdout tasks for the ANN designs were 

also superior to the SAS designs.  Peter and Stefan concluded that AI-based design 

techniques appear to deliver more stable and better results, although two empirical studies are 

not enough to conclude that they are always superior.  

Predicting the (Unobserved) Predictable: The Use of Deep Learning in Wave 

Studies for Market Research (Tom Gardner, Michelle McNamara, Adelphi Research): In 

pharmaceutical primary market research, conducting multiple wave studies can be costly as it 

often requires recruiting physicians, whose time is expensive. Clients still need to gather this 

information, therefore Tom and Michelle explored the question of whether there was a way 

to optimize the survey time by predicting the more predictable attributes. They first identified 

which attributes to use using Principal Components analysis. Using the data from two waves 

they trained a Convolutional Neural Network to predict four attributes (as well as fitting a 

linear model for comparison). These models were then used to predict the responses of a 

third wave. The results showed that at the aggregate level, the Convolutional Neural Network 

was extremely precise and only deviated from the actual results by a small margin. At the 

respondent level, Convolutional Neural Network performed better than the linear model at 

predicting an external variable. The implication of this approach is that fewer questions could 

be asked of the respondent, with little loss in precision.    
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Can I Reduce the Number of Conjoint Tasks and Still Get Good Quality Data? 

(Chris Moore, Ioannis Tsalamanis, Ipsos MORI – UK): Chris and Ioannis began by noting 

how the trend is for online surveys to take less time, especially as more people complete 

surveys on mobile.  Thus, they examined ways to deal with even shorter CBC surveys than 

typical practice.  They tested whether common data imputation routines (model-based and 

distance-based) could help in the case of sparse data by imputing answers to CBC questions 

that are supplied by different respondents who completed the same version (block) of CBC 

questions.  Chris and Ionnis re-examined different real CBC datasets, by purposefully 

deleting respondent answers to subsets of the CBC tasks to create different degrees of  

missing data.  They found that current practice with HB estimation on sparse data performed 

better than using HB estimation on sparse CBC datasets that have first been enhanced by data 

imputation.   

Combining Choice-Based Conjoint and Dynamic Choice Models for More Accurate 

Forecasting (Faina Shmulyian, SKIM USA): Some purchases involve well-known products 

such as dish detergent.  Other purchases involve complex products where the buyer’s 

understanding of the product and its benefits evolves over time (high tech and innovative 

products).  Faina’s presentation investigated how to measure the impact of innovation 

(advertising) and imitation (word-of-mouth in social networks) on the diffusion process 

(market penetration into a consumer base) for a complex and innovative product: DNA 

testing kits. 

Data Fusion: A Flexible HB Template for Modeling Structures across Multiple Data 

Sets (Kevin Lattery, SKIM Group): In our age of expanding data we are more likely to find 

ourselves with two or more sources of data, Kevin explained.  When we need to make sense 

of these multiple data sources in relation to each other, this is what we call data fusion.  

Kevin described three general approaches to data fusion: 1) Two-Stage Linkage, 2) Data 

Augmentation/Stacking, and 3) Complete Structural Model/Probabilistic Programming.  The 

last model is the most complex and requires specialized programming.  Kevin tested the 

structural model versus the simple approach for choice data for a few real data sets.  For a 

simple anchored MaxDiff Kevin did not see much benefit in using the structural model over 

Sawtooth Software’s approach of stacking.  However, when fusing MaxDiff plus rating 

scales, the structural modeling showed significant gains.  Kevin demonstrated another 

example involving fusing CBC and MaxDiff data, where there was modest improvement for 

the structural model. 

Segmenting Choice and Non-Choice Data Simultaneously: Part Deux (Tom Eagle, 

Eagle Analytics of California, Inc., Jay Magidson, Statistical Innovations, Inc.): Tom and Jay 

began the discussion with a reminder to HB users that it isn’t considered best practice to run 

cluster analysis on HB estimates (from either CBC or MaxDiff) even if the utilities are first 

normalized.  Rather, latent class choice models provide a more sound approach.  Recently, 

Latent Gold software released an update that allows scale-adjusted latent class (SALC) to be 

used with one or more continuous variables.  That advance also leads to the opportunity to 

see if latent class clustering could be applied to continuous HB utility data.  They concluded 
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that the SALC model can produce meaningful segments not only when based on raw Best-

Worst choices (the best practice/gold standard approach), but also when used to cluster on 

HB utilities derived from the Best-Worst choices. Dave Lyon’s discussion of this paper 

clearly demonstrates the issues with segmenting raw HB utilities. Another thing Tom and Jay 

investigated was a new option available in Latent Gold for weighting the impact of variables 

differentially in latent class clustering. 

Understanding Consumer Preferences: A Comparison of Survey and Purchase-

Based Approaches (James Pitcher, Bradley Taylor, and Dan Kelly, GfK): James and co-

authors reported on one of the largest and most comprehensive research studies to compare 

attribute importance, brand preference, and price elasticities between conjoint and POS 

(Point of Sale) data across 15 technology and durables product categories and 7 countries.  

They found that although attribute importance and brand preferences are similar, there are 

large differences in price elasticities between the POS and conjoint models due to the 

differing ways in which they measure consumer preferences and due to some weaknesses in 

the POS data (namely, multicollinearity). Conjoint measures a theoretical preference, one 

that is not influenced by external market factors, whereas the POS data takes into account the 

in-store realities and how these affect the purchase decision.  POS models may therefore be 

beneficial when tactically modelling specific market scenarios as they are closer to market 

realities. However, POS models cannot be used for new product development, testing new 

features or new prices, or measuring feature preference. The best approach in such 

circumstances is still conjoint, they concluded.   

Maximizing the Impact of OOH (Outdoor) Advertisement Using Discrete Choice 

Modeling and Text Analytics (Rajat Goel and Rachin Gupta, StatWorld Research 

Solutions): In this modern era of competition, advertising plays an important role in the 

success of a brand. Out-of-home (OOH) advertising is considered one of the most important 

modes of advertising.  Rajat and Rachin showed an innovative research application that used 

Discrete Choice Modeling along with Text Analytics to create outdoor ads with maximum 

impact and likeability. While Discrete Choice Modeling was used to pick the various visual 

elements of the advertisement, the wording was driven by text analytics.  The research 

allowed Rajat and Rachin to create an advertisement which not only addressed limitations of 

previous approaches, but also had the potential to have maximum likeability and impact 

among the consumers.  They expressed the opinion that this kind of approach can be applied 

to any case where one can clearly identify and separate the elements that make up an 

advertisement. 

Using Adaptive Choice-Based Conjoint Analysis to Unravel the Determinants of 

Voter Choices (David Bakken, Foreseeable Futures Group, Gretchen Helmke, University of 

Rochester, and Mitchell Sanders, Meliora Research): David and co-authors used Adaptive 

Choice-Based Conjoint analysis (ACBC) to understand the impact of a candidate’s party, 

specific policy positions, and orientations toward democratic principles on individual choices 

between candidates.  According to the presenters, conjoint analysis has only recently become 

popular in political science.  They cited a few recent studies involving CBC, but posited that 
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in the presence of screening rules or other heuristics (such as must-have attribute levels), the 

pairwise designs of these studies could fail to capture the marginal effects of some attributes. 

To extend the literature, they conducted an online survey with a general population sample of 

1005 US adults leveraging ACBC.  They also included a MaxDiff section that involved 

twelve named candidates to gauge voter preference for the candidates.  Their two main 

questions with the study were, a) is ACBC an appropriate and perhaps better approach than 

other conjoint methods for understanding voter preferences and predicting their electoral 

choices? and b) to what extent will voters trade off democratic values in order to maintain 

partisan loyalty.  On the second question, David and co-authors’ findings were similar to 

those reported by previous researchers applying conjoint analysis to political choices.  

Respondents do appear willing to trade off their preferences for democratic values in order to 

choose a candidate that reflects their policy and party preferences.  Regarding the first 

question, they found only small benefits for using ACBC instead of CBC for conjoint 

research in the political arena. 

The Challenge of Identifying Causality in Observational Data (Ray Poynter, The 

Future Place/Nottingham Trent University): There has been an explosion in the amount of 

observational data available to decision makers and research.  However, there are challenges 

in the use of observational data, Ray emphasized, such as making the link between 

correlation and causality, survivor bias, homophily, and combinatorial effects. Ray noted that 

observational data should be embraced and utilized, but the challenges should be recognized 

and dealt with.  Despite the many potential advantages of observational data, Ray expressed 

that controlled experiments are still seen as the gold standard.  Identifying the counterfactual 

is a key step in assessing causality.  A control cell in an experiment is a counterfactual, as 

well as matching people who have and haven’t seen a social media campaign creates a 

counterfactual.  And, as a general best-practices recommendation, researchers should seek to 

minimize the number of independent (or predictor) variables, Ray suggested, and to 

maximize the number of independent observations. 



1 

A COMPARISON OF PC AND MOBILE INTERVIEWING MODALITIES 

DEB PLOSKONKA 

KARLAN WITT 
CAMBIA INFORMATION GROUP 

ABSTRACT 

Over a third of Americans (37% according to Pew) now go online mostly using a 

smartphone, which explains the increase in mobile survey rates researchers have 

experienced. This increase suggests a need and movement toward mobile-enabled surveys. 

Mobile-enabled surveys, however, often lack the ability to meet survey takers’ expectations. 

Many respondents note layout difficulties such as having to zoom in to the question text, 

scrolling to see the full range of answers and not being able to immediately see the question 

due to screen size. 

Based on these limitations, survey providers notice higher breakoff rates among mobile 

respondents. In an attempt to reduce survey breakoff among mobile users, Cambia 

Information Group tested the two question types where we see higher breakoff rates among 

respondents in the U.S. and Japan: unaided brand awareness and grid-style brand rating 

questions. These were tested in various formats on both desktop and mobile platforms across 

these two cultures. 

This paper includes salient background references for this topic, question construction 

and formatting details, analysis of the resulting data, our recommendations for best practices 

going forward, and proposed extensions of this research. 

INTRODUCTION 

In a recent Sawtooth Software Conference, there was audience discussion about best 

practices for the presentation of survey questions given the prevalence of mobile devices. 

Historically, surveys had been programmed for someone to take on a PC, and there were 

concerns expressed both about the quality of the experience someone would have taking that 

survey on a mobile device, as well as whether or not we should program a mobile version to 

look and feel more like a native mobile experience rather than a desktop experience being 

viewed on a phone. 

In the ensuing discussion, there was little agreement as to approach and even less data to 

inform best practices going forward. Cambia Information Group has tested the options 

articulated by the audience and the results are shown in this paper. Through our 

investigations and audience discussion at the 2019 conference, we learned that this issue 

continues to be an area of concern for several reasons: 

• Many organizations have legacy tracking surveys where implementing revised mobile 

approaches might impact trendability; 

• Evidence shows a large percentage of surveys are still not mobile-friendly, potentially 

causing non-response bias or simplification techniques among mobile users; and 
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• There remains debate as to whether the look and feel should be consistent across mobile 

and desktop platforms or optimized for each. 

While most of the Sawtooth Software Conference is focused on expanding on the most 

sophisticated areas of conjoint and modeling, there is a critical need to ensure quality data is 

collected to serve as a basis for this advanced work. This paper aims to serve in this 

capacity. 

BACKGROUND: THE NEED FOR MOBILE 

Depending on the types of respondents you survey, mobile may seem like more or less of 

an issue to you. We conducted this research-on-research based on trackers we run globally 

over time showing significant increases in mobile survey completion for both business and 

consumer audiences. Figure 1 below shows the increase in mobile completions for both B2B 

and B2C studies. 

Figure 1: Percent mobile of an international multi-audience tracker over time 

(consumer audience: panel; B2B: lists) 

 

We reached out to some panel partners who confirmed they are seeing high mobile 

survey rates as well. 

• Symmetric reports 25% on mobile with 10% on tablet. 

• Dynata cites 30% on mobile, though some studies are not available to or are discouraged 

for mobile. 

• Lucid’s figures top 50% as some countries’ Internet access rates are driven by increasing 

access to smartphones. 

Figures 2 and 3 below, from data provided by Dynata through September 2019, show 

we’ve reached a tipping point where mobile and desktop survey starts are roughly even, 

with a striking trend for mobile usage both domestically and internationally. 
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Figure 2: U.S. Survey Starts by Device  Figure 3: Global Survey Starts by Device 

 

To reiterate the obvious, survey presentation on mobile devices will have a huge impact 

on the data that is collected. 

Mobile usage continues to vary by country. Lucid’s survey starts in 2019, seen in Figure 

4, go from a low of 37% in Poland to a high of 89% in Uganda. 

Figure 4: Survey Starts on Mobile by Country (Lucid) 

 

While mobile is present in a big way worldwide, there has not been a uniform approach 

for how to deal with it. 

One country where Cambia surveys often, India, shows 72% mobile starts. Both 

McKinsey (McKinsey Global Institute, 2019) and Kantar (Kantar IMRB, 2019) have 

reported huge growth of internet penetration in India, primarily via smartphone as data 
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plans, and the phones themselves, have dropped in price. In the U.S., broadband acquisition 

in some segments has dropped as smartphone capabilities increase and allow users full 

internet accessibility. 37% of Americans now go online mostly using a smartphone, says 

Pew recently (Pew Research Center, 2019). 

THE STATE OF MOBILE SURVEYS TODAY 

When we decided to write this paper, friends and colleagues began forwarding us 

specific notes they were getting when trying to take surveys on mobile devices. And there 

were MANY. 

Some were mobile-friendly, and just recommended that for a better mobile experience 

use the landscape view to maximize real estate on the screen. Examples include: 

• Please rotate your device to landscape mode for this question. 

• We noticed that you’ve started this survey on a tablet or smartphone. To optimize your 

survey experience, we recommend using landscape view. 

• It appears you’re taking this survey on a smartphone. We suggest rotating your 

smartphone to landscape position (i.e., horizontal) for a better survey-taking experience. 

Some said you are going to have a bad experience on a mobile device, we recommend 

you use a desktop PC instead: 

• While this can be taken on a mobile device, we recommend a desktop for ease of 

selection. 

• Please note that since this survey contains multiple grid-questions and it can be taken 

with greater ease on a desktop, tablet or laptop/computer than on a cell phone. 

• Not all of our clients’ surveys are designed for mobile devices. If you choose to use a 

mobile device, you may not have an optimal experience. 

The most extreme was literally not allowing mobile surveys to participate, even though 

the survey content had nothing to do with being a PC user: 

• There are elements of this survey that are incompatible with smartphones […] please 

close your browser and switch over to a desktop/laptop computer to complete this survey. 

So, who are we missing when our surveys are not mobile-friendly? 

Who you miss is skewed by a number of variables such as generation. And younger folks 

can be harder to get to respond to a survey under any circumstances, but telling them they 

can’t do it on their phone can really skew your underlying sample and introduces unknown 

non-response bias. 

We asked our friends and colleagues who had been given the “you will have a bad 

experience on mobile, please switch to a PC now” type message if they had indeed 

switched. While this is a convenience sample, zero of the folks who received these types of 

messages went back to take the survey later when in front of a desktop PC. We did some 

research and found a study that examined switching behavior in this situation. 
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Research published by Peterson (Peterson, Griffin, LaFrance, & Li, 2017) indicates these 

messages encouraging switching to a desktop have a non-meaningful impact on switching 

(0.9% switch compared to 0.4% of the control group). So, in practice, if we enforce a 

desktop-only survey, there will be systematic non-response bias in our data. 

In our own data, we also noted differences beyond generation that could also have a 

material impact on your resulting data, including gender, ethnicity, life stage, and those 

active on social media. Figures 5 and 6 show behavior by generation in U.S. and Japan 

roughly the same, with survey-taking behavior on phone increasing the younger the 

generation of the respondent. 

Figure 5: U.S. Percent by Generation  Figure 6: Japan Percent by Generation 

2017+  2017+  

  

So, the respondents you lose are likely to be systematically different from those who 

complete the survey. 

OTHER CONSIDERATIONS 

There are some straightforward best practices related to question layout for mobile 

devices: 

• Respondents need to: 

o Read question without zooming or horizontal scrolling 

o Record answers without zooming 

o See the question immediately 
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The second topic is a more important one. This exact topic was the one raised at the last 

Sawtooth conference. It centers around having identical look and feel across desktop and 

mobile devices vs. optimizing for each. Is it best for the data to: 

1. Have a single mobile-enabled layout for both PC and mobile, 

2. Have a single mobile-optimized layout for both PC and mobile, or 

3. Choose a layout that best matches the device? This last option would prioritize the 

respondent experience. 

As Ray Poynter has said in his book on the topic, “mobile surveys can be thought of as 

existing on a continuum from intentional at one end, for example where the survey was 

designed for mobile and where the participants were selected because they had a mobile 

device, through to ‘unintentional mobile’ where the survey was designed for PC and 

unexpectedly participants complete it on their mobile.” (Poynter, Williams, & York, 2014) 

The argument for aligning the stimuli is to remove the impact that the type of device the 

survey is taken on from how they are answering the question. The downside is these are 

usually desktop-PC optimized and run into all the problems we’ve been talking about. 

The argument made for optimizing for each platform to maximize the respondent 

experience cited the different look and feel and even interactivity we all experience on our 

phones vs. desktop PCs. You can hover your mouse over something on a PC, but unless you 

specifically program “touch” vs. “tap” for phones and tell the respondent about it, they 

won’t have hover-over access. 

Respondents using mobile devices may have certain expectations. We all use mobile 

versions of websites that automatically detect the device we are using to access the site and 

tile or lay out content differently to optimize the user experience. Forcing mobile-savvy 

respondents to take a survey designed for a desktop PC might increase abandonment rates, 

or survey “breakoff.” 

OUR CHALLENGE: REDUCING BREAKOFF IN MOBILE 

In the early days of mobile devices, most online surveys were still taken on traditional 

desktop and laptop PCs. While some testing was conducted to confirm functionality when 

viewed on a phone, little guidance was available to change the way in which questions were 

asked. We had a long-term global tracking study that was launched before mobile devices 

were this prevalent, so in fairness would consider this particular survey “mobile enabled” 

but not necessarily “mobile optimized.” 

As we watched mobile completion rates rise, we saw disproportionate breakoff rates for 

two question types: 

• Unaided awareness 

• Grid-style brand rating questions 

As well, the new version of Lighthouse Studio had a new mobile construct for grids we 

were anxious to test. So, we conducted research-on-research to examine the versions we had 

historically run against some new alternatives to test several of our hypotheses. 
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Unaided Awareness Test 

The subject matter for our test comes from a long-running tracker we were conducting in 

the insurance industry, in as many as 25 countries worldwide. On the left, below, is how we 

had been asking an unaided brand awareness question, following a top of mind single open-

ended question, with 15 lines shown. After grids, this question type had the second highest 

breakoff. We hypothesized it was worse for mobile due to the idea of typing so many lines 

on a small screen with a small keyboard. 

Figure 7: Unaided Awareness Test Design 

  

In the middle and at right above, in Figure 7, is our test version, displaying only five 

lines to start, and then progressively adding lines to always have two blank lines as 

respondents filled in their responses, with a maximum of 15. We intended this to be a more 

engaging and also less overwhelming experience, particularly on mobile. 

With the study inspiring this test conducted internationally, we did not want to arrive at 

US-centric conclusions, thus half our data was collected in Japan. We have equal sample 

size per control and test, per PC and mobile. As you saw above, incidence of tablet starts is 

low, and as some research-on-research groups it with PC and some with mobile, we opted to 

set it aside. Results are controlled for demographic differences, given the obvious 

differences in demographics on who might respond on which device. 

Sample sizes per cell per country per device ranged from 152 to 168. Data were 

collected from August 21 to August 28, 2017. 
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HYPOTHESES 

This test had two hypotheses: 

1. Seeing 15 open-ended prompts may be overwhelming. By only showing five initially, and 

then successively more, the experience would be more engaging and less overwhelming, 

reducing break-off. 

2. As only one-quarter of respondents gave more than five answers in the preceding 

tracking study, the quantity and quality of responses would not significantly change. 

As is well known by the industry, response rates have been dropping over time across all 

modalities. By increasing the engagement on a question that provokes a higher level of 

dropouts we wanted to improve response rate. Moreover, we chose five to test with given 

that the large majority of our respondents gave five or fewer responses and we wanted to be 

careful with trendability for a tracking study. 

RESULTS 

Figure 8: Number of Valid Openends 

 U.S. Japan  
Mobile PC Mobile* PC 

15 Lines 3.9 4.2 4.0 3.4 

5+ Lines 3.9 4.2 3.7 3.3 
*p < .05 

We were pleased to see that the number of openends was not different by how many 

lines were shown (Figure 8), and the difference between PC and mobile was not significant 

in the U.S.. 

In Japan, we again see no significant differences between number of lines and were 

surprised to see mobile respondents more verbose than PC respondents. Our reviewer Chris 

Chapman noted from his own ethnographic research on mobile usage in Japan, that Japanese 

may be more likely to be engaging on phones in situations allowing longer engagement, 

such as commuting on trains. Additionally, Japanese may have more familiarity and practice 

with editing documents on their phones, leading to longer and more survey engagement. 

Note that “junk” openends were something we were watching out for and counting, but 

their incidence was not different by test cell. 

Figure 9: Breakoffs 

 U.S. Japan  
Mobile PC Mobile PC 

15 Lines 1.0% 1.2% 4.0% 1.8% 

5+ Lines 2.0% 0.0% 0.6% 1.3% 

 

Our US respondents did not cooperate with our test by abandoning the survey at this 

question—these rates of drop-off in Figure 9 are actually much lower than what we usually 
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see on this question type. Perhaps we caught them at a better time. Regardless, we see no 

impact for breakoffs. 

We do see in Japan indications that the 5+ lines approach is an improvement here. One 

other variable we examined was how much time respondents spent on each type and it was 

approximately the same. 

Conclusion 

The Japan result led us to feel this was a promising solution for reducing breakoff, and 

as our results did not change, we went ahead and adopted this approach. 

GRID TEST 

Introduction 

Grid questions can be problematic on either a PC or mobile device due to high dropout 

rates or use of simplification techniques such as straight-lining. Moreover, the optimal 

approach for PCs may not be the best for mobile devices. 

Online interviewing software programs have been advancing new approaches in an 

attempt to address the presentation of grid questions for mobile surveys. 

With the release of Sawtooth Software Lighthouse Studio version 9.1, Lighthouse Studio 

will detect the size of the respondent’s browser window and change the layout of a grid 

question to become a separate sub question on the same page. 

Our grids had been programmed in SSI/Web v8 when the tracker had launched, so we 

didn’t have the benefit of leveraging Lighthouse mobile implementation from the beginning. 

For the test, Sawtooth Software granted us a trial of Lighthouse Studio. 

Our grid test included three cells: grid (control), seen in Figure 10; “scroll” (default 

Lighthouse behavior) shown in Figure 11; and “freeze” Illustrated in Figure 12. The control 

grid, programmed as we always had it, would look much like this on a mobile phone, with 

text extending off the screen whether the phone was held vertically or horizontally. 

Figure 10: Grid (control) 
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Figure 11: Scroll 

 

As we were examining moving to the Lighthouse Studio 9 version of grid for mobile, we 

also wanted to test using the mobile presentation even for PC. Therefore, each form of the 

layout was tested for both PC (not shown) and mobile. 

However, we had some concerns about how well respondents could answer the question. 

If you look closely, you can see that as the respondent scrolls, the question and attribute 

disappear. All that will show is the brand with the response options. You do not see the 

question nor the attribute under consideration. 
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Figure 12: Freeze 

 

Therefore, we added a third cell, “freezing” the question and attribute at the top of the 

screen, even as respondents scrolled down. Thus, what they were answering was always 

shown. 

For this series of attributes, respondents would be rating no more than four brands, with 

the majority being assigned four based on their familiarity with brands in the insurance 

industry. 

Sample size per cell per device per country ranged from 100 to 113. Respondents were 

not randomly assigned to a device, though they were randomly assigned per condition. 

Where appropriate, analyses controlled for differences in demographics by device. 

Hypotheses 

For the grid test we had four hypotheses: 

1. Respondents on mobile would be less likely to break off with the scrolling approach 

than with grids. 

2. Straight-lining behavior would be reduced by avoiding grids (though other forms of 

satisficing might take its place). 

3. Consistently displaying the question and attribute (“Freeze”) in the scrolling format 

would avoid inconsistency of mobile responses with responses from grids on PC 

(compared to “Scroll,” the default). 

4. Scrolling on PC would not be the best solution for respondent experience but may be 

more consistent with mobile scrolling results. Tradeoff of consistency of results vs. 

breakoff/respondent experience would then be a point of discussion. 
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Results 

Figure 13: Breakoffs 

 U.S. Japan  
Mobile* PC Mobile* PC 

Grid 11% 3% 5% 3% 

Scroll 7% 1% 4% 3% 

Freeze 12% 4% 6% 1% 
* p < .05 

For breakoffs, both in US and Japan, we saw more break off for mobile than for PC in 

Figure 13, with no impact of whether it was Grid, Scroll, or Freeze. 

Figure 14: Straight-lining 

 U.S. Japan  
Mobile PC* Mobile PC 

Grid 8%* 11% 8% 4% 

Scroll 3% 5% 8% 6% 

Freeze 3% 8% 8% 4% 
* p < .05 

In the U.S., for straight-lining, as expected, we see high straight-lining for grid and for 

PC in Figure 14. Mobile respondents were less likely to straight-line while scrolling. 

In Japan, there were no effects. 

It has been pointed out here that looking across tables, we see the fewest wasted 

interviews in the U.S. from PC Scroll, with only 1% breaking off and 5% straight-lining. 

Figure 15: Consistency in perceptions; most-rated brand top 2 box 

Odds  

Ratio 

U.S. Japan 

Mobile PC Mobile PC 

Grid 0.6  1.4  

Scroll 0.5 0.6 1.4 2.5 

Freeze 0.7 0.8 1.6 1.1 

In this analysis, with results shown in Figure 15, we are looking at State Farm in the 

U.S., and Aflac in Japan. These were the brands with which respondents were most familiar. 

As a default, we are comparing to PC grid, not because it is the right approach but because it 

was the baseline from our historical tracker, especially from when incidence of mobile starts 

was much lower. 

In the U.S., each of the other cells was significantly less likely to be top two box than the 

grid question. Mobile Scroll and PC Scroll were nicely aligned (tested independently), as 

were Mobile Freeze and PC Freeze, and we might have jumped to certain conclusions here; 

but in Japan we see the opposite, where most of the other designs yielded a higher 

likelihood of a top 2 box rating than PC Grid, and Mobile Scroll and PC Scroll are not 

aligned. 
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Note that for the consistency analysis, to isolate the effect of the design conditions, 

estimated models controlled for gender, age, household income, employment status for both, 

and additional for US race and region of the country. 

In addition, we asked two questions at the end of the survey, following the example of a 

paper presented at AAPOR (Sarraf, Brooks, Cole, & Wang, 2015): 

“To quantify what you just wrote, considering factors like ease of navigation, ease of 

reading the screen, and ease of selecting responses, please rate how easy it was for you to 

complete this survey.” 

There were no differences on this question for either geography. 

Figure 16: Visual Design (4-point scale) 

Mean 

U.S. Japan 

Mobile PC Mobile PC 

Grid* 3.3 3.4 2.7 2.8 

Scroll 3.3 3.1 2.6 2.7 

Freeze 3.1 3.2 2.6 2.7 
* p < .05 

The second question we asked, on a 4-point scale, was: “And how would you rate the 

visual design of this survey?” 

In the U.S. in Figure 16 we see an effect for layout, with Grid rated significantly higher 

than Scroll or Freeze. There were no differences in Japan. 

Considerations 

We do have other things to consider, however. 

Scrolling added a moderate amount of time to the survey, plus 1-2 minutes beyond an 

otherwise 14-minute survey and freezing the top of the question added an additional 2-3 

minutes. 

Additionally, we gave the respondents an opportunity to give their feedback and they 

were happy to do so. Those who took the mobile-optimized layouts on PC expressed a 

preference for seeing all the questions and answers together in one place. 

Those on their phones were fairly positive overall about the experience, but noted 

various adaptations we might consider, or that they needed to undertake to easily take the 

survey. 

Conclusions 

To summarize our findings, 

1. We did not find respondents less likely to break off when scrolling than for grid. 

2. We did find straight-lining to be reduced when grid items were replaced by scrolling sets 

of single-response items, but only in the U.S.. 

3. In looking at consistency with PC Grid responses, we examined how often respondents 

chose a top two box response. Respondents receiving the Freeze design give more similar 
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responses to PC Grid than those who received the Scroll design do but are still 

significantly less likely to select top two box in the U.S. and significantly more likely to 

select top two box in Japan. On the other hand, both Freeze and Scroll are more 

consistent across device than the grid format is, particularly in the U.S. 

4. Scrolling on PC was consistent in the U.S. with scrolling on mobile, but not in Japan. 

However, the additional time to take the survey and the respondent feedback requesting 

grids make us unlikely to adopt the scrolling approach. 

For grid, we concluded to maintain our current (grid on mobile) approach and keep 

looking as: 

• The “Freeze” approach was untenable due to negative respondent quantitative and 

qualitative feedback as well as the extra time it took to complete the survey, and 

• The “Scroll” design on mobile had one advantage in reducing straight lining, but 

otherwise did not yield a meaningful advantage, and took longer. Moreover, for Japan, 

the data was wildly different than other forms. 

It should be noted that one size does not fit all, as one set of authors (Mavletova, Couper, 

& Lebedev, 2018) noted: “. . . there are a large number of factors that may affect the choice 

of a grid format for surveys, including the length and complexity of the survey, the number 

of items, the number of response options, the proportion of the respondents using a mobile 

device, the type of mobile optimization (if any) for smartphones, and so on. The choice of 

whether or not to use grid question should be made on a case-by-case basis and is not an all-

or-nothing decision. If the survey software does not optimize for mobile devices 

(particularly smartphones), we suggest that using an item-by-item format for both mobile 

and PC web may result in lower measurement error and higher measurement equivalence in 

a survey.” 

PRACTICAL TIPS FOR SUCCESS 

1. Know your audience. Will they want to use smartphones to complete the survey? Will 

you want those who prefer phones in your data? 

2. Whether you plan to collect data using phones or not, if a panel audience, have a 

conversation with your provider during kickoff regarding how data will be collected. 

3. Test the survey on various mobile devices, browsers, and operating systems. Common 

oversights include: 

a. Respondent instructions that don’t apply for mobile, e.g., “click here,” “use your 

mouse to . . . ,” or, “select one in each row” when question has been converted to 

a series of single response questions. 

b. Grids that may wrap response points. 

c. Referencing non-existing point labels (e.g., 5=strongly agree but in the mobile 

version, response options are unnumbered). 

FOR FURTHER RESEARCH 

1. On the grid test, we could have considered freezing only the attribute and not the whole 

question and header. This would have reduced the amount of scrolling the respondent had 

to do while keeping the most relevant information on the screen. 
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2. The respondent experience and survey results may differ depending how many brands 

respondents are asked to rate. 

3. Other grid types are available to test, using different software: 

a. Accordion grids (response options auto-expand and collapse item by item as the 

respondent clicks). 

b. Progressive grids (attributes auto-advance while response options remain 

stationary). 

4. Or don’t use grids at all, instead use MaxDiff/Best-Worst. SKIM (Ruitenburg, Joost van 

(SKIM), 2018) has developed additional options for mobile. 
 

   

 Deb Ploskonka Karlan Witt 
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ABSTRACT 

There is no arguing that choice-based methods have become dominant in our industry. 

Yet, there is no clear answer on what a researcher should do as the number of attributes 

increases (>6). Design techniques including Partial Profile and Adaptive Choice-Based 

Conjoint offer solutions, but past research has yet to crown a winner. This paper sets out to 

revisit prior research and to explore and validate both Partial Profile (PP) and Adaptive 

Choice-Based Conjoint (ACBC) in comparison to Full Profile (FP) Choice-Based Conjoint 

(CBC) with real respondents on experiments of 10, 15, and 20 attributes to determine which 

method is best across multiple scenarios. 

INTRODUCTION 

Most of the choice-based research done today is Full Profile (FP), where a level from 

every attribute is shown in every product profile. However, some argue that there comes a 

point when a FP choice task is too cumbersome and overwhelming, forcing respondents to 

use a simplification heuristic that could affect the model’s predictability. Since the work of 

Green and Srinivasan (Green, P. & Srinivasan, 1978), we have been historically taught to 

use around six attributes (depending on level text, category, and more). Two solutions to this 

problem include Partial Profile (PP) and Adaptive Choice-Based Conjoint (ACBC). PP is 

where a level from only a subset of attributes, usually 7 or fewer, is shown in every product 

profile. The subset of attributes changes across every screen so that respondents evaluate all 

attributes, but only 7 at a time (Chrzan, K. & Elrod, T., 1995). 

ACBC takes respondents through three main phases: 1) BYO (configuration) phase, 2) 

Consideration phase, and 3) Choice Tournament phase, adapting the design depending upon 

answers within these phases to account for non-compensatory decision making that can 

happen (Johnson, R. & Orme, B., 2007). Screen shots of the FP CBC, PP CBC, and ACBC 

exercises can be found in the appendix. 

STUDY DESIGN 

We chose smartphones as the product and created sample cells with 10 attributes, 15 

attributes, and 20 attributes to describe the product profiles. The set of attributes and levels 

tested is in Figure 1.1. 
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Figure 1.1: Attributes and Levels Tested 

 

Each cell was assigned a specific methodology, shown in Figure 1.2. 

Figure 1.2: Methodologies Tested 

 

Sample Cells 

There were 11 sample cells in total. Three with 10 attributes, four with 15 attributes, and 

four with 20 attributes. See Figure 1.3 for detail on the sample cells. Each sample cell was 

weighted equally by gender, age, and ethnicity. Sample was provided by Dynata. 
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Figure 1.3: Sample Cell Overview 

 

Design Strategy 

The FP CBC design was generated using Sawtooth Software’s Shortcut design 

algorithm. The PP CBC design was generated using Sawtooth Software’s Complete 

Enumeration design algorithm (as the attributes not shown in the product profile are 

essentially assuming level overlap). The ACBC designs were generated using Sawtooth 

Software’s default settings. 

Partial Profile Attribute Selection 

For the PP CBC, the computer selected 7 attributes on each screen based upon the design 

algorithm. Brand and Price were not forced onto every screen in the PP CBC. 

For the PP ACBC, respondents could choose between 2 to 10 attributes. Brand and Price 

were not forced into the respondent’s subset for PP ACBC. Figure 1.4 shows an example of 

how respondents configured their subset. 
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Figure 1.4: PP ACBC 15 Attribute Selection Question 

 

15 Attribute PP ACBC Selection 

Respondents vary in the number of attributes they find play a role in their decision to 

purchase a smartphone. 71% include Price and only 60% include Brand. Figure 1.5 shows 

the distribution of the number of attributes per respondent. Figure 1.6 shows the proportion 

of respondents that chose that attribute. 

Figure 1.5: % of # of Attributes in 15 Attribute PP ACBC per Respondent 
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Figure 1.6: % of Respondents Including Each Attribute in Their Subset 

 

20 Attribute PP ACBC Selection 

When shown 20 attributes, respondents are more likely to choose the maximum number 

of attributes allowed (10) in comparison to 15 attributes. 66% include Price and 61% include 

Brand. Figure 1.7 shows the distribution of the number of attributes per respondent. Figure 

1.8 shows the proportion of respondents that chose that attribute. 

Figure 1.7: % of # of Attributes in 20 Attribute PP ACBC per Respondent 
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Figure 1.8: % of Respondents Including Each Attribute in Their Subset 

 

In future projects, analysts should consider forcing brand and price into every subset of 

the PP CBC and list of attributes in the PP ACBC. Doing this may depict a more accurate 

representation of the real world, given the influence these attributes have on decision 

making. 

HOLDOUT TASKS 

Holdout tasks can be used to compare the predictive validity of one conjoint method to 

another. In a holdout task, the researcher specifies exactly which combinations of attribute 

levels to show in a product profile and all respondents see this exact scenario. Chrzan (2015) 

suggests that at least 5 holdout tasks, if not more, are needed to be confident in these 

conclusions. This study includes 6 CBC-looking holdout tasks (Figure 2.1). 



23 

Figure 2.1: CBC Holdout Example 

 

Since the best measure of success is each model’s ability to predict real-world market 

shares, two shelf holdouts were also included to reflect the actual consumer decision-making 

process. The first shelf is a Full Profile and includes 20 total products throughout the 

duration of the exercise (Figure 2.2 shows one of these screens that tests 6 Samsung Galaxy 

products). 
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Figure 2.2: FP Shelf-Holdout Example 

 

Research has shown that FP is better than PP at predicting hit rates for FP holdout choice 

tasks, therefore a PP shelf was also included so to not tip the hat in favor of FP. In the PP 

shelf, each product profile is defined by the same 7 attributes across all respondents and 

includes 20 total products throughout the duration of the exercise (Figure 2.3 shows one of 

these screens that tests 6 Samsung Galaxy products). 

Figure 2.3: PP Shelf-Holdout Example 

 

In addition, we must remember that because each of these tasks look like CBC tasks, 

there is a potential methods effect in favor of CBC vs. ACBC. 
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The Models 

In all 11 cells, we created a hierarchical Bayesian (HB) model with prior variance of 0.5 

and 5 degrees of freedom and used point estimates (the default Sawtooth Software settings). 

In addition, no prohibitions, constraints, or interactions were included in any model. 

For the scale factor (response error) involved in the different calibration tasks, and 

holdout task layouts to not affect the share prediction accuracy criterion (MAE), each 

model’s exponent was tuned to minimize the MAE across all holdout tasks. The holdout 

tasks were not used in estimating the utilities. 

The Results 

Comparisons across the methodologies are made within the cells that test 10 attributes, 

15 attributes, and 20 attributes. Statistically, the most important comparison is how well the 

models perform. Here, we compare the Mean Absolute Error (MAE) and how well the 

model predicts the None category. In addition, price sensitivity curves and Willingness-to-

Pay values are compared. 

However, it is also just as important to have an enjoyable respondent experience. 

Therefore, we will also compare the methodologies from the respondent’s perspective, 

examining median time to complete/length of interview (LOI), drop-off percentages, 

percentage of those who admit to cheating, and respondent evaluations (i.e., easy vs. hard, 

fun vs. dull). 

THE 10 ATTRIBUTE STORY 

Model Validity 

When simulating the shelf and CBC holdout tasks and comparing the simulated shares to 

the actual holdout shares, we find that ACBC has the lowest MAE (Table 3.1). These 

simulations include the None parameter (i.e., respondents can opt out of buying a phone). 

Table 3.1 Mean Absolute Error Across 10 Attribute Shelf and CBC Holdouts Including the 

None 

 

However, because the None parameter is computed differently within ACBC vs. CBC 

(i.e., in ACBC the None is determined from the number of concepts marked as a possibility 

vs. not a possibility in the screening section), we sought to compare the MAEs when 

excluding the None option in simulations. After dropping the None, the MAEs for all three 

methods are comparable (Table 3.2). Again, we should note that shared methods bias would 
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be expected to favor FP and PP CBC rather than ACBC, because the holdout tasks involved 

CBC-looking tasks. 

Table 3.2 Mean Absolute Error Across 10 Attribute Shelf and CBC Holdouts 

Excluding the None 

 

The None Parameter 

Taking a closer look at the None, we find that those respondents in the ACBC sample 

cells are significantly more likely to choose the None (i.e., respondents would not buy any 

product on the shelf) (Table 3.3). This could signal a psychological effect of the ACBC 

exercise, making them less likely to buy an actual product after building their own. Further 

research should be done to determine if this is category specific, or methodology specific. 

Table 3.3: None Proportions within the 10 Attribute Experiments 

 

Price Sensitivity 

Price sensitivity is a primary deliverable of choice research. Therefore, we simulated one 

product versus the None and graphed the share of preference estimated from each model 

when only changing price. 
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Figure 3.4: Price Sensitivity of 10 Attributes by Methodology 

 

Figure 3.4 shows that FP ACBC seems to conservatively predict choice compared to FP 

CBC and PP CBC. This is in alignment with the high None proportion found in the ACBC 

data. FP CBC and PP CBC seem to have parallel curves—even though price was not forced 

into every product profile for PP CBC. 

Willingness to Pay (WTP) 

Although there are many caveats to calculating WTP data, the authors wanted to explore 

any differences in the methodologies tested. Our WTP data is calculated using the 

simulation approach where two products with the exact same specs are simulated versus the 

None. By default, their shares will be exactly equal. We then add a feature to the second 

product that the first product doesn’t have, (i.e., increase product 2 from 4G to 5G; product 1 

stays at 4G) and find the price for the second product at which shares for both products 

return to equal. 
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Figure 3.5: WTP for Brand, Storage, and Generation Attributes by Methodology 

 

The results show that FP ACBC has a WTP that is flatter than both FP CBC and PP 

CBC. PP CBC seems to align well with FP CBC. This is also found when comparing 

correlations between utilities for the different methods (Figure 3.6). 

Figure 3.6: Correlations of Aggregate Utilities by Methodology 

 

Importance Scores 

Importance scores are a typical deliverable, albeit with many potential issues (i.e., lies 

are in the averages, extremely influenced by the levels tested). While the authors do not 

believe this is the best way to look at the data, it is interesting to see the differences since all 

attributes/levels tested across the methods are the same, the importance scores shown are the 

standard Sawtooth Software calculation of importance scores (i.e., range of HB utilities per 

attribute per respondent). The authors realize that there are different ways to calculate 

attribute importance, but wanted to investigate the results based on how a typical conjoint 

user would use attribute importance. 
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As expected, FP CBC has the steepest importance scores. Interestingly, FP CBC and PP 

CBC find Brand as the most important attribute followed by Price, where FP ACBC finds 

Price more important than Brand (Figure 3.7). 

Figure 3.7: Importance Scores by Methodology 

 

Respondent Preference 

FP CBC is the quickest exercise to complete, while FP ACBC is the longest (Figure 3.8). 

FP ACBC also has the highest drop-off percentage, highest likelihood of cheating, and the 

highest proportion of bad data. Throughout the paper, bad data is defined as anyone who 

admitted to cheating throughout the exercise or who had two flags in the data (speeding, 

poor RLH, straight lining, etc.  
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Figure 3.8: Respondent Statistics for 10 Attribute Experiments 

 

When rating the different methodologies, FP CBC is the shortest and easiest, while FP 

ACBC relatively more Enjoyable, Fun, and Appealing (Figure 3.9). Both FP CBC and FP 

ACBC seem to edge out PP CBC, but the differences are not significant. 

Figure 3.9: Respondent Top Two Agreement on 10 Attribute Survey Experience 

 

10 Attribute Conclusion 

Overall, FP CBC seems to perform slightly better when testing 10 attributes, from both a 

respondent and model perspective. (Again, with the caveat that the holdouts would be 

expected to favor the CBC-looking approaches and put ACBC at a disadvantage.) 

15 ATTRIBUTE STORY 

Model Validity 

Table 4.1 shows that when including the None option in simulations, ACBC has the 

lowest MAE, particularly PP ACBC. After dropping the None, the MAE for the Adaptive 

methods are more in line with FP CBC (Table 4.2). PP CBC has the highest MAE, perhaps 

due to the number of attributes shown out of the total attributes modeled (7/15 < 50%). 
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Table 4.1: Mean Absolute Error Across 15 Attribute Shelf and CBC Holdouts 

Including the None 

 

Table 4.2: Mean Absolute Error Across 15 Attribute Shelf and CBC Holdouts 

Excluding the None 

 

The None Parameter 

Again, we see that those in the ACBC sample cells are significantly more likely to 

choose the None in the holdout choices (i.e., respondents would not buy any product on the 

shelf) (Table 4.3). In addition, both PP methods, PP ACBC and PP CBC, seem to align more 

closely to shelf behavior as seen in the survey tool. 

Table 4.3: None Proportions within the 15 Attribute Experiments 
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Price Sensitivity 

Figure 4.4 shows the share of preference estimated from each model when only changing 

price. FP ACBC is the most conservative when predicting choice. 

Figure 4.4: Price Sensitivity of 15 Attributes by Methodology 
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Willingness to Pay (WTP) 

Figure 4.5: WTP for Brand, Storage, and Generation Attributes by Methodology 

 

It is difficult to tell from these estimates which methodology is most accurate. This could 

be due to aggregating WTP values or differences in methodology. However, we can see that 

when comparing utility correlations, the ACBC methods are more closely aligned (Figure 

4.6). 

Figure 4.6: Correlations of Aggregate Utilities by Methodology 

 

Importance Scores 

With PP ACBC, a dropped attribute’s importance is set to 0. Therefore, it is not 

surprising that PP ACBC has very steep importance scores, similar to FP CBC. Similar to 

the 10 attribute results, the ACBC data calculates price more important than brand, while the 

CBC data calculates brand as more important than price (Figure 4.7). 
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Figure 4.7: Importance Scores by Methodology 

 

Respondent Preference 

FP CBC is the quickest exercise to complete, while FP ACBC is the longest (Figure 4.8). 

All methods have an equal drop-off rate. PP CBC has the highest proportion of respondents 

admitting to cheating and the highest proportion of bad data. Again, this could be due to the 

low percentage of attributes shown per screen, and a harder cognitive burden (7 attributes/ 

15 attributes). 

Figure 4.8: Respondent Statistics for 15 Attribute Experiments 
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When rating the different methodologies, PP ACBC appears to be the most preferred 

(Figure 4.9). 

Figure 4.9: Respondent Top Two Agreement on 15 Attribute Survey Experience 

 

15 Attribute Conclusion 

PP ACBC seems to edge out FP CBC, particularly from the respondent perspective. 

From a modeling perspective to predict holdout choice shares, FP CBC and PP ACBC are 

likely equal, however more research should be done into the significant differences in the 

None parameter estimates and the impact that has on predicting actual market share. 

20 ATTRIBUTE STORY 

Model Validity 

Similar to the 15 attribute findings, Table 5.1 shows that when including the None option 

in simulations, ACBC has the lowest MAE, particularly PP ACBC. After dropping the None, 

the MAE for the Adaptive methods are more in line with FP CBC (Table 5.2). Again, PP 

CBC has the highest MAE, perhaps due to the number of attributes shown out of the total 

attributes modeled (7/20 ~35%). (Again, we should note that the CBC-looking holdout tasks 

would be expected to bias this measure of predictive validity in favor of the CBC methods.) 

Table 5.1: Mean Absolute Error Across 20 Attribute Shelf and CBC Holdouts 

Including the None 
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Table 5.2: Mean Absolute Error Across 20 Attribute Shelf and CBC Holdouts 

Excluding the None 

 

The None Parameter 

Again, we see that those in the ACBC sample cells are significantly more likely to 

choose the None (i.e., They would not buy any product on the shelf) (Table 5.3). Also, both 

PP methods, PP ACBC and PP CBC, seem to align more closely to shelf behavior 

demonstrated in the survey tool. 

Table 5.3: None Proportions within the 20 Attribute Experiments 

 

Price Sensitivity 

Figure 5.4 shows the share of preference estimated from each model when only changing 

price. Again, FP ACBC is the most conservative when predicting choice. 
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Figure 5.4: Price Sensitivity of 20 Attributes by Methodology 
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Willingness to Pay (WTP) 

Figure 5.5—WTP for Brand, Storage, and Generation Attributes by Methodology 

 

When testing 20 attributes, the ACBC methods more closely align on WTP, even when 

considering PP ACBC did not force price into the exercise. We can also see this pattern 

when comparing utility correlations (Figure 5.6). 

Figure 5.6: Correlations of Aggregate Utilities by Methodology 

 

Importance Scores 

Similar to the 10 and 15 attribute results, the ACBC data calculates price more important 

than brand, while the CBC data calculates brand as more important than price (Figure 5.7). 
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FP CBC has the steepest importance scores, as expected, while PP CBC has the flattest, also 

expected. 

Figure 5.7: Importance Scores by Methodology 

 

Respondent Preference 

FP CBC is the quickest exercise to complete, while FP ACBC is the longest (Figure 5.8). 

The drop-off rates for the PP methods are slightly higher than FP. The CBC methods have 

the highest proportion of cheaters and bad data. 
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Figure 5.8: Respondent Statistics for 20 Attribute Experiments 

 

When rating the different methodologies, PP ACBC is the clear winner after which 

respondents tend to prefer FP CBC (Figure 5.9). 

Figure 5.9: Respondent Top Two Agreement on 20 Attribute Survey Experience 

 

20 Attribute Conclusion 

PP ACBC increases its lead on FP CBC, in comparison to the 15-attribute story, both 

from a model and respondent perspective. 

OVERALL RECOMMENDATIONS 

Even though we noticed differences between the methods across the different attributes 

tested, all these methods have been thoroughly researched and tested to handle larger 

numbers of attributes. In this specific design, when testing up to 10 attributes, the researcher 

seems to have more flexibility in the methodology chosen as the models and respondent 

experience is comparable. However, as we increase to 15+ attributes, we did recognize a 

clear winner in the form of PP ACBC. Although PP ACBC performs similarly to the FP 

CBC with regard to model accuracy, we shouldn’t overlook the fact that model accuracy 

was gauged in terms of ability to predict shares for CBC-looking holdouts, which naturally 

should have favored the FP CBC method. Moreover, respondent satisfaction scores give PP 

ACBC significant credibility to use as attributes increase. 
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CONSIDERATIONS FOR FUTURE RESEARCH 

A lot of decisions were made during the course of the research that lead to the results of 

this paper. One of those decisions was to not display “brand” and “price” on each of the 

partial profile methods. In the future, others may consider forcing these attributes into all 

product profiles, if appropriate for the product category. The authors are extremely 

interested in understanding the impact of this decision and whether or not the model 

accuracy is significantly improved when accounting for this. 

Another consideration is to further explore the high None parameter estimated in the 

ACBC models and whether there is a psychological effect (building your own product first 

makes you less likely to like other products) or a design effect (computing the None 

parameter from screening tasks is not the same as what respondents would do in the real 

world). 

 

   

 Megan Peitz Mike Serpetti Dan Yardley 
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APPENDIX 

Full Profile CBC Example (20 Attribute) 
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Partial Profile CBC Example (20 Attribute) 
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Full Profile ACBC Example (20 Attribute) 
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Partial Profile ACBC Example (20 Attribute) 
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WHAT SOUTH AFRICAN MEDICAL STUDENTS’ VALUE 

IN A RURAL INTERNSHIP: A DISCRETE CHOICE EXPERIMENT 

MARIA JOSE 
UNIVERSITY OF CAPE TOWN 

INTRODUCTION 

The World Health Organization has identified the Health workforce as a critical building 

block of a functional health system (World Health Organization, 2010). However, inequality 

in healthcare access between urban and rural areas has historically resulted in poor health 

outcomes in developing countries, especially in Africa. Rural medical practice is unpopular 

due to social and cultural isolation and lack of infrastructure (Lagarde and Blaauw, 2014). In 

South Africa, a constitutional democracy since 1994, recruitment policies have been enacted 

to increase the health workforce working in government health facilities in rural areas. 

BACKGROUND 

In South Africa a medical graduate’s journey from high school to an independent 

medical practitioner is as follows: once completing high school in Grade 12, the student 

would be enrolled in a public university (there are no private medical schools in South 

Africa) for a period of 6 years of undergraduate study and would graduate with a medical 

degree. Thereafter they would be required to serve 2 years of paid internship at a 

government health facility in the country under supervision before they work independently 

for a 1-year community service period, also at a government facility. It is only once they 

have completed this 9-year process that the student is registered by the Health Profession’s 

Council to practice medicine in the country as a General Practitioner. It is the career 

transition from graduate to intern which is the focus of this study as at this juncture medical 

graduates can choose which government facility to work at during their internship period, 

and historically rural facilities are an unpopular choice. Rural as used in this study is defined 

as “an area more than two hours’ travel by road from the nearest urban center,” whereas 

urban is defined as “a center with a population of more than 250,000 people” (Burch et al., 

2017). 

RESEARCH QUESTIONS 

• What are the rural facility attributes that final-year medical students value? 

• When faced with conflicting rural facility attributes, what tradeoffs are final-year medical 

students willing to make? 

• In monetary terms how much do final-year medical students value each facility attribute? 

• Are rural facility attribute preferences influenced by gender, career intention, and 

undergraduate rural medicine exposure? 

Ethics approval for this study was granted by the University of Cape Town Human 

Research Ethics Committee and Department of Student Affairs. 
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METHODOLOGY 

The study included a Literature review, focus group discussions (FGD), and a discrete 

choice experiment (DCE or CBC). 

The Literature Review consisted of 25 articles pertaining to current recruitment policies 

in South Africa and healthcare worker job attribute preferences in other countries. Currently 

South Africa has instituted a mandatory, paid 1-year community service for all medical 

graduates, however this has proven to be a costly initiative and contributes to high staff turn-

over that further destabilises fragile rural health facilities (Dambisya, 2007). Another 

program known as the Mandela-Castro program invests in training rural-origin students in 

Cuba under the condition that they work in rural areas upon graduation. This too is costly 

and the clinical training of such graduates is not locally relevant due to the different burden 

of disease in Cuba versus South Africa (Dambisya, 2007). Finally, both rural allowance and 

on-site housing provision have been costly and have not proven to be effective in 

recruitment of medical graduates to rural areas. Interestingly, there is evidence to suggest 

that identifying and training rural-origin students can have lasting benefits for rural 

healthcare service provision depending on the context. 

In total 3 FGDs were conducted with 15 participants before saturation was reached. 

During the focus groups the following attribute was identified by literature reviews but then 

discarded as they are personal, not facility factors: proximity of the healthcare facility to the 

medical graduate’s partner or child’s school/work. During the focus groups the following 

attributes were identified by literature reviews but then discarded as they were not supported 

in the FGDs: access to Wi-Fi, in-service training, and socialization among colleagues. 

Attributes that were mentioned in literature and supported in FGDs were included in the 

DCE (Table 1): rural allowance, housing provision, physical safety, and availability of basic 

resources at facility. Attributes which were not mentioned in other literature but came out 

strongly in the FGDs: the provision of personal protective equipment against occupational 

tuberculosis exposure, the extent of practical experience ingrained at the facility, and the 

seniority of the supervisor, with Medical Officer being the most junior and Consultant being 

the most senior. 

Attributes and levels were used to form hypothetical job postings in a Traditional CBC 

design in Sawtooth Software Lighthouse studio 9.6.1. Design settings: Complete 

Enumeration, 2  Concepts per Task which were discrete choice response types. Unlabeled 

with no opt-out option or fixed tasks. 15 Random Tasks and 12 demographic questions were 

included, and 1 questionnaire version, 1 design seed with no attribute randomization and no 

concept sorting. 

No opt out option was chosen to replicate real-life decision-making as graduates have 

limited placement choices; if a graduate declined a placement, they would not be able to 

practice medicine. The questionnaire was piloted with 25 students and the wording 

improved for clarity. 
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Table 1: List of attributes and levels used in the DCE 

Attribute Attribute Level and Description 
Supervision -Supervised by Medical Officer 

-Supervised by Registrar 

-Supervised by Consultant 

Rural 

Allowance 

-R4,000 per month 

-R4,340 per month (8% increase) 

-R4,800 per month (20% increase) 

Accommodation -Rent private accommodation 

-Provided with subsidised doctors quarters on hospital premises 
Resources -Daily stock out of gloves, syringes and suture packs 

-Gloves, syringes and suture packs available daily 

Practical 

Experience 

-Limited to filling out forms and taking bloods 

-Includes filling out forms, take bloods and doing procedures e.g., 

lumbar punctures 

Hospital Safety -There have been few reports of theft, hijacking and protests in and 

around the hospital in the past year 

-There is a high level of crime in and around the hospital with many 

reports of theft, hijacking and protests in the past year 

Occupational 

Hazard 

-No tuberculosis masks available in the hospital 

-Poorly fitting tuberculosis masks always available 

-Correctly sized tuberculosis masks always available 

All final-year medical students at universities across South Africa who will be applying 

for internship placement were included and through purposive sampling were invited to 

participate through email. Data was captured and processed in Sawtooth Software 

Lighthouse studio V9.6.1 accessed via an academic grant. 

RESULTS 

The final sample size was 357 with 221 completed and 136 incomplete questionnaires 

(61.9% completion rate). Table 2 shows the demographics which, unsurprisingly, represent 

the general medical student body; majority being females in their mid-twenties hailing from 

urban areas, unmarried without child dependents, with some rural medicinal exposure, 

intending to specialise.  
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Table 2: Demographic Factors 

Variables Number (%) 

Age Mean 23.7 years — 

Gender 

Male 70 (31.7) 

Female 145 (65.6) 

Non-Conforming 6 (2.7) 

Province of origin 

Western Cape 75 (33.9) 

Gauteng 62 (28.1) 

Free State 0 (0.0) 

North West 3 (1.4) 

Eastern Cape 21 (9.5) 

Kwa-Zulu Natal 42 (19.0) 

Mpumalanga 8 (3.6) 

Limpopo 7 (3.2) 

Northern Cape 3 (1.4) 

Area of origin 

Rural (village/farm) 15 (6.8) 

Informal settlement  6 (2.7) 

Urban (formal structure in suburb/township) 200 (90.5) 

Marital status 

Single, never married 205 (92.8) 

Married 16 (7.2) 

Widowed 0 (0.0) 

Divorced/separated 0 (0.0) 

Child dependents Yes 3 (1.4) 

No 218 (98.6) 

Undergrad exposure rural 

Med 

Yes 127 (57.5) 

No 94 (42.5) 

Provincial bursary  Yes 46 (20.8) 

No 175 (79.2) 

Cuban trained student Yes 7 (3.2) 

No 214 (96.8) 

Intention to intern Yes 217 (98.2) 

No 4 (1.8) 

Career intention 

General Practice 12 (5.5) 

Specialisation 122 (56.0) 

I don’t know/ undecided 78 (35.8) 

Other 5 (2.3) 

Did not intend to complete internship 4 (1.8) 

Table 3 shows the average of the hierarchical Bayes utilities of the attribute levels which 

indicate that advanced practical experience, correctly sized tuberculosis masks, and hospital 

safety were the utility maximizing preferences. Interestingly neither rural allowance 

increases, nor housing provision provided as high average utilities. 

  



51 

Table 3: Hierarchical Bayes Estimation of Average Utility 

Attributes Average Utilities 

(Zero-Centered) 

Diffs) 

Standard 

Deviation 

Supervised by Medical Officer -12.6 35.6 

Supervised by Registrar -11.0 21.3 

Supervised by Consultant 23.6 31.2 

Practical experience is limited to filling out forms 

and taking bloods 

-76.3 55.8 

Practical experience includes filling out forms, take 

bloods and doing procedures e.g., lumbar punctures 

76.3 55.8 

Daily stock out of gloves, syringes and suture packs -52.8 34.1 

Gloves, syringes and suture packs available daily 52.8 34.1 
Rural allowance R4000 (current level) -36.9 22.8 

Rural allowance R4340 (8% increase) 14.9 18.2 

Rural allowance R4800 (20% increase) 22.0 28.3 

There have been few reports of theft, hijacking and 

protests in and around the hospital in the past year 

61.0 54.6 

There is a high level of crime in and around the 

hospital with many reports of theft, hijacking and 

protests in the past year. 

-61.0 54.6 

No tuberculosis masks available in the hospital -63.2 33.3 
Poorly fitting tuberculosis masks always available -5.5 17.4 

Correctly sized tuberculosis masks always available 68.7 26.3 

Rent private accommodation -12.9 24.4 

Provided with subsidised doctors quarters on 

hospital premises 

12.9 24.4 

Table 4: Hierarchical Bayes Estimation of Average Importances 

Attributes Average Importances Standard Deviation 

Supervision 9.0 7.2 

Practical Experience 22.2 15.4 

Resources 15.5 9.1 

Rural Allowance 10.6 5.3 

Hospital Safety 18.2 14.7 

Occupational Hazard 19.1 7.9 

Housing 5.5 5.7 

The results were then analysed by segments according to gender, future career 

intentions, and prior undergraduate rural medical exposure. Both males and females valued 

hospital safety as their highest weighted attribute, and this was more so for females. Female 

medical students were sensitive to 20% increase in rural allowance. Males more valued 

being supervised by a consultant, having access to advanced practical experience and fitted 

TB masks. 
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Table 5: HB Results Segmented by Gender 
 

 Utility 

Attribute   Total Male Female Other 

Supervised by Medical Officer  -12.6 -22.0 -9.0 9.4 

Supervised by Registrar  -11.0 -10.4 -11.1 -15.5 

Supervised by Consultant  23.6 32.3 20.0 6.2 

Limited to filling out forms and 

taking bloods 

 -76.3 -82.0 -73.9 -70.0 

Includes filling out forms, taking 

bloods and doing procedures e.g., 

lumbar punctures 

 76.3 82.0 73.9 70.0 

Daily stock out of gloves, syringes 

and suture packs 

 -52.8 -51.2 -53.5 -56.3 

Gloves, syringes and suture packs 

available daily 

 52.8 51.2 53.5 56.3 

R4000 (current level)  -36.9 -34.9 -37.3 -51.1 

R4340 (8% increase)  15.0 19.5 12.6 17.5 

R4800 (20% increase)  22.0 15.4 24.7 33.6 

There have been few reports of 

theft, hijacking and protests in and 

around the hospital in the past year 

 61.0 44.5 69.7 41.8 

There is a high level of crime in 

and around the hospital with many 

reports of theft, hijacking and 

protests in the past year 

 -61.0 -44.5 -69.7 -41.8 

No tuberculosis masks available in 

the hospital 

 -63.2 -67.8 -61.0 -63.7 

Poorly fitting tuberculosis masks 

always available 

 -5.5 -2.9 -7.0 -0.3 

Correctly sized tuberculosis masks 

always available 

 68.8 70.7 68.0 64.0 

Rent private accommodation  -12.9 -13.6 -12.0 -26.9 

Provided with subsidised doctors 

quarters on hospital premises 

 12.9 13.6 12.0 26.9 

 
 

 Importance 

Attribute Total  Male Female Other 

Supervision 9.0  10.8 8.0 10.1 

Practical Experience 22.1  23.5 21.6 20.0 

Resources 15.5  15.4 15.5 16.1 

Rural Allowance 10.6  10.3 10.7 13.0 

Hospital Safety 18.2  14.2 20.4 13.9 

Occupational Hazard 19.1  20.1 18.6 18.3 

Housing 5.5  5.9 5.2 8.7 
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(Table 6) Those who intended to specialise gained more utility from being supervised by 

a consultant and gaining practical experience. Those who intended to join general practice 

(GP) valued hospital safety and the provision of basic resources higher. (Table 7) Medical 

students with rural medicine exposure valued hospital safety more highly. Medical students 

without undergraduate rural medicine exposure preferred basic resources and housing 

provided more highly. 

Table 6: HB Results by Career Intention 
 

Utility 

Attribute Total GP Specialisation Undecided Other 

Supervised by Medical Officer -12.6 -12.0 -17.6 -6.2 -1.4 

Supervised by Registrar -11.0 -9.5 -10.6 -12.6 -3.9 

Supervised by Consultant 23.6 21.4 28.2 18.7 5.4 

Limited to filling out forms and 

taking bloods 

-76.3 -65.4 -88.3 -59.8 -71.4 

Includes filling out forms, taking 

bloods and doing procedures e.g., 

lumbar punctures 

76.3 65.4 88.3 59.8 71.4 

Daily stock out of gloves, syringes 

and suture packs 

-52.8 -57.0 -48.0 -58.3 -65.7 

Gloves, syringes and suture packs 

available daily 

52.8 57.0 48.0 58.3 65.7 

R4000 (current level) -36.9 -37.4 -36.3 -37.5 -40.5 

R4340 (8% increase) 15.0 14.5 13.5 16.3 23.7 

R4800 (20% increase) 22.0 22.9 22.8 21.2 16.8 

There have been few reports of theft, 

hijacking and protests in and around 

the hospital in the past year 

61.0 70.1 51.9 72.2 73.7 

There is a high level of crime in and 

around the hospital with many 

reports of theft, hijacking and 

protests in the past year 

-61.0 -70.1 -51.9 -72.2 -73.7 

No tuberculosis masks available in 

the hospital 

-63.2 -65.3 -66.5 -59.1 -51.6 

Poorly fitting tuberculosis masks 

always available 

-5.5 -15.4 -3.5 -7.1 -6.3 

Correctly sized tuberculosis masks 

always available 

68.8 80.7 70.0 66.3 57.9 

Rent private accommodation -12.9 -16.1 -13.4 -12.1 -9.2 

Provided with subsidised doctors 

quarters on hospital premises 

12.9 16.1 13.4 12.1 9.2 
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Importance 

Attribute Total GP Specialisation Undecided Other 

Supervision 9.0 7.3 9.4 8.5 9.2 

Practical Experience 22.2 18.7 25.6 17.5 20.4 

Resources 15.5 16.3 14.0 17.4 18.8 

Rural Allowance 10.6 10.4 10.1 11.5 10.4 

Hospital Safety 18.2 20.3 15.5 21.9 21.1 

Occupational Hazard 19.1 21.1 19.8 18.1 15.6 

Housing 5.5 5.9 5.7 5.2 4.5 

 

Table 7: HB results by Prior Rural Medicine Exposure 
 

Utility 

Attribute Total Rural Med 

Exposure 

No Rural Med 

Exposure 

Supervised by Medical Officer -12.6 -15.0 -9.3 

Supervised by Registrar -11.0 -10.3 -11.9 

Supervised by Consultant 23.6 25.3 21.2 

Limited to filling out forms and 

taking bloods 

-76.3 -77.8 -74.4 

Includes filling out forms, taking 

bloods and doing procedures e.g., 

lumbar punctures 

76.3 77.8 74.4 

Daily stock out of gloves, syringes 

and suture packs 

-52.8 -49.9 -56.8 

Gloves, syringes and suture packs 

available daily 

52.8 49.9 56.8 

R4000 (current level) -36.9 -38.2 -35.2 

R4340 (8% increase) 15.0 14.1 16.1 

R4800 (20% increase) 22.0 24.2 19.0 

There have been few reports of 

theft, hijacking and protests in and 

around the hospital in the past year 

61.0 65.5 54.8 

There is a high level of crime in 

and around the hospital with many 

reports of theft, hijacking and 

protests in the past year 

-61.0 -65.5 -54.8 

No tuberculosis masks available in 

the hospital 

-63.2 -61.1 -66.1 

Poorly fitting tuberculosis masks 

always available 

-5.5 -6.0 -4.9 

Correctly sized tuberculosis masks 

always available 

68.8 67.1 71.0 

Rent private accommodation -12.9 -10.3 -16.5 

Provided with subsidised doctors 

quarters on hospital premises 

12.9 10.3 16.5 
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Importance 

Attribute Total Rural Med 

Exposure 

No Rural Med 

Exposure 

Supervision 9.0 8.9 9.1 

Practical experience 22.2 22.5 21.7 

Resources 15.5 14.7 16.6 

Rural allowance 10.6 10.9 10.2 

Hospital Safety 18.2 19.2 16.8 

Occupational Hazard 19.1 18.6 19.8 

Housing 5.5 5.3 5.8 

SIMULATIONS 

Figure 1 shows a simulation run to predict the share of preference between safe and 

unsafe hospitals when all other attributes were held to be identical, namely that they would 

be supervised by a Medical Officer, baseline rural allowance R4000, had access to advanced 

practical experience, experienced daily stock-outs of basic resources, had no tuberculosis 

facemasks available, and would rent private accommodation. In that simulation, the safe 

hospital had 82% of share while the unsafe hospital had 18%. In the next simulation, Figure 

2, rural allowance was increased for the unsafe hospital from R4000 to R4800 which 

resulted in an increased in share of preference from 18% to 34.6% demonstrating that, 

although influential, increasing rural allowance alone will not overcome the influence of 

hospital safety on internship job uptake probability. 

Figure 1: Simulation Safe vs. Unsafe Hospital 
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Figure 2: Simulation of Safe Hospital vs. Unsafe Hospital with 20% Rural Allowance Raise 

 

Similarly in Figure 3, a simulation was done to predict the share of preference between 

hospitals with correctly sized tuberculosis masks and those without when all other attributes 

were held to be identical, namely that they would be supervised by a Medical Officer, 

baseline rural allowance R4000, had access to advanced practical experience, experienced 

daily stock-outs of basic resources, were unsafe, and would rent private accommodation. In 

that simulation, the facility with the correctly fitted mask had 84.6% of share while the 

unsafe hospital had 15.4%. In the next simulation, Figure 4, rural allowance was increased 

for the hospital without tuberculosis masks from R4000 to R4800 which resulted in an 

increase in share of preference from 15.4% to 25.7% demonstrating that, although 

influential, increasing rural allowance alone will not overcome the influence of lack of 

correctly fitted tuberculosis masks on internship job uptake probability. 

Figure 3: Simulation Facility With Tuberculosis Mask vs. Facility Without Tuberculosis 

Masks But a 20% Rural Allowance Raise 
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Figure 4: Simulation Facility With Tuberculosis Mask vs. Facility 

Without Tuberculosis Mask 

 

LIMITATIONS OF STUDY 

The lack of an opt out option may have led to forced decision-making and is often not 

considered best practice in marketing studies, but was appropriate to simulate real life 

situations and make the task more realistic for participants. Only one version of the 

questionnaire was used and attributes were not randomized, therefore this could contribute 

to context bias and limit statistical efficiency. Even so, we found only minor reduction in 

design efficiency for fielding one version compared to more versions. Relative D efficiency 

for 1 version: 1899.8; Relative D efficiency for 5 versions: 1997.4 = approximately (5% 

difference). 

CONCLUSION 

This study’s objective was to explore the heterogeneity in job attribute preferences of 

final-year medical students for rural health facility internships to inform recruitment policy. 

The rural allowance should not be a stand-alone incentive for recruitment and retention. 

Hospital safety, the provision of TB  masks and basic resources should be prioritized and 

may prove to be impactful and cost-efficient in the long-term. To be effective, recruitment 

packages should take into consideration future career intentions, gender, career aspirations, 

and previous rural medicine exposure. 

  

 Maria Jose 
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ABSTRACT 

Utilizing characteristics gathered from business researchers and evolutionary 

psychology, business students were surveyed to see which characteristics they would prefer 

to have in a CEO. Using MaxDiff methodology, respondents marked the CEO 

characteristics that were most and least important to them when considering a future job. 

Latent Class Multinomial Logit analysis found two distinct groups, a “Sensitive Group” and 

an “Achievement Group,” that preferred contrasting traits in a CEO. Gender differences 

were also found when investigating a one item TURF analysis using Average Probability 

Weighted Reach. The study suggests that previous research on preferences in leadership may 

need modification for the Millennial demographic. Honing in on this unique and upcoming 

generation can help businesses and other employers understand how to best attract potential 

candidates by emphasizing particular CEO characteristics as well as hiring CEOs that appeal 

to their future workforce. 

INTRODUCTION 

The U.S. Bureau of Labor Statistics predicted that by 2015 Millennials would overtake 

the majority representation of the workforce and by 2030 they will make up seventy-five 

percent of the workforce (Mitchell, 2015). As more and more college graduates from 

Generations Y (Millennial) and Z enter the workforce, it is important to understand what 

these generations prefer in job satisfaction and leadership. Unlike previous generations, 

Millennials have been shown to be less materialistic and more devoted to global rights and 

environmental causes. However, they are also known for changing jobs more frequently 

than those of previous generations (Yeaton, 2008; U.S. Department of Labor Statistics, 

2013). While Generation Z aspires to security and stability, as opposed to Millennials’ 

preference for freedom and flexibility, the former shares an openness to switching careers 

with its generational predecessor (Fourhooks, 2015). Generally, an employer’s failure to 

adhere to these generations’ values can lead to job dissatisfaction. Studies indicate that an 

employee’s intention to leave is negatively associated with the employee’s perception of the 

manager’s leadership style (Maier, 2011). Thus, in both cases, loyalty to a particular 

organization is uncharacteristic. 
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If companies are going to attract their preferred job candidate in a competitive market 

and keep employees satisfied and productive, they need to understand the preferences of 

these generations. Millennial turnover costs the U.S. economy an estimated $30.5 billion 

annually (Fry, 2018). Additionally, The Conference Board surveyed 1,500 individuals on 23 

aspects of job satisfaction and found that only fifty-one percent of employees are satisfied 

with their jobs. Given this context, this study seeks to shed light on the characteristics 

Millennial- and Generation Z-age cohorts look for in a CEO. Past research has theorized that 

employees prefer CEOs or leaders that a give them power, money, and/or prestige, and 

those, who, essentially, seem to have evolutionarily validated characteristics such as 

physical attractiveness, height, and presence (see Conroy-Beam, 2015 and Pfeffer, 2015). 

Given that there is no correlation between intelligence and appearance above normal 

attractiveness levels, these characteristics may lack real utility in the modern world (Pincott 

2012). Although research has explored the leadership preferences of Millennials, and to a 

lesser extent, Generation Z, definitive conclusions are elusive. 

GENERATION THEORY 

Generation theory, formally known as the Strauss-Howe Generational Theory (1991), 

based on the work of Karl Mannheim (1952), argues that people share commonalities in 

values, behaviors, and attitudes based on the social, economic, and historical events that 

occur during their formative years. Although research (as opposed to anecdotal 

suppositions) has not unequivocally established differences among generations or come to a 

consensus on generational characteristics (Robbins & Judge, 2017), generation theory 

continues to be appealing as a way to explain people’s differing perspectives and behaviors. 

Many of the Millennial generation, born from the early 1980s to the mid-1990s, have 

graduated from college and are in the workforce while those born toward the end of this 

generation will soon begin their professional careers. Current college-age students are 

predominantly from Generation Z, being born from 1995-2012 (Berlinksky-Schine, 2019); 

however, there is overlap between generations and some experts extend the Millennial 

generation timeframe into the year 2000 (Fourhooks, 2015). Also, most universities have 

significant enrollments of non-traditional students, defined as those 25 years of age or older, 

thus students in higher education institutions today represent both Millennials and 

Generation Z. 

The U.S. labor force consists of thirty-five percent Millennials and five percent 

Generation Z (Fry, 2018). Early Millennials are moving into managerial positions while the 

tail-end of the Millennial generation and Generation Z are preparing for the workforce. 

Generational theory can extend understanding of the diversity represented by employees in 

today’s organizations and provide insights into how employees can work together 

effectively. As such, a greater understanding of leadership expectations of today’s college 

students, the workforce of the future, is valuable. A brief overview of the characteristics of 

Generations Y and Z (Table 1) provides context for this study. 

  

https://www.psychologytoday.com/us/basics/intelligence
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Table 1: Generational Comparison 

Generation Characteristic Sources 

Millennial 

(Generation Y) 

High self-esteem; self-absorbed; self-

reliant; autonomous; freedom & 

flexibility; entitlement and rewards; 

expect and desire change; frequent job 

changes; value communication and 

feedback; collaborative; want 

meaningful work; results driven; 

tolerant; technologically savvy; satisfied 

with companies, jobs, job security, 

recognition, career development, 

advancement  

Ahmad, 2018; Alexander & 

Sysko, 2011; Berlinsky-Schine, 

2019; Kowske, Rasch, & Wiley, 

2010; Laird, Harvey, & 

Lancaster, 2015; Lowe, 2011; 

Martin, 2005; Ng, Schweitzer, & 

Lyons, 2010; Williams & Page, 

2011 

Generation Z Anticipate the need for hard work; 

confident about the future; are online 

constantly; use multiple technology 

screens; short attention span; 

entrepreneurial; high salary 

expectations; believe science and 

technology can solve the world’s 

problems; want jobs that will impact the 

world; wish hobbies could be jobs; 

value experiences over products; value 

individuality; independent; competitive; 

imaginative; responsible; traditional 

beliefs; value family; self-controlled 

Ahmad, 2018; Berlinksy-Schine, 

2019; Williams & Page, 2011 

LEADERSHIP THEORY 

Early leadership theory posited that leaders were born with certain characteristics that 

were predictive of leadership (Bass, 1990; Jago, 1982). However, when research failed to 

identify a set of common traits across those considered to be effective or noteworthy leaders 

(Mann, 1959; Stogdill, 1948, 1974), the focus turned to leadership behaviors and the idea 

that individuals can learn to be leaders. That being said, recent research has identified a few 

characteristics that predict the likelihood of leadership, though not the effectiveness of 

leadership. These include extroversion, conscientiousness, and openness to experience 

(Judge, Bono, Illies, & Gerhardt, 2002). Other characteristics supported by research and 

associated with leadership are confidence, self-efficacy (Smith & Forti, 1998) and emotional 

intelligence (Goleman, 1995; Mayer, Salovey, & Caruso, 2000). 

The most noted of behavioral leadership studies, from Ohio State University (Stodgill, 

1948, 1963, 1974) and the University of Michigan (Bowers & Seashore, 1966; Cartwright & 

Zander, 1960; Likert, 1961, 1967), shared similar results, specifically that leadership 

involved the technical aspects of work, such as the ability to define roles, structure tasks, 

and organize people, and people-related aspects, including interpersonal relationships, trust, 
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and respect. These studies are considered follower studies in that they focus on the views of 

employees. Followership research seeks to explore the expectations and beliefs that people 

have about leaders (Sy, 2010), relationships between leaders and followers (Bligh, Kohles, 

& Pillai, 2011), and the roles of leaders and followers (Howell & Mendez, 2008). The 

current study can be categorized as a trait-based leadership and leadership follower study. 

The current study primarily analyzes current leadership trends discussed in “The CEO 

Next Door: The Four Behaviors That Transform Ordinary People into World-Class Leaders” 

by Elena L. Botelho and Kim R. Powell from the leadership advisory firm ghSMART; and 

“Leadership BS: Fixing Workplaces and Careers One Truth at a Time,” by Jeffrey Pfeffer 

from the Stanford Graduate School of Business. Both seek to answer the controversial 

question, “What makes a great CEO?” From the ghSMART dataset of over 17,000 

leadership assessments, one of the most comprehensive leadership datasets, the former finds 

that successful CEOs should be decisive, engaging, reliable, and adaptable (Botelho, 2018). 

Pfeffer, on the other hand, takes a more practical approach to the question. Based on his 

research he challenges commonly accepted leadership traits, asserting that, “The pursuit of 

individual self-interest just might be, as virtually all economics writing and theory since the 

time of Adam Smith teaches, good not just for you but also generally beneficial for the 

social systems including the work organizations in which you live” (Pfeffer, 2015). With a 

myriad of theories surrounding effective leadership, it becomes difficult to parse out which 

ideas hold merit in the workforce. 

GENERATIONAL LEADERSHIP PREFERENCES 

Identifying generational preferences for leadership traits or behaviors is critical to 

understanding how to lead, and by extension, to organizational success (McCrindle, 2006; 

Sujansky, 2004). Preferred traits typically reflect generational values. Millennials have 

positive attitudes toward work, desire strong workplace relationships, are motivated by 

challenge, value on-going feedback and training, want advancement opportunities, and seek 

work-life balance (Eisner, 2005; McCrindle, 2005; Salahuddin, 2010). Both Millennials and 

Generation Z desire to be meaningfully engaged and have an impact (see Table 1). These 

characteristics may suggest a preference for transformational leaders who engage and 

inspire followers to develop their potential (Bass, 1990; Frifth, 2017; Horeczy et al., n.d.). 

Others argue that Millennials are positioned to be servant leaders, given their commitment to 

delegation, community, and shared responsibility in order to “learn from and grow with 

others to be challenged by meaningful work that matches the strengths of the person to their 

job, and to share and experience life together in accomplishing results” (Balda & Mora, 

2011, p. 22). 

Millennials like authority, structure, and strong leadership; leaders who unify and take 

collective action; and those who create change (Society of Human Resource Management, 

2004; Zemke, Raines, & Filipczak, 2000). Others claim that Millennials dislike structure 

(Hewlett, Sherbin, & Sumberg, 2009), preferring less hierarchy and a greater focus on 

relationships, communication, and creative thinking (Altizer, 2010; Herlett et al., 2009). 

They place importance on flexibility, empowerment, praise, recognition, feedback, 

information sharing, involvement, dialogue, project-focused work, clear expectations, and 

mentoring (Human Resource Professional Association, 2016; McGonagill & Pruyn, 2010; 

U.S. Department of Commerce, 2011; Verret, 2000). They respect leaders characterized by 
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good work ethic, accountability, strategy, growth, competency, and organizational 

commitment as well competence, inspiration, loyalty, and determination (Arsenault, 2004; 

Horeczy et al., n.d.; Salahuddin, 2010). Being caring, imaginative, and ambitious are also 

highly ranked by Millennials (Salahuddin, 2010). They highly value relationships, 

mentoring, opportunities for growth, and expect their ideas to be respected; when interest 

wanes, they will seek employment elsewhere (Dulin, 2008). 

As Generation Z has not yet entered the workforce in substantial numbers, less is known 

about its leadership preferences compared to previous generations although some expect 

these to be similar to Generation Y (Al-Asfour & Lettau, 2014; United Nations Joint Staff 

Pension Fund, n.d.). According to some, and similar to the Millennial generation, 

Generation Z wants transformational leaders who inspire and engage, specifically those with 

emotional intelligence who share information, openly communicate, and make connections 

(Frifth, 2017; McCrindle, 2019). They prefer technology-based rather than face-to-face 

communication; social responsibility and purpose are important, and similar to Millennials, 

they want performance feedback and mentoring (Zaleski, 2019). Inclusivity (focus on the 

collective good and collaboration as opposed to competition), curiosity (seek continuing 

knowledge development, challenge, and world understanding), self-motivation (value 

freedom and responsibility to perform tasks; flexibility in hours and remote work 

arrangements), generosity (believe in companies that give back and help others), 

perseverance (understand the value of hard work and are interested in the struggles of 

leaders) are valued as part of a mentoring relationship (Patel, 2017). 

Although these various listings of generational preferences are helpful and have practical 

implications for leadership styles and behaviors, it is difficult to determine which of these 

traits and behaviors are preferred over others and for specific demographic groups. The 

proliferation of findings present some difficulty in determining just how to respond to 

generational leadership preferences. The current study is designed to address this gap. 

METHODS 

Participants were gathered using convenience sampling from the largest university in 

Utah in order to gather data on a substantial number of those about to enter the workforce. 

Students were given the option to take the survey as part of their courses. A total of 225 

respondents of approximately the Millennial age undertook this research programme. 170 of 

the participants were self-selected men and 56 were self-selected women. Half of the 

respondents were juniors while 27% of the sample were sophomores, 17% were seniors, and 

6% were freshmen. While the vast majority of the sample were Caucasian, a few other 

ethnicities were sampled as well. 4% of the sample was Hispanic/Latino, 7% Asian, and 3% 

other. 

A MaxDiff survey was constructed using 55 characteristics collected from Botelho, et 

al., (2018), Conroy-Beam (2015), and Pfeffer (2015), whose combined works include 

scientific articles, books, a Harvard Business Review article, and, in one case (Pfeffer) from 

experience leading Stanford’s MBA program. Some of the characteristics include 

appearance, authenticity, charisma, provides status, confidant, good coach, results-oriented, 

and the like. The characteristics themselves were displayed on a computer and students 

marked the characteristics that were most and least desirable to them in a CEO. Specifically, 
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the wording utilized was, “Imagine that today you were choosing the ideal CEO you would 

like to work for. Considering only these attributes, which is the Most Important and which is 

the Least Important for this decision?” The MaxDiff methodology was helpful in this case 

due to the long list of items. “Humans are much better at judging items at extremes than in 

discriminating among items of middling importance or preference” (Louviere, 1993). 

RESULTS 

Using the hierarchical Bayes Multinomial Logit (HB-MNL) in Sawtooth Software’s 

Lighthouse Studio program, utilities for each respondent were estimated and later brought 

into the MaxDiff Analyzer tool. Looking at the sample as a whole, the item “Trustworthy” 

(Utility = 4.26, Upper CI =4.34 , Lower CI = 4.19) was the most preferred trait in a CEO 

based on the highest average utility. In line with the preference for a trustworthy CEO, the 

business students also had higher average utilities for a CEO that was honest, had good 

moral character, and ethical. Items related to planning and success were also preferred by 

the sample such as being a hard worker, intelligent, and “Provides the company with growth 

opportunities.” The least preferred CEO trait was “Stylish appearance” (Utility = 0.01, 

Upper CI = .02, Lower CI = 0.01). Having a CEO that was religious, politically 

conservative/liberal, and good looking were not as preferred as other items. 

A Latent Class Multinomial Logit analysis was also conducted. A two-group solution 

was found to be the best fit for the data based on the fit statistics (Percent Certainty = 37.36, 

AIC = 25621.5, CAIC = 26541.7, BIC = 26432.7, ABIC = 26086.3, Chi- Square = 

151543.3, Relative Chi-Square = 139.03). The two-group solution also resulted in a more 

easily categorized set of groups. Group one was named the “Sensitive Group” (N=126) 

because they liked CEOs that were supportive, understanding, considerate, authentic, and 

kind. Group two (N=99), on the other hand, were more achievement focused because they 

preferred a CEO that was results-oriented, increased the respondent’s income, and provided 

the company with status. 

Using Total Unduplicated Reach and Frequency (TURF) analysis, preferences across 

respondents and for specific demographic groupings were investigated. The percent reached 

can reveal how much many of the business students preferred at least one of the items in the 

bundle. Average Probability Weighted Reach showed that the highest possible reach with 

one item was 88.11 % (Trustworthy) for the whole sample. The probability of being reached 

increases to 95.20 % when another top item, such as “Provides the company with growth 

opportunities,” is included. After two items, the benefit of including more traits for the 

hypothetical CEO did not lead to a significant increase in reach. Gender differences were 

found when investigating a one item TURF analysis using Average Probability Weighted 

Reach. More women than men preferred a CEO that was empowering and a good coach. 
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Table 2. Gender Differences in Reach 

 % Men Reached % Women 

Reached 

Empowering 55.98% 65.21% 

Good Coach 55.41% 65.10% 

DISCUSSION 

In his famous novel, Anna Karenina, Leo Tolstoy said, “All happy families are alike; 

each unhappy family is unhappy in its own way.” The results of this study show the opposite 

effect for those considering their potential CEO. While most respondents agreed on the 

characteristics that they disliked in a CEO, demographic segmentation found differences in 

what these groups preferred. A larger percent of women were reached in the TURF when a 

CEO was a good coach and empowering. The Latent Class Multinomial Logit analysis also 

showed hidden groups that had differing preferences. The Sensitive Group and Achievement 

Group were made up of group members with a similar background, and yet, they still were 

shown to be significantly dissimilar in their CEO preferences. 

The current methods resulted in important findings that indicate the optimal direction for 

future research. Having so many characteristics to compare created a MaxDiff with more 

items than your traditional MaxDiff. While incentivized, respondents had quite a long 

survey to get through to view each item 2.5 times. Most participants likely viewed each 

characteristic as a generally “good” characteristic to have in a CEO which may explain why 

there was a low variance in the results. Despite these limitations, a fuller coverage of 

characteristics allowed researchers to develop a more telling method of finding 

characteristic utility and TURF reach. 

A follow-up to this study might use behaviors that demonstrate the characteristics. When 

presented with the characteristics themselves, participants are subject to bias that may be 

due to social desirability, idealism, or trait similarity. Instead, future research will present 

participants with practical instances of the characteristics being demonstrated. This will help 

control for bias and allow for more polarization in the survey results. Rather than 

prioritizing between characteristics such as decisive, a good listener, or clear communicator, 

the participants would see an example that shows the behavior. For example: “Follows 

through on actions, promises, and assignments,” “Listens more than speaks,” or “Expresses 

ideas clearly in written communication.” Future studies thereby might lead to insights into 

what a good leader should do, rather than what general traits he or she should have. 
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CONCLUSION 

Alastair Mitchell, co-founder and CEO of Huddle.com, states it best, “a key piece of 

advice for organizations bracing themselves for the Millennial invasion is: listen and learn” 

(Mitchell, 2015). The results from the hierarchical Bayes Multinomial Logit and TURF 

analysis showed noteworthy implications in this Millennial sample study. Among workers, 

there are two distinct latent classes: Sensitive and Achievement. This has implications for 

how organizations set objectives and priorities internally. For example, a cover-all approach 

to motivating employees would inevitably hinder one of the two mutually exclusive groups. 

Catering to both groups could increase success and efficiency. Important differences were 

also found between theoretical and practical standpoints. Where Pfeffer feels workers take a 

more pragmatic view of their leaders; the results show that the view is more complex than 

he has found. This suggests a need for more research. 

The current leaders of this generation are notorious for portraying a “fake,” or idealized, 

version of themselves through social media and “fake news.” To navigate this world of 

“fake” news, Millennials will often compare themselves to an ideal or harbor skepticism for 

news. With this perspective, the study finds that trustworthiness and good moral character 

are actually some of the highest preferred items. The rising generation desires leadership 

practices that go against the current norms, and it would be wise to model corporate 

strategies accordingly. 

Overall, Sawtooth Software’s tool was able to not only parse out differences that were 

important from both theoretical and practical standpoints but also was able to rank them in 

terms of preference. This utility cannot be overemphasized as most graduates and businesses 

are currently surrounded in a sea of experts emphasizing different desirable characteristics. 

This analysis brings clarity to the actual desires of employees likely to be hired in the next 

round of commerce and advances the use of a statistical tool capable of lending insight to 

that process. 

 

     

 Ronald Miller Christina Hubner Cray Rawlings Maureen Andrade 
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VIRTUAL REALITY MEETS TRADITIONAL RESEARCH: 

OR THE REALITY BEHIND VIRTUAL REALITY ENHANCED INTERVIEWS 

ALEXANDRA CHIRILOV 
GFK SE, GERMANY 

INTRODUCTION 

Virtual Reality (VR) is becoming more widely available to consumers. The GfK Tech 

Trends Report shows increased consumer interest in VR, with 40% of UK consumers, above 

18 years old, intending to buy a VR device in the next 12 months. 

At the same time, more and more industries are using the power of VR. From carmakers 

to tourism providers, brands are using VR as a new opportunity to reach new customers and 

build stronger relationships. Businesses communicate the value of their products through 

VR with product demos, 360 tours, virtual shopping, dressing rooms, or showrooms. 

For marketers, VR has gained some ground already, while marketing researchers are 

confidently looking out for ways to assess the feasibility and the scalability of VR-enhanced 

interviews. VR offers a new set of tools to provide a richer, more immersive experience that 

allows us to test products that are more realistic and to visit the environment in which the 

customers experience the product(s), while at the same time having full experimental control 

over features and conditions. This sounds like an incredible technology with endless 

possibilities for Market Research (MR), from store layout tests to car clinics, to product 

development and much more. But, can really any person participate and engage in such an 

experience? Will they act just as they would do in a real-world situation? Perhaps yes, but to 

what extent must this still be evaluated before we move into a VR market research world 

with blind faith? How should data from this new research environment be interpreted? How 

does it relate to the more traditional data collection methods? 

For all of the above reasons, GfK decided it was time to go beyond a basic evaluation 

and conduct a full validation study using a systematic experimental design to deliver strong 

recommendations on using VR in MR. 

RESEARCH OBJECTIVES 

Probably most of the marketing research studies we conduct today inherently have the 

potential flaw that the act of completing a survey does not mimic the natural decision-

making process used by consumers. Definitely, the use of VR gives respondents a more 

realistic decision-making context compared to the more traditional approaches. However, it 

is important to understand if and how the benefit of realism we bring into the design impacts 

the data quality and predictive power. This paper will show how VR can be used in MR and 

will discuss the benefits of VR-enhanced interviews. The presentation concludes with a 

discussion of the business implications of using VR as a data collection technique. 

In order to compare the traditional research approach—CAPI (Computer Assisted 

Personal Interview)—with the VR approach, an empirical study was conducted using a 
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sequential monadic design. The study was designed to help us reach the following 

objectives: 

• Evaluate the feasibility of VR as a new method for data collection. 

• Compare the user experience in the two study environments (VR vs. CAPI) and the 

impact on respondents’ engagement. 

• Understand the effect of different study environments (VR vs. CAPI) on the respondents’ 

product preferences and behavior. 

• Compare the in- and out-of-sample predictive power of the two study environments (VR 

vs. CAPI). 

RESEARCH METHODOLOGY 

This empirical research utilized both quantitative and qualitative methodologies to 

examine the effectiveness of VR-enhanced interviews versus CAPI. Both stages of the 

research were conducted in a central location in Nuremberg, Germany, during January–April 

2017. Respondents were recruited from the pool of visitors to a popular indoor event 

location. The interviews took place in a separate room on the location’s premises. 

During the quantitative stage of the research, we asked more than 250 respondents 

untrained in VR to complete similar conjoint tasks in VR, using the HTC Vive headset, and 

in CAPI, using an iPad (12.9" screen). The order of the two techniques was rotated between 

respondents to reduce possible position biases. The study participants were screened to be at 

least 18 years old and own a car or intend to buy one in the next thirty-six (36) months. No 

other quotas were used (besides ensuring an equal number of participants per rotation). For 

the second stage of the research, in-depth interviews were conducted with a smaller number 

of respondents (n=8) right after they finished the quantitative part with the purpose of 

collecting additional insights about their experience. 

For the conjoint exercise, the sample was randomly divided into 15 versions of 9 tasks. 

In each task, 5 concepts were shown plus the alternative “none.” Respondents were asked to 

select the concept they preferred most in each of the 9 tasks: 7 random tasks and 2 holdouts 

to test the in-sample predictive power. To minimize the tendency to reproduce the choices 

from the first experiment into the second experiment, respondents were allocated to different 

versions (e.g., a respondent was randomly allocated to version number 1 in CAPI and to 

version number 7 in VR). We also explicitly mentioned in the survey that the two parts are 

similar but not identical and that each task is unique. 

We had two samples of respondents: 1) the main sample of 200 respondents that took the 

full survey with all 9 tasks, and 2) the benchmark sample of 50 holdout respondents tested 

one fixed CBC design with five tasks to test the out-of-sample predictivity. 

The research focus area of this study was the automotive sector. We wanted to use 

relatively common products that most consumers can highly relate to and which are highly 

relevant for our industry, too. 

For the conjoint exercise, eight attributes were included: 3 visual attributes and 5 text-

based attributes. The visual attributes were car type, colour, and wheel type. The text-based 
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attributes were engine, transmission, drive train, equipment, and safety. Attributes and levels 

were carefully chosen to ensure their relevance for all respondents. Respondents were asked 

to assume that all cars belong to the same price category to decrease the complexity of the 

task and learn about respondent’s preference beyond the price constraints. More specifically, 

the attributes and levels included in the study are detailed in Table 1. The visual attributes 

were represented in the CAPI experiment using 2D pictures, while in VR we used 3D 

models. The experimental design was generated in Sawtooth Lighthouse Studio v9.2 using 

the balanced overlap generation method. 

Table 1: Attributes and Levels 

 

Below is how the actual conjoint tasks appeared in CAPI and in VR (Figure 1 and Figure 

2). 

Figure 2: Screenshot of One of the CAPI Tasks 
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Figure 3: Screenshot of One of the VR Tasks 

 

VR Technology 

VR is the use of computer technology to create a simulated environment. Unlike 

traditional user interfaces, VR places the user inside the experience. Instead of looking at a 

monitor in front of them, users are immersed and able to interact with 3D models. VR 

facilitates a realistic display of the products’ appearance (material, surface, colours) and 

functionality. 

For this research, we used the HTC Vive headset and controllers (Figure 3). The 

respondents could walk around in a 4.5m by 4.5m tracking space. The HTC Vive is one of 

the most immersive high-end headsets on the market, which includes a display featuring two 

1080 x 1200 screens, one for each eye. This gives the Vive a total resolution of 2160 x 1200 

pixels, and an aspect ratio of 9:5 (HTC Vive Technical Specification, 2016). 

An operator instructed the respondents on the proper use of the headset and controllers 

and explained the optimal way to control the application (teleportation and select options). 

Pretests showed that many of the respondents spent their first few minutes in VR either very 

energized or hesitant. Therefore, to facilitate the familiarization process, we first placed the 

respondents into a VR training room. Several interactive elements (ball, Lego cubes, etc.) 

were placed in there to be used by participants to train their skills in VR and to reduce their 

enthusiasm and need for play. 
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During the VR experiment, the researcher was able to observe on a separate screen the 

respondents’ actions (Figure 4). Additionally, the respondents’ movements in the VR app 

were recorded to be further analysed. 

Figure 4: HTC Vive Headset and Controllers 

 

Figure 5: Respondents Using HTC Vive Glasses to Complete the VR Experiment 

 



76 

RESULTS 

Sample Description 

We achieved a good main sample mix (natural fallout, no quotas), as seen in Figure 5. To 

ensure the comparability between the main sample and benchmark sample, the holdout 

respondents were weighted using RIM weighting procedure in R (rim-efficiency =72.7%). 

The target weights were based on the composition of the main sample. The weighting 

criteria were: age, gender, working status, car ownership, intention to buy a car. 

As an additional fieldwork observation, the younger males more proactively asked the 

interviewer to take part in the VR experiment. Generally, the recruitment process went 

relatively easy, and most of the people who were asked to participate in the experiment 

accepted without hesitation (this positive reaction was mainly triggered by the possibility to 

test VR). 

Figure 6: Socio-Demographic Profile of the Respondents 

 

The findings of this research are organized, considering the objectives previously stated. 

RESPONDENTS’ FEEDBACK 

Respondents’ Satisfaction 

The respondents were asked to specifically think about the conjoint exercise they had 

just completed and answer a set of five questions on a 5-point scale, the higher the mark the 

more positive the experience was perceived, as seen in Figure 6. 
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Figure 7: Respondents’ Satisfaction 

 

Regardless of the socio-demographic profile or if VR was first in the rotation or not, 

respondents evaluated the VR interview significantly better than CAPI. For respondents, the 

experience was far more fun and interesting. Also, their willingness to repeat the VR 

experience is significantly higher. 

Qualitative Assessment 

The in-depth interviews were conducted face to face with a trained qualitative moderator 

from GfK qualitative research group. The moderator asked for feedback about the VR as 

well as the CAPI experience. What we noticed was that the participants had a strong desire 

to talk about the VR experience. Therefore, we first provided them with the opportunity to 

express any opinion about the technology before moving to insights. 

When assessing the VR experience, respondents talked about the methodology as being 

pleasant, very exciting, and very easy to use as well. Some comments from the qualitative 

research component are as follows: 

• “It [VR] was quite pleasant and very exciting for me.” 

• “The experiment on the tablet was a little bit boring, but it was okay. The virtual reality 

was more fun even though I was a little dizzy in the end.” 

• “It was very easy and clear.” 

• “It feels very natural, the movement comes from the body, the movements have the same 

directions, and it is very well adjusted. I felt very comfortable with it. It was very easy to 

use.” 

Also, some respondents stated that the high similarity to their real-world purchase 

environment provided a better ability to simulate actual decision-making processes. Below 

are some of the respondents’ comments: 

• “On the tablet, it was more difficult to differentiate between the designs of the cars. You 

can see that much better in virtual reality.” 
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• “It’s a big difference from tablet to virtual reality but not from the virtual reality to the 

real world because you basically do the same thing. You look at the car and see what 

aspects it has.” 

• “The VR models are all totally different like it is when you go shopping. On the tablet, I 

was like ‘no, no, no, no,’ to all the models. In virtual reality, the models seem to be more 

interesting.” 

• “I think what I did in the virtual reality is closer to buying a car in the real world.” 

Interview Quality 

On average, the respondents needed only 40% more time to answer the VR interview 

compared to the CAPI one (6.43 vs. 4.51 mins). But, the respondents spent as long in the 

VR training room (6.46 mins) as they spent in the actual VR interview. The learning process 

continued over the first 3 out of 9 tasks while afterward, the time per task between CAPI 

and VR tends to level out, as illustrated in Figure 7. Considering that in VR the respondents 

physically needed more time to read all car characteristics and compare them, as they had to 

teleport themselves from one car to another, we can conclude that the respondents spent less 

time in the decision-making process in VR compared to CAPI. 

Figure 8: Time per Task 

 

Regardless of the technology type, there are no inherent biases regarding the selection of 

concepts by position (e.g., always selecting the car placed in the same position in all tasks). 

However, VR provides an even better quality interview. The bad respondent rate was lower 

in VR (3.5%) compared to CAPI (4.5%). A bad respondent is a respondent who chose the 

None option in more than 75% of tasks, or chose the same concept position in more than 

75% of tasks, or achieved a low RLH (0.25 for 5 concepts). 
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In both parts of the VR interview (tasks 1–5 vs. tasks 6–9), respondents selected each 

alternative a similar number of times. In comparison to this, during the second half of the 

CAPI interview, respondents selected slightly more often one of the first two alternatives 

(+5.8%), which were placed closer to the “next” button. A possible explanation can be that 

the engagement and motivation in CAPI decreases faster and so the respondents tried to 

move quicker through their later tasks. 

Additionally, respondents selected the None option less often in VR (11%) than in CAPI 

(18%). Even though the None alternative was less prominent in VR than in CAPI, the 

respondents were notified both verbally by the operator and via the written instructions 

about the possibility to select the None option. Therefore, it is possible that respondents 

perceived the 3D car models more relevant and appealing; and respectively, that the VR 

experiment was overall more engaging. 

Some more important VR specific highlights: 

• None of the respondents developed motion sickness. 

• Only two respondents dropped out because of the technical difficulties; all other 

respondents were able to properly use the VR headset and controllers. 

Location Data 

Additionally, we tracked respondents’ movements in the VR conjoint tasks (e.g., 

movement patterns between cars). Therefore, we can provide additional insights regarding 

the participants’ behaviour in VR. 

On average, respondents visited 2.8 cars out of 5 in each task, and they spent 9.7 seconds 

per car. The number of cars visited per task didn’t decrease over tasks but the time spent per 

car did, as seen in Figure 8. The fact that we saw no decrease in the number of cars visited 

per task and only saw a decrease in the number of seconds spent per car (otherwise a normal 

learning effect) proves that this behaviour is not a reaction to fatigue or disengagement but a 

consistent decision-making strategy across all tasks. 
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Figure 9: Number of Visited Cars and Time Spent per Car 

 

A visit is defined as the presence of the respondents in the close proximity of a car while 

having the opportunity to closely inspect the car and read the additional information about 

the car configuration. 

By employing additional analysis, we identified that the vast majority of respondents 

(84%) simplified their choices: 

• In the first stage, without actually visiting the cars, respondents formed a “consideration 

subset” of cars that matched their visual preferences in regards to the car type, colour, or 

wheel type (the size of the consideration subset was, on average, 2.4 cars per task). 

• In the second stage, respondents made a final choice for one car by visiting and carefully 

evaluating the cars in the consideration subset. With regards to the selected car, in the 

same task, respondents visited it on average 1.6 times (vs. 1.1 times for the others in the 

subset), and they spent on average 3.6 extra seconds evaluating it (12.6 vs. 9.0 seconds 

for the others). Considering this, we can conclude that respondents involved more 

complex heuristics in this second stage (final choice). 

This two-stage process is well-established in the academic literature as a realistic 

description of the process by which people make decisions (Payne, 1976; Gaskin, 2007). 

The rest of the respondents (16%) visited 4 or even all alternatives in a task before 

deciding which car they preferred most. However, we are missing evidence regarding their 

decision-making pattern. It is very likely that they also simplified their decision by using 

different heuristics that are text-based (about engine type, equipment level, safety level, 

etc.). 

Below we present the path graph of two representative respondents from each of the two 

groups (Figure 9 and Figure 10). 
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Figure 10: Path Graph per Respondent (Group 1) 

 

Figure 11: Path Graph per Respondent (Group 2) 

 

By looking at the overall respondents’ movement pattern, we identified that in 73.2% of 

the cases the respondents used a sequential pattern (mainly from right to left) rather than 

randomly moving from one car to another, as seen in Figure 10. 
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Figure 12: Aggregate Path Map 

 

CONJOINT RESULTS 

Attribute Importance 

As summarized in Figure 12, the method (CAPI vs. VR) didn’t influence the decision 

drivers. The observed patterns are identical. All attributes such as car type, engine type, 

color, etc. are equally important in VR and CAPI. 
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Figure 13: Attribute Importance 

 

In both experiments, the respondent’s decision was triggered by both visual and text-

based attributes. This is especially important for VR, as the design of the experiment might 

have encouraged respondents to overweigh the visual attributes in their decision-making 

process, but this obviously did not happen. 

Respondents’ Preference 

The respondents switched their preference for different specific car models between the 

experiments (VR vs. CAPI), as seen in Figure 13. Perhaps the aesthetic appeal of a coupé 

versus the more standard car types is more strongly portrayed in VR. This may also explain 

the statistical significant preference switch from wheel type 1 (in CAPI) to the sportier 

wheel type 3 (in VR). 

In the case of diesel vs. electric, they were both equally chosen in CAPI. Yet, in VR the 

electric car was significantly preferred. It might be that the strong attraction of the coupé 

drove up the choice of electric in VR as these features were seen by participants as a 

compatible pair. 
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Figure 14: Scaled Conjoint Part-Worths (Zero-Centered Diffs) 

 

Interestingly, the hierarchy of choice in CAPI better reflects the actual purchasing trends 

on the market (e.g., Limousine preferred to Coupé, Source: JATO Dynamics Report, 2016) 

Considering also the fact that the time spent in VR for the decision-making process was 

lower than in CAPI, one might think that CAPI is more suited to instigate rational and 

conservative choices while VR encourages personal and emotional preferences to overrule 

conventions. 

Ideal Car 

We used an Excel-based simulator (share of preference) to search for the ideal car (the 

most preferred car based on individual preferences) in both of the two experiments. Below, 

the ideal car in VR and CAPI: 

Figure 15: Ideal Car 

 

Using two different data collection techniques leads to two different results. When using 

CAPI, respondents’ ideal car was a Diesel SUV while when using VR respondents preferred 

an Electric Coupé. It underlines once again that CAPI encourages respondents to rationally 

choose a car that would meet a lot of the practical demands of their life as the SUV does. On 
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the other hand, the VR choice (the electric coupe) is a more aspirational one; perhaps VR 

allows participants to express their emotional preference, beyond their rational and day-by-

day life demands. 

DIAGNOSTIC 

The in-sample and out-of-sample mean absolute errors are better for VR compared to 

CAPI. The in-sample MAE is based on 2 VR tasks, respectively 2 CAPI tasks. The out-of-

sample MAE is based on 4 VR tasks, respectively 4 CAPI tasks. The reported out-of-sample 

MAE is calculated within the method (i.e., the VR model was used to predict the VR 

choices of the holdout sample). The average across all is reported in the Figure 15. 

The hit rate is slightly better for CAPI compared to VR (52.8% vs. 50%). 

Figure 16: Conjoint Diagnostic 

 

CONCLUSIONS AND MANAGERIAL RECOMMENDATIONS 

Logistically, it was no problem for respondents to properly use the VR equipment. 

Cognitively, VR felt like an intuitive test setting, with participants finding it easy and natural 

to go through the tasks. Hence, from the feasibility perspective, VR might be rather easily 

integrated as a market research technology. 

The use of VR engaged the respondents more fully, creating a more satisfying survey 

environment than CAPI, which, in the end, translated into a better quality interview. 

Therefore, this new technology appears to have the potential to aid recruitment and 

engage more difficult target groups, offering a promising outlook for recruiters and panel 

managers. 

The immersion into a virtual auto showroom created for the respondents the perception 

of being physically present in a non-physical world. Perhaps, it is the sense of presence that 

activated the respondents’ emotions. A VR-enhanced interview facilitates emotions to 

influence the respondents’ judgments and choices and to express their preferences beyond 

conventions. In the end, all of this leads to a better data quality and a higher predictive 
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power. Moreover, it was particularly interesting to notice that VR does not prompt the 

participants to oversimplify their choices by focusing only on the visual characteristics of a 

car. The other characteristics were equally important (same as seen in a CAPI environment). 

This makes VR particularly interesting for design thinking/product optimization (co-

creation platform) and concept testing when the success depends on a deep understanding of 

consumers’ needs and preferences and where the traditional quantitative marketing research 

methods break (O’Hern and Rindfleisch, 2009; von Hippel, 2005). 

It is important to underline that for this study, we used one of the most immersive VR 

headsets on the market, and we also created the conditions for an immersive experience 

(e.g., a quiet location, limited interactions between external factors and respondent during 

the VR interview). The results of this research might not be reproduced in less immersive 

test design. 

This research concentrated on understanding the impact of VR on respondents’ 

preference and behaviour, therefore further validation against revealed behaviour and buying 

decisions is needed to consider using VR for demand estimation studies or even forecasting.  

Besides, this study was focused on one category (automotive) and conducted in one country. 

Conducting similar research on different categories and in other countries would help 

understanding its scalability (applicability across multiple industries and regions). 

 

  

 Alexandra Chirilov 
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TOO MUCH INFORMATION?: 

THE CURIOUS CASE OF AUGMENTED MAXDIFF 

JACKIE GUTHART 

CURTIS FRAZIER 
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RADIUS GLOBAL MARKET RESEARCH 

ABSTRACT 

Augmented MaxDiff has become an effective and increasingly used variant for dealing 

with large numbers of attributes. While Augmented MaxDiff is efficient and effective at 

recovering individual-level preferences, there is a little talked about issue in the design setup 

and estimation of utilities. We will illustrate the issue of “too much information” and discuss 

design decisions to mitigate utilities estimation problems. 

INTRODUCTION 

When estimating MaxDiff data, to get good individual-level estimates, we require at 

least 3 exposures per item using hierarchical Bayesian estimation. Under this condition, as 

the number of items tested in the MaxDiff increase, the number of questions required per 

respondent also increases, which leads to increased respondent fatigue and survey length. 

Table 1 shows how many questions we would need to ask for different number of items for a 

3 exposures per item setup. 

Table 1: Questions Needed for Different Number of Items 

 

To counteract the issue, we could relax the number of exposures and ask a Sparse 

MaxDiff with 1 exposure per item, however, we would lose precision on individual-level 

estimates. 

We typically would do a traditional MaxDiff when we have less than 30 items. 

Augmented MaxDiff becomes a preferred technique when we are testing approximately 30 

to 60 items. When we have more than 60 items, techniques such as Express MaxDiff and 

Bandit MaxDiff are more appropriate. 

In Augmented MaxDiff, we ask all the items to the respondents in a Sparse MaxDiff, 

exposing each item just one time. Then, like the name suggests, we augment the information 

we get from the Sparse MaxDiff with information we get from external questions. These 

external questions could be in the form of a Q-Sort exercise, an Adaptive MaxDiff, or 

ranking question(s) of the items selected as “best” and optionally the items selected as 

“worst.” Our preferred method of augmentation is asking ranking questions. Ranking 
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questions give us more information about the “best” items, which the client is typically most 

interested in. The ranking of “worst” items is optional and could be useful for doing a post 

hoc analysis where we require good individual-level estimates on “worst” items, for 

example a segmentation. Research has shown that augmenting on both top and bottom items 

is best for doing any follow-up analysis (Jones and Yeh, 2013). The decision about the 

amount of information to put into the model from the augmented questions is up to the 

researcher. 

Table 2a and Table 2b below show an example Augmented MaxDiff task. Figure 2a 

shows an example Sparse MaxDiff design with 20 items (A1 through E4). It also shows 

which item a respondent selected as “best” and which was selected as “worst.” 

Table 2a: Sparse MaxDiff Task 

 

Table 2b illustrates the two follow-up ranking tasks that the respondent must complete. 

In Task 1, respondents are shown the 5 items they selected as “best” in the original MaxDiff 

tasks. And, in Task 2, respondents are asked to rank the 5 items they selected as “worst” in 

the original MaxDiff tasks. It also shows the rank ordering of items given by the respondent 

in each ranking task. 

Table 2b: Ranking Tasks 

 

ANALYSIS CONSIDERATIONS 

There are two key decisions the researcher must make when specifying the model. The 

first decision is the amount of information that goes into the model. From the example in 

Table 2a and Table 2b, we have 25 pairs of known preferences from the Sparse MaxDiff 

(shown in Table 3a) before we consider the ranking tasks, which could add another 20 pairs 

from the ranking task (Table 3b). We’ve not included any inferred comparisons, for example 

A1 wins against B1 in the ranking tasks implying A1 wins against all items that B1 is 

winning against in MaxDiff Task 2. 
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Table 3a: Paired Comparisons from the MaxDiff Tasks 

 

Table 3b: Paired Comparisons from the Ranking Tasks 

 

The second decision concerns the number of total iterations that we let the estimation run 

for (initial iterations so that it reaches convergence, and iterations that we use for draws for 

averaging the estimates). 

Based on numerous Augmented MaxDiff analysis runs, we’ve seen that these two 

critical considerations play a big role in changing our utility estimates and potentially 

impacting business decisions. There appears to be a balancing act between the amount and 

specification of information that is provided in the input file and the number of iterations 

that the model runs for. 

INTRODUCTION TO THE DATA 

For our analyses we looked at datasets from 3 past studies that we conducted. These 

three studies were chosen out of dozens of Augmented MaxDiff projects because they 

represent different numbers of items, design sizes, augmentation specifications, and 

industries. The specifications of the 3 studies were as shown in Table 4. 

Table 4: Data Specifications for Case Studies 

    
 Drug Store Shopping 

Landscape Concepts Test 

Children Pain Relief 

Claims Test 

Laptop Features 

Claims Test 

# Items 29 44 55 

# Items per screen 2 or 3 4 2 or 3 

# Screens 10 11 19 

Ranking 

questions 
10 Best & 10 Worst 11 Best & 11 Worst 12 Best & 12 Worst 

# Respondents 500 500 500 

A1 > A2 B1 > B2 C1 > C2 D1 > D2 E1 > E2

A1 > A3 B1 > B3 C1 > C3 D1 > D3 E1 > E3

A1 > A4 B1 > B4 C1 > C4 D1 > D4 E1 > E4

A2 > A4 B2 > B4 C2 > C4 D2 > D4 E2 > E4

A3 > A4 B3 > B4 C3 > C4 D3 > D4 E3 > E4

Task 5

MAXDIFF TASKS
Task 1 Task 2 Task 3 Task 4

A1 > B1 A4 > B4

A1 > C1 A4 > C4

A1 > D1 A4 > D4

A1 > E1 A4 > E4

B1 > C1 B4 > C4

B1 > D1 B4 > D4

B1 > E1 B4 > E4

C1 > D1 C4 > D4

C1 > E1 C4 > E4

D1 > E1 D4 > E4

Task 1 Task 2

RANKING TASKS
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ANALYTICS PLAN 

We estimated models in which each of our critical decisions varied. We varied the level 

of pairs to include in the estimation of the model, and we also varied the number of 

iterations. For each of the different models that we ran, we evaluated the: 

• Aggregate level rescaled MaxDiff scores, 

• Average RLH, 

• Distribution of individual-level preferences focusing on proportion of items that were 

considered having extreme scores (Rescaled MaxDiff utility of <10 or >90), and 

• Differences in expected vs. modeled ranking of the best and worst ranked items. 

AUGMENTATION SCHEMES 

We estimated models with 4 levels of augmentation: 

• Sparse, or no augmentation 

• Limited 

• Moderate 

• Heavy 

An example of the pairs of ranked items that were compared in each level of 

augmentation for the drug store study, which had 29 items with rankings of the 10 items 

selected best and 10 items selected worst, is illustrated in Table 5. 

Note: Table 5 just shows the examples of the “best” rankings—the total number of pairs 

is double this because we also have “worst” rankings. 

Table 5: Different Levels of Augmentation—Drug Store 

 

The sparse models only include the 28 pairs from the MaxDiff questions. In limited 

augmentation we have ranking items compared with the adjacent ranked items—item 1 is 

better than item 2, item 2 is better than item 3, and so on. Moderate augmentation has each 

item compared with the next 3 items ranked—item 1 is better than 2, 3, and 4; etc. Finally, 
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in heavy augmentation all items are compared to all items they’re winning against in the 

augmentation questions. 

AGGREGATE-LEVEL ESTIMATION 

We estimated the aggregate-level utilities of the different level of augmentation for each 

of the 3 studies using the Sawtooth default number of iterations (20,000 initial and 10,000 

draws) using HB estimation. The results of the estimation of each of the 3 studies are shown 

in Figures 1, 2, and 3. 

Figure 1: Aggregate-Level HB Utilities Default Iterations—Drug Store 

 

Figure 2: Aggregate-Level HB Utilities Default Iterations—Pain Reliever 
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Figure 3: Aggregate-Level HB Utilities Default Iterations—Laptops 

 

At the aggregate level, the results are exceptionally consistent—the winning items are 

winning, and the losing items are losing. Regardless of approach, the recommendations to 

the client do not change. With a 95% confidence interval, the average estimated utilities for 

the 3 studies are within +/- 0.47 across all studies, meaning the aggregate-level MaxDiff 

estimates are very similar irrespective of level of augmentation. 

We also looked at the average RLH for each of these runs—shown below in Table 6. 

Table 6: Default Iterations Average RLH 

 

The more information we augment the model with, the higher the average RLH. If 

higher average RLH were to be taken as an indicator of better model fit, we’d be inclined to 

always specify models with heavy augmentation. However, at some point a higher RLH 

isn’t an indicator of a better model, and average RLH scores of 0.92 aren’t a realistic 

expectation of human responses. It’s an indicator of overfitting. 

INVESTIGATION OF THE UNDERLYING ISSUE 

When we take a closer look at individual-level utilities, we see that there is a pretty 

drastic skew particularly in cases where there is more information going into the model. 
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Table 7 shows average utilities after sorting each item from worst to best (item 1 is each 

person’s worst item). When we look at average utilities it seems to balance out since we 

typically have heterogeneity in the data, but Table 7, below, indicates that at the individual 

level, our predictions might not be doing a great job. Heavier augmentation yields a more 

drastic skew. 

Inspecting the individual-level data, we noticed a strong skew towards more extreme 

scores as we increased the level of augmentation. Table 7 illustrates this skew. In these 

tables, we have highlighted any scores in the top and bottom deciles (>=90 or <=10). We 

would expect that these two deciles would account for about 20% of items; with high levels 

of augmentation we see that these two deciles can account for over 80% of all items. 

Table 7: Average Rescaled MaxDiff Utilities by Augmentation Level 

Red: 0–10; 90–100 

Green: 40–60 

 

  

Worst item 

Best item 
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Note, the utilities are scaled using the probability-based rescaling procedure (The 

MaxDiff System Technical Paper, p.13). To convert the raw utilities to 0–100 scale the 

following transformation was performed: 

Rescaled Utility for item i= 
𝒆𝑼𝒊

(𝒆𝑼𝒊+𝒂−𝟏)
 

Ui = zero-centered raw logit weight for item I, 𝑒𝑈𝑖 is equivalent to taking the antilog of 

Ui, a = Number of items shown per set. 

Figure 4 shows the same data in a more visual way to better understand what the 

distribution looks like. It is clear from this graph that increased information in the model 

results in an increased number of “extreme” scores. After looking at distribution from 

multiple standard MaxDiff studies we found that on average there are ~20% of items that 

fall in the “extreme” range. 

Figure 4: A Graphical View of the Distribution—Drug Store 

 

PREDICTIVE VALIDITY 

To better understand predictive validity of the models at the aggregate level, we first 

investigated the median aggregate rankings of the items respondents selected as best in the 

Sparse MaxDiff. Table 8 shows the median rank of where the estimated utility lies for the 

item each respondent ranked as 1st best, 2nd best, and so on, in the follow-up ranking task of 

all the items the respondent selected as best in the Sparse MaxDiff. 

There are some things we know based off how a respondent ranks the items: 

1. The item ranked as best in the ranking question is the respondent’s top item (we also 

know the absolute ranking for the worst item). 

2. In the case of the drug store scenario, for example, where a respondent saw 2–3 items per 

screen with 10 screens and a ranking of 10 items, we know the 2nd best item from the 

ranking is truly the respondents 2nd best, 3rd best, or 4th best. If for example someone had 

their 3 favorite things in the same MaxDiff task, then it’s possible their 2nd best ranked 

item is only their 4th best item. 
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3. While we don’t know the exact ranking position of the 10th best ranked item, we know 

there should be variation in where it falls between rank position 10 and rank position 27, 

with the majority falling between rank position 10 and rank position 20. 

4. We know the preference order of all the items ranked best and similarly all the items 

ranked worst. 

In Table 9, we’ve highlighted those predicted rankings that violate what we either know 

or strongly suspect the true rankings should be. For example, Sparse MaxDiff is consistently 

predicting what we know to be the best of the best, as only the 4th most preferred item. 

Moderate and Heavy levels of augmentation are consistently predicting what we believe to 

be, at least, a slightly preferred item to be worse than average. Table 9 shows average 

correlations at the individual level of the rankings of the items selected as best, to the known 

order that best ranked 1 is better than best ranked 2, and so on. 

Table 8: Median Rankings of Items in the Ranking Test of Items Selected as Best 

 

Table 9: Average Individual Level Correlation Between Item Rankings 

and Predicted Rankings 

 

The Median aggregate rankings in Table 8 suggest that items are being modeled in the 

correct rank order. However, looking at Table 9 we see that this finding doesn’t hold true at 

the individual level—especially in the case of limited augmentation. Heavier augmentation 

shows rankings are highly correlated at the individual level, but it yields unrealistically poor 

rankings (seen in Table 8) of the 9th+ best items. 

Looking at the Median aggregate ranking only tells part of the story. If we take the drug 

store example and further look at the distribution of the predicted rank position of the 1st 

best item in the rank question, 2nd best item in the rank question, and 10th best item in the 

rank question, the problem at the individual level further emerges. We know the 1st best 

ranked item is the respondent’s best item overall so in theory 100% of people should have 

the highest predicted MaxDiff utility for this item. This is true in the case of Moderate and 

Heavy augmentation, but for Limited, only 50% of respondents’ 1st best item was accurately 

being predicted as best as shown in Table 10 even though the median ranking in Table 8 is 1. 
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We know the 2nd best item from the ranking question should always be the 2nd–4th best 

item overall. Looking at Table 11 starts to uncover issues with Moderate and Heavy 

augmentation which strongly suggest these models are overfitting to the ranking questions. 

We see that 100% of respondents’ 2nd best item from the ranking is being predicted as the 2nd 

best item overall. 

Looking at the distribution of the 10th best item in Table 12 it’s apparent that Limited is 

doing a poor job since it predicts the 10th best item from the ranking to win over items we 

know it is worse than for 25% of respondents. On the opposite side of the spectrum, 

Moderate and Heavy augmentation are predicting the 10th best ranked item to be worse than 

the losing items in the MaxDiff for over 30% of respondents—this is likely too high. 

Table 10: Distribution of Ranking Based on Utility of the 1st Best Ranked Item 

 

Table 11: Distribution of Ranking Based on Utility of the 2nd Best Ranked Item 

 

Table 12: Distribution of Ranking Based on Utility of the 10th Best Ranked Item 
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IMPACT OF ITERATIONS 

The other aspect a modeler has control over is the number of iterations to include when 

running a MaxDiff. We continue with the drug store example which shows that adding 

iterations can result in even more “extreme” scores. In Table 13, below, Limited isn’t getting 

any extreme scores predicted even after the model converges. Moderate appears to have a 

nice distribution early on, somewhere between 2,000–10,000 initial iterations; however, the 

model still hasn’t converged at this point—once it approaches convergence the number of 

extreme scores begins to get unwieldy. A similar story happens with Heavy augmentation 

but even more extreme. We hypothesize this happens because we have blown out the 

ranking task so much that we are introducing so many more wins (from best ranking) and 

losses (from worst ranking) that it overpowers the MaxDiff tasks and takes over the model. 

We observed the same pattern in the Pain Reliever and Laptop models as well (not shown 

here). 

Table 13: Average Rescaled MaxDiff Utilities by Augmentation Level—Drug Store 

 

Similarly, we can look at rank order prediction by number of iterations. Looking at 

Tables 14 and 15, below, we see that fewer iterations leads to more inaccuracy of predicting 

the ranked items in the correct order, especially at the individual level. 

Worst item 

Best item 
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Table 14: Median Rankings of Items Selected as Best in the Ranking Question 

by Iterations—Drug Store 

 

Table 15: Average Individual-Level Correlation Between Item Rankings 

and Predicted Rankings by Iterations—Drug Store 

 

Thus far we’ve shown that: 

1. Iterations has an independent effect—more iterations yield more extreme values until 

convergence where it levels out. 

2. The point at which convergence happens depends on the level of augmentation—over-

specification results in convergence happening after too many extreme values are being 

predicted. 

3. While looking at the percentage of extreme values alone would suggest running fewer 

iterations, taking a closer look at predictive validity at the individual level based on rank 

predictions suggests that more iterations are necessary. 

RECOMMENDATIONS FOR NUMBER OF ITERATIONS AND LEVEL OF AUGMENTATION 

Don’t over-specify the model. Adding too much augmentation causes issues. Somewhere 

between a limited and a moderate augmentation is the way to go. Looking at the percentage 

of extreme scores at the point of convergence is a good indication of if you need to increase 

or decrease the number of augmented pairs going into the design. The levels of 

augmentation we’ve discussed thus far all fail in some way—this leads us to ask the 

question if there is a different way of augmenting that is more carefully considered—

Differential augmentation. 

We can augment items at the very top more and more (similarly at the bottom) to give 

more weight to them. In the case of Sparse MaxDiff, the total number of pairs is equal to 28. 

We then add different numbers of pairs to the design based off the ranking question. Table 

16 illustrates how the pairs are specified in Limited, Moderate, Differential, and Heavy 

augmentation. Limited adds 18 pairs from the ranking, Moderate adds 48 pairs, Differential 

adds 46 pairs, and Heavy adds 90 pairs. Limited adds all the known pairings of 1 down (1 is 
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better than 2, 2 is better than 3, etc.), Moderate adds all the known pairings of 3 down (1 is 

better than 2, 1 is better than 3, 1 is better than 4), Heavy adds all possible known pairings 

(1 is better than 2–10). Differential keeps a similar number of pairs as Moderate, but it 

specifies the pairings in a non-uniform way keeping more pairings for the top ranked items. 

This is to give these items more wins in the design. 

Table 16: Parings Going into the Design in Drug Store Example 

 

Table 17 shows extreme scores for Differential like we showed earlier for Sparse, 

Limited, Moderate, and Heavy. Differential appears to be converging rather quickly. It has 

~20% of items getting extreme scores after convergence, as we’d expect. And, the 

distribution of items appears to be much more uniform than in other models, with the delta 

between levels staying roughly the same throughout the list of items. 
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Table 17: Average Rescaled MaxDiff Utilities for Differential Weighting—Drug Store 

 

Worst item 

Best item 
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Figure 5: A Graphical View of the Distribution with Differential—Drug Store 

Table 18: Percentage of “Extreme” Scores (<=10, >=90)—Drug Store 

  
Sparse Limited Differential Moderate Heavy 

Drug Store 28% 0% 21% 62% 76% 

Pain 

Reliever  
50% 11% 16% 70% 80% 

Laptops 29% 0% 22% 9% 67% 

 

Figure 5 graphically shows the distribution of utility scores is more in line with what 

we’d expect. Using Differential weighting gets us in a better range of “extreme” scores as 

depicted in Table 18. Additionally, we end up with more realistic rank predictions for best 

and worst ranked items both at the aggregate and individual level. The distribution of 

rankings based on utilities are also more in line with expectations (Table 21). 
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Table 19: Median Rankings of Items Selected as Best in the Ranking Question 

by Augmentation—Drug Store 

 

Table 20: Average Individual-Level Correlation Between Item Rankings 

and Predicted Rankings by Iterations—Drug Store 

 

Table 21: Distribution of Ranking Based on Utility for Differential Augmentation— 

Drug Store 

  1st best in rank Q 2nd best in rank Q 10th best in rank Q 
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 1 93% 1 7% <10 18% 

2 7% 2 88% 10 5% 

3 0% 3 5% 11–15 38% 

4 0% 4 0% 16–19 20% 

5+ 0% 5 0% 20+ 18% 

      6+ 0%     

 

INVESTIGATING OTHER METHODS TO CONTROL FOR “EXTREME” SCORES 

One might suggest to fix the “extreme” scores we should modify the exponent in the 

rescaling procedure. One cause of the extreme scores appears to be a simple scaling issue. 

Modifying the exponent is designed to correct for this precise situation. In this research, the 

scaling issue appears to come from a lack of error in our data compared to a standard 

MaxDiff—where respondents have the freedom to contradict themselves. The ratio of data 

from the MaxDiff responses to data from the augmentation ranking tasks has a significant 

impact on the distribution of the utilities. As the proportion of data from the augmentation 

ranking tasks increases, the extremity of the utilities will increase and an increasingly 

extreme exponent is necessary. In addition, that change helps with the extreme scores, but 

has no impact on changes in rank-order preferences. 

Sparse Limited Differential Moderate Heavy

Rank 1 4 2 1 1 1

Rank 2 5 4 2 2 2

Rank 3 5 5 3 3 3

Rank 4 5 5 4 4 4

Rank 5 5 6 6 5 5

Rank 6 6 6 8 6 6

Rank 7 6 7 9 8 8

Rank 8 8 8 11 10 10

Rank 9 7 8 12 14 13

Rank 10 8 13 14 19 18

Sparse Limited Differential Moderate Heavy

r = 0.25 0.5 0.88 0.95 0.96
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As mentioned above, while changing the exponent will address the issue of extreme 

scores, it does not change the rank ordering of those scores. We have a decision to make 

about number of pairs to go into the design and how to specify the pairs when running 

Augmented MaxDiffs and we’d prefer to get this right to minimize the amount of post-

analysis calibration needed. We did look at the effect of adjusting the exponent and noticed 

that extreme exponents are needed to correct for the problem. Table 22 shows the impact 

different exponent factors have on the percentage of “extreme” scores. Sawtooth 

documentation gives some guidance about exponents specifically for conjoint that we follow 

even though here we are looking at MaxDiff. The documentation states that: “Exponent 

adjustments below about 0.2 (for conjoint part-worths estimated via logit-based methods) 

would seem extreme and point to possible problems in the data (either the part-worth 

utilities or the holdout judgments being used to tune the exponent).” Here, the requirement 

of an extreme exponent likely indicates an issue in the number or nature of augmented tasks 

in the design. 

Table 22: Percentage of “Extreme” Utilities 

 

CONCLUSIONS 

Our current research has proven that several clear patterns exist: 

1. At the aggregate level, MaxDiff is fully capable of estimating group-level preferences, 

even with a limited amount of data. 

2. Adding augmentation to a Sparse MaxDiff design significantly improves the ability to 

derive individual-level preferences. 

3. Somewhat counter-intuitively, it is possible to include “too much” augmentation. 

4. With the correct level and specification of augmentation, utilities will converge, and a 

reasonable distribution of preferences will emerge. 

The need for proper augmentation depends on: 

1. The need for accurate individual-level utilities. This is crucial for segmentation, TURF, 

and other back-end analytics. 

2. The level of heterogeneity in the sample: In a more homogeneous sample, the aggregate 

utilities will reflect the extreme S-curve that we see with too much augmentation, or the 

relatively flat curve with too little augmentation. 

Exponent Light Differential Moderate Heavy Light Differential Moderate Heavy Light Differential Moderate Heavy

1 0% 22% 62% 79% 17% 22% 69% 76% 1% 22% 10% 67%

0.9 0% 18% 58% 77% 13% 18% 67% 74% 0% 19% 8% 64%

0.8 0% 15% 54% 74% 9% 14% 63% 72% 0% 15% 5% 61%

0.7 0% 11% 49% 70% 5% 10% 60% 69% 0% 12% 3% 56%

0.6 0% 7% 44% 66% 2% 6% 56% 66% 0% 8% 1% 50%

0.5 0% 3% 36% 60% 0% 3% 50% 61% 0% 4% 0% 43%

0.4 0% 1% 28% 52% 0% 1% 43% 55% 0% 1% 0% 34%

0.3 0% 0% 17% 41% 0% 0% 33% 46% 0% 0% 0% 22%

0.2 0% 0% 4% 25% 0% 0% 19% 32% 0% 0% 0% 8%

0.1 0% 0% 0% 2% 0% 0% 1% 9% 0% 0% 0% 0%

% "Extreme Utilities"

Drug Store Pain Reliever Laptops
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There is more work to be done to perfect the differential augmentation scheme. 

Additionally, studies can be run to include fixed tasks that we can use to further estimate 

predictive validity rather than solely referencing the rank order preferences the respondent 

gave in the follow-up ranking questions. 

 

   

 Jackie Guthart Curtis Frazier Raman Saini 
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CAN WE USE RLH TO ASSESS RESPONDENT QUALITY? 

MARCO HOOGERBRUGGE 

MENNO DE JONG 
SKIM 

ABSTRACT 

RLH is an imperfect indicator of data quality in CBC exercises and it should not be used 

as a criterion to remove respondents from the data. By means of Latent Class “bad quality” 

respondents can be identified more accurately. 

BEFORE WE START 

In the research community there is no consensus on whether we should remove “bad 

quality respondents” at all. Some argue that bad quality respondents may be representative 

of real people behaving randomly. Also, if we would remove “bad quality respondents,” 

there is no consensus on whether we should remove them directly based on the CBC data, or 

alternatively just based on more external criteria, such as (page) time spent by respondents. 

This paper will bypass those more fundamental discussions, however. 

The only objection we will look at before we really start is: is data cleaning perhaps just 

a waste of analysts’ time? Would it really change the results if we would keep respondents 

answering randomly? That is not a trivial question. Taking a non-conjoint example, the 

mean score of a 5-point rating scale will definitely change in case the average score is 4 

(because the average of random data is 3). But if the question is part of a grid, and we are 

merely interested in the order and relative distances of the average item scores versus each 

other, we would not expect a significant impact of random data. 

With utilities we are also only interested in relative distances versus each other, so we 

would not expect substantial differences either. This is confirmed in plots like Figure 1, in 

which we do not see much difference between average utilities with and without “bad 

respondents.” Note that the definition of “bad respondents” here is based on the procedure 

that we will elaborate on further down. 

Since most of our MaxDiff studies are merely reported in terms of average utilities (with 

rescaling), this suggests that cleaning out MaxDiff data may not be worth the effort. 
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Figure 1: Scatterplot of Average Utilities With (x-axis) Versus Without Bad Data (y-axis) 
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With CBC we usually do more than just reporting average utilities, however, because we 

also simulate the impact of changes in the market. The basis of these simulations are not 

average utilities but individual respondent utilities. The reason why simulation results may 

be impacted by bad data after all is the fact that their HB estimations are guided by the 

upper-level covariance matrix. For example, there may be positive or negative correlation 

between utilities of a certain brand and price utilities on an aggregate basis. Random data 

are price insensitive data (by definition) and by means of the covariance matrix this lack of 

price sensitivity may be associated more with certain brands and less with other brands. We 

see an example of this phenomenon in Table 2, in which respondents with random data are 

often classified in brand B at the cost of brand C. 

Table 2: Simulator Shares of “Good” Versus “Bad” Respondents 

 
Shares of good respondents (91% of 

original sample) 

Shares of bad respondents (9% 

of original sample) 

Premium brand A 27.0% 26.9% 

Premium brand B 16.3% 32.4% 

Mid tier brand C 24.7% 12.1% 

Low tier brand D 11.9%  9.3% 

Low tier brand E 16.2% 17.1% 

New brand F  3.9%  2.1% 

 

While this phenomenon may not take place in every CBC study, it is definitely a risk and 

is definitely a reason to check for bad data. 

CONCEPTUAL INTRODUCTION (ILLUSTRATED BY ONE EXAMPLE STUDY) 

This paper is largely based on the idea of adding records with random data to the actual 

respondents’ records, to then study the properties of estimates for the random records and 

classify real respondents as bad respondents if their estimates have the similar properties of 

the estimates of random records. 

The idea of adding records with random data is not new: it has been published before in 

https://www.sawtoothsoftware.com/help/lighthouse-

https://www.sawtoothsoftware.com/help/lighthouse-studio/manual/index.html?hid_web_maxdiff_badrespondents.html
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studio/manual/index.html?hid_web_maxdiff_badrespondents.html. After adding the random 

records to the file of the real respondents, HB is run, and we get utilities and RLH values for 

real respondents and random records simultaneously. 

The number of records added to the main data file is always approximately 1/6 of the 

number of real respondents, throughout this paper. We have determined this ratio in order to 

have, on the one hand, a large enough number of random records to base conclusions on, 

while on the other hand the upper model in HB will not too heavily be influenced by adding 

the random records. 

The software help page which was quoted before aims at identifying alternative cut-off 

values for RLHs to determine bad respondents. The theoretical (average) RLH for random 

data would be 1/(# of concepts), e.g., 0.25 in case of 4 concepts per screen. In practice a 

value as low as 0.25 is hardly ever reached because HB will always try and succeed in 

making some sense of the data, even of random data, so the help page provides a 

“correction” on the 1/(# of concepts) cut-off, e.g., around 0.32 in case of 4 concepts. 

However, as we see in Figure 3, this solution is not quite satisfactory. This example is 

also based on 4 concepts per task. We see here the confirmation that hardly any respondents 

are being classified as bad respondents by taking 1/(# of concepts) as a cut-off, hardly any 

records will be identified as random, but we also see that random data can get an RLH of 1.5 

times, or even incidentally of 2 times the minimum cut-off value. While taking the 

“corrected” cut-off value we would still fail to classify many random records as such. 

Figure 3: Histogram of RLH Values of Random Data 
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In addition, we have run Latent Class. Since the amount of random records is about 1/6 

of the real respondents, we initially imagined that running Latent Class with 6 groups would 

be ideal. That way we would have one group with random records (plus bad respondents) 

and 5 groups with regular (good) respondents. 

Not surprisingly, the latter hypothesis was confirmed: we had one group with nearly all 

random records. Figure 4 shows the histogram of probabilities of the random records to 

belong to that particular group. It is amazing to see that nearly all random records have a 

probability of more than 0.6 to belong to this group. While it is not 100% perfect (there are 

still a few random records that have a probability of less than 0.6), this is giving a much 

more robust confirmation of randomness than the RLH values before. 

https://www.sawtoothsoftware.com/help/lighthouse-studio/manual/index.html?hid_web_maxdiff_badrespondents.html
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Figure 4: Histogram of Probabilities of Random Data to Belong to the Random Group 
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Next, we combined the two previous measures (RLH and probability to belong in the 

random group) in a scatterplot. For the random records that gives us the picture in Figure 5 

where we see that nearly all random records have an RLH below 0.42 and a probability of 

belonging to the random group of more than 0.6, as depicted by the rectangle. 

Figure 4: Scatterplot of RLH and Probabilities to Belong to the Random Group 

(Random Data Only) 
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In Figure 5, on the next page, we have added the real respondents and it appears that 9% 

of the real respondents are in the same rectangle as the random records. We may therefore 

assume that those real respondents are characterized by having provided random data. 
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Figure 5: Scatterplot of RLH and Probabilities of Belonging to the Random Group 

(Real Respondents + Random Data) 
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Note that in this (simple) case both the RLH and the latent class probability contribute to 

the classification of random data. It may be the case that a real respondent is in the random 

latent class, but thanks to a decent RLH value they are not classified as a bad respondent. 

And vice versa. As we will later see, in the end we may even entirely refrain from using the 

RLH measure. 

Finally, in this example, in the raw data we have no fewer than 48 respondents who 

provide always the same answer in every choice task regardless of the content of that task; 

they are the so-called flatliners. For example, they always choose the second concept from 

the left. Theoretically it is possible that these flatlining patterns are just accidental and still 

driven by real preferences but the chances of that happening are tiny. We may expect that the 

large amount of them are in fact randomly answering the choice tasks. 

This is confirmed in the sense that no less than 38 of our flatliners nicely fall in the 

rectangle of random records. 

GENERALIZATION 

While the above introduction was illustrated by one data set, we have experienced that 

drawing conclusions on just one data set is too risky. In this section we will analyze four 

different sets, coded as K, L, N, and U. They are relatively similar data sets though: all four 

contain 5 to 8 attributes and they all four contain 500 to 2000 respondents. It may be tricky 

to extrapolate the findings below to cases with a very low number of respondents or a very 

low number of attributes. 

We will also take a more structural and efficient approach in the analysis, by using 

logistic regression models. The dependent variable is whether it is a real respondent or a 

random record; the independent variables are (various) RLH and LC measures. It should be 

emphasized that we are not directly predicting by what probability a respondent is a bad 

respondent (we can’t!), but rather we predict by what probability a record is a random record 

and we classify respondents with a high probability as a bad respondent. 
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EXCURSION: DENSITY VALUE IN UPPER MODEL NORMAL DISTRIBUTION. We have also tried 

to include another independent variable, namely the density value of respondents’ utilities in the HB upper 

model normal distribution, and non-linear transformations of it. We imagined that a low density value 

would provide a strong indication that we would not be dealing with a random record. However, this did 

not work out as expected. It was not just a matter of multicollinearity (density and RLH might have 

correlated too strongly) because even on its own the density value did not predict anything. So it still 

remains to be seen if we can interpret or use the upper model density value in any meaningful way. 

We started the modeling process completely from the beginning, just basing the model 

on RLH and (for now) ignoring what we have observed in the previous section. Well, in fact 

we took two measures of RLH, namely the RLH after a “full” HB run of 10,000 burnt 

iterations and 10,000 saved iterations, and an RLH after a “shortcut” HB run of 1,000 burnt 

iterations and 1,000 saved iterations. The two measures of RLH correlated hugely with each 

other, consequently the additional value of a full run in the prediction process is negligible, 

as shown in Table 6. We were relieved by that, because it implies that we can limit our HB 

efforts to shortcut runs (at least for the purpose of this paper, for determining an RLH). 

Table 6: Fit of Logistic Model Explaining Random Records by RLH 

Data set 

Pseudo R2 with 

RLH after 1K+1K 

iterations 

Pseudo R2 with RLH 

after 10K+10K 

iterations 

Pseudo R2 with both 

RLHs in the model 

K 0.262 0.271 0.271 

L 0.273 0.286 0.297 

N 0.390 0.339 0.394 

U 0.294 0.274 0.297 

 

Note, by the way, that the pseudo R2 in logistic regression (as introduced by Cox & 

Snell, 1989) is calculated slightly different than the R2 in linear regression. Most important 

to realize is that, in these four studies, the theoretical maximum value of the pseudo R2 is 

around 0.6 (rather than 1). So, the model fit is not as bad as it seems at first sight, but it is 

also far from perfect. 

When we now look at Latent Class as a predictor, we can also take multiple Latent Class 

variables. To start with, we have used Latent Class probabilities from a 6-group solution, 

and we have taken the Latent Class probabilities of a 20-group solution. An interesting 

finding here is, while 6 groups were the more “natural” choice of predictors (due to the ratio 

of adding random records to the data) it appears that, in three of the four studies, 20 groups 

predicts quite a bit better. In the case of 20 groups we also observed that there were multiple 

groups that were mainly populated by random records. Apparently, just by chance, they 

happened to be different enough from each other to form different groups. The obvious 

recommendation is to increase the number of LC groups as a matter of default data cleaning 

procedure. In addition, less surprisingly, we found that the additive impact of LC6 and LC20 

was quite small compared to LC20 on its own. 
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Table 7: Fit of Logistic Model Explaining Random Records by LC Solutions 

Data set 
Pseudo R2 with 6 

segments 

Pseudo R2 with 20 

segments 

Pseudo R2 with 6 and 

20 segments 

K 0.258 0.332 0.327 

L 0.198 0.240 0.269 

N 0.469 0.497 0.497 

U 0.423 0.413 0.433 

 

When we combine the “optimal” RLH (optimal from a combined performance and 

efficiency perspective) and the “optimal” LC there is only one study with a substantial 

increase of model fit, compared to taking only the “optimal” LC. In the conceptual 

introduction the RLH still seemed to play a role in determining random records but once we 

increase the number of groups in Latent Class significantly, the RLH simply becomes 

redundant in most cases. For the classification of respondents as “bad quality respondents” 

we can simply suffice with running a 20-group LC solution (or a high number anyway) on 

the data set after it has been supplemented with random data. 

Table 8: Fit of Logistic Model Explaining Random Records by LC Solutions 

Data set 

Pseudo R2 with 

RLH after 1+1 K 

iterations 

Pseudo R2 with 20 

segments 

Pseudo R2 with 

RLH1+1K and 20 

segments 

K 0.262 0.332 0.341 

L 0.273 0.240 0.367 

N 0.390 0.497 0.499 

U 0.294 0.413 0.455 

Note that we have tried many more models than described in this paper (especially with 

alternative LC solutions) but that did not lead to significant new insights. 

CONCLUSION 

RLH is a mere moderate indicator of data quality in CBC exercises. Respondents just 

answering randomly in the CBC tasks can much better be identified by the following 

procedure: 

• Add a substantial number of records with plain random data to the CBC datafile. 

• Run Latent Class with a high number (say 20 or 30) of groups. 

• Identify which group(s) contain the random records. 

• Real respondents in those same groups are the ones that should be removed. 
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BANDIT MAXDIFF: THE EFFECTS OF DESIGN PARAMETERS 

ON HIT RATES IN DIVERSE DATASETS 

NICO PERUZZI 
ELUCIDATE 

INTRODUCTION 

For over a dozen years, MaxDiff has been pushed to study larger and larger numbers of 

items. In 2007, Hendrix and Drucker used Augmented and Tailored MaxDiff to look at 40 to 

60 items. Wirth and Wolfrath (2012) examined upwards of 120 items with Sparse and 

Express MaxDiff. In 2015, Fairchild, Orme, and Schwartz introduced Bandit MaxDiff as a 

way to address upwards of 300 items. Finally, Orme (2018) pushed the limits by 

investigating 1,000 items with Bandit MaxDiff. The desire to explore the use of MaxDiff 

methods for very large item sets is well established and becoming more and more common 

in practice. 

Sparse MaxDiff emerged as a relatively preferred method for dealing with larger 

numbers of items (Chrzan, 2015). Sparse and Express MaxDiff both performed well, but 

Sparse showed a slight edge. However, as the number of items under study continues to 

increase, Sparse runs into problems of requiring longer questionnaires, more respondents, or 

both. “Sparse” is well named. Imagine 120 items, showing 5 items per set across 20 sets. 

With these settings, one is covering all items not even one time per respondent. Still, if one 

needs information about the bottom (worst) items in addition to the top (best), then one 

needs to stick with Sparse. However, if the focus is either only on the top (or bottom) items1, 

then Bandit has emerged as the most promising technique. 

HOW DOES BANDIT MAXDIFF WORK? 

Similar to Express MaxDiff, Bandit draws a subset of items (commonly 30) for each 

respondent. These items become the pool of items used to create the sets seen by each 

respondent. The difference is that Bandit uses Thompson Sampling to oversample items that 

are more preferred by the population. 

Thompson sampling works as follows: Bandit uses counting analysis “on-the-fly” to 

determine a best-to-worst order of items for all respondents who have completed the survey 

up to that moment. These item scores are the percent of wins from exploded paired 

comparisons. Bandit then perturbs the item scores with normally distributed error with 

standard deviation equal to the standard error for proportions (SQRT(pq/n)), sorts them, and 

selects the top items to be included in the subsequent MaxDiff sets. 

It’s not only the top items that are shown. To protect against non-representative early 

respondents, Sawtooth Software’s implementation of Bandit, by default, selects some items 

that have been seen the fewest times by respondents, to give these items a higher probability 

of being represented in the questionnaire. Importantly, for each new respondent each item 

 
1 Bandit MaxDiff can be used to prioritize sampling of the worst items and precision in prediction of these worst items if the “best” and “worst” 

labels are flipped in the questionnaire settings. 
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has a non-zero chance of being selected as one of the (typically) 30 items to be evaluated. 

The number of top items included can be varied by the researcher, with the remainder of the 

items selected among those items seen fewest times to this point by respondents. 

The impetus for this current research came after viewing the chart below from the 2015 

research of Fairchild, Orme, and Schwartz. 

Exhibit 1: Top 10 Hit Rate at Various Sample Sizes for Fixed Sparse 

vs. Bandit on a 120-item Dataset 

 

That 2015 research showed that Bandit was able to achieve hit rates as good as a fixed 

Sparse design using approximately one-fourth the sample. Sometimes, sample size isn’t the 

practitioner’s biggest concern. Often, concerns regarding survey length and complexity are 

of equal or greater concern. Thus, the current research focused on what could be done to 

shorten survey length and reduce survey complexity. 

WHAT ARE THE PARAMETERS ONE CAN ADJUST IN BANDIT, AND WHY SHOULD 

WE CARE? 

Before turning to possible parameter adjustments in Sawtooth Software’s 

implementation of Bandit, we considered common differences that may be found in research 

datasets. 

• The number of items studied was investigated, as we questioned whether parameter 

adjustments would generalize across different sized datasets. 

• We also examined the amount of error present in the dataset, as we were curious if extra 

error in the dataset would affect hit rates, and to what extent. Dataset error can be 

conceptualized as “noise” and can be viewed as a proxy for sample quality (poorer 

quality equals more noise and vice versa) and length and complexity of items (more 

confusing or lengthy item descriptions equals more noise and vice versa). 
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Turning to the actual parameter adjustments that can be made to Bandit’s scripting 

function, we explored the following: 

• The number of items shown to each respondent. We believed that showing fewer items 

could reduce the cognitive load on respondents, particularly if item descriptions were 

long or complex. The question was whether such a reduction would negatively affect hit 

rates. 

• The number of items drawn using Thompson sampling (level of adaptivity) deals with 

what proportion of items likely to be the “stars” according to Bandit’s on-the-fly counting 

analysis are carried forward into subsequent respondents’ item sets. (The remaining items 

are drawn from among those items seen fewest times by previous respondents.) To what 

degree would more or less adaptivity affect hit rates of the top items? 

• The number of screens (sets) shown to respondents. As one of our primary interests was 

reducing survey length, we explored how far we could reduce exercise length. 

To summarize, we studied to following: 

• Number of items: 60, 120 

• Amount of error in dataset: Standard, High 

• Number of items shown per respondent: 20, 30, 40 

• Number of Thompson items (level of adaptivity): 5/6, 1/2 

• Number of screens (sets) per respondent: 6, 12 

The above variables created a total of 48 experimental cells. 

THE EXPERIMENTS 

We used robotic respondents to simulate results for each experimental condition and 

conducted 20 replications with unique random seeds for each of the 48 experimental cells. 

Robotic respondents answered according to true HB utilities plus Gumbel error. The true 

utilities came from real respondents from the core research dataset from Procter & Gamble 

on which the original Bandit experiments were conducted (this dataset had 120 items and 

984 respondents). All tasks showed 5 items per set. 

We created 4 core datasets: 

• 120 items standard error: used all items from the original research dataset and randomly 

selected 300 respondents (see below). 

• 120 items high error (double the standard error): used all items but doubled the Gumbel 

error created in the robotic respondent simulations. 

• 60 items standard error: randomly selected 60 items from the original 120. 

• 60 items high error: used the same 60 items randomly selected above, but doubled the 

Gumbel error. 

For each of 20 replications per experimental cell, 300 unique respondents were randomly 

selected and sent through the Bandit MaxDiff exercise. N=300 was chosen as past research 

showed this sample size providing strong hit rates (given 120 items), with plateauing 

beyond this number. For each replication, these 300 unique respondents answered according 

to the true HB utilities plus Gumbel error (to approximate the variation in human behavior). 
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Hit rates were determined as follows. The actual aggregate top 10 items from the 60 and 

120 item true utilities datasets were determined by averaging across the true utilities of all 

984 respondents. Top 10 hit rates were defined as the number of top 10 items from each 

replication in each experimental cell in our experimental trials, as estimated via pooled logit, 

that matched the true top 10 items in the original dataset. We used a single, simple measure 

of hit rates to provide an apples-to-apples comparison across conditions where the focus was 

on relative differences between experimental cells. 

RESULTS 

In the table below, top 10 hit rates for each experimental variable were collapsed across 

all other variables. Therefore, N=480 iterations exist across groups for all 2-level groups, 

and N=320 iterations for the 3-level group (Items Shown). 

Exhibit 2: Main Effect Top 10 Hit Rate Comparisons across Levels 

of Each Experimental Variable 

 

For the Number of Items Shown, interestingly, we found no statistically significant 

differences in hit rates; though we might have detected a statistically significant difference if 

we continued with more replications using different random seeds. If the concepts under 

study are complex, showing respondents a smaller subset of these items (so they have fewer 

items to orient to) could make their decision process easier to manage. Since we do not lose 

much in terms of predictive accuracy (hit rate), researchers can consider this option. 

For Thompson Sampling, more aggressive adaptivity produces better hit rates in the top 

10 items. To clarify the notation in the chart, 1/2 (5/6) means that half (five-sixths) of the 

items drawn for the respondent use Thompson Sampling and the other half (one-sixth) are 
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drawn from items seen fewest times by previous respondents. As expected, we are better 

able to home in on top items when we place greater focus on what we are learning from 

previous respondents (the 5/6 setting). (Though this reduces the precision on items of 

middling or lower preference.) 

For Total Items, of course, the more items we have the harder it is to identify the true top 

10, due simply to probability; and with more items, each item is shown fewer times across 

tasks and respondents leading to worse precision in the logit utility estimates. 

For Screens (Sets) Shown, not surprisingly, showing more screens achieves a better hit 

rate. Although we did not test more than 12 screens in this study, we know from past 

research that showing 18 screens did not achieve vastly higher hit rates than what we see 

here for 12 screens. Our goal was to test the lower limit, and there is certainly an effect on 

hit rate when dropping down to only 6 sets due, again, to the reduction in the number of 

times each item is seen. 

For Dataset Error, as expected, the more error (noise) in the data, the worse the hit rate. 

If one is working with sample sources expected to be more “dirty” or with item concepts 

expected to be difficult for respondents to understand, take care to set other parameters such 

that they will be best able to achieve the highest hit rates possible (i.e., show more screens 

and use 5/6 Thompson Sampling). 

This recommendation holds across all the variables above—a cleaner dataset with fewer 

items allows for more manipulation of Bandit settings to sub-optimal levels, whereas a 

dirtier dataset with more items calls for Bandit settings to be set at optimal levels. Note, if 

additional sample is available, adding more sample (up to a point) will improve hit rates as 

more respondents will see more items more often, thus improving logit utility estimates. 

Few 2-way interactions proved statistically significant, and those that were had limited 

effects. However, a couple are worth mentioning. 

The effect of more dataset error was more pronounced on the larger item dataset (Exhibit 

3). Again, if one is working with a dataset expected to have more noise, the larger the total 

number of items, the more one should keep all adjustable parameters at optimal levels. 
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Exhibit 3: Interaction between Dataset Error and Total Number of Items 

on Top 10 Hit Rate 

 

When only showing 6 screens, the drop in hit rate from 60 to 120 total items is more 

pronounced than the drop seen when showing 12 screens (Exhibit 4). If one is trying to limit 

the number of sets shown, consider the total number of items. The more items, the more risk 

you take by reducing sets. 

Exhibit 4: Interaction between Screens (Sets) Shown and Total Number 

of Items on Top 10 Hit Rate 

 

SUMMARY TAKEAWAYS 

In general, Bandit MaxDiff is fairly robust to all the experimental treatments examined 

in this research. When approaching any Bandit study, the considerations below provide 

some guidance. 

First, consider the number of items under investigation and how “noisy” a sample source 

is available. The more items and more sample noise, the more one should optimize 

parameters to make hit rate success as likely as possible. 
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Second, consider the length and complexity of item descriptions. The more potential 

noise caused by item complexity, the more one should optimize parameters to make hit rate 

success as likely as possible. 

In an effort to reduce respondent burden, look for opportunities to decrease the number 

of sets and the number of unique items shown to each respondent. Number of items shown 

is the best candidate for reduction without a significant negative impact on hit rate. 

Reduction in number of sets does affect hit rate, so consider reduction in number of sets in 

the context of total number of items and potential dataset error. Fewer items and less noise 

gives more opportunity to reduce number of sets. Again, increasing sample size can help 

buttress loss in predictive accuracy (i.e., lower hit rate) when adjusting other parameters to 

sub-optimal levels. 

To drive home the above recommendations, consider the following project scenarios: 

A 60-item naming study containing short and simple item descriptions. We have a low 

number of items (low for Bandit, that is) and we anticipate low dataset error due to the 

simple item descriptions. Reducing the number of items shown to each respondent is less 

relevant as the items are so simple. Reducing the number of sets will help reduce survey 

length and will have a limited effect on hit rate. Set Thompson sampling at 5/6, and if 

available, consider increasing sample size. 

A 120-item feature study with long and complex item descriptions. With a larger number 

of items and greater anticipated error due to long and complex item descriptions, reducing 

the number of sets shown is less practical. However, the number of items shown to each 

respondent could be reduced from 30 to 20 in an effort to reduce the cognitive load on 

respondents. Set Thompson sampling at 5/6, and if available, consider increasing sample 

size. 

A 90-item benefits study with moderately complex item descriptions. Reducing the 

number of sets could reduce respondent burden, however, at this length and amount of 

anticipated error, hit rates could be moderately negatively affected. Consider reducing 

number of sets a small amount (for example to 9 or 10 sets from 12). Reducing the number 

of items shown to each respondent is possible with limited negative impact on hit rates and 

could be used to reduce the cognitive load on respondents. Set Thompson sampling at 5/6, 

and if available, consider increasing sample size. 

FUTURE RESEARCH 

Does reducing the number of items shown below 20 have an effect on hit rate? How far 

can we push it down? Taking this idea to an extreme, we need to be concerned about 

redundancy. As an example, if we only showed 5 items, the set of items shown to 

respondents would be the same every time. 

What else could be explored regarding dataset composition? Does tight vs. disperse 

clustering in the utilities of the top 10 items affect hit rates? Some studies may have a set of 

top 10 best items that have utilities very close to each other, whereas other studies may have 

greater diversity in the utilities of the top 10. Exploring hit rates of the top 3, 5, 7, etc. might 

reveal different effects of the variables tested in this study. 
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What about hit rates farther down the item list? Although Bandit is focused on the “top” 

items, top 10 is a somewhat arbitrary marker. What if there is interest in the “next 10” or 

some other number farther down the best-to-worst item ranking? Do changes in the level of 

adaptivity (the Thompson sampling parameter) make a difference in hit rates? 
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TREES, FORESTS, AND SITUATIONAL CHOICE EXPERIMENTS 
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INTRODUCTION—SITUATIONAL CHOICE EXPERIMENTS 

A situational choice experiment (SCE) differs from Choice-Based Conjoint 

(CBC) experiments in that the experimental design features attributes and levels that 

describe the choice situation rather than the choice alternatives. In other words, the 

attributes and levels are invariant across the choice alternatives. A common example 

occurs in pharmaceutical marketing research, where we might create a set of 

experimentally designed patients, defined in terms of therapy-relevant attributes such 

as demographics (age, sex), their disease state (therapy history, progression, stage), 

concomitant conditions, and insurance coverage. We might then have physician 

respondents choose which of several therapies they would prescribe to each of the 

patients described in the experimental design. For example, here is a disguised 

example of one SCE question from a recent study for a pharmaceutical client: 

 

As in a CBC, we would ask several of these questions and subsequent questions 

would describe different patients (e.g., an inactive, non-smoking 62-year-old man 

with a BMI of 30.0 and moderate anxiety). 

Other examples of SCEs include (a) modeling retirement decisions among end-

of-career workers as a function of economic factors, (b) modeling the 

purchase/rent/neither decision about an expensive industrial durable as a function of 

the attributes and levels of that product, or (c) modeling consumers’ preferences 
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among compensation options for service failures, as a function of attributes and 

levels describing those failures. 

Rather than the conditional multinomial logit (MNL) used on CBC experiments, 

which produces a single vector of utilities from a set of profiles that describe the 

different choice alternatives, we can use polytomous (or unconditional) MNL to 

estimate utilities. With each of the several choice tasks including just one 

experimentally designed profile that is invariant across choice alternatives, the 

polytomous logit produces alternative-specific sets of utilities; in the example above, 

the polytomous MNL model would produce utilities for each level of each attribute, 

plus an alternative specific constant, for each of the five choice alternatives (Hosmer 

and Lemeshow, 2000; Hoffman and Duncan, 1988). For example, the utilities from 

the experiment above might look like this: 

 

Attribute Level Lotomil Vicodin Darvon Opana Diet and Exercise 

25 year old 0.42 1.07 -0.29 -0.45 0 

43 year old -0.46 -0.42 0.84 0.40 0 

62 year old 1.15 -0.56 0.79 0.50 0 

81 year old 0.36 1.18 -0.83 -0.15 0 

88 year old 0 0 0 0 0 

. . . . . . . . . . . . . . . . . . 

No anxiety -1.60 -0.25 1.27 -0.02 0 

Moderate anxiety -0.67 -0.13 -0.93 -0.71 0 

Severe anxiety 0 0 0 0 0 

Note that the Diet and Exercise column has all zeros because it serves as the 

reference level that allows the model to be identified. 

As we do with CBC, we can use these utilities to build a simulator so that our 

clients can run sensitivity analyses and see how the share results change across 

different patient profiles. More so than for CBC, we encourage clients to interpret the 

model using a simulator rather than any kind of narration of the utilities, for reasons 

the complexity of the model makes clear. 

MACHINE LEARNING MODELING OPTIONS 

While it’s natural for choice modelers to think about using logit to estimate utility 

functions, several machine learning methods may also apply. For example, 

Classification and Regression Trees (CART) can predict categorical variables like a 

brand choice (Breiman et al., 1984). Decision tree analyses like CART usually come 

up when a client wants segmentation (e.g., a patient type segmentation in the 

example above). We can also use trees for prediction. Visualization provided by the 

tree may be easier for some clients to absorb than a polytomous MNL model with 

five vectors of utilities as above. For example, for the disguised study above, the tree 

might look something like this: 
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In addition to trees, we might think about analyzing our SCE with random forests. 

As the name suggests, random forests analysis doesn’t give us a single tree, but 

rather a large number of trees, each with some random perturbations (random subsets 

of respondents, random subsets of predictors at each node). The random 

perturbations effectively “de-correlate” the trees so that the forest doesn’t suffer from 

the collinearity problem that can affect individual trees (while an SCE uses a 

designed experiment to create the profiles, the collinearity problem can be severe 

when modeling observational or cross-sectional data). Random forests analysis 

enables predictions and it provides a measure of attribute importance we could report 

to our clients (Breiman, 2001). We can construct forests from different kinds of tree 

models, so in addition to building a forest from CART trees, we could build one from 

conditional inference trees—a specific variety of tree model designed to avoid 

favoring splits on continuous attributes or attributes with otherwise large numbers of 

levels (Hothorn et al., 2006). 

Another possibility is boosting, which involves building a succession of trees 

where each tree models the prediction errors of the previous tree. Individual trees 

each add a bit to the prediction of the overall model. A variety of hyperparameters 

control the model estimation process. The first boosting model we will consider is 

“eXtreme Gradient Boosting” (XGBoost). 

XGBoost is a fast, regularized implementation of gradient boosting. 

Regularization is a technique employed to combat a common problem in boosting 

models known as overfitting. Overfitting happens when our model conforms very 

closely to the data used to build the model and consequently does a poor job of 

predicting new observations. Regularization makes XGBoost a more robust and 

accurate variant of gradient tree boosting. 

The “eXtreme” in “eXtreme Gradient Boosting” refers to the engineering 

involved in pushing computational resource limits for the model through: 

• parallelizing split finding with each tree, 
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• pre-analysis transformations of the data, and 

• utilizing partially compiled code, 

as well as a variety of additional enhancements causing XGBoost to train models 

quickly. It also enables the model to effectively scale up to large data sets. 

XGBoost requires categorical features to be dummy coded using the “One-Hot-

Encoding” scheme. This approach replaces each level of the categorical feature with 

its own column of 1s and 0s as illustrated below: 

 

It’s clear from the above illustration that “One-Hot-Encoding” may result in a 

substantial increase in data matrix dimensionality, particularly when our categorical 

features are of high cardinality (many levels). While datasets used in this study did 

not include categorical features of unusually high cardinality, it was the case that 

ALL features in every model were categorical. Since many features with average 

cardinality may also result in an undesirable increase in data dimensionality, it was 

decided to employ an alternative approach, CatBoost, a boosting algorithm which 

provides native support of categorical features. 

CatBoost is a relatively new, open source, machine learning library based on 

boosted gradient decision trees, created by a Russian company called Yandex 

(Dorogush et al., 2017). It offers native support for both numerical and categorical 

features. The model addresses overfitting through something called “ordered 

boosting.” Basically, ordered boosting involves permuting all observations in the data 

set and then predicting the value of the categorical variable in question using only the 

previous observations in the ordering. 

While CatBoost may use “One-Hot-Encoding” for categorical features, it can also 

re-code categorical features directly using an approach referred to as “ordered target 

statistic encoding.” Again, briefly, this entails permuting the data and replacing the 

levels of the categorical variable with a number. The number is calculated using 

previous cases in the permutation.1 

This prevents an increase in data set dimensionality and hence CatBoost was 

chosen as an alternative to the XGBoost model. 

CatBoost boasts superior prediction speed utilizing GPU processing power and 

comparatively stable hyper-parameters which therefore requires less model tuning. 

CatBoost proved to be significantly slower to train however, making model 

exploration more difficult and time-consuming. 

 
1 For a more detailed description of both “ordered boosting” and “ordered target statistic encoding” see “CatBoost: unbiased boosting 

with categorical features” by Dorogush et al.) 
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PREVIOUS RESEARCH 

Bock (2019) compares the results of using a decision tree and a logistic 

regression to analyze data from an experiment with a binary dependent variable. 

Finding that the decision tree predicted the binary choice better than did the logit 

model, Bock also notes that the decision tree enabled a better story to communicate 

the meaning of the model. 

Brathwaite et al. (2017) note that because they can uncover non-compensatory 

choice processes, decision trees make good sense from a micro-economic standpoint. 

Using a cross-sectional (i.e., non-experimentally designed) data set, Brathwaite et al. 

found that a Bayesian decision tree predicted consumers’ choices better than did a 

polytomous MNL model. 

Again using cross-sectional data (respondent-reported travel mode choices) to 

build a revealed preference model, Sekhar et al. (2016) found that a random forest 

model predicted those choices better than did a MNL model. 

Finally, Lhéritier, et al. (2017) used observed behavioral data (flight bookings) 

and again found that random forests predicted fliers’ choices more accurately than 

did MNL. 

Our review of the literature comparing logit choice models with trees and forests 

suggests the superiority of the latter. 

EMPIRICAL STUDY FOR PREDICTIVE VALIDITY 

The first of several comparisons we want to make of logit models, decision trees, 

random forests, and CatBoost involves predictive validity. 

Data 

The analyses below use 10 empirical data sets. The first nine in the table below 

come from situational choice experiments in which physician respondents made 

decisions based on experimentally designed patient profiles. The tenth study used 

data drawn from patient records, so the patient profiles lacked experimental control, 

but the patient profiles and therapy choices were real, not hypothetical. 
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Study 

MNL 

parameters Respondents 

Tasks/ 

Respondent 

Alternatives/

Task 

1 75 313 7 6 

2 38 70 6 3 

3 40 95 14 3 

4 26 253 12 3 

5 39 320 15 4 

6 36 710 7 5 

7 102 600 13 7 

8 42 110 16 3 

9 84 400 8 8 

10 22 286 5 3 

The large number of parameters in each model owes to the fact that each choice 

alternative has its own alternative-specific set of utilities. Of course, the parameter 

count applies only to the logit model, but it effectively communicates how complex 

those models can be. The largest study had 13 x 600 = 7,800 observations while the 

smallest had just 420 observations. 

Models 

We built the following choice models for each of our 10 data sets: 

• Polytomous MNL 

• CART decision tree 

• Random forest of CART trees (RF) 

• Random forest of conditional inference trees (cforest) 

• CatBoost 

Model Training and Evaluation 

Training the CatBoost model involves identifying optimal values of parameters 

that control model estimation, aka “hyperparameters.” The primary CatBoost 

hyperparameters include: 

• Maximum tree depth 

• Leaf estimation iterations 

• Learning rate 

• Iterations total 

• Border count (number of splits considered for each feature) 

A grid search across all combinations of hyperparameter levels was performed 

using the caret package in R. The caret package begins by selecting a single set of 

hyperparameter levels from a matrix composed of all combinations of specified 

levels (this matrix is generated by caret as well). 
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With a selected set of hyperparameters, caret performs n-fold (in this case n=10) 

cross validation, averaging predictive accuracy across the estimated models. The 

final average provides a measure of accuracy for the CatBoost model based on the 

specific hyperparameter value set selected. Caret then selects another set of 

hyperparameter levels and repeats the process. A comparison of the of accuracy for 

each model (one for each unique combination of hyperparameter levels) is used to 

select the optimal model. The optimal model is then applied to the “test” data to get a 

measure of accuracy based on data that was not involved in the model estimation. 

An illustration of the caret model hyperparameter search algorithm described 

above is given below: 

 

Results 

The test of predictive validity (hit rates) produces clear results: CatBoost predicts 

better than the other models in every one of the 10 studies: 

Study MNL CART RF cforest CatBoost 

1 44.5 42.9 41.7 41.4 45.2 

2 60.0 59.3 58.8 59.0 61.4 

3 64.0 66.2 62.3 64.7 72.5 

4 57.7 57.8 56.8 57.2 59.1 

5 49.7 49.4 48.4 48.8 51.1 

6 48.1 48.4 47.6 48.2 49.7 

7 35.5 35.1 35.0 34.7 36.5 

8 51.3 50.8 48.9 51.0 51.7 

9 41.7 42.2 42.3 41.9 46.7 

10 61.5 61.1 63.1 62.6 63.4 
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Our results suggest the computational cost (the additional time spent training the 

CatBoost model) was worthwhile as its predictive accuracy consistently proved best. 

After CatBoost, MNL predicts better than CART in 6 of the 10 studies, and better 

than a forest in 6 of the 10 studies. Thus, we are unable to replicate the results we 

found in the literature review about the superiority of trees and forests over MNL for 

choice modeling applications. Nor did our studies show the predictive superiority of 

forests over trees (in fact, the CART decision tree outperforms both random forest 

models, in terms of prediction, in 7 of the 10 studies). We suspect this latter finding 

may owe to the nature of our data. Our experimentally designed profiles in studies 1–

9 prevent collinearity among predictor variables, so methods like random forests that 

use sample and variable randomizations to counteract collinearity just don’t have the 

advantage they might in a cross-sectional study (and in the only cross-sectional data 

set we have, study 10, random forest methods do outperform both the CART decision 

tree and the polytomous MNL model). 

EVALUATION 

In terms of prediction, CatBoost performed better than all the other models. If 

your only goal for a SCE is in predicting choices, then CatBoost appears to be the 

way to go. 

Often clients want not only to predict choices, but to understand them as well, so 

explanation can also be important. CatBoost is something of a black box when it 

comes to explanation. Random forests provide importance scores, which, while they 

don’t map directly to choices, help explain which attributes drive the choices. 

Polytomous MNL, with its coefficients, standard errors, and odds ratios, lends itself 

to explanation and inference. Decision trees also explain choices, via a series of if-

then dichotomies. 

Decision trees have a further advantage in that they allow us to visualize the 

respondents’ decision process. Clients often speak in terms of wanting to understand 

“decision hierarchies” and the graphical output of a CART analysis provides exactly 

such a hierarchy. 

Finally, clients typically want an Excel simulator as a deliverable for their SCE 

study. Polytomous MNL provides logit-based simulations familiar to choice 

modelers. Decision trees, simply using a set of if-then rules, also work well when 

brought to life in Excel simulators. Simulations are possible with random forests; 

though these are easy to do in R (simply run a new data set through the forest built 

from your experimentally designed data and give each tree one “vote”), building one 

in Excel would be a formidable feat. Like a random forest, CatBoost would be 

difficult to build into an Excel reporting tool. 

RECOMMENDATION 

If your only objective is accurate prediction, use CatBoost. If you need to 

understand what drives respondents’ choices, use decision trees or polytomous MNL 

—both methods show how attributes and attribute levels relate to choices, the former 
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in a more statistical way and the latter in a way more amenable to visualization. Also 

consider decision trees if your client mentions wanting to understand a decision 

hierarchy. 

 

   

 Keith Chrzan Joseph Retzer 
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ABSTRACT 

For valid economic interpretation a conjoint analysis must include, at a minimum, 

each alternative’s brand name, prices, and an outside “no-choice” option. Brand 

names serve as proxies for the attributes not mentioned in the study, and prices 

allow for economic calculations. The no-choice option is offered in case 

respondents determine that some other offering, not included in the choice set, is 

preferred to those included in the choice set, or that it is better for them to hold 

on to their money and not make a purchase. Thus, selecting the no-choice option 

assumes that respondents have some knowledge of the prices and features of the 

real marketplace. In this paper, we examine the effect of providing respondents 

with information about the prices and features of real category options on 

conjoint preference estimates. Using a national sample of respondents in the tooth 

whitening category, we find that conjoint estimates are surprisingly robust to the 

information provided about existing marketplace options. 

1 INTRODUCTION 

Conjoint analysis relies on an economic view of choice where respondents are 

able to recall and construct their preferences for hypothetical offerings (Ben-Akiva 

et al., 2018; Manski et al., 1981). The utility part-worths for product attributes and 

their levels are assumed to be recalled independently for each product feature and 

combined with other part-worths to arrive at an overall measure of utility that 

determines preferences. The independence assumption is needed to rationalize 

choices in terms of part-worth utilities and provides a basis for using different 

respondent choices to obtain a common set of part-worth estimates. Interactions 

among attribute-levels are accommodated by including appropriate terms in the 

model specification, with the assumption that these interactive effects can also be 

independently recalled by respondents (c.f., Lichtenstein and Slovic (2006)). 

The minimal requirements for conducting a conjoint study to study marketplace 

demand is the inclusion of product brand and price. Brand is needed for 

respondents to imagine the offering and recall associated attributes and levels of 

performance. The brand name serves as a proxy for the unmentioned attributes of a 

brand in a conjoint study, and consumer knowledge of these features is what gives 

the brand names its value. Price is required because marketplace transactions 

involve prices that are also needed to compute measures of economic value, such as 

willingness to pay (WTP) and price premiums (Allenby et al., 2014b). A conjoint 
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analysis with only brand and price is often referred to as a brand-price tradeoff study 

(Rao, 2014). However, conjoint studies usually include other product attributes or 

features of interest to the analyst. Attributes that are familiar to and understood 

by respondents factor into their choices, but those that are unfamiliar or not 

understood are less important in the decision process (Balbontin et al., 2017; 

Sandorf et al., 2017). 

The “no-choice” option in a conjoint study allows respondents to choose 

something other than one of the brands included in the choice task (Brazell et al., 

2006). Not only does the no-choice option serve to increase the realism of the 

respondent’s decision, it can improve the resulting market share and volume 

predictions from the analysis (Carson et al., 1994). By selecting the no-choice 

option, respondents are indicating preference for an outside option, or the desire to 

opt out of the market altogether and save their money. This allows respondents to 

compare the utility of the alternatives in each choice task to some fixed level of 

utility they know they could achieve outside of the market (Louviere et al., 2010; 

Bahamonde-Birke et al., 2017). This interpretation of the outside good choice is valid 

only if consumers are familiar with the attributes and prices of the outside options 

left out of the survey. 

Consider, for example, the price of assisted living care for the elderly. It is 

doubtful that individuals would be aware of the daily rate of assisted care unless they 

were involved in the financing or arrangement of care for an elderly person. 

Respondents probably have a much better grasp on the incremental value of 

increased services, such as improved dining options. Since the selection of the no-

choice depends on the overall price level of outside options, there is a chance that 

it is selected at a rate that is not consistent with how respondents actually act in 

the market where they are spending their own money for goods and services. 

Surveys routinely screen for respondents who are “in” the market using questions 

about purchase intent, purchase history, and participation in the buying decision 

(Ben-Akiva et al., 2018). In addition to assuring familiarity with the product 

attributes, screening questions provide some degree of assurance that consumers 

are viable prospects in that they are expressing their willingness and ability to make 

purchases in a product category. Moreover, screened participants have a higher 

likelihood of being aware of general price levels because of their past or intended 

purchase activities. 

The purpose of this paper is to examine respondent sensitivity in a conjoint 

study to information about marketplace prices and product features. If standard 

screening questions about product participation are sufficient for identifying 

qualified candidates who are aware of marketplace prices, then providing 

additional pricing and attribute information will minimally affect part-worth 

estimates. However, if survey participation questions are an insufficient proxy for 

brand price and attribute knowledge, then providing price and attribute information 

will change consumer preferences for the outside good and part-worth estimates 

in general. Invariance of consumer choices to outside good information is 

therefore fundamentally related to the assumption that the economic view of 
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preference construction is valid for conjoint studies with properly screened 

respondents. 

The organization of this paper is as follows. Section 2 provides a description of 

the conjoint survey including screening questions and the experimental stimuli 

used to test the robustness of the part-worth estimates. Section 3 summarizes the 

data and model parameter estimates based on a standard hierarchical Bayesian 

random-effects model. A comparison of results across information sets is provided 

in Section 4. Section 5 provides concluding comments. 

2 TOOTH-WHITENING STUDY 

We investigate the effect of outside good information on respondents’ choices 

using a conjoint study of tooth-whitening products. Participants were recruited 

from a national panel for participation. The tooth-whitening category was selected 

because products exhibit large price variation and a variety of product attributes. A 

list of product attributes used in the survey are presented in Table 1 along with their 

definitions. 

Table 1: Products Attributes, Definitions, and Levels 

Attribute Definition 
Levels 

1 2 3 4 5 6 7 8 

 
Brand 

 
The brand name of the teethwhitening product 

 
Crest 

 
PluWhite 

 
Rembrandt 

 
GoSmile 

 
Auraglow 

 
Luster   

 
Form 

 
The method of application of the product 

 
Strips 

 
Pen 

 
Trays + Gel 

 
Light Tech 

    

Treatment 

Time 

The total suggested time for a single whitening 

treatment 

 
5 

 
15 

 
25      

Number of 

Treatments 

The total suggested number of whitening 

treatments to be completed 

 
7 

 
14 

 
21 

     

Time Until 

Results 

The claimed amount of time until consumers 

should see visibly whiter teeth 

 
3 

 
7 

 
14 

     

 
Peroxide % 

The percentage of the active ingredient 

(hydrogen peroxide) contained in the product 

 
6 

 
7 

 
8 

 
9 

 
10 

 
11 

 
12 

 
13 

 
Price 

 
The price of the product 

 
14.99 

 
24.99 

 
34.99 

 
44.99 

 
54.99    

Individuals responding to the Internet panel provider’s invitation to participate 

were presented with a series of screening questions to determine whether the 

potential respondent was “in” the product category and had sufficient knowledge to 

provide informative answers to the survey questions. To be included in the survey, 

respondents must make their own hygiene purchases, be medically qualified to use 

the product, and be engaged in or actively considering buying some offering in the 

product category. The screening questions used in the survey are presented in Table 

2. 
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Table 2: Screening Questions 

 

Which of the following describes your level of involvement in 

purchasing hygienic products (soap, shampoo, toothpaste, etc.) 

in your household? 

o I do all of the purchasing of hygienic products in 

my household 

o I share the responsibility of purchasing hygienic products 

in my household 

o I am not involved in purchasing hygienic products in 

my household 

 

Please select all of the following dental/orthodontic work you 

CURRENTLY have or PLAN to have done in the next three 

months. 

o Braces 

o Dentures 

o Caps, crowns, veneers, or fillings—not visible when 

smiling (back teeth) 

o Caps, crowns, veneers, or fillings—visible when smiling 

(front teeth) 

 

Have you purchased a teeth whitening product in the past? 

o Yes 

o No 

 

Would you consider buying a teeth whitening product? 

o Yes 

o No 

Qualified respondents who successfully passed the screening questions were 

then required to watch a short video describing the choice task and defining the 

product attributes and their levels.1 Respondents were then randomly assigned to one 

of three experimental conditions. The first condition did not provide any 

information about marketplace prices or attributes and serves as a control group for 

the other two conditions. 

The second experimental condition provided respondents with the range of 

prices for the different brands under study as well as brands not included in the 

survey. Prices were obtained from the posted prices on Amazon.com. Figure 1 

displays the information provided to respondents. 

Figure 1: Price Distribution 

 

 
1 The video can be viewed at https://mediasite.osu.edu/Mediasite/Play/947f2aa2ec284abbb1166d66df86d8711d 
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The third experimental condition provided information about the relationship 

between brand, price, and the effectiveness attributes. Graphs comparing price to 

time per treatment, number of treatments, time to results, and percentage of peroxide 

were explained to respondents and show in succession. Figure 2 displays the price 

versus time per treatment graphic shown to respondents. 

Figure 2: Price vs. Time per Treatment Graphic 

 

Conjoint choice tasks were then presented to the qualified respondents, asking 

them to identify their most preferred offering from among those chosen. Each choice 

task included three different brand names and an outside option from which 

respondents indicated their preferred brand. Each respondent was asked to indicate 

their preferences across 12 choice tasks. The attribute levels were experimentally 

manipulated across the choice tasks according to principle of statistical 

experimental design (Box et al., 1978) so that they were statistically identified. An 

example choice task is shown in Figure 3. 



136 

Figure 3: Example Choice Task 

 

The survey ended with a series of demographic variables to help assess the 

representativeness of the sample population. A total of 1141 qualified respondents 

completed the survey and provided information about their preferences. The number 

of respondents was evenly split across the three experimental conditions. 

3 PARAMETER ESTIMATES 

During estimation, two additional data screens were employed to remove 

respondents who did not appear to take the survey seriously. Respondents were 

screened from inclusion of the study if they were found to straight-line their 

responses by always selecting a choice alternative in the same position (e.g., the 

left-most) in the choice task. This eliminated 44 respondents from the analysis. An 

additional, model-based data screen was implemented to guard against respondent 

guessing. This was accomplished by fitting a hierarchical multinomial logit model 

to the full dataset and using the resulting individual log likelihood values to screen 

out guessing respondents. Guessing produces unreliable estimates of part-worths 

and price responsiveness that artificially inflates estimates of the economic value 

of the part-worths. Guessing can be detected by low probabilities of choice as 

predicted by the model. A person providing random answers to the choice task 

would lead to low predicted choice probabilities. By analyzing only those 

respondents who were somewhat predictable in their choices, one can obtain 

demand estimates and assess model results that reflect an engaged set of 

respondents. 

The conjoint tasks in the survey involve making choices from among three 

alternative teeth-whitening products and a no-choice option. A person guessing at 

random among the four alternatives would result in a naïve choice probability of 

0.25 (i.e., 1/4) for each of the alternatives. As a respondent’s choices become more 

predictable, the probability of the chosen alternative increases. We set a minimum 

threshold of 0.40 as the average choice probability for a respondent. That is, 

respondents with an average fitted choice probability of 0.40 or less are screened 
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out of the dataset, while those with an average choice probability above 0.40 are 

retained. This additional data screen resulted in 12 respondents being eliminated 

from analysis, leaving a total of 1085 respondents across the three experimental 

conditions. 

In all three experimental conditions the “I would not choose any of these” option 

was chosen around 20% of the time, indicating similar preferences for the 

outside good across conditions. Table 2 reports the posterior mean and standard 

deviation of the random-effects distribution for the three experimental 

conditions— condition 1 where no information is provided about competitive 

prices, condition 2 where price information is provided, and condition 3 where 

price and attribute information is provided. Approximately 95% of the mass of 

heterogeneous responses is within plus or minus two posterior standard deviations 

of the mean. A comparison of the random-effects distribution for the three 

conditions indicates similarity in the outcome measures, implying that informing 

respondents of a broader array of marketplace prices and attribute performance 

has little effect on the estimated part-worths. A more in-depth study of differences 

due to the experimental conditions, as measured in economic terms, is presented 

below in Section 5. 

4 ECONOMIC MEASURES OF VALUE 

We now compare the parameter estimates reported in Table 3 using various 

measures of economic value used to assess part-worths in a conjoint study (see 

Allenby et al., 2019; Lloyd-Smith, 2018). To begin this analysis we will start 

with measures of willingness-to-pay, a demand-based estimate of monetary 

value. 
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Table 3: Posterior Mean and Standard Deviation of Heterogeneity 

 No Information Price Only Price and Attributes 

Attribute Levels Mean S.D. Mean S.D. Mean S.D. 

Intercept 19.374 12.281 18.258 11.457 20.354 11.938 

Plus White −2.259 3.549 −1.364 4.145 −2.389 3.815 

Rembrandt −1.774 4.230 −1.631 4.412 −1.366 3.957 

Go Smile −1.472 2.875 −0.860 4.146 −0.833 3.908 

Auraglow −2.778 4.912 −2.196 4.548 −3.212 3.705 

Luster −2.356 3.911 −2.436 4.873 −2.747 3.714 

Pen −1.392 5.328 −1.185 5.223 −1.298 5.470 

Trays & Gel −1.052 4.752 −1.399 6.068 −1.366 5.159 

Light Tech −1.794 6.562 −1.678 6.280 −2.099 6.468 

Treatment Time −0.193 0.460 −0.194 0.430 −0.212 0.469 

No.  Treatments −0.138 0.362 −0.147 0.349 −0.115 0.366 

Time to Results −0.085 0.412 −0.109 0.381 −0.141 0.411 

% Peroxide 0.247 0.615 0.209 0.661 0.130 0.672 

Price −1.754 1.361 −1.904 1.241 −1.669 1.263 

Sample Size N=379 N=371 N=355 

 

4.1 Pseudo willingness to pay (p -WTP) 

A naïve measure of WTP, which does not consider the set of competitive offers, is 

a simple monetization of utility to a dollar measure. We refer to this as a pseudo 

measure (p-WTP) because it assumes that consumers are locked into the purchase of 

a specific brand (e.g., Crest) and ignores the fact that consumers can switch brands 

and decide not to make a purchase. The measure is constructed using the ratio of 

attribute- l e v e l  part-worth and the price coefficient, p-WTP = βi/βp. To be clear, 

we do not advocate the use of this measure, but include it for comparison 

purposes. 

Figure 4 displays boxplots for the p-WTP measure of product improvement for 

the Crest brand. The boxes in the plot correspond to the inter-quartile range 

containing 50% of the distribution for each measure. The whiskers of the boxplot 

correspond to 1.5 times the inter-quartile range, and the extending points are 

outliers. The uncertainty displayed in the plots is due to uncertainty in the 

parameter estimates in the hierarchal Bayes model. The p-WTP measure varies 

between $5.00 and $10.00 for each of the attributes and is similar across 

treatment conditions. That is, the effect of information about outside goods does not 

appear to be large or consistent in its effect, especially when considering the 

uncertainty in the estimates. 
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Figure 4: p-WTP for Crest Product Improvement 

 

4.2 Economic willingness to pay (WTP) 

An alternative WTP measure that corresponds to a measure of consumer 

welfare acknowledges the presence of alternatives with non-zero choice 

probabilities by measuring the maximum attainable utility from a transaction. 

Increasing the number of available choice alternatives increases the expected 

maximum utility a consumer can derive from a marketplace transaction, and 

ignoring the effect of competitive products leads to a misstatement of consumer 

welfare. Any measurement of the economic value of a product feature cannot be 

made in isolation of the set of available alternatives because it is not known, a 

priori, which product will be chosen. 

Measurement of the economic value of a product attribute requires the 

specification of a set of products for which choices are predicted. This is 

accomplished by constructing two choice sets. The first choice set is described by 

the matrix A with rows describing choice alternatives and columns detailing which 

of the alternatives has each product feature under study. The choice matrix A∗ is 

similar to A except that one of its rows is different, indicating a different set of 

features for one of the alternatives. Typically, just one element in the row differs when 
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comparing A to A∗ because the economic measure typically focuses on what 

respondents are willing to pay for an enhanced version of one of the attributes. 

We consider scenarios where the competitive set is comprised of 6 brands (Crest, 

Plus White, Rembrandt, GoSmile, Auraglow, and Luster), with each offered using 

whitening strips technology and having an average level of performance for each 

attribute; i.e., treatment times of 15 minutes, the suggested number of treatments 

is 14, results in 7 days, 10% peroxide content, at a price of $34.99. The matrix A∗ is 

identical to A except the row for Crest is altered, one attribute at a time, to value an 

improved level of performance: treatment times of 5 minutes, the suggested number 

of treatments is 7, time to results is 3 days, and 13% peroxide content. 

As discussed by (Small and Rosen, 1981; Lancsar and Savage, 2004; Allenby 

et al. 2014a), we construct the maximum level of utility attainable for the improved 

choice set A∗ and the original choice A and calculate the difference.2 Figure 5 

displays boxplots for the WTP that accounts for uncertainty in choice and the 

presence of competitive products. The measures of economic value are smaller 

than the p-WTP measures, as expected, and there is greater distinction in value 

across the attributes. However, the distinction among the experimental conditions 

remains small and inconsistent; e.g., sometimes the None experimental condition 

leads to highest economic value and other times it does not, especially given the 

uncertainty in the estimates. 

 
2 WTP =

ln[∑ exp(𝛽ℎ
′ 𝒂𝑗

∗−𝛽ℎ𝑝
′ 𝒑𝑗)𝐽

𝑗=1 ]

𝛽ℎ𝑝
 – 

ln[∑ exp(𝛽ℎ
′ 𝒂𝑗−𝛽ℎ𝑝

′ 𝒑𝑗)𝐽
𝑗=1 ]

𝛽ℎ𝑝
 

where aj indicates the features of the jth product in the corresponding choice set matrix. 
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Figure 5: WTP for Crest Product Improvement 

 

4.3 Willingness to Buy (WTB) 

Willingness to buy is a measure of economic value based on the expected 

increase in demand for an enhanced offering. Economic value is determined by 

calculating the expected increase in revenue or profit due to a feature 

enhancement, using WTB as an input to that calculation. The increase in demand 

due to the improved feature is calculated for one offering, holding fixed all of the 

other offerings in the market. In discrete choice models, WTB is defined in terms of 

the change in share that can be achieved by moving from the original feature set to 

an improved feature set for the product.3 

Figure 6 displays boxplots for the improvements to Crest whitening strips in 

terms of aggregate choice shares. The increase in share is largest for the treatment 

time attribute, where an improvement from 15 minutes to 5 minutes is estimated to 

an improvement of 0.10. The increase is smallest for the time-to-results attribute, 

where an improvement from 7 days to 3 days leads to an increase in share of about 

0.03. The posterior distribution of the share increase overlaps greatly for each 

attribute improvement, indicating that the effect of outside good information in 

the form of competitive prices in Figure 1 and/or attributes as in Figure 2 is small. 

 
3 WTB = MS(j|p, A

∗
) − MS(j|p, A)s 
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Figure 6: WTB for Crest Product Improvement 

 

4.4 Economic Price Premium (EPP) 

The economic price premium is a measure of feature value that allows for 

competitive price reaction to a feature enhancement. There are two advantages for 

allowing competitive prices to adjust to a feature improvement. First, the 

resulting equilibrium calculation measures the long-term effect of a feature 

enhancement after the market has adjusted to the improvement. Second, the EPP 

estimates tend to be smaller and more realistic that the WTP estimates that do 

not allow for competitive reactions. The effect of a competitive reaction is always 

to decrease, not increase, the economic value of a product improvement to a firm. 

An equilibrium is defined as a set of prices and accompanying market shares 

which satisfy the conditions specified by a particular concept of equilibrium. We 

employ a Nash Equilibrium concept for differentiated products using a discrete 

choice model of demand. The calculation of an equilibrium price premium requires 

additional assumptions beyond those employed in a traditional conjoint study: 

• The demand specification is a standard heterogeneous logit that is linear 

in the attributes, including prices. 

• Constant marginal cost for the product. 

• Single product firms; i.e., each firm has just one offering. 
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• Firms cannot enter or exit the market after product enhancement takes 

place. 

• Firms engage in a static Nash price competition. 

The economic value of a product feature enhancement is the incremental profits 

that it will generate. That is, the change in profits, π, associated with the 

equilibrium prices and shares given a set of competing products defined by the 

attribute matrix A. This can be constructed by finding the first-order conditions with 

respect to the profit function for each firm.4 The Nash equilibrium is a root of the 

system of equations defined by these first-order conditions for all J firms. 

Figure 7 displays boxplots for the improvements to Crest in terms of the economic 

price premium. As expected, the value attributed to the feature enhancements is 

estimated to be less than the p-WTP measure displayed in Figure 4 and the WTP 

measure displayed in Figure 5. The EPP value for an improvement in treatment 

time is about $3.00 rather than $8.50, and the value for an improvement in time-to-

results is estimated to $.40 rather than $2.20. However, consistent with the other 

measures of economic value, the effect of the different treatment conditions is 

small. 

 
4 

𝜕𝜋

𝜕𝑝𝑗
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𝜕
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where pj is the price of good j, p−j are the prices of other goods, and cj is the marginal cost of good j. 
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Figure 7: EPP for Crest Product Improvement 

 

5 CONCLUSION 

The preliminary results above suggest that conjoint part-worth estimates are 

robust to the amount of information about marketplace prices and feature 

performance that is provided to respondents. We find no systematic difference in 

parameter estimates as reported in Table 2 nor in economic measures of value as 

displayed in Figures 4 to 7. Moreover, posterior estimates of the effects, as 

displayed in the figures, show a great deal of overlap across treatment conditions. 

Since our study screens respondents for inclusion if they are active in the product 

category this may come as no surprise. 

Our analysis lends support to the economic view of choice in that qualified 

respondents were able to recall and construct their preferences for the choice 

alternatives without being influenced by the price and attribute information 

provided in the glossary video. We did not detect effects due to priming (Shrum 

et al., 1998) and other mechanisms where respondents exposed to attribute 

information are induced to make choices favoring the certain attributes. Respondents 

were able to recall and form their preferences for the conjoint offerings independent 

from the information provided in the survey. We believe that the reason for the 

robustness of results is due to the respondents being familiar with the product 

category and product attributes prior to engaging in the study. 
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Given the difficulty in “proving” such a result, we plan to continue the 

project by fleshing out the full experimental design in additional product 

categories, and investigating the outcomes for respondents that would not have 

passed the study screens. We also plan to investigate the amount of marketplace 

information that is internalized by respondents to see if the presentation of this 

information results in increased respondent familiarity with the current state of the 

category. Additional research also is needed to understand boundary conditions for 

obtaining stable estimates in conjoint studies and surveys in general, especially in 

relation to best practices regarding screening procedures. 

 

    

 Maggie Chwalek Roger A. Bailey Greg M. Allenby 
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ABSTRACT 

Individuals often decide how many units of a specific good to purchase rather 

than simply deciding whether to purchase it or not. There is much more information 

in such count data than in traditional discrete choices. We consider a shelf of canned 

tuna and survey a sample taken from the Information Resources, Inc. (IRI) consumer 

panel who met the condition that they had purchased at least one can of tuna in the 

prior year. We designed and implemented a volumetric choice experiment (VCE) to 

obtain 120,000 quantity choices (defined by price, brand, size, and other attributes) in 

a stated choice context. Canned tuna is the quintessential stockpilable commodity so 

it may be particularly sensitive to price and promotions like savings coupons for 

specific brands. The VCE experimental design we used allows for statistical 

identification of over 100 own (brand by size) and cross price elasticities. We discuss 

preliminary estimates from a multilevel mixed-effects negative binomial regression. 

INTRODUCTION 

This paper examines choice opportunities, where instead of facing a single 

discrete choice between a set of competing alternatives, consumers face a choice of 

how many units to purchase, if any of several alternatives that are available. The 

quintessential example that we address here is different types of canned tuna on a 

grocery store shelf. While the two situations have key similarity including being 

amenable to the use of experimental design to identify key demand parameters, they 

are substantively different. The ability to observe discrete volumetric choices allows 

the estimation of a much richer set of consumer demand models. 

Economic theorists initially conceived of consumer demand in terms of 

continuous quantities for two reasons: 1) the underlying mathematics is much easier 

than alternatives that allow for various types of discreteness; and 2) the only 

available data for empirical work at the time was aggregate in nature, so the discrete 
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aspects of demand did not seem to matter. Constraints that theoretically should apply 

only to an individual’s demand, such as adding up restrictions, were routinely 

imposed on demand systems estimated using the available aggregate data (Phlips, 

1974). 

When individual-level data became available, attention naturally turned to the 

modelling of discrete choices, with the random utility model (RUM) becoming the 

workhorse of empirical analysis (McFadden, 1974). Over time, those working with 

discrete choice data moved to address two key limitations of the aggregate 

conditional logit model. The first is the restrictive assumption that all agents have the 

same preferences except for an idiosyncratic error term that followed a standard Type 

I extreme value distribution. These advances involved new functional forms that 

relax the conditional logit’s independence of irrelevant alternatives (IIA) assumptions 

and provide explicit ways to allow for preference heterogeneity in both a frequentist 

(Train, 2009) and Bayesian context (Rossi, Allenby and McCulloch, 2005). The 

second involves ways to address the limitations of revealed preference purchase data 

by proposing econometric approaches to deal with endogeneity (Berry, Levinsohn 

and Pakes, 1995), particularly with respect to product prices. It also involves using 

stated preference data along with an experimental component that solves the 

endogeneity problem by randomly assigning product attribute levels including price 

using what are known as discrete choice experiments (DCEs) (Louviere, Hensher and 

Swait, 2000). This paper contributes to the third wave in modelling consumer 

demand, where that demand is both continuous and discrete in the sense that demand 

takes the form of the set of non-negative integers; i.e., the dependent variable is a 

volumetric choice that statistically can be represented as a count data regression 

model (Cameron and Trivedi, 2013). 

Many examples of volumetric choices easily come to mind, such as the number 

of frozen yogurts bought during a trip to the supermarket or the number of polo shirts 

purchased from an online retailer. Other examples include the number of credit cards 

in someone’s wallet or the number of social media accounts that they have; the 

number of stores visited during a trip to a mall or the number of distinct machines 

played during an arcade stop. So, many discrete activities become count data when 

observed over a time interval, such as the number of flights taken last month or the 

number of primary care visits last week. There is a long history (e.g., Goodhardt and 

Ehrenberg, 1967; Schmittlein, Bemmaor and Morrison, 1985) of using volumetric 

choice models for revealed preference data in applied economic work including 

marketing, but the literature is dramatically smaller than that involving discrete 

choice models. More limited still is work on volumetric choice using stated 

preference data. Early examples (Carson, Hanemann and Steinberg, 1990) tended to 

offer survey respondents choices that represented the discrete number of a good they 

could purchase. These data then were modelled using a range of discrete choice 

models that effectively ignored most, if not all, of the statistical properties of count 

data. Now one can design volumetric choice experiments (VCEs) (Louviere, Ribeiro 

and Carson, 2016) that are cousins of the popular DCEs (Louviere, Hensher and 

Swait, 2000). In this paper we discuss the design of and preliminary estimates from a 

large scale VCE that examined how consumers choose when faced with a grocery 
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store shelf of different types of canned tuna, a textbook example of a stockpilable 

commodity. 

VOLUMETRIC CHOICE: ECONOMETRIC MODELS 

Count data models can be used to fit the decisions made in VCEs. Cameron and 

Trivedi (2013) provide a comprehensive overview of count data models used in 

applied economic work.5 Two count data models are in general use. The first is the 

Poisson, whose key property in a regression context is that the conditional mean is 

constrained to be equal to the conditional variance. Empirically, this restriction rarely 

holds with consumer demand data due to over-dispersion (conditional variance > 

conditional mean) being typical. If one is solely interested in the parameters of the 

demand function, the mean-variance constraint is not as restrictive as it might first 

appear because the Poisson is still a quasi-maximum likelihood estimator if the 

conditional mean function is correctly specified, and consistent standard errors can 

be obtained by using White-type standard errors. 

The main alternative to the Poisson is the negative binomial model, which 

explicitly parameterizes the variance in various ways that differ in terms of flexibility 

and computational tractability. A major attraction of the negative binomial model is 

the potential ability to better model the variability of the overall distribution of 

purchase counts and predictions for a given set of covariates. While the Poisson 

separates preference and scale parameters, that only appear in ratio form in discrete 

choice models, it does so with a very strong assumption. Variants of the negative 

binomial specification relax that constraint in different ways. Both the Poisson and 

negative binomial models are linear-in-the-parameters models, an assumption that is 

relaxed in their generalized additive model formulations. Importantly, for all count 

data models rather than the estimated coefficients being the ratio of preference 

parameters to the standard error as is the case for discrete choice models, count data 

models provide separate estimates for both preference parameters and the scale 

parameter. 

The way(s) in which volumetric data are used in applied economics often results 

in the need for modification to the likelihood functions being maximized. Data is 

right censored if one only knows at the high end is that the number of goods 

purchased is larger than some quantity. This can occur in SP data when the last 

response category is specified as “X or more units,” where X is some integer (e.g., 

8). Left truncation at zero is common when only information on purchasers is 

 
5 As counts become large, the standard linear regression model tends to provide an adequate fit, so the formal use of count data models 

is typically appropriate in situations where small counts are common. Implicit in all the count data models considered here is that 
all goods are well defined in terms of their attributes and the counts represent ratio scale data. When used to model choices 

involving counts, the major issues with other commonly used alternatives are as follows. By construction, a conditional logit model 

of count data violates its underlying IIA assumption; the ordered logit/probit, which potentially produces consistent estimates, is 
inefficient because it has to estimate a set of threshold parameters; the nested logit model effectively deals with a zero-inflated 

component but its underlying conditional logit specification is violated with count data; ordinal regression foregoes the advantage 

that count data is ratio scaled; censored regression models like the Tobit allow for the possibility that true quantities purchased are 
negative, which is not possible; discrete-continuous models are similar to the nested logit in potentially dealing correctly with zero-

inflated situations, but suffer the same problem as OLS with small counts. It is important to note that count data models assume that 

the attributes of goods including those like package size are fixed. When the purpose of the statistical analysis is to provide 
guidance on how to package or size goods because only a limited number of variants can be offered, a different statistical approach 

should be used. See Lee and Allenby (2014) an instructive application. 



150 

available so that zeros are not observed. When zeros are observed, so-called zero-

inflated Poisson or negative binomial models are often estimated that allow the zeros 

to be generated by the same process as that generating the positive counts (statistical 

zeros) or structural zeros, which occur when no change in a good’s attributes such as 

price is capable of moving the zero to a positive integer. The zero-inflated models are 

special cases of hurdle count data models which can be useful when there is interest 

in the process that leads to the eventual generation of positive counts. As multiple 

volumetric choice opportunities are observed, models can be estimated that allow for 

individual-level heterogeneity using individual-level fixed effects, random 

parameters specification for one or more of the model’s covariates, or some variant 

of a latent class representation. 

It is possible to allow for correctable endogeneity of a covariate in count data 

models if a suitable instrument is available, although randomization of attribute 

levels in a VCE obviates that problem. One also can allow for different types of 

correlation, including choices by the same agent over time and across choices 

involving similar goods at the same time. Count data models are available in both 

frequentist and Bayesian paradigms. A wide-range of standard and modified (e.g., 

censored, zero-inflated) count data models are available in R and Stata, as well as 

many other statistics packages. 

Hellerstein and Mendelsohn (1993) show a simple Poisson demand model can be 

obtained in two distinct ways. The first is as a simple linear model of continuous 

quantity demand with the imposition of non-negative integer quantities constraints. 

The second is as a repeated binary choice model with any of the standard discrete 

choice models that assume errors are i.i.d. across choice occasions at an individual 

level. A straightforward example is a trip to Walmart taken or not on each day of a 

specific week, with the volumetric choice being the number of trips taken to Walmart 

over the course of that week. However, this also is consistent with a number of very 

common but less likely obvious situations that arise from asking a question like 

“How many times did the individual reach for a gallon of milk and put it into a 

shopping cart?,” where the volumetric choice is the total number of gallons of milk. 

Poisson regression models are obtained by letting the Poisson mean-variance 

parameter λ be a function of a set of observed covariates (Greene, 2003; Cameron 

and Trevedi, 2013). Specifically, 

 𝑃𝑟𝑜𝑏(𝑋𝑖) =
𝑒𝜆𝑖𝜆𝑖

𝑦𝑖

𝑦𝑖!
, 𝑦𝑖 = 0,1,2 …. and i=1,2,3…. n, (1) 

The 𝑦𝑖 = 0,1,2 …. are the realized values of the random variable, 𝜆𝑖 is the mean 

and variance of 𝑦𝑖 ., and 𝑋𝑖 is a covariate vector. The most common formulation of 

the mean vector is 𝜆𝑖 = 𝑒𝑋𝑖
′𝛽. An illustrative example consistent with an underlying 

linear logistic model for each purchase/not purchase decision is: 

λ = exp[β0 + β1Price + β2Income + β3Attributes + β4Demographics]. (2) 

Other i.i.d. choice models have Poisson demand, but λ may have a somewhat 

different functional form; and other functional form assumptions such as the 

conditional mean being linear in log price rather than price have well-known 
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mapping in count data models. Negative binomial models use the same conditional 

mean specifications as the Poisson but allow for a separate scale parameter which 

effectively looks like tacking on a (gamma distributed) error term to some 

transformation of (1). This scale parameter also can be specified as a function of 

covariates, but this typically is not done due to the computational complexity 

introduced. The negative binomial model also avoids the independence assumption 

of the Poisson model, which has parallels to the conditional logit model’s IIA. 

With no income effect, the ordinary Marshallian consumer surplus estimate for 

the Poisson model in (1) is -λ/β1. Marshallian and Hicksian welfare measures (e.g., 

maximum willingness to pay) for more complex count data models can be derived in 

a manner similar to that used for discrete choice models (Carson and Hanemann, 

2005). 

PRODUCT CATEGORY, ATTRIBUTES, VCE DESIGN, AND SAMPLE 

We focus on canned tuna, long a staple of American shopping baskets, and for 

that reason it’s often used to illustrate new marketing research approaches (e.g., 

Allenby, 1990). It is an easily storable commodity, which makes it ideal for looking 

at whether changes in price and the presence of promotions like coupons lead to 

substantial changes in the quantity purchases. Other features of canned tuna, which 

make it ideal for our purposes is that the three major brands provide over 90% of 

store purchase volumes (Starkist, Bumble Bee, and Chicken of the Sea) (store brands 

such as Walmart and Kroger capture much of the rest). This allows us to have a VCE 

with five effective brands: Starkist, Bumble Bee, Chicken of the Sea, store brand, and 

“Any other Brand” (e.g., Tonno Genova, Van Camp, Wild Planet). Canned tuna is 

effectively characterized by two sizes, small and large, being packed in oil versus 

water, being Albacore or another type of tuna, and form (chunk, i.e, flakes or solid). 

Each brand option is represented by two sizes (large and small), and each brand 

had five attributes (price, coupon, type of tuna, packaging and form), where the last 

three attributes are binary. Each brand and size were represented by a 2^3 x 8^2, so 

the full factorial is a (2^3 x 8^2)^10, or a 2^30 x 8^20. An additional 16-level column 

was used to create blocks (versions). An orthogonal main effects design in 256 rows 

was used to make the choice sets. We used an Alternative-Specific Design (Louviere 

and Woodworth, 1983) because it forces the attributes of each alternative that can be 

chosen to be orthogonal both within and between alternatives. This feature insures 

“own effects” (e.g., own elasticities) within each alternative and “cross effects” (e.g., 

cross-elasticities) between alternatives are statistically identified. Commonly used 

generic DCEs or VCEs generally do not have this property. 

Although canned tuna is available in cans of different sizes, the vast majority of 

sales are in 4 to 6 oz. cans and 10 to12 oz. cans. So, we offered 6 and 12 oz. sizes to 

standardize the small/large dichotomy in the market. This creates 10 options in each 

choice set. We also varied price (combined with size as one attribute), what the tuna 

was packed in (oil or water), the type of tuna (Albacore or “Tuna”) and the form of 

the tuna (Solid or Chunk). Finally, we also varied whether there was a coupon 

available, and if available the value it has. Price and coupon are 8-level attributes, all 
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others are 2-level attributes. We also used a 16-level orthogonal blocking column to 

create blocks. Taken together, this produces a 16 x 8^10 x 2^15 factorial, and we 

selected the smallest orthogonal main effects design from that factorial, which 

produces 256 choice sets. As earlier noted, panelists were randomly assigned to one 

of the 16 blocks and then received the 16 choice sets in that block in a random order. 

Table 1 shows the attributes and levels used in our VCE design for canned tuna. 

These attributes are assembled according to the design described above to form 

choices sets. Figure 1 displays a representative choice set faced by our respondents 

where our objective was to simulate a choice task like what an IRI panelist would see 

on a grocery store shelf of canned tuna. Our respondents were asked to indicate the 

number of cans they would be most likely to purchase in each of the 16 choice sets. 

Table 1: Canned Tuna (Brand and Size: 10 alternatives): 

Attributes and Their Levels 

Attributes\Levels  Size (Oz) Level 0 Level 1 Level 2 Level 3 Level 4 

Brand/Price ($) Starkist 6 2.69 2.89 3.09 3.29  

 12 5.38 5.78 6.18 6.58  

 Bumble Bee 6 2.89 3.09 3.29 3.49  

 12 5.78 6.18 6.58 6.98  

 Chicken of the Sea 6 1.99 2.09 2.29 2.39  

 12 3.98 4.18 4.58 4.78  

 Store Brands 6 1.89 2.09 2.29 2.49  

 12 3.78 4.18 4.58 4.98  

 Any Other Brands 6 2.69 2.99 3.29 3.59  

 12 5.38 5.98 6.58 7.18  

Type   Albacore Tuna    

Packed in   Oil Water    

Form   Chunk Solid    

Coupon ($)**    0 0.50 0.75 1.00 1.50 
** Proportions of levels different, about 77.5% $0 following revealed purchase data. 
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Figure 1: An Example of One Choice Set from the Canned Tuna VCE 

 

Respondents were a random sample of IRI’s consumer panel who met the 

selection criteria of having purchased canned tuna at least once in the last year.6 An 

important aspect of this selection criteria is that it eliminates the need to consider 

count data models that allow zero purchase observations to come from two distinct 

processes. Having purchased canned tuna in the past year rules out the possibility 

that observed zeros are structural rather than statistical in nature.7 After dropping a 

small number of respondents who failed screening criteria (e.g., only purchased once 

in the first choice set [quitters] or failing to provide responses to all choice sets), our 

 
6 We do not draw any inference here beyond our sample. However, the IRI Panel, with appropriate weights and accounting for 

stratification and clustering is intended to be representative of U.S. consumers. Since we have randomly sampled from it subject to 

a restriction (purchased canned tuna at least once in the last year), our results could be made representative of that restricted 

population of U.S. consumers, after rolling up the original IRI sample correction procedures with any subsequent deviations from 
simple random sampling that occurred with our sample. 

7 The canned tuna market is characterized by frequent specials involving sales and coupons that make it unlikely that a large drop in 

price will induce a substantial number of consumers, who did not purchase in the last year, to enter the market. This assumption 
may not hold for other products and, in general, modeling those who would potentially enter the market under the right conditions 

may be the most important part of a prospective demand analysis. 
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sample had 750 respondents. They were presented with 16 choice sets, each of which 

contained ten alternatives where the respondent picked a quantity, including zero, 

they would purchase. This produced 120,000 (750 x 16 x 10) volumetric choices. 

Figure 2 displays the proportions of each count for the large (12 oz.) cans by 

brand in our VCE. Some of the key features are readily apparent. In most choice 

opportunities, respondents indicate that they would not purchase. Positive counts 

tend to decline monotonically as the count increases. A preference for Chicken of the 

Sea over other brands is apparent from its shorter histogram bar at zero. Results for 

the small sized cans are similar except for the overall propensity of the zero counts to 

be smaller and the positive counts higher, which is reflect of the strong preference for 

purchasing small versus large cans. 

Figure 2 

 

COMPARISON WITH PAIRED RP DATA 

Our sample is drawn from IRI’s consumer panel and we obtained information on 

actual canned tuna purchases made by our respondents for the three-month period 

before our VCE was implemented and for three months afterwards. Potentially, this 

allows for a direct comparison between the SP data from our VCE and the RP data 

from the IRI consumer panel that would allow external validity of our SP approach. 

This validation is harder than it might first appear. The major problems involve 

the SP data from the VCE being “clean” in the sense that all the choice sets are 

observed (even if nothing is purchased), the attributes are standardized, price is 

clearly exogenous because it is randomly assigned, and the underlying covariate 

matrix well-behaved, while the RP data has major problems along every dimension. 

It is worth spelling out those problems. The first is that zero purchase occasions are 

not clearly defined. That is, in order to make an apples-to-apples comparison, we can 

only compare choice occasions where positive quantities were chosen in either the 

RP or SP data. The second involves standardizing attribute levels, which is 
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particularly important for size and what the tuna is packed in, where we only use 

small and large size cans and packed in oil or water.8 The third involves an indicator 

for deals/promotion which is often missing, at least for canned tuna. Visits to shelves 

of canned tuna at multiple locations and times also suggested that such an indicator 

even when present is close to useless as a large fraction of canned tuna SKUs had 

little shelf signs indicating a sale or promotion. So, we don’t use these indicators in 

the IRI RP data and, in parallel, we do not use RP choice alternatives that have 

money-off coupons. 

The second turns out to be much more severe and makes any estimation of count 

data models using similar RP data highly problematic. We simply do not know what 

else was on the shelf when the consumer made their canned tuna choice(s).9 This 

makes it impossible to use the modelling strategy described below for the RP data 

which exploits the fact that respondents simultaneously see ten products for which 

they make volumetric choices. 

As a consequence, we fit the simplest model that is compatible with both the RP 

and SP data, after dropping non-conformable observations in the manner described 

earlier. This model is a quasi-maximum likelihood truncated Poisson regression 

model which is a linear function of the log price per ounce. This estimation exercise 

provides an estimate of the own price elasticity of -0.340, with a 95% confidence 

interval of [-0.430, -0.249] for the RP choices (N=4,399) and an own price elasticity 

of -0.373, with a 95% confidence interval of [-0.438, -0.308] for the SP choices 

(N=13,128). Obviously, these two own price elasticity estimates lie almost on top of 

each other and in that sense suggest that the SP choices are not inconsistent with 

those actually being made by IRI panelists with respect to the primary statistic of 

interest. 

Examination of the RP data suggests that the three main brands of tuna are 

usually available. Adding brand indicators suggests indifference between Starkist 

(the omitted reference brand) and Bumble Bee for both the RP and SP data. For the 

RP data, the relative preference for Chicken of the Sea (vs. Starkist) is 8.1% while it 

is 9.5% using the SP observations, with the difference between the two estimates not 

statistically significant at any conventional level. We can examine the other 

attributes, but the estimated magnitude of preference parameters depends critically on 

what was available from which to choose. Under the assumption that retailers are 

more likely to offer SKUs with more preferred attribute levels, there should be 

 
8 Like the amount of cereal in a box, there is some variation in the number of ounces of tuna in a can over time within brand and 

across brands. Small cans tend to run between almost five ounces and six ounces. We have standardized this to six ounces. Tuna 

products with four or fewer ounces tend to be pouches rather than cans and appear to represent a different market. Modelling 

interactions between pouches and small cans might be an interesting extension but is not done here. Large cans tend to run from ten 
to twelve ounces; we standardized this to twelve ounces. Much larger cans on the order of fifty ounces are sometimes observed, but 

they seemed to be aimed at a very different market. The number of condiments that can be added to water like mint or sun roasted 

tomatoes is large. While these can dramatically expand the apparent number of distinct SKUs, we have classified all these as 
packed in water. We have classified various “marinated in” SKUs as packed in oil. 

9 In empirical work, it is common to infer what other products in a category are available by observing what other consumers in the 

panel are purchasing and the prices they are paying. While there are no doubt some products for which this provides a reasonable 
answer to the question of what else is in the choice set, it breaks down quickly in a world where the number of individual SKUs in a 

category of independent interest is at all large and where stockouts and price changes frequently occur. The difficulty, which holds 

true even with canned tuna, is that the number of panel participants shopping at a specific store and their frequency of purchase is 
too small to be able to reliably construct choice sets where errors involving availability and pricing are not a dominant factor in the 

analysis. 
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agreement on the signs between the RP and SP models, which is what we see. The 

small size cans are preferred to large ones, packed in water is preferred to packed in 

oil, Albacore is preferred to regular tuna, and solid is preferred to chunk. The one 

place where there is a difference is that the SP data suggest a large coupon effect, 

while the actual sales data does not, although this may be due to the unreliability of 

that variable in the RP dataset. 

MODEL SPECIFICATION 

Our VCE design allows for the estimation of a very rich deeply parameterized 

model, with a focus on being able to provide own price elasticities for each brand-

size combination and a complete set of cross-price elasticities. The availability of 

individual panelist demographics allowed us to explore their role in driving 

volumetric choices and understanding price sensitivity. The negative binomial count 

data model we fit allows deviation from the usual Poisson equality restriction on the 

mean and variance. 

Our model incorporates several specific features which help to appropriately 

exploit the structure of our VCE. First each of our observations faces multiple 

choices within a choice set and faces multiple choice sets. We observe multiple 

choice occasions by our respondents and handle this by allowing for possible 

correlation between individual-level unobservable components along with robust 

standard errors, which effectively reduces sample size and prevents artificial inflation 

of statistical significance levels. Second, the sizeable dimensions of our respondent 

sample size, choice alternatives, and choice sets, allows us to obtain precise estimates 

of the nature of preference heterogeneity. We model preference heterogeneity in a 

way that is likely to make the results more useful for decision making than is the 

standard practice of allowing for a relatively small number of random parameters. 

This is done is by using a multilevel mixed-effects specification where many 

covariates have fixed parameters, which accounts for much of the preference 

heterogeneity, while allowing other variables to be represented by random parameters 

and therefore absorb much of the remaining preference heterogeneity. 

A novel aspect of our model specification involves a full set of well-behaved own 

and cross price elasticity terms. This is done by including the log price of each choice 

alternative in the model as well as the log prices of all the other goods that a 

respondent also could have purchased in the choice set. Note that this is both similar 

to what is often done using aggregate data in regression models, but greatly expands 

the number of cross price elasticities that can be estimated without imposing strong 

restrictions (in prior empirical work with an appreciable number of competing 

options) on the relationship between the elasticities (Liu, Otter and Allenby, 2009).10 

Effectively, our specification looks like a mother logit model (McFadden, 1975; 

Timmermans, Borgers and van der Waerden, 1991) in that we are including the 

 
10 Chetty (2009) discusses how policy/welfare analysis for marginal changes can generally reliably be undertaken using a small set of 

reliably estimated reduced form elasticities, which avoids the need for more complex structural estimation which by design depends 

heavily on unverifiable assumptions. Our VCE guarantees the validity of the reduced form model we estimated for consumers. It 
does not incorporate any information on how supermarkets or canned tuna producers (who have been accused by the U.S. 

Department of Justice of colluding in the past) adjust to consumer behavior. 
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characteristics of the other products as attributes of the product over which the binary 

buy/no buy decision is being made subject to the constraint that only one good is 

purchased. While the mother logit model often fits quite well and is an important 

component of building tests of the adequacy of the conditional logit model 

specification, it has not typically been used as an operational specification for applied 

empirical work because the conditional logit model is not a valid RUM when the 

other products attributes enter directly. That technical problem does not exist with 

count data models because of separation of preference and scale parameters. The 

practical problem in RP data is that the prices of different offerings usually are highly 

correlated and strategically set. Our VCE framework avoids both of those issues. 

The next part of the model’s structure is standard and involves the product 

attributes. These appear as indicator variables and include the brand specific 

constants (except coupon condition). In our model, coupons are represented by two 

variables, an indicator variable for whether a specific choice option has a coupon and 

the log of its amount if present (and zero otherwise). This allows us to test whether 

the coupon presence has an influence distinct from the amount of the coupon and to 

also look at whether respondents treat the amount of the coupon like a price 

reduction.11 The parameters in this part of the model are specified as having random 

parameters with normal distributions. 

Demographic variables include Female, White, Hispanic, and Presence of 

Children as binary indicators, household size, income (as a set of five categories), 

and Census Region (as a set of four categories). Each is entered by itself and 

interacted with its own price elasticity. This allows a wide range in individual-level 

variation of own price elasticities tied to variation in observable covariates, which 

underpins the set of brand specific own and cross price elasticities noted above. The 

essential restriction is that we allow a flexible structure for own price elasticity but 

impose the restriction that the relative own price elasticities across two respondents 

are the same. This restriction is not important from the prospective of an individual 

looking at a shelf of canned tuna and trying to decide what to buy, because the 

retailer cannot offer different prices to individuals with different characteristics. 

However, it may be useful to relax this restriction in deciding who to target in 

promotions or if it is possible to set different (relative) prices across stores whose 

customer composition differs. In contrast to the product attribute parameters, all 

coefficients here are fixed. However, we do allow for a random intercept which 

provides an estimate of the distribution of demand heterogeneity not captured 

elsewhere. 

Finally, we include a set of forty-five random covariance terms and a set of 

indicators for the specific block of choice sets a respondent saw. These covariance 

terms pick up preference heterogeneity between pairs of brands, between brands and 

product attributes, and between the constant term and product attributes. These terms 

have some similarities to allowing some of off-diagonal terms of the variance-

covariance matrix in a random coefficients model to take on non-zero values. While 

 
11 We did not include the coupon indicator and log coupon value variable in any of our model’s random components in order to 

provide a clean test of how our coupons worked on average. In an exercise targeting coupons, knowledge of how to exploit the 

variability in coupon response would be useful. 
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these terms can be difficult to individually interpret, they are a reasonably flexible 

approach to capturing a first order approximation to a much more complex pattern of 

underlying substitution relationships. The second is an important control because 

some blocks of choice options have idiosyncratic components that should not be 

confounded with the parameters of interest. 

Below we present a summary of results from this model. The results should be 

considered preliminary since additional refinements to the model are needed such as 

formally incorporating censoring (see Figure 1) of counts above six. 

SUMMARY OF PRELIMINARY RESULTS 

Our modelling objectives were to estimate a complete set of own price 

elasticities. These estimates, which should be considered preliminary, are shown 

immediately below in Table 2 where Own_Star12 is the own price elasticity for 

Starkist 12 oz. cans; likewise Own_Star6 is the own price elasticity for Starkist 6 oz. 

cans. The other own price elasticities are defined in an analogous way with BB 

representing Bumble Bee, CofS representing Chicken of the Sea, StoreB representing 

“store brand,” and OtherB represent some other brand. It is important to note that 

these parameter estimates reflect the relative differences between own price 

elasticities of brands rather than the actual brand price elasticity, because we allow 

individual demographics to interact with an individual’s generic price elasticity. This 

component of the estimated model parameters is discussed in more detail below. 

Table 2: Own Price Elasticity Estimates 

                          Robust  

       choice | Coef.     Std. Err.   z   P>|z| [95% Conf. Interval] 

 ---------------------------------------------------------------------- 

 Own_Star12   | -3.055376 .1812397 -16.86 0.000 -3.410599 -2.700153 

 Own_Star6    | -2.977139 .1604504 -18.55 0.000 -3.291616 -2.662662 

 Own_BB12     | -2.827225 .1489145 -18.99 0.000 -3.119092 -2.535357 

 Own_BB6      | -3.064267 .2036187 -15.05 0.000 -3.463353 -2.665182 

 Own_CofS12   | -2.115957 .1306179 -16.20 0.000 -2.371964 -1.859951 

 Own_CofS6    | -2.721280 .1373983 -19.81 0.000 -2.990575 -2.451984 

 Own_StoreB12 | -2.169926 .1449513 -14.97 0.000 -2.454025 -1.885827 

 Own_StoreB6  | -2.616834 .1396330 -18.74 0.000 -2.890509 -2.343158 

 Own_OtherB12 | -2.827799 .1398006 -20.23 0.000 -3.101803 -2.553794 

 Own_OtherB6  | -2.916025 .1516987 -19.22 0.000 -3.213349 -2.618701 

We also estimated 90 cross-price elasticities by including all the prices faced in 

the other nine volumetric choices available in each choice set. Of the effects 

estimated, 74 were insignificant at the 0.05 level; they were generally positive and 

small. Another 16 were significant at the 0.05 level; some were sizeable and could 

play a potentially important role in pricing decisions. For example, the cross-price 

elasticity of large size Starkist with large size Chicken of the Sea was estimated to be 

0.258 (z=4.15). There was also an interesting price effect where the least expensive 

per ounce can in the choice set was associated with higher quantities chosen 

(conditional on all other covariates), which suggests that pricing in both absolute and 

relative terms can matter at the low end of the cost distribution. 
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Our model specification also includes estimates for brand-specific constants, 

where the omitted brand is Starkist. Estimates for the three major tuna brands were 

surprisingly small. This result is due to most of the action taking place with price 

elasticities. Here it is worth noting that the ability to disentangle brand-specific 

parameters and price elasticities is a major strength of the VCE approach. 

The estimated parameters of the next part of the model summarize preferences for 

other product attributes. The results indicate smaller sizes are strongly preferred to 

larger sizes, tuna packed in water is very greatly preferred to tuna packed in oil, and 

Albacore tuna was weakly preferred to ordinary (light) tuna. We also find solid is 

preferred to chunk but the difference is statistically insignificant. 

Preferences for whether tuna is packed in oil or water were sufficiently strong 

that it is uncommon for a single respondent to purchase both in any of the 16 choice 

sets.12 This suggests that the design of VCEs can be used to simulate some aspects of 

a stockout. We found an asymmetric effect where sales of a brand-size combination 

increase if packed in water if the other size of that brand is packed in oil. 

We also estimate the effects of demographic (including spatial) demand drivers. 

Results for this part of the model revealed that household size was a strong positive 

predictor of quantity chosen. The presence of children in the household did not 

matter (conditional on household size), buyers in the South and the West demand 

larger quantities than those in the Midwest and Northeast, and lower income 

households buy smaller quantities. Men and women do not differ in their preferences 

(conditional on controlling for other covariates) including exhibiting the same own 

price elasticity. White and non-white households do not differ in their preferences, 

but Hispanics demand more cans. Own price elasticities vary with income category 

and across the four Census regions. 

We estimated random components associated with the brands and sizes and found 

all 10 variance terms were significant at 0.01 level. Heterogeneity was particularly 

pronounced for the store brand and any other brand. This is not surprising since these 

two brand constants lack specificity and may have been interpreted very differently 

across respondents (although we provided named examples). Preference 

heterogeneity was relatively small for packed in water versus packed in oil, but quite 

diffuse for solid versus chunk. The large estimate for the standard deviation of the 

constant term suggest that there is deep heterogeneity in the demand for canned tuna 

even after controlling for a sizeable set of observable covariates thought to 

potentially influence demand. Thirty of the forty-five possible covariance terms 

between the brands themselves, between the brands and product attributes, and with 

the constant term are significant at the 0.01 level. The largest covariances in terms of 

magnitude were between different brand indicators and between the constant term 

and some attribute indicators. The covariance term between the constant term and the 

log of own price is particularly large. Our random effects specification allows a rich 

characterization of heterogeneity, but it causes the model to be computationally 

difficult to estimate. Finally, looking at the estimate for the negative binomial scale 

 
12 True lexicographic preferences for all respondents are unlikely as long as there is some within household preference heterogeneity 

and a willingness by some to tradeoff price against what medium their tuna is packed in. 
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parameter, equality of the conditional mean and variance is rejected at the 0.01 level 

in favour of over-dispersion. 

The R-square from a regression of the volumetric choices made on the predicted 

counts for each choice opportunity is 0.72. This is a large improvement over that 

achieved from any of the suite of the modelling approaches currently in use with data 

from an earlier (and simpler) version of our VCE with canned tuna (Eagle, Louviere 

and Islam, 2018). Again, however, the preliminary nature of our results should be 

emphasized as we are currently exploring the merits of different ways of evaluating 

the explanatory and forecasting ability of the approach put forward here. 

CONCLUDING REMARKS 

Volumetric choice experiments (VCE) are a natural extension to DCEs that mirror 

many real-world decisions involving how many units of a good to buy or how many 

times to undertake an activity in a specified time period. VCEs can be fit using count 

data models which have well-developed theoretical and statistical foundations. They 

overcome several long-standing problems with RUM by being able to separately 

estimate the scale parameter(s) and the parameters of the conditional mean function. 

This often results in being able to incorporate richer more stable specification of 

preference heterogeneity into the model. Further, count data models are easily 

adapted to handle a variety of issues such as censoring and truncation that are often a 

result of the data collection context. 

VCEs can overcome many problems with non-experimental purchase data, 

avoiding endogeneity problems through randomization of attribute levels and clearly 

defined choice sets. By simultaneously offering a substantial number of distinct 

volumetric choices among competing products, we can estimate a complete set of 

own and cross-price elasticities without the need to restrict the relationship between 

those elasticities. These elasticities are the key to making efficient decisions about 

pricing. 

Experimental design for volumetric choice is in its infancy, but there are many 

useful lessons that can be drawn from experience with DCEs. For instance, in the 

work reported here it would be possible to use the approach developed by Day et al. 

(2012) to look at whether different segments of our respondents change their price 

expectations over the course of the choice sets they encounter. In our current work, 

we have taken the distribution of current canned tuna holdings at home as an 

unobserved source of heterogeneity. By assigning subsets of respondents to 

treatments that vary canned tuna holdings or that expose them to different statements 

about prices likely to be faced in the near future in a manner similar to that done in 

DCEs, VCEs can be used to shed light on behavioural responses related to these 

issues. 

Comparison between the RP data on actual purchases by IRI Panelists and the 

behaviour of those Panelists when faced with the canned tuna choices offered in our 

VCE is less straightforward than it might at first appear. Some issues involve the 

typical messiness of RP data with a proliferation of SKUs with minor differences and 

unreliable data fields (if they don’t refer to the physical properties of an SKU). 



161 

However, the two largest problems are fundamental: 1) only purchases of positive 

quantities are observed which can be addressed with considerable loss of information 

by using only positive purchase quantities from both samples and a truncated count 

model; 2) (largely uncorrectable) one does not know what else was on the shelf when 

IRI Panelists made actual purchases, whereas the VCE tells us exactly what else is on 

the shelf, which is experimentally controlled. Nevertheless, with the weakest 

assumption that allows identification of the own price elasticity we find what are 

effectively the same estimate. Slightly stronger assumptions yield very similar 

estimates for preferences involving the three brands that appear to be typically 

available. While the magnitude of preferences for attributes like packed in water 

versus oil cannot be statistically identified without knowing what was available, 

making the assumption that retailers are more likely to offer products with more 

preferred attributes suggests that the signs on different non-price attributes should be 

the same in the RP and SP data. This is empirically the case. 

Our preliminary results for the negative binomial regression model estimates 

using the data obtained using the VCE appear quite promising. The set of own price 

elasticities produced are reasonable in magnitude. One of the main takeaway 

messages of our results is that taking both differences in own price elasticities and 

brand specific constants provides a much richer picture about what is happening in 

the market than models that only allow for one price effect. Here for instance, we see 

that for 12 oz. cans the own price elasticity for Starkist is almost 45% higher than for 

the market leader, Chicken of the Sea, but is only 10% higher for 6 oz. cans. Further, 

while store brands have price elasticities similar to those of Chicken of the Sea, the 

6oz. and 12 oz. store brand constants are much smaller than those for Chicken of the 

Sea. A complete set of cross price elasticities is produced and these with a few minor 

exceptions are consistent with theoretical predictions. Moreover, they are generally 

small in magnitude, but several are large enough to be important considerations in 

making pricing decisions. Other components of the model paint a rich picture of the 

underlying preference heterogeneity for different attributes of canned tuna and of the 

heterogeneity in demographic drivers of demand. 

 

   

 Richard T. Carson Towhidul Islam Jordan J. Louviere 
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CONJOINT MEETS AI 

PETER KURZ 

STEFAN BINNER 
BMS MARKETING RESEARCH + STRATEGY 

MOTIVATION FOR THIS PAPER 

Artificial Intelligence (AI) and Artificial Neural Networks (ANNs) are the “talk of the 

town”! Most AI applications are located in the area of pattern recognition and big data. 

However, ANNs have also been used in the area of choice behavior in order to identify 

preference models (e.g., Bishop, 1995). Examples from the field of market research include 

models for price elasticities in FMCG and car ownership (e.g., Hensher & Ton, 2000; 

Mohammadian & Miller, 2002) and various other fields. The major advantage of ANNs is 

that they can efficiently recognize patterns in the data without being explicitly programmed 

as to where to look. This key feature of ANNs is called the Universal Approximation 

Theorem (Hornik et al., 1989) and describes their capability to approximate any Data 

Generating Process (DGP). However, despite the strong pragmatic appeal of ANNs, they 

have been criticized for being too much data-driven and theory-poor, in effect presenting the 

analyst with a black box model of the DGP. 

As far as we know, past papers are mostly about how ANNs could be used to derive 

utility values from conjoint exercises (for example, Belyakov, 2019; Alwosheel, van 

Cranenburgh & Chorus, 2017). In these papers the conclusion is that hierarchical Bayes 

models perform as well as or better than ANNs for utility estimation. This is why we 

decided not to look into ANNs for estimation any more deeply, at least for the moment. New 

developments in the area of ANNs may change this situation in the future and it may 

become worthwhile to look into the utility estimation topic once more, but in the meantime 

HB does an excellent job! 

The situation is different in the area of experimental design for Choice-Based Conjoint 

experiments, especially when alternative-specific designs are needed. We haven’t found any 

literature so far that deals with ANNs and experimental designs. This is the reason why we 

want to further explore this topic. This is especially true because we encounter weaknesses 

in everyday work, mostly in the area of generating acceptable experimental designs for 

complex choice experiments. Calculating a statistically perfect design is an NP-hard 

problem.1 

In day-to-day research work, client studies get more and more demanding, the numbers 

of attributes and levels are constantly increasing, and sample sizes get smaller and smaller. 

Therefore, in many cases it is not easy to find good experimental designs with the 

commonly used algorithms. Necessary restrictions and prohibitions on attribute levels 

(levels that can’t be shown together) often push the limits in finding an appropriate design. 

Furthermore, most of the experimental designs used in day-to-day research were developed 

 
1 NP-hardness (non-deterministic polynomial-time hardness), in computational complexity theory, is the defining property of a class of problems 

that are informally “at least as hard as the hardest problems in NP.” This usually means that we can’t solve the problem with brute-force 

algorithms because these would need almost endless time to run, except for trivially small cases. 

https://en.wikipedia.org/wiki/NP_(complexity)
https://en.wikipedia.org/wiki/Computational_complexity_theory
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to optimize aggregate models of choice behavior (MNL) and are not optimized to estimate 

heterogeneity in the context of hierarchical Bayes estimation. 

DESIGN PRINCIPLES 

Designs that are theoretically efficient usually have undesirable empirical properties: 

level balance, orthogonality, minimal overlap, and some degree of utility balance. A 

“perfect” design is completely uncorrelated, all levels appear equal times (preferably all 

two- and three-way combinations appear equally as well) and there is minimal (often 

meaning no) overlap between the attribute levels shown in one choice task. Such designs are 

superior from a statistical point of view, but are sometimes very strange to answer for 

respondents, because of implausible combinations. Choice tasks with a larger number of 

concepts, where most of the attributes have fewer levels than the number of concepts shown, 

often result in two nearly identical concepts due to the goal of reaching level balance. Think, 

for instance, of choice tasks where only the price attribute is varying and all other attribute 

levels are the same between the concepts. Other choice tasks might show one clearly 

superior (“dominant”) product, so that the respondent’s answer is obvious in advance. The 

variance of the model parameters estimated from a design depends on the actual parameter 

values, but most design algorithms assume equal preference weights in calculating 

efficiency (even with unknown preferences, attributes often have a natural ordering such as 

“mild,” “moderate,” and “severe,” or a lower price which should be preferred over higher 

ones). This is the reason why classical designs often result in dominated pairs, where all the 

attribute levels of one alternative are better than the attribute levels of another alternative. 

Such choices provide no real preference information, even though they may be included in a 

theoretically efficient design. 

Some researchers have concluded that a certain amount of utility balance (having 

alternatives about equally attractive overall) is needed, both to avoid odd choice tasks and to 

enhance efficiency (Huber & Zwerina, 1996). Rich Johnson, Joel Huber, and Bryan Orme 

(2005) conducted some practical experiments and showed that while utility balance is 

theoretically good, it usually doesn’t result in improvements in empirical studies. This 

finding is attributed to the idea that utility balanced designs result in choice tasks with 

concepts that are more nearly equal in attractiveness and therefore make the choice tasks 

harder for respondents, causing more fatigue and/or random error. Also, creating utility 

balance requires prior information; if we are able to create perfect utility balance, we already 

know the answers! 

We agree with both papers. On the one hand, no utility balance is bad for respondents, 

because they may see trivial choice tasks where the answer is clear to everyone. On the 

other hand, high utility balance may lead to too-difficult choice tasks. The net conclusion is, 

no utility balance at all and too high utility balance are both bad for empirical studies, but 

some degree of utility balance does help achieve better designs. 

Another frequent concern when building statistically perfect designs is including 

implausible attribute combinations. An orthogonal design might include all possible 

combinations, including ones that are not possible in reality. Imagine an iPhone with an 

Android operating system. Eliminating these implausible combinations results in a design 

that is no longer orthogonal or level balanced. 
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Further problems constructing experimental designs often appear when line-pricing or a 

pricing system from the client has to be taken into account. Pricing systems could be such 

that if Coke increases in price, line-pricing for other soft drinks of the CocaCola company 

(e.g., Sprite) need to increase similarly Or, it might be a rule that a 10% price increase in 

sparkling water should mean a 30% increase for energy drinks. Such pre-conditions and 

relationships also lead to problems with level balance and orthogonality of the design. 

HOW DO AI AND ANNS WORK? 

Taking the topics mentioned above into account, an AI-based design generation process 

has to find a nearly perfect experimental design and to minimize the statistical and 

measurement error. Such an AI approach should accommodate all practical needs like 

prohibitions, excluding implausible combinations and unavailable products, taking pricing 

systems into account, and including at least some utility balance to make the choice tasks 

more realistic. But, it must do this while giving up as little as possible of the desirable 

statistical properties (e.g., orthogonality, level-balance, overlap). From a statistical point of 

view, this means that we are looking for design versions in which purely random answers 

result in all estimated part-worth values being zero, or nearly so, and therefore an RMSE 

being as small as possible (standard errors close to zero). This sounds like more of a 

challenge than it actually is, because exactly such requirements are the strengths of ANNs. 

What is the starting point for an ANN-based design approach? 

• We know the answers to test (simply random answers). 

• We know which prohibitions and pricing rules we must take into account. 

• It is relatively easy to generate a large number of synthetic datasets to train our ANN’s. 

• We have a clear objective and “loss function”: minimizing the standard errors of the part-

worth coefficients. 

Before building an AI tool it’s necessary to decompose the workflow into separate tasks. 

Agrawal, Gans & Goldfarb (2018) suggest the use of an “AI canvas” (Figure 1) that helps to 

decompose the machine learning problem into tasks: 
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Figure 1: The AI Canvas 

 

Source: Agrawal, A.; Gans, J.; Goldfarb, A. (2018): Prediction Machines. 

The first task is to predict the part-worths, so we need some process within our AI tool 

to estimate part-worth utilities. This could be done with the Softmax procedure implemented 

in the Keras2 AI framework. Softmax is an ANN type that realizes multinominal logit 

calculations. The second task, judgment, determines how many good design versions we 

find in our input data, based on a maximum loss we will accept from the loss-function 

(standard error). The (third) input task involves generating the possible design versions. A 

design version is a complete set of choice tasks for one respondent. The candidate design 

versions can be produced either by fully random design generation or some specialized 

design algorithm. The (fourth) training task involves grouping design versions to make 

complete experimental designs that minimize the loss. The (fifth task) feedback loop is 

simply minimizing the loss function which means that we want to have part-worths with 

standard errors as small as possible. Information on the errors is sent back to the training 

task so it can try again to group the design versions into a different complete experimental 

design that results in a smaller loss. The (sixth task) outcome of this AI tool is the best 

possible experimental design (or at least, one very close to the best) under the given 

restrictions.3 Finally, the (seventh) action task is to use the design in empirical studies and 

compare it to other designs used under similar conditions. Action is the most expensive step 

in the AI canvas. All the other steps only need computational power and can be done in the 

lab; action must be in the real world. 

 
2 Keras is a Python-based package for neural networks, accessible through R as well. 
3 What we call a “choice task” is the single question shown to a respondent. The choice task consists of a number of concepts. What we call a 

“version” or “design version” is the full set of choice tasks shown to one respondent, typically numbering 8 to 15. The complete experimental 

design consists of a defined number of versions, usually 20 to 40. 
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Since ANNs can be used to approximate any data generating process due to the universal 

approximation theorem, it should not be a problem to find an appropriate design. But, in 

order to find this solution ANNs need a large amount of data and a properly defined loss 

function. As shown above, we can easily fulfill both requirements: we can generate a large 

number of versions and answers and train the ANN to solve the problem by minimizing the 

loss function (small standard errors) and identify the optimal experimental design 

(combination of different versions) need for a complex choice experiment based on our 

input. 

Figure 2: How ANNs Work 

 

Source: Teodorović, D., & Vukadinovic, K. (1998): Traffic Control and Transport Planning: 

A Fuzzy Sets and Neural Networks Approach. 

ANNs can be described as weighted directed graphs (Figure 2), where the nodes (colored 

circles) are the “neurons” and the connection lines between the neuron outputs and neuron 

inputs can be characterized by the targeted edges with weights (Wki). Figure 2 is a simplified 

example of the real network we used. Our input is much more complex, one neuron for each 

attribute level * # of concepts * # number of choice tasks * # of versions needed for the 

experimental design + the synthetic answers for each choice task * number of synthetic 

respondents. As this is way too complex for an illustration, we show only one neuron for 

each attribute in Figure 2. The ANN collects the input signal from the external world in the 

form of a vector with binary information. These inputs are then mathematically defined by 

the notations x(n) for every n number of inputs, where n is the number of versions. 

To make this more concrete, if we have 5 attributes with 3 levels each and 1 with 4 

levels, for 19 total levels; 4 concepts per choice task; 12 tasks per version; and 20 versions 

desired for the complete design, our input layer would have 19 * 4 * 12 * 20 = 18,240 input 

neurons, each receiving a 0 or 1 input depending on whether a particular level applied to a 

particular concept in a particular task in a particular version. In addition, with 1,000 

synthetic respondents, we would have 4 * 12 * 20 * 1000 input neurons indicating which of 

the four concepts were chosen in each task in each version by each simulated respondent. 
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Each of the inputs is then multiplied by its corresponding weights (these weights are 

determined by the training process used by the artificial neural networks to solve a specific 

problem). In common terms, these weights represent the intensity of the interconnection 

among neurons inside the ANN. All the weighted inputs are summed up inside the ANN 

(this could be seen as another artificial layer of neurons). 

The “activation function” of each hidden or output neuron is some transformation of the 

weighted sum of the input values. It may be sigmoidal, or linear, or a step function, among 

other possibilities, as suggested by the bottom panel of Figure 2. The “softmax” neuron that 

implements logit choice is one specialized type of neuron. To understand the architecture of 

an ANN, we need to understand what components the neural network contains. A typical 

ANN includes a large number of artificial neurons which are units arranged in a series of 

layers. Let us take a closer look at the different layers available in an ANN: 

Input Layer 

The input layers contain those artificial neurons (units) which directly receive input from 

the outside world (input data), in our case, the design versions and answers. 

Output Layer 

The output layers consist of units that react to and reflect the information that is fed into 

the ANN. How closely their outputs (for us, part-worths) correspond to the desired ones 

(near-zero part-worths) reflects whether the ANN has learned any task well or not. 

Hidden Layer 

The hidden layers are located between the input layers and the output layers (not 

interacting with the outside of the ANN). The only job of a hidden layer is to convert the 

input into some meaningful form that the next layer can use in some way. 

Most ANNs are completely interconnected, which means that all neurons in one layer are 

connected to all neurons in the next layer, leaving nothing unconnected. This allows a 

complete learning process. Learning occurs when the weights inside the ANN get updated 

after each new iteration. 

In order to generate the input for training the ANNs we developed R code that generates 

large numbers of versions which are used as input for the first layer. The code generates 

versions based on a modula operation, by simply cycling thru all attribute-level 

combinations. In a second step the code deletes any tasks that fail any of our defined 

conditions: prohibitions, implausible combinations between concepts, violation of line-

pricing, non-conformity with the needed pricing systems, violation of the desired amount of 

utility balance, and so on. To ensure that we produce enough possible versions, we use an 

oversampling strategy to bring in more versions with attribute-level combinations that are 

“relatively rare” because of the various restrictive conditions. We run these R scripts until 

we reach a large number of possible versions (typically a million or so) and then use those 

possible versions as input for the ANN. 

The second part of the training data is the answers to the choice tasks. We simply 

generate random choices of concepts in each choice task. It is crucial to use a perfect 
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random distribution and avoid all positional effects. However, if the eventual real-world 

experiment will include a None option, it is important to define a realistic frequency of 

None answers and include them in the training data. Otherwise it is not possible to estimate 

the effect of None answers in the design, meaning that the efficiency will always be 

overestimated because of the assumption that all choice tasks will be answered on a forced-

choice basis. Therefore, it is essential to have good estimates of real-world answering 

behavior, which is not always easy. 

In order to train our ANNs we generated 1,000 synthetic respondents each answering all 

15-20 choice tasks of a version. We replicated this for all of our 1,000,000 “design versions” 

that are used to build up the ANN. This procedure gave us sufficient information to estimate 

part-worth utilities at aggregate level and to have a large enough set of versions to stabilize 

the training of the ANNs. 

Loss Function 

A key task is to define the loss function. In the case of Choice-Based Conjoint exercises, 

it is simply the deviation from zero of the estimated part-worth utilities. The training process 

iteratively generates weights for the ANN layers which minimize the deviation from zero for 

the estimated part-worth utilities. As we want no single biased attribute levels, we minimize 

the deviation for all single attribute levels (parameters to estimate), so that we result in a 

loss-function combining the overall standard error and the standard error for each single 

parameter. 

The proportion of the two components (overall and individual standard error) can either 

be a fixed ratio (as we have used in the example 70:30) or varied due to an optimization 

function (which introduces another layer). If we can get exact “zero”-values for all part-

worth estimates, the design fulfills all design considerations. Deviations from zero cause or 

reflect weaknesses in at least one of the design considerations. Most often, orthogonality is 

violated (attribute levels are correlated). However, we know from the literature it is 

acceptable to give up some orthogonality in order to derive useful designs, especially when 

estimating multinomial logit models. Nevertheless, the better we meet the design 

considerations, the better our empirical study results. 

For experimental designs where it is possible to fulfill all design considerations (it is 

often not possible, due to prohibitions that prevent orthogonality, for example), we can 

prove that ANNs are able to minimize the loss function to exactly zero values for all 

estimates. 

Training of the ANNs 

Finally, we have to train the ANNs. Our experiment with different ANN strategies 

showed best results, if we train two ANNs: ANN1 for the experimental design that best fits 

at the aggregate level and ANN2 to optimize the resulting experimental designs for 

individual utility estimation. 

For ANN1 we use the randomly generated versions and random answers to the choice 

tasks in them as input. Then we train the layers to find the optimal experimental design to 

estimate the aggregate MNL. This is done using a standard way of training ANNs called 

“backpropagation,” an iterative process that adjusts the weights of the neurons to minimize 
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the loss. After convergence is reached, ANN1 is able to produce the best experimental 

design possible, for later field work. For the complete experimental design we use a 

sufficient number of versions, so that different respondents see different sets of choice tasks. 

From our experience we usually end up with 20 to 40 different versions for a complete 

experimental design that is optimal for fielding. Up to this point, the design is only tested on 

an aggregate level, meaning we have used aggregate logit models to define the loss function 

being minimized. 

Figure 3: ANN1 — Design Optimized for Aggregate Utility Estimation 

 

Flow of the first ANN: Input, Layers and Softmax Layer for MNL Calculation  

ANN2 is trained to find the best experimental design for individual utility estimation 

(via HB) based on a sufficient number of possible experimental designs generated by ANN1. 

The input data are now complete experimental designs (the results from ANN1).4 These 

designs are answered with new randomly generated answers. But at this stage we add some 

heterogeneity and eventually response error to the answers and train the ANN2 to minimize 

the deviation for each experimental design. To estimate on the individual level, the versions 

from each of the experimental designs are answered by 1,000 synthetic respondents, which 

are generated according to the assumed heterogeneity. For our training data we used 100 

experimental designs, of 20 versions each, generated by ANN1 and answers to each of them 

by 1,000 synthetic respondents. 

As one can see, in this phase we need assumptions about the real heterogeneity in the 

population. In future work we would like to use real data from past studies at this stage to 

generate synthetic respondents’ answers, or at least generate answers based on knowledge of 

heterogeneity from past studies or markets. 

 
4 To implement the second step we uses a number of possible “nearly optimal”experimental designs from ANN1. Usually we find not just one 

perfect experimental design, but a group of possible experimental designs. If we end up with only one one perfect experimental design, we 

have to lower the restrictions of the loss-function a little and re-run to get more design options. 
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Figure 4: Design Optimized for Individual Utility Estimation 

 

Flow of the second ANN: Input (results from ANN1), Layers and Softmax Layer 

for individual MNL Calculation 

After we have trained the two ANNs, we are able to use the two networks to generate the 

best possible design versions for fieldwork. The ANNs have recovered the data-generating 

process which lies behind the design versions and the answers. 

Bear in mind that the ANNs automatically structure the layers and calculate the weights, 

so there is no “programming” needed, the only information we used in the setup is the 

difference between versions and answers, and in ANN2 an indicator to which experimental 

design the versions belong. However, the resulting ANNs are “black boxes,” so we don’t 

have a chance to analyze them and see why some selections are superior to others and why 

we end up with those final design versions. This immediately shows the need of empirical 

testing on how good the results really are in reality! 

SIMULATION RESULTS 

We ran hundreds of synthetic datasets to explore how well ANNs are able to generate 

ideal experimental designs when the underlying DGP (known utilities, Gumbel error as in 

standard MNL) is known to the analyst. We focus on standard criteria for good experimental 

designs like orthogonality, level balanced overlap, and utility balance (see Huber & 

Zwerina, 1996). 
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Table 1: Experiment Factors and Factor Levels 

 

We used 6 experimental factors (Table 1) and varied them with 2 to 6 factor levels. For 

each of the combinations we generated experimental designs based on our two-stage ANN 

approach and answered them with synthetic respondents. As a comparison, we produced 

designs with the SAS Macros (Kuhfeld, 1996) with the same experimental factors and 

answered them with the same synthetic respondents. We chose SAS because it is possible to 

script the macros in SAS syntax to generate the over 2,000 designs automatically. In this 

experimental setting, we know the real utilities of each respondent and can show how well 

we reproduce the preferences of the artificial respondents. 

To compare our different designs we used the root mean squared error (RMSE) over all 

part-worth utilities, the maximum standard error, and the range of the standard errors as 

criteria. Table 2 displays the results of this comparison for all experimental factors. 

Table 2: Results from Simulation Study 
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The differences between AI and SAS become larger the more complex the designs are: 

the more prohibitions and implausibilities that have to be taken into account, the better the 

ANN-based versions perform compared to the SAS designs. Furthermore, we can see that a 

high degree of utility balance harms the designs. This finding is in line with the literature: a 

small amount of utility balance is OK, but higher utility balance makes the designs worse. 

Note: in the case of synthetic data, the problem with utility balance is not respondent burden 

or error. With higher utility balance we simply produce larger deviations from orthogonality, 

and for complex designs with lots of prohibitions we also violate level balance. In the real 

world, it’s likely that respondents answering behavior and higher burden, as Rich Johnson 

encountered in his studies, eventually add further to these errors. 

The same pattern can be seen in hit rates and shares. The AI-based designs always have 

lower RMSE than the classical SAS-based designs. For the synthetic data, we can conclude 

that the black-box works and the ANNs are well-trained to produce appropriate designs and 

can handle much more complex design restrictions, compared to designs based on the 

classical algorithms (the SAS designs). The results for hit rates show that the ANN-based 

designs are better at capturing heterogeneity than the classical designs. This leads to the 

conclusion that the training effort for the second ANN pays off. 

EMPIRICAL STUDIES 

For empirical testing of ANN performance with real data we conducted two studies with 

split cell designs: one study about orange juice and one about chocolate bars. In each study, 

one cell used ANN-based designs, and the other used designs from the SAS macros. 

The orange juice study was conducted in Germany in December 2018 and January 2019 

with respondents who bought orange juice in the last month, aged between 16 and 65 years. 

The sample was n=1,010 and n=1,005 for the two design splits. The objective of this study 

was to optimize the bottle type, the quality of juice, and the packaging artwork, and to get 

insights into the impact of quality labels like “organic” or “fair trade” (Figure 5). The design 

complexity comes from the problem that not all brands can produce all package types or all 

different qualities. Depending on the quality and pack type, not all prices could appear with 

all juices. 
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Figure 5: Choice Tasks from the Orange Juice Study 

 

Orange Juice study Germany 2018/19; n=1010/1005 

The second study, on chocolate bars, was also conducted in Germany, in August 2018 

and July 2019 with two samples of 605 and 608 category buyers (at least once in the last 

month) and aged between 16 and 65 years. The objective of this exercise was to optimize 

the assortment and pricing, add new flavors to the market, and have an optimal 

differentiation from what the competitors offer. The design complexity was caused by the 

fact that not all brands can offer all flavors, some brands use very special ingredients that are 

branded and cannot be used by other brands, and some brands produce special chocolate 

variants with special cacao that cannot be shown with other brands. In addition, the 

assortment size is very different between the competitors and some ingredients are much 

more expensive than others (Figure 6). 

Figure 6: Choice Tasks from the Chocolate Bar Study 

 

Chocolate bar study Germany 2018/19; n=605/608 
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We expected that if we generated the experimental designs for the two studies with the 

ANN-based approach, it would be possible to improve level balance for one-way and two-

way frequencies, as well as orthogonality. Furthermore, we used the ANN2 to add some 

utility balance for the price attribute, so that lower prices for the same type of chocolate bars 

are preferred. Due to the limited number of empirical test cells we weren’t able to test 

whether a specific amount of level overlap and/or adding special tasks to estimate 

interaction effects would pay off. However, ANNs could easily address such criteria. 

First, we compared the designs for the two studies, again with purely random answers. 

With this initial test we could show that the AI-based designs have a smaller RMSE, smaller 

standard deviation and smaller standard errors. Even though our ANNs were not trained to 

optimize D-efficiency, they beat the SAS designs in the area of their strength, D-efficiency, 

as well (Table 3). 

Table 3: Comparison of the Two Design Approaches 

 

Orange Juice Germany 2018/19; n=1010/1005; Chocolate bar 2018/2019; n=605/608 

In the orange juice study, we added additional feedback questions about respondents’ 

experience when doing the exercise. In Table 4, we can see slight improvements in 

likeability, but even higher gains for the AI-based designs concerning the realism of the 

exercise compared to a real shopping trip. But more important is the dramatic increase in the 

number of choice tasks where respondents can make a choice, because they see a product 

that they would really like to buy. A real advantage of the ANN-based designs is the number 

of meaningful choice alternatives for respondents. Answers of respondents should be more 

realistic and meaningful if they really see products they want to buy and don’t have to 

choose products they would never really consider buying in most of the tasks. 
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Table 4: Results from the Feedback Questions, “Orange Juice” Study 

 

Orange Juice study Germany 2018/19; n=1010/1005 

A second finding is that the importances of the attributes are different between the two 

design strategies. In Figure 7, we can clearly see that, especially if prohibitions are used, 

design weaknesses influence the attribute importance. In the orange juice case, the 

prohibitions on labeling and different bottles affect the importance of the price parameter. In 

the chocolate bar study, the different amount of level balance, especially for the filling 

attribute, causes large differences in the importance of these attributes. 

Figure 7: Attribute Importances from the Two Studies by the Two Design Strategies 

 

Orange Juice Germany 2018/19; n=1010/1005; Chocolate bar 2018/2019; n=605/608 

The comparison of in-sample hit rates is based on 6 selected random tasks (estimating 

the utilities 6 times by leaving one single random task out in each estimation). The result 

clearly showed that the hit rates on all holdout tasks are always better with the ANN-based 
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versions (Table 5). The better handling of prohibitions and implausible combinations, which 

results in better level balance, seems to pay off. 

Table 5: Comparison of Within-Sample Hit Rates by Study and Design 

 

Orange Juice Germany 2018/19; n=1010/1005; Chocolate bar 2018/2019; n=605/608 

Looking deeper into level balance, we see that the deviation of one-way frequencies is 

larger for the SAS-based designs. Table 6 shows that the SAS-based designs always have a 

larger difference in the one-way frequencies of levels shown in one design version to the 

respondents. The superior level balance is one reason why AI designs are always a little 

better. 

Table 6: Selected One-Way Frequencies from the Chocolate Bar Study 

 

Chocolate bar study 2018/2019; n=605/608 
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Much more impressive are the differences in the two-way frequency tables (Table 7). For 

example, the attribute level “milk chocolate” is highly correlated with brands in the SAS 

design (only 15 views for Lindt, 554 for Milka). The AI-based designs do a much better job 

of achieving pairwise-level balance. Prohibitions of combinations didn’t affect the ANN 

design generation nearly as much as they affect the classical approaches. 

Table 7: Two-Way Frequencies of Selected Attributes from the Chocolate Bar Study 

 

Chocolate bar study 2018/2019; n=605/608 

For the chocolate bar study, we have real market data available and therefore we could 

do some out-of-sample predictions. We compared the base case share of choice for both 

designs with the market shares from the German chocolate market (Table 8). 

Table 8: Error Measures5 for Share of Choice for the Two Empirical Studies 

 

Orange Juice Germany 2018/19; n=1010/1005; Chocolate bar 2018/2019; n=605/608 

All error measures are slightly better for the results based on the AI designs. Measures 

like RMSE or MAPE that penalize larger deviations more than smaller ones especially show 

that the AI designs are superior to the classical ones. Both in-sample and out-of-sample 

results are better for the ANN-based design versions. 

 
5 All error measures are better when lower. MAE is mean absolute error. MSE is mean squared error (a variance-like measure that weights larger 

prediction errors more heavily than small ones). RMSE is root mean squared error, the square root of MSE and standard deviation-like. RMSE 

penalizes larger prediction errors more strongly but finally reports the average prediction error in the dimension of the original measurement 
units. MAPE is mean absolute percentage error (error as a percentage of the true value). RAE is relative absolute error, the ratio of an RMSE-

like measure to the same measure for a naïve equal-probability model. 
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FINDINGS 

As expected, the AI-based designs fit perfectly to the assumptions we included in our 

candidate generating process. In other words, the AI recovered the DGP. Prohibitions, 

implausible products, ordered attributes, assumptions about utilities, and pricing strategies 

were better accommodated better in the AI design versions. Overall, RMSEs, SDs, part-

worth estimates, one-way and two-way frequencies, as well as D-efficiency are all closer to 

optimal designs in the AI-based approach than in the SAS-developed designs. 

Adding a large amount of utility balance harmed the designs. Rich Johnson was right, we 

do not always gain an advantage by forcing utility balance in empirical data. 

Small to medium amounts of utility balance (especially for ordinal attributes and price) 

results in better designs and showed no disadvantages on respondent burden and fatigue 

answering behavior. 

From our two empirical studies we can conclude that there are differences in the 

estimated part-worth utility depending on the design generation technique. AI-based design 

techniques appear to deliver more stable and better results, although two empirical studies 

are not enough to conclude that they are always superior. We can see in our two examples 

that AI-based designs were superior in all tested measures. We see more valid results in case 

of attribute importance (proof of which is only possible in simulation studies) and more face 

validity, at least, for attribute importance in the empirical studies. Shares of choice (both 

simulated and in empirical studies) are closer to reality and have smaller errors. In our 

empirical studies we saw that the within-sample hit rates were higher when using AI-based 

choice tasks. In our second empirical study we saw that out-of-sample error between real 

market and predicted-share was slightly reduced with the ANN-based designs.6 

In general, we can conclude that the Universal Approximation Theorem from ANN 

theory can be applied in the context of experimental design for Choice-Based Conjoint 

studies, meaning the ANNs are able to identify the DGP and come up with stable design 

versions. Although predictions generated by deep learning and many other AI technologies 

appear to be created from a black box, we can say that in our context the black box works 

well. 

Most studies conducted in the marketing research community are still based on design 

algorithms which were developed for aggregate models. We have presented here a new 

technique which is able to generate optimized experimental designs for individual-level 

estimates. 

FUTURE WORK 

We need further investigations based on more empirical studies with out-of-sample data. 

We also need more work on what happens if we include wrong assumptions (such as too 

much utility balance)! So far, we can only suggest being careful when defining your 

assumptions for the candidates. We don’t really know what happens if the assumptions 

about utility balance are wrong. 

 
6 No data on real market share was available for the first empirical study. 
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A major potential step forward is the possibility of including “revealed preference” (past 

respondents’ data) in the training of the ANNs to derive better designs for individual 

parameter estimates. If we have information from past choice models or panel data, we can 

train the second ANN with answers that have the same heterogeneity, same class 

memberships, and same utility structure as the revealed preference data. The trained ANN 

could then produce optimal deigns for fitting exactly to the actual respondent heterogeneity. 

ANN-generated designs based on past data could result in better input for pseudo-individual 

utility estimation (ability to capture more heterogeneity) by optimizing these designs for 

individual-level estimates. 

If no past data are available, we can try, instead of using simple random answers, 

incorporating different answering routines in the computation, to come closer to real 

respondent answering behavior and the structure of real datasets, for use in the training 

phase of the ANNs. 

As the proportion of None answers influences the results, we need further investigation 

of what happens if we assume a too large or too small None share in the training phase. 

Additional backpropagation loops to investigate the influence of None answers on the 

design during the training should be implemented and tested. 

 

   

 Peter Kurz Stefan Binner 
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PREDICTING THE (UNOBSERVED) PREDICTABLE: 

THE USE OF DEEP LEARNING IN WAVE STUDIES FOR 

MARKET RESEARCH 

TOM GARDNER 

MICHELLE MCNAMARA 
ADELPHI RESEARCH 

INTRODUCTION 

In Market Research, tracker (or wave) studies aim to understand the attitudes and 

usage of products over an extended period. The same questions are asked at the 

different time points, giving the client an understanding of how their brand performs 

over many months. With this dynamic information, clients can be informed on 

strategy and understand how their brand is situated within their competitive 

marketplace over a given time period. 

One issue with this type of research is that it requires the recruitment of a large 

number of respondents. Pharmaceutical market research is an example of where 

recruiting large samples can be difficult and expensive. The reason for this is that the 

respondent pool is usually physicians, and their time is very expensive. Moreover, 

this sample pool is often further reduced by eligibility of respondents based on their 

specialty and practice setting. Nonetheless, clients still need to know how their 

products are performing over time so must engage in costly wave studies. From these 

relatively short online surveys, the client wants to extract as much information from 

the physicians as they can to make the most of their time and valuable opinions. The 

thesis of this manuscript is, given the cost and time constraints of physicians, there is 

a way to more fully optimise the benefits from each respondent. 

To address this question, we thought about the nature of wave studies; they are 

repetitive and often there is little deviation for certain metrics over the time points. In 

other words, how physicians feel about the mode of administration of a drug is not 

likely to hugely fluctuate across the space of six months. In theory, if you could use 

the data obtained from previous waves to predict the behaviour in future waves, you 

need not ask the predictable questions in the latter waves, we can predict them from 

responses to the other attributes. This is an important concept because, if achievable, 

we could ask a subset of questions and get the data for a larger set—this would mean 

that we get more data from the expensive respondent interaction without asking more 

questions. 

One method to address this paradigm would be to use a regression model. A 

regression model would be fitted to the data from waves 1 and 2 and then this model 

would be used to predict the omitted variable in wave 3. The issue with using a 

regression model in this way is that it will be looking for linear dependencies 

between the predictors and the dependent. A complicating factor for this kind of 

model is that time is factor; the relationship between the variables may change 
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between the waves you are training the model on, and a regression model would not 

be able to model this nonlinearity in the data. As shown in Figure 1A, the input 

variables (in green) have a single coefficient applied to them to affect the output 

(dark blue), i.e., a linear dependency. 

Figure 1: A) A schematic showing the relationship between predictors 

and output in a regression model.  B) A schematic showing the architecture of a 

Neural Network. 

 

An alternative methodology is to apply a deep learning algorithm to this 

paradigm, namely fitting a Neural Network (NN). An NN can be seen as an extension 

of a logistic regression model as it allows for nonlinear and interactive functions (see 

Dreiseitl & Ohno-Machado, 2002, for a review and comparison of these 

methodologies). The “neural” aspect of an NN comes from our understanding of 

human brain function, namely that synaptic connections are nonlinear, and that input-

output requires more than a direct connection between brain areas. For example, 

when a face is processed in the brain, information passes through several visual 

processing areas before we recognize the face as someone we know (see Rossion et 

al., 2012 for further explanation). A similar process is applied to NN outside of 

neuroscience, where to explain an output as a function of its inputs, multiple 

coefficients must be applied (or layers; light blue in Figure 1B), allowing nonlinear 

functions to be modelled (see Schmidhuber, 2015 for a review of Neural Networks). 

The power of this method comes from its ability to understand patterns which are not 

captured by traditional statistical techniques. Examples of these successful 

applications of NNs are recognising images (Krizhevsky et al., 2012), drug discovery 

(Ma et al., 2015), and natural language processing (Collobert et al., 2011). 

Figure 2 shows a schematic of how Neural Networks fit into the field of Artificial 

Intelligence (AI). AI is an umbrella term applied to the use of machines for 

intelligent thought/making decisions. Deep learning and Neural Networks fall within 

the field of Machine Learning. In this study, we will use a form of Neural Network 
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known as a Convolutional Neural Network (CNN). The way in which they differ 

from a standard NN can be seen in the bottom half of Figure 2, whereby the input 

into the model is different. It converts the raw input into an activation map, which is 

then passed into the model. This type of model is routinely used on tasks such as 

image classification and natural language processing to very high effect. 

Figure 2: A schematic showing the field of AI (top) and a convolutional neural 

network (bottom). 

 

 

AI 
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METHOD 

Data 

The data used was taken from a long-standing wave study conducted by Adelphi 

Research. The purpose of this research was to find out the attitudes of physicians 

towards pharmaceuticals in Retinopathy. For this study, we have only used the 

respondents from the UK (see discussion). In each of the three waves there were 50 

respondents (there was no overlap in this wave study, so each wave had unique 

respondents). We collapsed waves 1 and 2 together (known as the train data for the 

rest of this manuscript), and wave 3 (known as the test data) was set aside until the 

validation stages. 

Variables and Identifying the Predictable Attributes 

Each wave saw the same online survey, and therefore answered the exact same 

questions. In this survey, there was a battery of 17 attributes which respondents had 

to rate on a 1–7 Likert scale (Likert, 1932); these attributes were used to test our 

hypothesis. The task for respondents was to give a response between 1 (strongly 

disagree) and 7 (strongly agree) to the importance of each attribute in decision 

making when prescribing. The full list of these attributes can be found in Table 1. 

Table 1: Battery of Variables Used 

Variable Shorthand Full text 

Att 1 Long term efficacy 

Att 2 Longest VEGF suppression 

Att 3 Rapid visual gains 

Att 4 Maintains a dry macula 

Att 5 Most letters gained 

Att 6 Proven safety profile 

Att 7 Significant improvement in QoL 

Att 8 Less frequent visits 

Att 9 Flexible dosing regime 

Att 10 Reduces injection burden 

Att 11 Shorter injection preparation time 

Att 12 Recommended in guidelines 

Att 13 Leaders prefer the product 

Att 14 Manufacturer provides patient support services 

Att 15 Greater experience with the product 

Att 16 Cost effective 

Att 17 Delivers real world evidence 

Att 18 Effective in a broad range of patients 

From this list of 17 attributes, we wanted to identify a subset of attributes which 

could be predicted from the remaining attributes. Using the train data (waves 1 and 

2), we conducted a Principle Components analysis (PCA; using a Varimax rotation) 

to identify components. The rationale here was that by identifying components and 
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which attributes load onto them with the highest estimated correlation, we could omit 

these to be predicted as they serve as the archetypical variable for that component. 

The results from the PCA (Table 2) reveal three components which we have labelled 

efficacy, mode of administration, and credibility based on the variables which load to 

them. 

Table 2: Reduction of Attributes by Using PCA (values indicate loadings, loading 

threshold of 0.1) 

Attribute Efficacy Mode of 

administration 

Credibility 

Attribute 1  0.652 0.34 

Attribute 2 0.481 0.432 0.411 

Attribute 3 0.273 0.19 0.626 

Attribute 4 0.677 0.195 0.41 

Attribute 5 0.705  0.239 

Attribute 6 0.796  0.215 

Attribute 7 0.732 0.275  

Attribute 8 0.399 0.724 0.152 

Attribute 9  0.78  

Attribute 10 0.532 0.582  

Attribute 11 0.128 0.649 0.27 

Attribute 12  0.138 0.717 

Attribute 13 0.311  0.657 

Attribute 14   0.314 

Attribute 15 
 0.272 0.533 

Attribute 16 0.417 0.233  

Attribute 17 0.185 0.176 0.261 

Attribute 18    

Highlighted in blue in Table 2 are the attributes for each component with the 

highest loading value, therefore those which we will aim to predict. However, upon 

reviewing the attributes which would be used, we made two changes. Firstly, we felt 

that “Less frequent visits” (Attribute 8) was semantically a consequence of Attribute 

9 “Flexible dosing regime,” i.e., less visits is a consequence of a flexible dosing 

regime. As the estimated correlation for this attribute on the component was still very 
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high, we replaced Attribute 9 with Attribute 8. Second, we decided to include 

Attribute 4 as one of the attributes to predict as this was an important attribute to our 

client. It had a strong estimated correlation with one of our components so we were 

confident that it could bootstrap to this component. Therefore, we took four attributes 

(highlighted in yellow) forward to predict. 

Neural Network Parameters 

The raw responses were first min/max standardised, removing any scale bias. The 

resulting values (between 0–1) were then converted into the convoluted activation 

map. This procedure used 3x3 kernels and the activation function Rectified Linear 

Unit (ReLU). This was conducted on the individual basis so that each respondent had 

a convoluted activation map which formed the input into the Neural Network. 

The CNN was created in Rstudio using the package NeuralNet (currently 

replicating using TensorFlow). The model architecture contained two hidden layers, 

with 30 and 15 neurons respectively. These parameters were determined by fine-

tuning the model (checking overfitting of the model). The issue we faced was that we 

were using a small dataset which is not commonplace in the deep learning literature, 

however, it is a growing movement. The reason a small sample is problematic is that 

due to the complexity and unsupervised nature of deep learning algorithms, the 

model will fit the data, in other words, you can have a separate neuron for each 

respondent and fit the data perfectly. To avoid overfitting, we ensured the model had 

an accuracy of 75–85% in predicting the training data, across the 4 attributes we were 

predicting. This was checked by using the model to predict the data used to train the 

model. 

Using the CNN model, we then tested our hypothesis by using our test data (wave 

3) to see how accurately we could predict this future wave. As a reference point, we 

also used a linear regression model so we could see comparatively how well the 

CNN model performed. 

RESULTS 

The respondent-level responses and predictions are shown in Figure 3. In the 

upper chart of this figure, we have plotted the difference in ratings between actual 

and predicted (positive is overestimated)—error bars are the Standard Error of the 

mean. From this chart we can see that the CNN appears to have predicted the future 

wave responses reasonably well. When we look at the hit rate of the CNN and linear 

model, the CNN has an accuracy level of 49% and the linear regression model has 

34%. When we look at the raw data (lower chart of Figure 3), we can see that all 

models had issues predicting Attribute 12 accurately. The takeaway from this chart is 

that our model did a reasonable job; there is room for improvement though. 

However, clients do not report this respondent-level data, so it is less important to 

have an accurate prediction for that attribute. 
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Figure 3: The model accuracy. Upper chart shows the mean difference in rating for 

each of the attributes (for the linear regression model and CNN). The lower chart 

shows the raw responses plotted with the predictions of the models (for illustration 

purposes only). 

 

When we look at the aggregate-level responses (Figure 4 and Table 3), we see 

that the CNN is incredibly accurate when predicting the actual responses. The reason 

we see this level of accuracy compared to the respondent-level accuracy is that the 

model has fit the data relatively well, however at the respondent level it would make 

mistakes, for example, predicting a rating of 6 when the actual response was 7. At the 

aggregate level, these inaccuracies are smoothed out and the aggregate-level 

accuracy is very precise. In terms of our hypothesis, this result would mean that we 

do not need ask about those 4 attributes, yet we can predict what the responses would 

be. If the client is reporting at the aggregate level, then this method would yield 

results on par with actually asking the respondent to rate the attribute. 
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Figure 4: The aggregate-level responses (mean) for the actual responses, 

CNN and linear regression model. 

 

Table 3: Averages for each of the predicted attributes, for each of the models 

(including the actual). 

 

Another aspect of these results to address is to confirm the appropriate use of 

deep learning and CNN; the reason we included a linear model was to address this 

point. The output shows that the CNN is highly accurate, however using a simple 

linear regression model would yield a less than desired level of accuracy. 

Furthermore, if the clients were to use aggregate-level responses to order these 

attributes based on rating, using the predictions from the linear regression model 

would give a very different story than the actual responses. Due to these findings, we 

can be confident in the use of a CNN model. 

Finally, we wanted to test how well our model performed in explaining the 

variance in an external variable. By external we are referring to a variable which was 

not used in the creation of the CNN model. The reason we looked into this approach 

was the clients would often report these aggregate-level responses we have 

successfully predicted, but they also want to understand how these ratings relate to 

something like prescribing behaviour. A common approach here would be to use 

these ratings in a regression model to see how well they explain the prescribing 

behaviour of physicians. Using the respondent-level predictions from the CNN and 

linear models, we then tested the variance in prescribing behaviour explained (in 

terms of R Squared) of these compared to the actual responses. The results of this are 

shown in Figure 5. 
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Figure 5: The R squared values for each of our models when explaining prescribing 

behaviour. 

 

The findings illustrated in Figure X show that the CNN model predictions are 

better than the predictions from a linear model. This improvement is moderate, 

however it should be noted that no prescribing related variables were present in the 

creation of these models, therefore these predictions are quite impressive. 

Furthermore, in an extension which will be discussed further below, we could include 

additional attributes in the creation of these models to better predict external 

variables if this is the aim of this approach. 

DISCUSSION 

The aim of this study was to investigate whether there is a way to better utilize 

responses from physicians, given the high cost of each respondent. We leveraged a 

type of deep learning known as Convolutional Neural Networks to see if it was 

possible to omit attributes from a set of related judgments. In wave studies we were 

able to identify more predictable attributes, omit these, and then train a model to 

make predictions across waves. We tested CNN and linear regression on a holdout 

wave and found that the CNN more accurately predicted responses for the following 

wave. At an aggregate level CNN is very precise, and at the respondent level it helps 

explain the variance in an external variable. 

There were certain issues in conducting this analysis. Firstly, it should be noted 

that when identifying the more predictable attributes which we would then go on to 

predict, PCA is not the only technique that could have been used to identify these 

variables. As this was an exploratory approach, we found this method helped identify 

the attributes that could be predicted. It provided a starting point that could be 

revised depending on managerial need for each attribute. Secondly, we believe we 

have taken sufficient steps in avoiding overfitting the data. We were acutely aware 
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that overfitting the data could be an issue for CNN analysis, therefore by allowing 

the model to contain a certain level of error we ensured the model did not overfit. 

However, the downside of this method is that it is very time consuming. In a similar 

vein, creating an appropriate structure for the CNN model is also time consuming; 

this involves identifying the appropriate number of layers and neurons to allow the 

model to fit the data accurately but not overfit. 

In addition to these issues, there are also some outstanding questions which need 

to be addressed. Firstly, and very simply, we acknowledge that reducing a battery of 

17 attributes down to 13 saves relatively little time for our respondents. Thus, this 

current analysis provides an exploratory step to see if the number of attributes could 

be diminished. Greater accuracy could come from the addition of other variables 

such as physician specialty, years practicing, setting, and volume of patients seen. In 

addition, respondents also rate many different brands on batteries of attributes; this 

method could be used to reduce the responses needed by predicting the 4th brand 

from the other three. 

Secondly, we are currently working on what happens if the respondents in the 

wave we are trying to predict don’t behave how the others have before them? Or, 

what happens if an attribute suddenly becomes very important; can the model still 

predict correctly? The answer to this question is that no; no model can predict what it 

hasn’t learnt. However, one way to limit this problem is by selecting variables that 

are strongly related to other variables. To the extent that their relationship remains 

constant, we should be able to continue to predict our target attributes. Still, it is the 

responsibility of ourselves and the client to be aware if there is an expected shift in 

the market, one where these attributes may no longer be predictable. 

CONCLUSION 

In conclusion, this method could be used to more efficiently collect data from a 

more expensive respondent resource, in our case physicians. We can use deep 

learning to predict ratings of attributes in future waves with less burden, with 

minimal impact on data quality. Such models can be used in primary market research 

to generate aggregate and respondent-level results. Surges in ratings between waves 

are hard to correct for but we are hopefully outlining attributes where this would not 

happen. Further work needs to be done on applying this to different data sets with 

different attribute lists, and a more comprehensive comparison between methods is 

needed. We have demonstrated that CNN is a viable solution but not the only 

solution. 
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 Tom Gardner Michelle McNamara 
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CAN WE REDUCE THE NUMBER OF TASKS 

AND STILL GET GOOD QUALITY RESULTS? 

CHRIS MOORE 

IOANNIS TSALAMANIS 
IPSOS MORI UK 

BACKGROUND 

Within the market research industry there has been an increasing shift towards 

projects being delivered quicker and more cost efficiently, while still obtaining the 

same high standards. This, combined with respondents making more use of mobile 

devices to answer surveys, has led to the need to reduce questionnaire length. The 

long-held belief that you can ask respondents to complete 20-minute online 

interviews has never been more challenged and a new paradigm shift to surveys of 

c.10 minutes is more likely to become the norm, rather than the exception in the 

future. While the time needed to conduct a conjoint exercise can vary considerably, 

based on the type of conjoint being used, and the size of the design, it is not 

uncommon for a Choice-Based Conjoint (CBC) to take 5 or more minutes to 

conduct, taking up at least half of the questionnaire time. As a result, there is a need 

to investigate how we can reduce the time needed to conduct a conjoint exercise or 

else we run into the danger that conjoint becomes a nice-to-have rather than an 

integral part of the research. 

It is now becoming common practice to create modular questionnaire designs, 

where the data for modules of questions that are not asked to a respondent is 

imputed. Therefore, the question is whether we can apply the same thinking to 

conjoint designs and still get similar results? Hierarchical Bayes (HB) analysis has 

consistently shown to be durable with sparse designs; but with sophisticated 

imputation procedures commonly available in R packages or Python libraries, it is 

hypothesized that creating additional respondent data (as inputs to a HB estimation) 

using these imputation procedures, which will benefit from being able to use many of 

the variables from the rest of the survey as predictors in the imputation process, will 

result in only a minimal loss of accuracy compared to a task-rich design. 

From internal data, looking across major markets such as the US, UK, and 

France, almost two-thirds of interviews conducted in 2019 were less than 15 minutes 

in length, with a mean time of 11 minutes. This is a far cry from historic figures 

where it was considered that 20 minutes for an online interview was the acceptable 

norm. By contrast, when we look at the time to complete a conjoint survey we see a 

different story. A study that was reported at the Sawtooth Software conference in 

2016 (Moore/Neuerburg) was conducted with 6,800 online interviews, where 

respondents were split across 18 experimental cells, answering primarily on mobile 

devices (mobile/tablet), and the time taken in seconds to complete the exercise for 

different experimental cells is shown in Figure 1. 
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Figure 1 

 

It should be noted that half of the respondents answered the survey using an 

angular JS responsive technology, that significantly increased the speed of the 

conjoint exercise as it is a single-page application, which does not require 

communication with the server after each click. For respondents that went through 

the more traditional Dimensions (SPSS) platform, across all experimental cells, it 

took on average 31 seconds extra to complete the exercise. Therefore, a conjoint 

exercise in the region of 5 minutes is not unexpected for a 4 concept/15 task design. 

Johnson/Orme (1996) published a graph of the time taken by respondents to 

complete a 20-task conjoint exercise, containing 3 concepts plus None option (Figure 

2), and when comparing against the results from the Moore/Neuerburg study, it is 

reasonable to infer that the time taken for an 8 or 15 task study is very comparable. 

Figure 2 

 

While we know that length of interviews in the industry are declining, despite 

respondents increasingly moving into a digital environment and using mobile devices 

to answer surveys, the length of time to complete conjoint exercises has not 

decreased. Therefore, combined with trying to reduce respondent fatigue we need to 

ask ourselves the question of whether we can reduce the time needed to conduct a 

conjoint and still get high quality results? 
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STUDY DESIGN 

Five existing data sets were identified for this research, each of which had 

specific criteria: that there were a low number of conjoint versions (blocks) tested 

within the design and that there were sufficiently high numbers of respondents that 

had answered each version. This is because for the imputation process to work it is a 

requirement that you can only impute missing task data for a respondent based on 

other respondents that have answered the same version of tasks. The larger the 

number of respondents that have seen each version, the higher the likelihood of a 

successful imputation. Several different experimental factors were tested in this 

research (Figure 3). These included: 

Methods Tested: 

The two main methods evaluated were that of a sparse design and an imputed 

design. The sparse design differs from a typical sparse design, in that while the 

number of tasks has been reduced, respondents were randomly allocated a set of 

tasks from the larger pool of tasks; e.g., across a full 9 tasks design respondents 

randomly had data for 5 tasks removed, but not the last 5 tasks. There are pros and 

cons to this approach: 

• Respondents typically change their behaviour throughout a choice experiment so 

by not taking the first X tasks (as per a standard sparse design), we are including 

task data which may have been answered differently compared to earlier tasks. 

• However, if we only take the first X tasks then we have no available data in the 

tasks that were not asked about and therefore it would be impossible to conduct 

any imputation. 

• While understanding the implication of the first point it was felt that the approach 

used offered a more like-for-like comparison between the sparse and imputed 

method because the same valid task data was being used in both methods. 

For those tasks that had been removed in the sparse design, they went into the 

CBC/HB software as missing data. For the imputed designs, where a respondent had 

not answered a task from the pool of tasks in the version they were assigned to, 

imputation procedures were used to predict what the respondent would have 

answered, based on responses to other variables in the survey. As such, a larger 

number of tasks were used for the CBC/HB estimation than for the sparse design. 

Further details of how the sparse data set was created are shown later in the paper. 

As a second dimension, during the CBC/HB estimation process, the analysis was 

run both with and without covariates for both the sparse and imputed designs. 

Covariates were selected based on the known results when estimating the conjoint 

with the full and complete set of tasks and understanding which groups of 

respondents showed the most discrimination in results. 
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Imputation Method: 

For the purposes of this study, two imputation procedures were initially tested. 

One is a model-based imputation that creates a regression model to identify nearest 

neighbours based on the predicted value. The other is a distance-based method, that 

identifies the distances between respondents based on subjective decisions about how 

respondents have answered other survey questions. 

Number of Tasks Removed: 

The original design for these studies either had half of the tasks removed or a 

third of the tasks removed. Where the original design did not allow for a perfect split, 

e.g., removing 50% of tasks from a 9-task study, the number was rounded down, so 

in this example of 9 tasks, 5 tasks were removed. 

Sample Size: 

The data sets identified were already rich in sample (greater than N = 1,000), so 

in addition to running analysis on these data sets, a random sample of N = 500 

respondents were taken from each data set to generate a further 5 data sets. 

Therefore, 8 sets of analysis were run for each of the 10 data sets, in addition to 

the original analysis containing the full and complete data set. 

Figure 3 

 

HOW DOES IMPUTATION WORK? 

Imputation and fusion are often confused with one another, and for very good 

reason as they have a very similar methodological background. For a typical data 

fusion project, two data sets would have a common set of variables X, while data set 

1 also contains a set of variables Y and data set 2 contains a set of variables Z. The 

goal of fusion is to create a single data set that contains the X, Y, and Z variables, 
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such that the correlation/relationship between Y and Z can be observed, where 

previously it could not. 

Imputation, on the other hand, is typically used for data enrichment. In this case, 

there is a data set that contains a set of variables X and a set of variables Y, and 

another data set, or a set of respondents from the same data set, that have a complete 

set of X variables but no information about the Y variables. The goal is to therefore 

create a single data set where each observation has a complete set of X and Y 

variables, whilst preserving the correlation/relationship structure of X and Y. It is 

often referred to as “Assisted” fusion, as the correlation between X and Y is already 

known, whereas in data fusion, the correlation between Y and Z is unknown. 

There are many imputation methods that exist, which can be easily accessed via 

software such as R and Python. Popular R packages include mice, Amelia, BaBooN, 

mi, mitools, pan, and missForest. 

Model-Based Imputation: 

Depending on the package used, the method for imputing will vary but a typical 

process would involve: 

1. Replace all missing data for a variable with random draws from the observed data 

for that variable. 

2. For all variables with missing data, build a (regression) model using other 

variables in the data set as predictors. 

3. Where there is missing data, identify similar respondent(s) based on the predicted 

values from the model. 

4. Substitute any missing data with observations from the similar respondent(s). 

Steps 2–4 can then be repeated if necessary. 

Distance-Based Imputation: 

Distance-based methods are more synonymous with data fusion techniques and 

are based on finding similarities between respondents and using these similarity 

measures as proxies for filling in missing responses. The similarities between 

respondents can be measured between different groups of variables depending on the 

study. These groups of variables can then be weighted in a way that the analyst 

believes is appropriate for the sample, or a weighting scheme can be chosen that 

provides the maximum efficiency, which in this case is classifying someone to the 

correct concept chosen. 

For this study, the variables were divided in two distinct groups and a similarity 

matrix was generated for each group. The first group of variables consisted of all the 

demographic questions such as age and gender, while the second group consisted of 

all the responses from the rest of the study. For categorical data, respondents were 

given a score of 1 if they matched on a variable and 0 if not, while for 

numeric/ordinal data, a score between 0–1 is calculated depending on how close the 

responses are. The scores are then added up to create the similarity matrix between 

all respondents and the matrix data is normalized by dividing by the mean score in 
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the sample. Once the matrix for each group of questions is derived, the matrices are 

then weighted and added together to provide the final matrix that will be used to find 

the best matches. A grid search approach was used to identify the best weighted 

combination that provided the best accuracy measure. From the analysis, the ratio of 

the weighting between the demographic and covariate matrices was 1:6. 

From the tests conducted, the model-based approach provided superior accuracy 

and results in this research are based on that method. 

INITIAL THOUGHTS GOING IN TO THE RESEARCH 

Imputation has been growing in popularity over several years and won an MRS 

award in the UK in 2017 for the use of imputation in reducing the length of surveys 

by up to a third. Internal analysis has shown that it works very well when data 

conditions allow. That is, when variables to be imputed are numerical/ordinal and a 

plethora of relevant data is available to be used as explanatory variables. 

Regarding the success of any imputation procedure, Figure 4 (Rassler, 2002) 

shows the typical steps used to measure success. As an entry point, preserving the 

marginal distribution of the variable is a key factor, followed by preserving the 

correlation structure across variables. After that, preserving the joint distributions and 

individual scores can also be used as further criteria. 

Figure 4 

 

Going in to this research there were four known limitations: 

1. Choice data is categorical so would be harder to predict. 

2. Instead of being able to use all respondents, it is only possible to impute data from 

respondents that answered the same versions of tasks. 

3. The survey questionnaire had not been set up specifically with imputation in mind 

and may not have enough variables of good quality to use for the imputation. 

4. The success criterion of the imputation in this research is solely on the ability to 

accurately classify a respondent with the correct concept. 

While there were several factors that might suggest imputation is not appropriate, 

there were a few other considerations: 

1. After cleaning the data, there were between 30-100 variables that could be used to 

build the explanatory model. 
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2. HB acts as an imputation of sorts, in that it adjusts the parameters of the 

individual respondent based on the upper-level model. As such, it was anticipated 

that it would smooth out issues with the imputed data where respondents had been 

incorrectly classified with the wrong concept chosen. 

DATA SETS 

A summary of the data sets used is shown in Figure 5. All data sets were based on 

a CBC design methodology and were similar in terms of complexity. None of the 

data sets included advanced design features such as alternative-specific designs, and 

attribute levels were analysed as part-worths using effects coding (a variation on 

dummy coding). 

Figure 5 

 

Other than one version, in one of the data sets, for all versions of tasks there were 

at least 50 respondents that evaluated each version, and in two of the data sets there 

were more than 150 respondents evaluating each version. An out-of-sample (OOS) 

data set was generated from holding out respondents from 2-3 versions of the 

original design at the analysis stage. 

DATA PREPARATION 

To create the sparse designs, a MaxDiff design was created to ensure that across 

the sample, each combination of tasks had responses to them and to reduce any bias. 

It was hypothesized that data from other tasks would have a positive influence in the 

imputation process so other than data set 1 (1 task), two tasks were left untouched 

and therefore had full data available. An example of the process is shown in Figure 6. 

The resulting file was then used for the sparse analysis, where data that had been 

removed went in as missing data in the HB estimation. For the imputation estimation, 

the sparse design was fed into R software, along with data from the rest of the survey, 

and the imputation procedure was applied. 
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Figure 6 

 

IMPUTATION RESULTS 

Checks of the marginal distributions (percentage of respondents that selected each 

concept for each task in the estimation) pre and post imputation showed that the 

model-based imputation had done an excellent job of preserving the original 

distributions. For the large sample sizes, where 50% of the tasks had been removed, 

the error rate across the 5 data sets was between 0.7%–1.8%. Even in the sparsest 

conditions (small data set, 50% tasks removed), the error rate only ranged between 

1.5%–3.2%. 

While it is important to understand that the imputation procedure has done an 

excellent job of preserving the distribution of responses, the ultimate success of this 

research is a facet of the hit rate, which is the proportion of times we correctly 

classified missing data with the correct concept. 

Figure 7 shows the hit rate for each of the 10 data sets used in the study. On 

average, for the large data sets, the imputation analysis resulted in correctly 

classifying data approximately twice as well as chance (note: data sets contained 

between 3-5 concepts plus the None option). Data set 1 had the best classification 

rate with 2.5 times better than chance. It is suspected that this may be due to the high 

proportion of tasks that were answered with the None option. The results across the 

data sets where we removed 33% and 50% of the data were very similar, indicating 

that the presence of additional tasks only had a marginal effect. When looking at the 

imputation success of the smaller data sets, the results are very aligned to the 

respective larger data set, other than in data set 1, where the imputation hit rate was 

extremely poor. It was not clear after carrying out an investigation as to the cause of 

this, but this data set had the sparsest conditions (6 tasks in the original design), and 

the largest difference in sample size between the two data sets (original sample size 

was N = 2,515), so a number of the important correlations in the original data set 

may have been impacted. 
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Figure 7 

 

It was unexpected to see that the hit rate for the smaller data sets (except data set 

1) were only marginally lower than the respective larger data set, with most 

differences being less than 4 percentage points. To understand this result further, 

using a design version from data set 5, which had over 500 respondents, 10 sets of 

imputations were run for each of 10 different sample sizes, ranging between N=25 

and N=500. For each replication, respondents were randomly drawn without 

replacement. The resulting hit rate was then recorded (circles in Figure 8). As 

expected, as sample size increases then the average hit rate improved, though it is 

noticeable that the range of hit rates at the lower sample sizes varied significantly. In 

some instances, where the sample was N = 50 or less, results were worse than 

chance. The range of hit rates obtained stabilised from N= 200 onwards, though it is 

interesting to note that once the sample size went above N = 300, the hit rate did not 

improve significantly. 

Figure 8 
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RESULTS 

After running the analysis through CBC/HB, several diagnostics were compared. 

One of these metrics is Percent Certainty. This figure indicates how much better the 

solution is than chance, as compared to a “perfect” solution. It is equal to the 

difference between the final log likelihood and the log likelihood of a chance model, 

divided by the negative of the log likelihood for a chance model. It varies between 

zero and one, with a value of zero meaning that the model fits the data at only the 

chance level, and a value of one meaning perfect fit (Sawtooth Software CBC/HB 

manual). 

The results of each model were compared against the benchmark, which was the 

original data containing the full set of tasks. It is only possible to compare the 

Percent Certainty figures for models that have the same number of tasks used in the 

estimation procedure, so only the imputed cells were compared against this 

benchmark data set. Across the 5 large data sets, there was a reduction of 21% in fit 

for the cells where 50% of the tasks were imputed. This compared to a reduction of 

14% in fit for cells where 33% of the tasks were imputed. Adding in covariates 

increased the fit of the models marginally but little should be made of this as Sentis 

and Geller (2010) showed that it is possible to create random data and enter this data 

as covariates, and it will increase the fit. After running tests on several data sets, 

using random data as covariates, the same conclusion was also found in this research. 

With a logit model the scaling of the part-worth utilities depends on the goodness 

of fit: the better the fit, the larger the estimated parameters. Thus, the absolute 

magnitude of the parameter estimates can be used as an indicator of fit. Average 

Variance is the average of the variances of part-worth utilities, across all respondents 

(Sawtooth Software CBC/HB manual). Due to the error from incorrectly specifying 

the correct concept chosen from the imputation process it was expected that the 

average variance for the imputed cells will be lower than the benchmark and sparse 

designs. While expecting to see a reduction, the actual variance recorded was 

significantly lower. Even in conditions more conducive to imputation (data set 5), 

across the 4 imputed cells, there was a 35% reduction in variance on average. In the 

most extreme case (data set 3) a reduction of 62% in variance was recorded. 

For the large data sets, the variance in cells where covariates were present did not 

significantly impact the scaling of the parameters. This was not the case for the small 

data sets, where the addition of covariates led to a significant increase in the size of 

the part-worth parameters. Figure 9 shows the average variance for each of the 

conditions by data set, where the average variance of the parameters, particularly in 

the case where 50% of tasks were removed, led to 4- to 6-fold increase in variance, 

suggesting that there is significant overfitting occurring. 
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Figure 9 

 

While it is important to understand changes in goodness of fit regarding sparse 

and imputed data sets, from a business aspect it is imperative that the business 

outcome is the same. To test this, the individual respondent-level part-worth utilities 

for each experimental cell were stacked into a single column of data and correlated 

against the respondent-level part-worth utilities from the benchmark data set. It was 

surprising to see that for the sparse 50 experimental cell that the correlations were 

very high, with values ranging between 0.84-0.94, across the 5 large data sets. This 

compared very favourably with the imputed 50 experimental cell, which recorded 

correlations between 0.67-0.88. However, in all large data sets the clear winner was 

the sparse 33 experimental cell where the correlation varied between 0.93-0.96. As 

expected, the correlations in the cells where covariates were applied were much 

lower due to the nature of how covariates work in CBC/HB, and that the upper model 

is different for different segments of the sample. 

Four of the data sets contained at least one holdout task, which could be used to 

review changes in hit rate and Mean Absolute Error (MAE). While it is more 

desirable and robust to include 5-6 holdout tasks (compare to the 1-2 in these data 

sets), as these were commercial data sets it was not feasible to include that many 

holdout tasks. However, the results are similar across the data sets, so it is possible to 

still obtain valuable insight from the results. 

Figure 10 shows the differences in hit rate and MAE compared to the benchmark 

data set. For hit rate, it is measured as the average percentage reduction in hit rate 

compared to the benchmark (large data sets) and for MAE it measured the percentage 

increase in MAE compared to the benchmark. For the MAE analysis, the data was 

adjusted for scale. As discussed earlier, due to the additional response error in the 

imputed data sets, the variance of the part-worth parameters is significantly lower 

and therefore will impact MAE. To allow comparisons across models, an exponent 

factor is included in the share of preference calculation to minimise the MAE score. 

The sparse 33 experimental cell is the clear winner in both measures with a 

reduction of only 3.6-3.8% in hit rate (depending on if covariates were included or 
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not). This is followed by the imputed 33 experimental cell which saw a reduction of 

8.5-8.7%. 

It is interesting to note that in the MAE analysis, the sparse 33 experimental cells 

do better than the benchmark, though it is unclear as to why this is the case. 

Figure 10 

 

MAE analysis was further conducted against the out-of-sample data sets (Figure 

11). For the large data sets, it is again the sparse 33 experimental cells that perform 

the best, although the imputed 33 experimental cells also perform very favourably. 

However, in the smaller data sets the errors are much larger, indicating that during 

the HB estimation there is likely to have been a degree of overfitting, particularly 

with the imputed 50 experimental cells. 

Figure 11 
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CONCLUSIONS/RECOMMENDATIONS 

The primary goal of the research was to understand whether supplementing 

sparse designs with additional tasks, obtained through imputation, could provide 

sufficiently robust results, compared to a full design. It was hypothesized that 

imputed designs would outperform a sparse design as additional data would be 

included in the HB estimation. While some of the data would be inaccurate, due to 

HB’s own imputation-like method for smoothing respondent data, it was believed 

that this would offset the inaccurate data and therefore would be superior. 

This, however, proved not to be the case, and across all diagnostics and analysis 

the sparse designs outperformed the imputed designs. It should be noted however, 

that the original survey had not been set up with imputation specifically at mind. 

Many of the covariates in the original survey were categorical in nature, which meant 

that correlations with the conjoint tasks was low (typically, correlations of between 

0.05-0.2 were observed). In addition, the covariates were not necessarily related to 

the attributes in the conjoint design so if it was known that imputation would be 

applied, more specific attribute-related questions could have been included to ensure 

a higher level of correlation. 

The key takeaways from the research were: 

• Even under favourable conditions for imputation, accuracy of predicting the 

correct concept struggled to exceed 50%. 

• The number of respondents per version should be greater than 200 if imputation is 

to be applied to ensure stability of hit rates. 

• Exceeding 300 respondents per version does not necessarily improve imputation 

success. 

• The inclusion of covariates had minimal effect on goodness of fit, hit rates, and 

MAE, and caused significant overfitting issues on the data sets that contained 

N=500 respondents. 

• Sparse designs outperformed imputed designs regarding in-sample validity. 

• For out-of-sample predictions, the sparse and imputed designs performed equally 

well. 

• Respondent-level correlations were extremely high even under extreme sparse 

conditions. For the imputed cells, the correlations were much lower. 

Overall, the sparse 33 experimental cells were the clear winner when employed 

with the large data sets. 

FURTHER RESEARCH ON IMPUTATION 

The results of the imputation were mixed, which was primarily due to the 

categorical nature of the conjoint data. It is hypothesized that imputation will have 

better success when the choice is not categorical. Examples of this could be CVA 

style conjoint studies where respondents rate concepts on a numeric scale, or 

volumetric conjoint where respondents are asked how many of each concept they 

would purchase. It would also be of interest to understand the effects on hit rate 

where questionnaires have been set up with imputation in mind. Further investigation 
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is also needed to understand if there are more appropriate imputation methods for 

categorical data. 

During the Q&A session at the conference, it was commented that under no 

circumstances should an imputed design outperform a sparse design, but the authors 

do not necessarily believe that to be the case. What the research has shown is that 

adding in c.50% correct data and c.50% incorrect data leads to worse results, which 

shows that bad data hurts the analysis more than good data helps the analysis, but 

there must be a ratio of good to bad data which leads to better results for the imputed 

design. What that ratio is, and whether it is possible for imputation to achieve that 

level of accuracy is unknown and could be an area for further research. 

 

  

 Chris Moore Ioannis Tsalamanis 

APPENDIX 

The diagnostics for each of the data sets can be found below. 

Data Set 1 

 

Complete 

Large

Sparse Large 

50 

Sparse Large 

50 Cov

Sparse Large 

33

Sparse Large 

33 Cov
Imp Large 50

Imp Large 50 

Cov
Imp Large 33

Imp Large 33 

Cov

1 3 4 5 6 11 12 13 14

Per. Cert 713 745 799 723 753 605 618 636 647

RLH 630 665 724 640 673 530 541 557 567

Avg. Var 3.57 4.32 6.73 3.63 4.59 2.12 2.19 2.31 2.61

Agg correlation - All  - 0.98 0.99 0.99 0.99 0.98 0.98 0.99 0.99

Ind correlation - All  - 0.94 0.92 0.96 0.95 0.88 0.88 0.93 0.93

OOS MAE (unscaled) 3.8% 4.3% 4.1% 4.0% 4.1% 3.8% 3.7% 3.8% 3.8%

OOS MAE (scaled) 3.1% 3.0% 3.1% 3.0% 3.0% 3.2% 3.2% 3.1% 3.1%

HO - HR 66.9% 65.0% 62.9% 65.4% 64.9% 59.0% 58.8% 64.3% 64.3%

HO - MAE (unscaled) 4.3% 4.9% 4.6% 4.6% 4.6% 4.4% 4.5% 4.0% 4.0%

HO - MAE (scaled) 3.8% 3.6% 3.6% 3.7% 3.8% 3.9% 4.0% 3.6% 3.7%

Change in rank  - 3 6 2 2 5 5 2 2

Complete 

Small

Sparse Small 

50

Sparse Small 

50 Cov

Sparse Small 

33

Sparse Small 

33 Cov
Imp Small 50

imp Small 50 

Cov
imp Small 33

Imp Small 33 

Cov

2 7 8 9 10 15 16 17 18

Per. Cert 729 761 890 743 825 431 461 485 535

RLH 647 681 837 661 754 400 420 437 473

Avg. Var 3.67 4.20 27.90 4.08 9.00 0.74 0.99 0.91 1.324

Agg correlation - Small  - 0.95 0.84 0.97 0.96 0.96 0.96 0.95 0.96

Ind correlation - Small  - 0.91 0.81 0.95 0.90 0.69 0.67 0.78 0.76

OOS MAE (unscaled) 4.3% 5.0% 4.9% 4.7% 4.2% 6.6% 6.8% 5.8% 5.9%

OOS MAE (scaled) 2.9% 3.1% 3.3% 3.2% 3.0% 3.4% 3.4% 3.1% 3.2%

HO - HR 69.0% 64.6% 61.0% 67.0% 64.2% 50.6% 49.8% 54.6% 53.4%

HO - MAE (unscaled) 5.2% 5.3% 6.0% 5.3% 5.4% 9.1% 9.2% 8.6% 8.7%

HO - MAE (scaled) 4.7% 4.7% 5.2% 4.5% 5.1% 5.5% 5.5% 5.9% 5.9%

Change in rank  - 8 11 6 8 2 2 2 2
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Data Set 2 

 

Data Set 3 

 

Complete 

Large

Sparse Large 

50 

Sparse Large 

50 Cov

Sparse Large 

33

Sparse Large 

33 Cov
Imp Large 50

Imp Large 50 

Cov
Imp Large 33

Imp Large 33 

Cov

1 3 4 5 6 11 12 13 14

Per. Cert 671 675 771 670 725 439 450 511 535

RLH 589 593 691 588 642 406 413 455 473

Avg. Var 2.54 2.77 6.01 2.60 3.80 0.93 0.96 1.20 1.37

Agg correlation - All  - 1.00 0.99 1.00 1.00 0.97 0.97 0.99 0.99

Ind correlation - All  - 0.84 0.79 0.92 0.90 0.67 0.65 0.83 0.81

OOS MAE (unscaled) 3.0% 4.3% 4.1% 3.7% 3.7% 2.9% 3.0% 3.3% 3.2%

OOS MAE (scaled) 2.6% 2.9% 3.1% 3.0% 3.0% 2.8% 2.9% 2.8% 2.8%

HO - HR  -  -  -  -  -  -  -  -  -

HO - MAE (unscaled)  -  -  -  -  -  -  -  -  -

HO - MAE (scaled)  -  -  -  -  -  -  -  -  -

Change in rank  - 0 4 2 2 6 6 2 2

Complete 

Small

Sparse Small 

50

Sparse Small 

50 Cov

Sparse Small 

33

Sparse Small 

33 Cov
Imp Small 50

imp Small 50 

Cov
imp Small 33

Imp Small 33 

Cov

2 7 8 9 10 15 16 17 18

Per. Cert 667 695 864 661 761 504 536 533 569

RLH 585 613 804 580 681 450 474 472 499

Avg. Var 2.65 3.07 19.76 2.50 6.09 1.46 1.89 1.46 2.04

Agg correlation - Small  - 0.98 0.98 0.99 0.99 0.96 0.96 0.98 0.97

Ind correlation - Small  - 0.81 0.72 0.91 0.85 0.61 0.58 0.79 0.76

OOS MAE (unscaled) 3.5% 5.5% 4.1% 4.2% 4.1% 4.1% 4.2% 3.7% 3.7%

OOS MAE (scaled) 2.9% 3.2% 3.3% 3.3% 3.5% 3.4% 3.4% 3.4% 3.4%

HO - HR  -  -  -  -  -  -  -  -  -

HO - MAE (unscaled)  -  -  -  -  -  -  -  -  -

HO - MAE (scaled)  -  -  -  -  -  -  -  -  -

Change in rank  - 7 2 4 8 7 7 8 6

Complete 

Large

Sparse Large 

50 

Sparse Large 

50 Cov

Sparse Large 

33

Sparse Large 

33 Cov
Imp Large 50

Imp Large 50 

Cov
Imp Large 33

Imp Large 33 

Cov

1 3 4 5 6 11 12 13 14

Per. Cert 757 770 850 767 820 556 590 636 655

RLH 676 691 785 687 748 490 517 557 574

Avg. Var 4.65 4.75 11.54 5.11 8.60 1.32 1.59 1.96 2.15

Agg correlation - All  - 0.99 0.99 1.00 0.99 0.98 0.98 0.99 0.99

Ind correlation - All  - 0.88 0.85 0.94 0.92 0.75 0.74 0.87 0.86

OOS MAE (unscaled) 4.3% 5.2% 4.9% 4.6% 4.6% 4.2% 4.1% 4.5% 4.5%

OOS MAE (scaled) 3.9% 4.2% 4.3% 3.9% 3.9% 3.9% 4.0% 4.0% 4.0%

HO - HR 65.4% 57.3% 55.6% 61.4% 61.3% 44.7% 43.4% 56.2% 55.3%

HO - MAE (unscaled) 2.2% 2.3% 2.9% 2.0% 1.9% 7.1% 7.1% 2.5% 2.3%

HO - MAE (scaled) 2.0% 2.3% 2.9% 1.5% 0.8% 5.8% 5.7% 2.5% 2.3%

Change in rank  - 7 9 2 5 8 10 9 9

Complete 

Small

Sparse Small 

50

Sparse Small 

50 Cov

Sparse Small 

33

Sparse Small 

33 Cov
Imp Small 50

imp Small 50 

Cov
imp Small 33

Imp Small 33 

Cov

2 7 8 9 10 15 16 17 18

Per. Cert 779 800 881 791 855 576 609 665 712

RLH 699 725 825 714 792 505 533 583 630

Avg. Var 5.59 5.79 19.88 5.82 12.32 1.69 2.19 2.51 3.64

Agg correlation - Small  - 0.98 0.96 0.99 0.99 0.96 0.96 0.99 0.99

Ind correlation - Small  - 0.85 0.77 0.93 0.88 0.67 0.65 0.85 0.82

OOS MAE (unscaled) 4.9% 5.6% 4.9% 5.2% 4.9% 4.9% 4.8% 4.9% 4.9%

OOS MAE (scaled) 4.3% 4.2% 4.4% 4.1% 4.4% 4.4% 4.4% 4.3% 4.4%

HO - HR 65.8% 54.4% 50.0% 63.0% 60.4% 39.0% 39.2% 52.6% 52.0%

HO - MAE (unscaled) 2.4% 4.8% 7.4% 3.5% 2.7% 5.8% 5.4% 3.1% 3.1%

HO - MAE (scaled) 2.3% 4.0% 4.0% 3.0% 2.4% 4.6% 4.5% 3.0% 3.1%

Change in rank  - 9 15 6 7 13 13 6 4



212 

Data Set 4 

 

Data Set 5 

 

  

Complete 

Large

Sparse Large 

50 

Sparse Large 

50 Cov

Sparse Large 

33

Sparse Large 

33 Cov
Imp Large 50

Imp Large 50 

Cov
Imp Large 33

Imp Large 33 

Cov

1 3 4 5 6 11 12 13 14

Per. Cert 731 776 809 754 787 593 614 617 636

RLH 688 733 767 711 744 569 586 588 604

Avg. Var 3.55 4.64 6.58 4.16 5.98 1.95 2.31 2.06 2.40

Agg correlation - All  - 0.99 0.96 1.00 0.99 0.99 0.97 0.99 0.97

Ind correlation - All  - 0.88 0.76 0.94 0.88 0.74 0.71 0.85 0.81

OOS MAE (unscaled) 5.4% 5.4% 5.4% 5.4% 5.3% 5.5% 5.4% 5.6% 5.6%

OOS MAE (scaled) 5.4% 5.3% 5.3% 5.3% 5.3% 5.5% 5.4% 5.6% 5.6%

HO - HR 61.3% 55.4% 56.8% 59.5% 60.4% 49.6% 50.0% 55.2% 56.0%

HO - MAE (unscaled) 2.3% 2.7% 2.0% 2.4% 1.4% 3.2% 2.8% 2.2% 1.7%

HO - MAE (scaled) 1.5% 1.8% 1.6% 1.5% 1.1% 2.0% 1.6% 1.7% 1.2%

Change in rank  - 2 6 4 5 2 2 2 2

Complete 

Small

Sparse Small 

50

Sparse Small 

50 Cov

Sparse Small 

33

Sparse Small 

33 Cov
Imp Small 50

imp Small 50 

Cov
imp Small 33

Imp Small 33 

Cov

2 7 8 9 10 15 16 17 18

Per. Cert 726 781 863 753 835 601 622 647 689

RLH 684 738 827 710 796 575 592 613 649

Avg. Var 3.53 2.50 13.50 4.48 9.81 2.28 2.92 2.72 3.79

Agg correlation - Small  - 0.97 0.92 0.98 0.96 0.89 0.87 0.97 0.97

Ind correlation - Small  - 0.85 0.70 0.91 0.84 0.60 0.56 0.82 0.78

OOS MAE (unscaled) 5.7% 5.9% 5.7% 5.8% 5.7% 6.4% 6.4% 6.1% 6.1%

OOS MAE (scaled) 5.6% 5.4% 5.5% 5.5% 5.6% 6.4% 6.4% 6.0% 6.0%

HO - HR 59.8% 56.2% 54.0% 57.2% 57.2% 48.8% 47.2% 53.2% 55.8%

HO - MAE (unscaled) 2.9% 3.6% 4.4% 3.6% 3.0% 2.6% 2.3% 3.7% 3.4%

HO - MAE (scaled) 2.7% 2.7% 3.3% 2.9% 2.5% 2.2% 2.1% 2.2% 2.2%

Change in rank  - 8 11 6 7 10 12 9 9

Complete 

Large

Sparse Large 

50 

Sparse Large 

50 Cov

Sparse Large 

33

Sparse Large 

33 Cov
Imp Large 50

Imp Large 50 

Cov
Imp Large 33

Imp Large 33 

Cov

1 3 4 5 6 11 12 13 14

Per. Cert 707 732 758 720 722 613 613 650 636

RLH 666 690 715 678 680 585 585 616 604

Avg. Var 3.98 4.64 5.95 4.28 4.37 2.48 2.28 2.85 2.61

Agg correlation - All  - 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99

Ind correlation - All  - 0.86 0.83 0.93 0.92 0.72 0.70 0.87 0.86

OOS MAE (unscaled) 5.4% 6.0% 5.6% 5.4% 5.5% 5.1% 5.1% 5.3% 5.2%

OOS MAE (scaled) 3.9% 3.8% 3.7% 3.8% 3.9% 3.9% 3.9% 3.6% 3.7%

HO - HR 59.2% 51.1% 48.8% 57.0% 57.1% 46.8% 47.3% 55.3% 55.7%

HO - MAE (unscaled) 4.3% 6.0% 8.5% 4.8% 4.9% 3.6% 3.4% 2.9% 2.7%

HO - MAE (scaled) 1.8% 2.0% 2.5% 1.8% 1.6% 2.9% 2.6% 2.4% 2.1%

Change in rank  - 2 4 5 2 2 2 5 5

Complete 

Small

Sparse Small 

50

Sparse Small 

50 Cov

Sparse Small 

33

Sparse Small 

33 Cov
Imp Small 50

imp Small 50 

Cov
imp Small 33

Imp Small 33 

Cov

2 7 8 9 10 15 16 17 18

Per. Cert 721 761 806 717 767 678 716 666 687

RLH 679 718 764 675 724 640 675 629 648

Avg. Var 3.99 7.16 10.07 2.12 6.90 3.87 5.60 3.06 3.92

Agg correlation - Small  - 0.96 0.96 0.99 0.99 0.86 0.86 0.96 0.97

Ind correlation - Small  - 0.76 0.71 0.92 0.88 0.59 0.57 0.83 0.81

OOS MAE (unscaled) 5.5% 6.3% 6.0% 6.1% 6.3% 7.2% 7.4% 6.0% 6.0%

OOS MAE (scaled) 4.0% 4.5% 4.5% 4.3% 4.5% 5.4% 5.5% 4.4% 4.4%

HO - HR 58.4% 50.0% 53.4% 57.6% 58.6% 46.2% 47.6% 53.6% 53.6%

HO - MAE (unscaled) 2.9% 5.1% 3.8% 3.8% 2.8% 3.9% 4.2% 2.5% 2.4%

HO - MAE (scaled) 2.2% 1.9% 1.6% 2.2% 1.7% 3.0% 2.5% 1.7% 1.5%

Change in rank  - 8 7 2 4 9 8 4 5
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COMBINING CHOICE-BASED CONJOINT AND 

DYNAMIC CHOICE MODELS FOR MORE ACCURATE FORECASTING 

FAINA SHMULYIAN 
SKIM USA 

ABSTRACT 

Sales forecasting for expensive and innovative products using Choice-Based Conjoint 

(CBC) requires extra attention to changes in consumer behavior over time. This paper 

demonstrates how to incorporate the ideas of the Bass Diffusion Model (BDM) and 

Evidence-Accumulation models with a CBC and presents a new way of introducing a 

dynamic element directly into individual choice models. Major advantages of a traditional 

CBC and different classes of dynamic models are combined in the new approach. 

INTRODUCTION 

Forecasting using the Choice-Based Conjoint (CBC) model is one of the most common 

approaches for evaluating the potential of a new product. Researchers favor CBC because it 

can be used when little or no sales history is available. It also allows accurate simulations of 

hypothetical scenarios. Finally, the CBC can take into account market heterogeneity. 

One of the limitations of forecasting with a CBC is that consumer utilities are assumed 

to be constant over time. This assumption may not be problematic for a simple Consumer 

Packaged Goods (CPG) category, such as dish detergent, where patterns of consumer 

behavior are stable, decisions are made almost instantaneously, and costs associated with a 

wrong decision are relatively low. 

The assumption in the CBC that consumer utilities are static, however, can introduce 

significant forecasting error when researchers are analyzing complex and expensive 

categories, such as technology and luxury goods. Consumer evaluation of these innovative 

products is greatly influenced by temporal factors. Forecasting using only the CBC will be 

less accurate when consumer decisions take more time (such as with technologically 

complex products) and consumers face higher risks for wrong choices (such as with high 

cost products). 

INTERNAL AND EXTERNAL TEMPORAL FACTORS 

There are multiple internal factors within consumer cognition that can change over time. 

One of the most important is what consumers do and do not know about a product’s 

attributes. Product knowledge may be quite simple for dish detergent but much more 

complex for a cell phone. Even a moderately simple product, such as smart-home 

technology, may challenge consumers’ understanding if they are considering a new product 

that has just been introduced to the market. In this purchasing context, consumers might 

choose a product based on only a subset of the attributes rather than all attributes of the 

product. This subset of attributes can change over time as consumers gain greater knowledge 

of product complexity. Consumer knowledge is especially likely to change if buyers start 
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with little or no prior knowledge or well-defined preferences of a product, which is quite 

common for complex and innovative products. 

There are also multiple external factors that alter consumer preferences over time. 

Changes in the economic circumstances of a household or lifestyle changes (e.g., buying a 

home or the birth of a child) will almost certainly reshape purchasing behavior. Changes in 

popular culture, fashion, and advertising are constantly altering what consumers want. In 

addition, consumers often imitate each other so that purchases by family members, peers, 

and friends have a feedback effect on the purchasing preferences of other people in the 

social network. This effect is often termed “word-of-mouth.” 

TEMPORAL FORECASTING USING THE BASS DIFFUSION MODEL 

The Bass Diffusion Model (BDM) is one of the most popular dynamic models for 

forecasting [1,2]. It conceptualizes a “product diffusion process” to measure how word-of-

mouth influences sales over time. BDM is particularly valuable for forecasting long-term 

sales patterns for new technologies and durable goods. It has been shown to reliably predict 

the timing and volume of new product adoptions (first purchases). 

BDM makes two major assumptions. First, many products have a generic pattern of 

temporal penetration into the consumer base that occurs over months or even years. Second, 

the main drivers of penetration for a new product are      innovation (such as advertising) and 

imitation (word-of-mouth). 

Given these assumptions, the basic BDM equation is: 

L(t) = p+qS(t), 

where 

L(t) is the conditional likelihood that a customer will adopt the innovation at exactly time 

since introduction, 

t is time, 

S(t) is the share of consumers who have already adopted the innovation by time t, 

p is the coefficient of innovation, and 

𝑞 is the coefficient of imitation. 

The coefficient of innovation and imitation are usually estimated based on historic sales 

data or surveys of consumer purchase intentions. 

While BDM does add temporal variables to product forecasting, it still faces three 

problems related to parametrization. First, is how to make predictions for an entirely new 

product. While the use of analogs can help firms make forecasts before introducing 

innovation into a market, suitable analogs might not be available. Second, most of the 



217 

historic data from analogs describe how successful innovations diffuse through the 

population, which can introduce success bias into forecast if the new product does not 

succeed in the market. Third, accurate parameter estimation is only possible after making 

several observations of actual sales for the new products, but by this time a firm has often 

already made critical investment decisions. 

In addition to parametrization, BDM is further limited by multiple internal and external 

factors. First, classic BDMs, and even modern extensions, don’t consider multiple product 

attributes and usually make predictions on a sub-category level. Second, most BDMs don’t 

account for changing market scenarios. Third, BDMs don’t measure population 

heterogeneity since they are designed to estimate average demand. Fourth, the basic BDM 

does not incorporate effects of advertising and other external factors that can change the 

parameters over time. 

Despite these limitations, BDM can successfully complement and enhance a CBC for 

more accurate forecasting. To realize this potential synergy requires incorporating the 

diffusion process directly into individual choice models for each respondent. 

COMBINING INDIVIDUAL CHOICE AND THE DIFFUSION PROCESS THROUGH 

EVIDENCE-ACCUMULATION MODELS 

Psychology and sociology use the concept “evidence accumulation” to describe how 

individuals move from little or no knowledge of a topic to partial or even complete 

knowledge. The Diffusion Decision Model (hereafter DDM) is a popular way to measure 

this process for consumers [8]. The DDM assumes that each individual is making a binary 

choice to buy or not to buy a product. It models an individual’s positive or negative choice 

as a continuous, stochastic process. The probability of a consumer purchasing a product at a 

given point in time is based on the accumulation of positive and negative evidence. Only 

when the accumulation of positive evidence reaches a certain threshold for a consumer will 

she make a positive purchasing decision (see Fig.1). 

Figure 1: Diffusion Decision Model 
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Another threshold-based evidence-accumulation model was suggested by Granovetter 

(1978). According to Granovetter, consumer purchases are a form of collective behavior in 

which the utilities of alternatives (benefits and costs) depend on how many other actors 

choose that alternative. Some proportion of other consumers must make a positive decision 

before a given actor will also do so. This threshold point is where the net benefits begin to 

exceed the net costs to an actor, such as the introduction of cell phones which eventually 

reaches a tipping point so that consumers lacking a cell phone feel “left out.” If a researcher 

knows the distribution of individual thresholds, she can estimate the equilibrium share of 

actors making each decision. 

The suggested dynamic utility model is incorporating principles of the BDM and 

evidence-accumulation models summarized above. The assumption is that when a product is 

just introduced to the market, consumers are relying only on their impression of the product 

when they consider buying it. This impression is assessed by building a CBC model and 

estimating individual utilities in a current market scenario with the new product included 

into the consideration set. Even if a consumer likes the new product (has a high utility for 

it), she might not be the one to be driven by innovation and will not buy it as soon as 

possible. Other consumers might prefer purchasing something new and “cool” instead of a 

familiar product on the market. In the suggested model the difference is expressed by 

introducing an innovation coefficient similarly to the BDM but for each respondent 

individually. After some consumers purchase the new product, those who are still 

considering buying it will start accumulating evidence that would affect their interest in the 

product. They will read reviews on social media, hear from their family and friends, and see 

people using this product in different situations. In the model, the evidence-accumulation 

will be represented by additional term proportional to the preference share estimated in the 

CBC at the previous time step. The higher the new product share, the more potential 

consumers are exposed to the product, the more evidence is accumulated. Again, the 

additional term will be weighted like in the BDM. Some consumers are more affected by the 

word-of-mouth and other interactions with the product than others. The individual imitation 

coefficient expresses this difference. As a result, similarly to the Granovetter model, 

individual part-worths of the new product will consist of part-worths of its attributes and the 

dynamic term proportional to the number of consumers who have already purchased this 

product. In the CBC context, the threshold will be represented by the part-worth of 

alternatives and the None option in the simulated scenario. 

THE DYNAMIC UTILITY MODEL 

The suggested dynamic model of product utility (that is, the combination of CBC, BDM, 

and DDM) is based on the following interpretation of a product part-worths: 

𝑊𝑖
𝑘(𝑡) = 𝑝𝑖𝑉𝑖

𝑘(𝑡) + 𝑞𝑖𝑈𝑖
𝑘(𝑡), 

where 

𝑊𝑖
𝑘(𝑡) is the part-worth of a product k for a respondent i at time t, 

𝑝𝑖 is the coefficient of innovation, 

𝑞𝑖 is the coefficient of imitation, 
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𝑉𝑖
𝑘(𝑡)  is the product part-worth as usually estimated in a CBC, and 

𝑈𝑖
𝑘(𝑡) is the utility of a market share of a product k as perceived by a person i at time t. 

The utility of market share can be expressed as follows: 

𝑈𝑖
𝑘(𝑡) = 𝑐𝑖

𝑘 ∗ 𝑟𝑖
𝑘 ∗ 𝑆𝑃𝑘(𝑡 − 1), 

where 

𝑈𝑖
𝑘(𝑡) is the utility of a market share of a product k as perceived by a person i at time t, 

𝑐𝑖
𝑘 is the contact rate of individual i with people who adopted alternative k, 

𝑟𝑖
𝑘 is the recommendation rate of alternative k received by individual i, and 

𝑆𝑃𝑘(𝑡 − 1) is the share of a product k at the previous moment of time. 

There are several important assumptions built into this dynamic utility model. First, 

product attribute utilities don’t change over time. It is also assumed that innovation and 

imitation coefficients (𝑝𝑖 and 𝑞𝑖) differ for different respondents, don’t change over time, 

and can be estimated based on survey data. Contact and recommendation rates (c and r) are 

calculated using stated brand contact and recommendation numbers for each respondent. It 

is assumed that both c and r are constant over time. These assumptions won’t significantly 

affect the predictive powers of the model if these internal factors don’t change as fast as 

external factors, such as growth in interest due to the word-of-mouth. Another assumption is 

that the effects of a negative word-of-mouth are not simulated. Finally, advertisement effects 

are not considered in a basic model but could be included using an extension of BDM: 

𝑉𝑆𝑖
𝑘(𝑡) = 𝛽𝐴𝐼𝑘(𝑡)[𝑝𝑉𝑖

𝑘(𝑡) + 𝑞𝑈𝑖
𝑘(𝑡)], 
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where 

𝐴𝐼𝑘(𝑡) is the increase in advertisement in a period of time prior to t, and 

𝛽 is the coefficient capturing the percentage increase in diffusion speed resulting from a 

1% increase in advertising. 

Implementing the dynamic utility model for a product requires completing the following 

five steps. 

1. Conduct a standard choice exercise and estimate products part-worths to utilize the 

advantages of CBC forecasting. 

2. Use a “Triple-response None” follow-up in the CBC exercise to estimate each 

respondent’s potential to adopt/buy alternatives in the future (utility of “Maybe”). The 

choice question is asked the same way as for a Dual None except that respondents are 

asked to select one of three options: “I will buy this product,” “I am considering buying 

this product, but I have not decided yet,” and “I will not buy this product.” The individual 

utilities of “Maybe” as an alternative-specific attribute can be estimated simultaneously 

with all other utilities in the CBC model. The dynamic model redistributes “Maybe” 

between “Yes” and “No” over time for each respondent. 

3. Incorporate the effect of the word-of-mouth directly into each individual choice model by 

adding a utility for a perceived market share to a product utility following the structure of 

a BDM. The initial share of preference of a product or portfolio in a given scenario is 

estimated using a traditional CBC model. Additional survey questions about the number 

of contacts and recommendations are used to calculate the contact and recommendation 

rates for each respondent. 

4. Estimate the innovation and imitation coefficients individually for each respondent. The 

CBC utilities and respondents’ answers to questions assessing how others are influencing 

their decisions are used as explanatory variables. Bayesian regression is applied to 

estimate the impact of CBC attributes and external parameters on respondents’ decisions. 

Hierarchical Bayes regularizes the estimation since all parameters are drawn from the 

same population distribution. The hierarchical model uses the information from an entire 

group captured in the population-level parameters to improve parameter estimation at the 

individual level. 

5. As an option, calibrate the model with historic data if it is available and relevant. 

The individual parameters required for the model and estimated outside of the CBC are 

summarized in Table 1. 
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Table 1: Parameters of the Dynamic Model Estimated Outside of the CBC 

𝑝𝑖—coefficient of innovation 

An agreement rating was collected to a battery of behavioral 

questions related to the new technology (“I try to be the first to 

buy new gadgets,” “I make sure I read reviews before I buy a 

new product,” “I often ask my family and friends for opinion 

about a new product,” etc.). Based on these ratings, 𝑝𝑖 was 

calculated as a propensity score of being an “innovator.” 

𝑞𝑖—coefficient of imitation 
In the suggested model, we assume that 𝑞𝑖 = 1 − 𝑝𝑖. In 

general, the two coefficients can be independent and estimated 

separately. 

𝑐𝑖
𝑘—contact rate 

The stated number of contacts for the brand for each 

respondent in the past six months was used to estimate the 

contact rate. 

𝑟𝑖
𝑘—recommendation rate The stated number of recommendations for the brand in the 

past six months was used to estimate the recommendation rate. 

CASE STUDY SIMULATION 

The author worked with a leading company in genetic testing to design and implement a 

marketing research study. The innovative product to assess was an at-home DNA testing kit. 

The company was expanding its portfolio considering multiple bundles of report categories 

in Ancestry and Health (see Figure 2). 
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Figure 2: Educational pages from the survey explaining the company’s 

report categories to respondents. 

 

 

The study sought to answer three questions about portfolio and price optimization: 

1. Which are the most valued packages across Ancestry and Health? 

2. What would be the impact of a middle-tier introduction? 

3. What would be the optimal price structure of this introduction in order to maximize 

customer reach and revenue? 

The company emphasized that there were two challenges to optimizing their portfolio of 

DNA Test offerings. First, the genetic testing market was changing rapidly and its share was 

growing significantly every month. Second, word-of-mouth was a very important driver of a 

purchase in this category and must be considered in the modeling. 

Respondents (N=2303) completed a survey where they answered a series of diagnostic 

questions and responded to a traditional CBC exercise. Respondents completed a series of 

screens where they made trade-offs between three different product offerings. On every 

screen, the attributes of each product offering varied, including ancestry features, health 

features, and price. The “Triple-response None” provided a benchmark on the overall appeal 

of the respondent’s choice. 

The modelling process followed the five steps summarized above. All the utilities were 

estimated using CBC HB, Sawtooth Lighthouse 9.3. The time step (∆𝑡) of one month was 

selected for all simulations based on the current market dynamics in the category. To 

incorporate the dynamic effect of word-of-mouth into each individual model, we used 
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additional survey questions to measure the share of preference for a given product scenario 

and the contact and recommendation rates in the past six months reported by each 

respondent. The innovation and imitation coefficients were fitted using the HB procedure 

implemented in R ggdmc package: 

https://www.rdocumentation.org/packages/ggdmc/versions/ 0.2.5.2 

The resulting dynamic model predicted a 29% growth for the optimized portfolio in six 

months following the survey (see Figure 3) which is very close to the actual DNA database 

growth reported by the company during the same time period [9]. 

Figure 3. Six-Months Share Growth Prediction for the Optimized Genetic Testing Portfolio 

 

CONCLUSION 

Sales forecasting for durable, expensive, and innovative products is quite different from 

forecasting for products that are quickly used up, cheap, and low-tech. The primary 

difference is that complex products require measuring changes in consumer utility over 

time. 

A case study of a DNA testing kits reveals the challenges of designing a marketing 

research project for such nontraditional products. The DNA testing market is relatively new 

and growing very rapidly. In addition, the kit has both ancestry and health attributes. 

To address these challenges, the marketing research project was designed around the 

concept of “evidence accumulation.” The study assumed that elements of both the CBC and 

Dynamic Choice Models needed to be included in order to estimate consumer preferences of 

a new middle-tier DNA kit. 

The combined model successfully estimated the optimal price structure of this 

introduction and how the price would maximize customer reach and revenue. This exercise 

suggests six advantages of the combined model. First, it enables researchers to adjust 

models for changing market situations. Second, it can simulate “what if” scenarios. Third, 

the combined model can forecast for products with no or minimal sales data. Fifth, it can 

consider heterogeneity of consumer preferences. Sixth, the combined model can incorporate 

external factors, such as the word-of-mouth and advertising. 
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DATA FUSION: A FLEXIBLE HB TEMPLATE FOR MODELING 

STRUCTURES ACROSS MULTIPLE DATA SETS 

KEVIN LATTERY 
SKIM GROUP 

1.0 INTRODUCTION 

Many research studies use only one source of data, but in our age of expanding data we 

are more likely to find ourselves with two or more sources of data. In addition, we may need 

to make sense of these multiple data sources in relation to each other. This is an example of 

what we call data fusion. One way we can make sense of multiple data sets is qualitatively, 

by interpreting the results in relationship to each other and using expert knowledge to tell a 

cohesive story. This is a perfectly valid practice that researchers have been doing for 

decades. But we will not be discussing qualitative data fusion here. We will be discussing 

quantitative data fusion, where we make sense of multiple sets of data in relation to each 

other by quantitative analysis. 

There are many types of data that we might want to analyze in relation to each other. The 

table below shows just a few examples. 

Data Set 1 Data Set 2 

Conjoint Buy or Not Buy 

MaxDiff Anchor Question 

Conjoint or MaxDiff Purchase Intent Ratings 

Conjoint Ratings of Levels 

Conjoint MaxDiff/Q-Sort 

Conjoint Sales Data 

Customer Data Transaction Data 

Marketing Spend Regional Performance 

We have deliberately included a few examples that might be familiar for users of 

Sawtooth Software. Their familiarity might lead one to overlook that they really are cases of 

data fusion. For example, a MaxDiff study with an anchor is a simple example of data fusion 

because we have two sources of data with two different types of questions. 

The topic of data fusion is a broad one, and this paper makes no attempt to be 

exhaustive. Instead, we describe three general approaches to data fusion. We follow this 

with a technical treatment of the most complex approach, and apply that to some common 

cases. 

The detailed case studies here all involve data fusion where the different data sources are 

directly linked because they have the same respondents. This is the kind of data fusion most 

often practiced by users of Sawtooth Software. Other kinds of data fusion, for instance 
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between survey and aggregate behavioral data, will only briefly be touched upon when we 

discuss general approaches. 

2.0 THREE GENERAL APPROACHES TO DATA FUSION 

One can approach any specific data fusion project with 3 general strategies. Given a 

specific problem one can choose an approach. In some cases, one or more of the approaches 

may be very difficult and a specific approach may be chosen for practical purposes. We call 

the three general approaches: 

1. Two-Stage Linkage 

2. Data Augmentation/Stacking 

3. Complete Structural Model/Probabilistic Programming 

We now describe each of these approaches separately. 

2.1 Two-Stage Linkage 

Two-stage Linkage is the easiest to understand. The idea is that we have a first stage of 

modeling that is just standard modeling, with no data fusion. We then have a second stage 

where we build a model that links the two data sources. 

For example, if we have a conjoint and a MaxDiff study, the first stage analyzes each of 

them separately. We get conjoint results and MaxDiff results. The second stage is the 

difficult one, where we try to link the utilities together. Another example is we have 

MaxDiff data and purchase intent ratings. We analyze the conjoint data in the first stage. In 

the second stage, we try to link the MaxDiff utilities with the purchase intent rating scales. 

In an ideal world you might see something like this: 

 

One can then fit a simple curve for the second stage linkage. Unfortunately this ideal 

world rarely happens with real data. We strongly caution the reader to avoid relying on 

finding such clear relationships like the chart above. More often we expect that one will 
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need to apply some very clever modeling, and even then one may not be able to link the data 

well. 

A better example of a two-stage approach is when we use the first stage as priors and 

then model a second set of data. For example, we might have conjoint data and related sales 

data over time. Our primary goal might be sales forecasting. In this context, one approach 

we have found worthwhile treats the analysis of conjoint data as the first stage. This is done 

without any reference to the sales data. We then use the conjoint results as informative priors 

for analyzing sales data over time. For instance, we might use the conjoint pricing 

elasticities and product switching as priors when we estimate the model for the sales data. 

Here the second stage estimation is making use of the first stage as priors that can be 

adjusted. This allows us to model the sales data over time, with the conjoint as a kind of 

constraint on the modeling of sales data that prevents overfitting. 

The above example hints at something like a joint estimation because it analyzes the data 

in stage two jointly with stage one. But we still consider it as a two-stage method since the 

first stage is a standard independent analysis that ignores the other set of data. In contrast, 

the remaining two approaches analyze the two sets of data jointly. When possible, we 

generally prefer a joint estimation over a two-stage sequential approach. That said, it is 

possible in a specific case that a two-stage approach may work better for specific goals than 

a joint estimation. 

2.2 Data Augmentation/Stacking 

Data Augmentation allows one to build a single model using both sets of data 

simultaneously. For users of Sawtooth Software, this is a common power trick. This 

approach to data fusion takes the two sets of data and makes them one data set by stacking 

them together. 

 

 

Data Set 1 

Data Set 2 
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For example, with a MaxDiff and conjoint, one would create a data file that has all the 

parameters from the union of the MaxDiff and conjoint. This means you will likely add 

parameters to both data sets. For example, parameters in data set 1 that are not in data set 2 

must be added to data set 2. These added parameters are assigned a value of 0 as there is no 

information on them for that specific data set. So, the method requires some clever recoding, 

and in many cases there may be multiple ways to recode the data. 

Over the years there have been many presentations at the Sawtooth Software Conference 

describing various methods of stacking multiple sets of data. At the end of this paper in the 

References section we list 8 papers on the data augmentation/stacking approach applied to 

various kinds of data fusion. 

One advantage of data augmentation over a two-stage approach is that data augmentation 

is a joint estimation that considers all the data. In contrast, the two-stage approach does not 

consider all the data jointly, at least in the first stage. Another advantage of the data 

augmentation approach is that one does not have to do a second-stage linkage. Adding 

parameters and stacking, coupled with joint estimation, is the linkage. This can save time 

and be less frustrating than trying to link models on a second stage, especially if results from 

the first stage are not well aligned. 

A practical disadvantage of the data augmentation approach is that the data file is larger. 

We now have additional tasks per respondent and more parameters (many of which might 

have values of 0). This makes estimation take longer. In addition, one should expect to need 

more MCMC iterations when doing full Bayesian estimation. The two data sets have 

different underlying structures that have been stacked together. This means MCMC 

iterations take longer to converge to a stationary distribution. We highly recommend testing 

convergence by running multiple chains and using a rigorous convergence test like Gelman-

Rubin. 

The key conceptual disadvantage of data augmentation is that the two sets of data most 

likely have different scales. Adjusting for this difference in scale between multiple data 

sources is a key component in doing data fusion well. The topic is so important it deserves 

its own section in this paper, which we turn to next. 

2.2.1 Different Stimuli, Different Cognitive Processes, Different Scales 

As researchers we observe responses to stimuli. The stimulus might be a specific survey 

question. For example, it might be a common rating scale question like this: 

 

Please rate how important each of the following 

features is for a fast food restaurant: 

[Show n Scale Pts] 

1. Reasonable Prices 

2. Healthy Food Choices 

3. Has a Play Area 

4. Clean Bathrooms 
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For a data fusion project we would have two sets of data with two (likely different) 

stimuli. For instance, we might also have a MaxDiff question like this: 

 

These two stimuli ask about the same four items. Regarding these four items, we think 

the respondent has some kind of underlying preferences. We don’t observe these underlying 

preferences. Instead we ask questions in the form of stimuli like the two different survey 

questions above. The respondent then uses cognitive processes to convert their true 

preferences to responses. In the first case we are asked to formulate a rating. In the second 

case, we are asked to compare the items and pick the best and worst. In general, whenever 

we have two sets of different stimuli, we can expect two different cognitive processes 

converting preferences into responses. 

The examples above show different kinds of survey stimuli. But the difference in 

cognitive processes also occurs when we are analyzing survey data with real-world 

behavioral data. Even with a realistic looking shelf set, the survey environment is a different 

stimulus from an actual store. The context of choosing items on a computer screen is 

different than a real shelf set. While we should expect similarities between the choices, there 

will likely be some differences in the cognitive processes converting preferences to choices. 

Our analysis in turn should account for these different cognitive processes. It is clear that 

the data stacking/augmentation approach does not account for those differences. That 

approach assumes a single model that explains all the data, with no adjustments to the 

parameters. And this can be a problem with the data stacking/augmentation approach. In our 

third approach, we aim to account for the different cognitive processes. We also allow 

additional flexibility in the modeling. 

2.3 Complete Structural Model/Probabilistic Programming 

Our third approach is to build a complete structural model. This structure includes the 

relationship between the cognitive processes converting unknown preferences to responses 

to stimuli. This structure is visually described below: 
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The structure has a left- and right-hand side, corresponding to two different sets of data. 

As seen at the bottom, we ultimately compute the log-likelihood for each set of data and 

then sum them. We have also included a weight factor w above in case we want to weight 

the data sources differently. In our case studies we set w = 1, but if one wants to prioritize 

the predictions for one set of data, the weight can be changed. 

On the top left of the chart we have parameters that make predictions for data set 1. The 

exact nature of the predictive model can be anything, though users of Sawtooth Software are 

most familiar with multinomial logistic regression (MNL). We then link a subset of those 

parameters to the right-hand side. This subset might be all the parameters, or a proper 

subset. In our case we assume this subset of parameters is known ahead of time. We are 

simply specifying the intersection of the parameters between two different data sets. 

The right-hand side of the chart takes the subset of parameters from data set 1 and 

converts those parameters with a linking function LinkF. This linking function is our 

attempt to model the difference in the cognitive processes from the different stimuli. If the 

cognitive processes are identical then the linking function would be the identity function. In 

our case studies, we will use a scaling factor applied to the parameters which are latent 

utilities. The top right of the chart represents additional parameters that are in data set 2 

and not in data set 1. (However, our case studies do not actually use any additional 

parameters.) 

The following sections in this paper focus on a specific application of the above 

structural model. We use a scaling factor for the linkage function and we add priors to the 

parameters. So, the specific template we will use looks like this: 
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This more specific version adds multivariate normal priors to parameters for data set 1 

and also for those additional (non-overlapping) parameters in data set 2. The scaling factor 

ki is respondent-specific and bounded by [lb, ub]. The bounds are defined up-front as data 

inputs, and we should require that lb >= 0. In our case studies we set the bounds of k to 

[.1, 3]. We set a truncated normal prior on k, with an unknown mean and a fixed standard 

deviation defined by the bounds. The standard deviation allows for a broad range of 

deviations from the mean, at (ub - lb)/3. If one wanted nearly global parameters the 

deviation could be made very small, like (ub - lb)/50. It would also be possible to allow σ to 

be an unknown parameter with a hyperprior. 

The chart above does not show the hyperpriors, but we use: 

Inverse Wishart priors on covariance matrices Σ1 and Σ2, 

N(0,10) priors on α1 and α2, and 

Uniform prior on the bounded μ1. 

There is no way to specify such a structure within Sawtooth Software products. The 

structure in Sawtooth Software’s CBC HB is the same that we have specified on the left-

hand side above. This specific structure is hard coded within the program with no option to 

change it. However, we can use more general probabilistic programming languages to 

specify these structural relationships. BUGS/WinBugs was one of the earliest of these 

languages and allowed one to specify complex probabilistic structural relationships. Since 

then, the range of probabilistic programming languages has exploded. Stan is very popular 

with R users, while PyMC3 is more popular with Python users. In our case studies we use 

custom R code. 
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It is worth noting here that our approach is very similar to Dyachenko, Naylor, and 

Allenby (2013) and to Dyachenko, Reczek, and Allenby (2014). They apply a structural 

model like the one above to MaxDiff. In those papers MaxDiff is itself treated as a kind of 

data fusion, with 2 different cognitive processes for two different data sets: the best choice 

and the worst choice. Horne and Rayner (2013) also suggest that best and worst tasks should 

be treated as two different data sources with different scales. Dyachenko et al. apply a 

respondent-level scale factor as the ratio between utilities for the best choice and the worst 

choice. One key difference from our template is that they estimate a sequential order effect, 

deriving whether the respondent picked the best or the worst option first. Our template has 

no such sequential order parameter. However Dyachenko’s combination of sequential order 

effect and scale parameter can be seen as a general linking function. Finally, our approach 

uses a truncated normal prior on the scale factor, whereas they use a log-normal. 

It is also worth noting that Sawtooth Software’s ACBC has an option to estimate scale 

factors for different parts of the ACBC. There are three different parts of an ACBC survey: a 

screener, a build your own, and a traditional conjoint. These 3 parts can be seen as 3 

different data sources. In the ACBC program, one can estimate these 3 parts jointly, either 

by using simple data augmentation/stacking or by using Otter’s Method (Otter 2007), which 

is a structural model. Otter’s structural model uses a global scale parameter (vs. our 

respondent-specific parameters) and a log-normal (vs. truncated normal) prior for the scale 

factors. Nonetheless, Otter’s method in ACBC is another example of data fusion estimated 

using a structural model with linkages defined by a scale parameter. 

3.0 CASE STUDY 1: MAXDIFF WITH BINARY ANCHORS AND RATING SCALES 

Anchored MaxDiff is one of the most commonly used forms of data fusion. It consists of 

a set of MaxDiff tasks and a second set of data that we use to anchor the utilities. This 

anchor data can be obtained in several ways. Louviere suggested a follow-up to the MaxDiff 

task, asking whether all, some, or none of the options are important. Lattery (2010) 

proposed a direct binary choice after all the MaxDiff tasks. This binary approach in turn has 

been extended to asking more granular rating scales. Any of these anchors are cases of data 

fusion. We will consider both the direct binary and rating scale anchors here, as it is 

instructive to compare them. 

Our case study is an anchored MaxDiff with 23 items. There were 774 respondents, with 

each respondent completing 15 MaxDiff tasks. Each task showed 5 items, where the 

respondent selected the best and the worst item. At the end of the 15 MaxDiff tasks, 12 of 

the items were randomly selected and shown to the respondent in a grid type format. The 

respondent then rated each of the 12 items on a 5-point Likert scale. 

For purposes of testing we created holdout tasks by selecting 3 MaxDiff tasks and 3 

rating scale questions. Estimation was based on the remaining 12 MaxDiff tasks and 9 rating 

scale questions. 

We also created a direct binary anchor by using the real data above to create a simulated 

set of data. We wanted to make the direct binary anchor somewhat different. So, we 

estimated the MaxDiff utilities (without any anchor) from the initial data. We computed the 

covariance of the utilities. We then scrambled the variables and drew utilities from the 

scrambled covariance matrix. We used the same MaxDiff design as the real study. We used 
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all 15 MaxDiff tasks and computed responses from the simulated utilities using Gumbel 

error. We also added 10 MaxDiff tasks as holdouts (these were newly created). 

For the binary anchor, we simulated a threshold for each respondent from N(µ = 1.5, σ = 

1). If (MaxDiff utility + Gumbel error) > threshold then the item had a binary value of 1, 

otherwise it was 0. This gave us simulated binary anchors for each respondent on all 23 

items. The mean across all respondents and all 23 binary anchors was 37%. Finally, we 

randomly selected 10 of the binary anchors for estimation, while the remaining 13 binary 

anchors were used as holdouts. 

So, we have an initial data set of MaxDiff data anchored by rating scales and a simulated 

data set with a direct binary anchor. The simulated data set is loosely related to the real data 

set in that it uses the same design, same number of respondents, same covariance, but with 

scrambled variables. We estimated both anchored MaxDiffs using 2 different approaches: 

1. The simpler data augmentation/stacking method and 

2. The structural model with scale factor adjustments. 

3.1 Estimation of Direct Binary Anchor 

The direct binary method is usually estimated by data augmentation using the method 

described by Lattery (2010). We create a vector of zeroes as the reference level for each item 

(no effects or dummy coding). Items chosen beat the 0 vector while those not chosen lose to 

the 0 vector. We then stack the standard MaxDiff tasks together with the supplemental 

MaxDiff tasks for winning or losing to the 0 vector. 

For the structural model we used the template described in section 2.3, with no 

additional parameters, so the MVN(α2,Σ2) prior does not apply in this case. 
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This is very similar to the stacked data approach. The MaxDiff utilities on the left-hand 

side are indicator coded just like we did in the stacking method. The binary anchor tasks are 

on the right-hand side. Each anchor task has two alternatives with a 0 vector for the anchor. 

This 0 vector is still the reference level for the MaxDiff utilities. The only difference from 

the stacked data set is that we have two data files with a respondent-level scale factor 

adjustment for the binary choices made in the anchor data. 

3.1.1 Estimation of Rating Scale Anchor (Augmentation) 

Estimating the MaxDiff with a rating scale anchor is more complex. For the data 

stacking we have to align the two sets of data. This means the two data sources need the 

same kind of dependent variable. But we have MaxDiff choices (which are 0/1 realizations 

of probabilities) and ratings (which are Likert scales). One option is to convert the rating 

scale responses to probabilities. The following method was presented by Lattery at several 

conferences: 

We first define a lower and upper bound for our predicted ratings. At first glance it 

might seem natural to define these bounds as the actual rating scale points. However, this 

will result in severe underprediction of the end points because we can never quite predict the 

endpoints, in this case a 1 or a 5. Instead, for a 5-point scale we recommend choosing lower 

and upper bounds of .5 and 5.5 respectively. This means our predictions will go below 1 and 

exceed 5. But we can easily infer what those ratings would be. Any predicted rating between 

.5 and 1.5 is an observed rating of 1, and likewise any predicted rating between 4.5 and 5.5 

is a 5. Using the [.5, 5.5] interval, each scale point from 1-5 has a predicted range of 1. 

Using [1, 5] would mean the lower and upper bound have a range of only .5 while the others 

would have a range of 1. 

Given a lower and upper bound we then convert the ratings to probabilities using the 

formula: 

Ratings as Probabilities = (rating - lb) /(ub - lb) 

For a 5-point scale with bounds of [.5, 5.5] the conversions look like this: 

Rating Prob(win) 

1 0.1 

2 0.3 

3 0.5 

4 0.7 

5 0.9 

We can now add the anchoring tasks just as we did with binary anchors. We still have 

two alternatives in each task, but instead of 0/1 for the choices, we have an allocation 

probability. If an item is rated a 5, it beats the 0 vector with a probability of 0.9, and loses 

with a probability of 0.1. The probability of beating the 0 vector is given by the probabilities 

in the table to the right and the probability of losing to the 0 vector is 1 minus that. 

After estimation, we will have a model that makes predictions of probabilities. These 

probabilities can then be converted back to rating scales using the inverse of our initial 

conversion. The inverse of “ratings to probabilities” is given by this formula: 
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Probabilities as Ratings = lb + (ub - lb) ❌ probability 

This will give us ratings in the range of [lb, ub]. Predicted probabilities greater than 0.9 

will be converted to ratings between 5 and 5.5, which means we are very confident the 

respondent gave a rating of 5. 

The data augmentation approach must create a single type of dependent variable. So we 

showed how to convert ratings to probabilities. We then model the combined data set and 

convert probabilities back to ratings. This conversion to probabilities is not ideal. With a 

complete structural model, we do not convert ratings to probabilities—we can model the 

ratings and the MaxDiff choices as two separate sets of data. 

3.1.2 Estimation of Rating Scale Anchor (Structural) 

For the structural model we will have two sets of dependent variables. The choices will 

be predicted from utilities via an MNL model. Like the data augmentation we assume that 

ratings are continuous. But here we specify the standard log-likelihood version of OLS for 

continuous data: 

Predicted Ratings ~ Normal(Observed Ratings, σ) 

Since utilities are in [-∞, ∞] and our ratings are finitely bounded we can use a function 

that converts numbers in [-∞, ∞] to numbers in bounded intervals [lb, ub]. One such 

function is an anti-logit with linear transformation to [lb, ub]: 

lb + (ub - lb) / (1 + e-x), where x is in [-∞, ∞] 

We still assume that this transformation does not correctly scale the MaxDiff utilities as 

inputs into the function above. So, for each respondent we rescale them with a respondent-

specific factor ki. The chart below shows the same general structure we had before with the 

above elements filled in. As before, there are no “additional” parameters on the right-hand 

side, so they are not shown here. 

 

The left-hand side is the same as the binary case, where the utilities are estimated using 

indicator coding. Adding a constant to the utilities will not change the MaxDiff predictions 

but it will shift the ratings that get predicted up or down. So, the reference level for the 
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utilities is the ratings, or perhaps the location of the ratings (relatively high or low). Then we 

link to the right side with a scale factor k. Finally, we convert those scaled utilities to 

bounded ratings in [lb, ub] and compare those predictions with observed ratings via the log-

likelihood version of OLS. 

Just as we did with the data augmentation approach, we have to pick lower and upper 

bounds for our predicted ratings. For our 5-pt scale we pick [.5, 5.5] for the same reasons we 

discussed previously. 

As a side note, it is possible to change the structural model above. One obvious 

alternative is to code the MaxDiff utilities using effects (or dummy coding), and then 

estimate a separate threshold parameter on the right-hand side. This creates a separate prior 

for the threshold, and changes the upper multivariate normal for the MaxDiff utilities. We 

typically use this approach for dual response None conjoint (with conjoint utilities instead of 

MaxDiff utilities). But for MaxDiff (with its single attribute), we have found the separate 

threshold to not predict the rating scale as well. 

3.2 Scale Factor Results 

For all of our estimations we ran two chains and checked for convergence with a 

Gelman-Rubin test. The Gelman-Rubin results for all parameters were very close to 1 

(indicating excellent convergence). 

One of the most interesting findings concerned the scale factor parameters. The upper-

level mean of the scale factor (µ1 in the chart above) shows excellent sampling for both the 

binary and rating scale MaxDiffs. 

The traceplot below shows two chains for the binary anchor µ1, where one chain is 

represented by lines and a second chain is represented by points: 

MCMC Sampling of µ1—Binary Anchor 

 

Both sets of draws for the binary anchor scale factor had a mean of 1.6, with a plausible 

range. This is about what we would expect going from 5 alternatives in the MaxDiff to 2 

alternatives for the Binary anchor. We are effectively increasing the scale from the MaxDiff 

to the binary anchor. The upper-level mean µ1 rarely samples below 1. 
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In contrast, the draws for the scale factor for ratings scales sampled around a mean of 

.44: 

MCMC Sampling of µ1—Rating Scales 

 

This scale factor µ1 rarely samples above 1, which means we are effectively decreasing 

the scale when we move from MaxDiff to rating scales. This is because respondents tend to 

be somewhat flat in how they use rating scales, while MaxDiff forces them to make 

tradeoffs. 

At the respondent level we see a diversity of scale parameters. For each of the 774 

respondents we took their mean scale parameter and show that diversity in a histogram. 

For the binary anchor we see respondents clustering slightly higher than 1.6 (the upper-

level mean), and some respondents actually have a mean below 1: 

Binary Anchors 

Mean Scaling Factor K for Each Respondent 

 

For the rating scale anchor we see respondents clustering lower than .44 (the upper-level 

mean). In fact many respondents come close to the lower bound we set at .1. These 

respondents are flatliners, who rated all items the same. 
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Rating Scale Anchors 

Mean Scaling Factor K for Each Respondent 

 

There is also a long tail, with a few respondents having scale parameters greater than 1. 

Recall that we sampled k as a truncated normal from [.1, 3], with a σ of range/3 = 2.9/3. 

This allows respondent-level scale parameters a wide range. If we set σ to a smaller value, 

we would get far less respondent heterogeneity; as σ goes to 0, we would have a global 

scaling parameter. Another alternative is to set σ as a parameter that we integrate over with 

respect to some prior distribution. Both alternatives are very reasonable choices and may be 

better in some cases than our fixed σ = range / 3. 

3.3 Holdout Fit Results 

The fit results are very different for binary anchors and rating scale anchors. The model 

(and theory) suggest the scale factors are significantly different. But for the binary anchor, 

we did not see this scale factor difference translate to an improvement in fitting holdout 

tasks. As a result, at this time we do not think scale adjustments are worth the effort for 

binary anchors. In contrast, the scale adjustments for rating scale anchors gave a significant 

lift in holdout fit. 

A key finding is that the way in which we make predictions is absolutely crucial 

here. It is common for practitioners to use point estimates of the draws, typically the means. 

In the standard conjoint model, this often works very well. The respondent-level betas have 

an upper-level multivariate normal. So, the respondent-level draws are typically normally 

distributed and the mean point estimates predict nearly as well as draws. 

But in our model, the means of the draws for the right-hand side of the template (the 

anchor) are not likely to be nice approximations to the draws. The key difference is that we 

are multiplying each of the respondent draws by a scale factor ki. Multiplying each 

respondent draw betai by each respondent draw ki is very different from multiplying the 

means of those two. If one must use mean point estimates then one should multiply the two 

variables and then take the mean of their product, making the anchored utilities the mean of 

(betai * ki.), instead of multiplying the means. This works reasonably well, but it is still not 

as good as using the draws. A final alternative for those who use point estimates is to derive 

a better point estimate from the posterior, rather than using the mean. We expect to have a 

future paper on this topic, applying Empirical Bayes to the posterior. 
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For the left-hand side of our model (the MaxDiff) this is less of a problem. These utilities 

have the same standard multivariate normal prior. So, the respondent-level draws tend to be 

normally distributed and the mean point estimates work reasonably well. We realize that 

many practitioners use MaxDiff utilities as substitutes for rating scales and want to use point 

estimates. These mean point estimates remain a reasonable approximation to the draws. 

Binary Anchor 

For the binary anchor, we see no difference in how the models fit the MaxDiff data. Here 

we used the mean point estimates and also added a second simulated data set of binary 

anchors, to illustrate the stability of the results. 

  

Augmented/ 

Stacked 

Structural 

w/Scale K  

Augmented/ 

Stacked 

Structural 

w/Scale K 

MaxDiff 

Mean of 

Draws 

RLH1 Best 0.701 0.704  0.704 0.706 

RLH Worst 0.700 0.704  0.711 0.711 

The binary anchor data is fit slightly better when we use draws. But if we use just point 

estimates the fit is worse. 

  

Augmented/ 

Stacked 

Structural 

w/Scale K  

Augmented/ 

Stacked 

Structural 

w/Scale K 

Binary 

AnchorR

LH 

Point Estimate 1 0.782 0.735  0.786 0.742 

Point Estimate 2 Above 0.755  Above 0.774 

Draws 0.783 0.794  0.788 0.793 

Here, “point estimate 1” refers to using the mean(betai) * mean(ki), where i indexes the 

respondent draws (the simple approach we do not recommend). “Point estimate 2” refers to 

using the means of (betai * ki), the preferred approach. Of course, in most cases the 

practitioner probably does not care about how well they are predicting the binary anchor 

tasks. In such cases the right-hand side of the model is not used for anything. 

Rating Scale Anchor 

The rating scale anchor used real responses, not simulated ones. This means respondents 

might answer the MaxDiff and the rating scale questions inconsistently. A respondent might 

pick A over B, but rate B more highly. In addition, when we ask rating scale questions we 

usually do so because we care about making predictions on rating scales. The right-hand 

side of our model matters, not just for estimation, but also for prediction. 

When it comes to predicting the MaxDiff tasks, the holdout fit for data stacking and the 

structural model are very similar: 

  

 
1 RLH is “root likelihood,” the geometric mean of the individual likelihoods, a standard measure of model fit. 
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  Holdout Tasks 

  

Augmented/ 

Stacked 

Structural 

w/Scale K 

MaxDiff 

Mean of Draws 

RLH Best 0.688 0.663 

RLH Worst 0.705 0.694 

The structural model with scale factor fits the MaxDiff data slightly poorer in order to fit 

the rating scales much better (the numbers shown here are mean squared errors): 

  Holdout Tasks 

  

Augmented/ 

Stacked 

Structural 

w/Scale K 

5 Pt Rating Scale 

Mean Squared 

Error 

Point Estimates 1.351 0.647 

Draws 1.353 0.531 

We can see that the scale parameter is very effective at adjusting the utilities to fit the 

ratings. The draws are still much better than the point estimates, but both are clearly better 

than the simple stacking of a data augmentation. 

4.0 CASE STUDY 2: CONJOINT AND MAXDIFF 

We will show another example of the structural model template, this time modeling 

conjoint and MaxDiff. In this case study, we had 628 respondents. Each respondent 

completed 9 MaxDiff tasks. There were 25 total items in the MaxDiff, with each task 

showing 5 of those. In addition, respondents completed a conjoint. The 25 items in the 

MaxDiff were one of the attributes in the conjoint. Moreover, this attribute only applied to 

one brand (the client brand). Since one of the key questions was knowing the performance 

of these levels for the client brand, we supplemented the conjoint with the MaxDiff. 

Otherwise, we would have very sparse readings on this one attribute from the conjoint. 

In addition to the MaxDiff attribute, the conjoint measured brand, price, and 2 other 

attributes. Each respondent completed 9 conjoint tasks as well, each of which showed 6 

concepts as choices. The structural chart follows the same pattern as before. In this case, the 

conjoint utilities and data are on the left-hand-side, with the MaxDiff data on the right-hand 

side: 
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One of the differences in this model is that the right-hand side is only a subset of the left-

hand-side parameters, namely just the one attribute corresponding with the MaxDiff and its 

25 levels. Here we used the last MaxDiff level as a reference, so there are 24 parameters that 

correspond. In other studies we have tested a subset of the MaxDiff items in the conjoint, 

choosing those items thought to be representative. In some cases we have used on-the-fly 

MaxDiff estimation to select the items to include in the conjoint. Here all 25 items appeared 

in the conjoint, which we think makes a more useful research test. 

We again ran two chains and found excellent convergence with the Gelman-Rubin test. 

The traceplot below is (as before) for the upper-level mean of the scale factor (µ1 in the 

chart above). We expected the scale factor of the MaxDiff utilities to be greater than their 

corresponding utilities in the conjoint. Indeed, we found the upper-level mean hovers around 

1.2, although we expected it to be higher still. 
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MCMC Sampling of µ1 

 

The mean of the scale factor draws across respondents is also interesting. Many of the 

respondents are near 1.5, but quite a few respondents show scale factors less than 1. 

Mean Scaling Factor K for Each Respondent 

 

Even though these diagnostics are not quite in line with our initial expectations, the 

structural model still outperformed the others in predicting holdouts. 

To create holdouts, we removed one conjoint task and one MaxDiff task for each 

respondent. We estimated the models using the remaining tasks (8 conjoint, 8 MaxDiff) and 

predicted the holdouts. We then repeated this 2 more times for a total of 3 holdouts for the 

conjoint and 3 for the MaxDiff. 
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One model we ran used just the conjoint data. For this model we ignored the MaxDiff 

data completely. We thought this should provide a baseline for how our model should 

predict the conjoint, and how well those predictions align with the MaxDiff tasks. 

 Holdout RLH 

 

Conjoint-Only 

Model 

Augmented/ 

Stacked 

Structural 

w/Scale K 

Conjoint 0.429 0.384 0.441 

MaxDiff Best 0.245 0.393 0.410 

MaxDiff Worst 0.216 0.333 0.366 

The conjoint-only model fits the conjoint data fairly well with an RLH of .429. But it fits 

the MaxDiff data much more poorly than the other models. Bear in mind that an RLH of .2 

is effectively random with 5 choices. This illustrates our point that one should not trust the 

data gods to align the data scales for you. 

The stacked and structural models both fit the MaxDiff data much better, with the 

structural model consistently best. We are not fans of hit rates, because they are very 

unstable. But they do eliminate any bias in scale, so we computed the hit rates here as well: 

 Holdout Hit Rates 

 

Conjoint-Only 

Model 

Augmented/ 

Stacked 

Structural 

w/Scale K 

Conjoint 51.6% 51.6% 52.4% 

MaxDiff Best 29.8% 91.7% 88.3% 

MaxDiff Worst 24.8% 92.0% 90.2% 

We still see that the conjoint-only model still fits the MaxDiff tasks just slightly better 

than random (which is 20%). The hit rates of the other two methods are much higher. In fact, 

we worry that both are too high at 88%+. While the stacked approach has a higher hit rate 

for MaxDiff, we do not think that is relevant. 

All three approaches fit the conjoint holdouts about equally well. The lack of alignment 

between conjoint-only and MaxDiff initially led us to speculate that a joint model of 

MaxDiff and Conjoint would seriously compromise the conjoint. But the holdout RLH and 

hit rates show that is not the case. We get results that are much more consistent with 

MaxDiff, and as good (or even a bit better) for the conjoint. 

5.0 SUMMARY 

We described three general approaches to data fusion: 

1. Two-Stage Linkage 

2. Data Augmentation/Stacking 

3. Complete Structural Model/Probabilistic Programming 
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We should also note that these three approaches are not mutually exclusive. It is possible 

to apply data augmentation/stacking to some of the data and fit that with a larger structural 

model. We could even potentially fit that with a two-stage linkage. We think of these as 

three general approaches. Our general preference is for a complete structural model. The 

ideal of Probabilistic Programming is to fit any kind of structural model you can describe, 

though we are not there yet. 

We have emphasized that when we do data fusion we must take into account different 

stimuli and cognitive processes. In general, whenever we have two sets of different stimuli, 

we can expect two different cognitive processes converting preferences into responses. We 

focused on thinking of those cognitive processes as utility mappings with a simple scale 

conversion linking utilities between two cognitive processes. This scaling linkage has 

additional precedent in the types of data fusion studies here. 

Another key finding is that the way in which we make predictions matters. It is common 

for practitioners to use point estimates of the draws, typically the means. In the standard 

conjoint model, this usually works very well. The respondent-level betas have an upper-

level multivariate normal prior. So, the respondent-level draws are typically normally 

distributed and the mean point estimates predict nearly as well as draws. But for more 

complex structural models the mean point estimates are no longer accurate approximations. 

So, for more complex structural models we recommend using draws, as most of the 

Bayesian world does. For those who must use point estimates we recommend approaches 

other than the simple mean, another topic we plan to discuss in a future paper. 

We showed a basic structural template and how that could be applied to many cases. We 

specifically discussed: 

Data Set 1 Data Set 2 

MaxDiff Anchor Question 

MaxDiff Purchase Intent Ratings 

Conjoint MaxDiff 

For a simple anchored MaxDiff we did not see much benefit in using the structural 

model. But other data sets may show the need for such a structural model. Our data fusion 

model was especially valuable in the context of MaxDiff plus rating scales. 

The details in the models we described can be modified. For instance, we treated the 

purchase intent ratings as continuous, but they could also be treated as ordinal, perhaps with 

better results. 

Although we only illustrated the 3 models above, it should be clear that the template can 

also be used for cases like: 

Data Set 1 Data Set 2 

Conjoint Buy or Not 

Conjoint Purchase Intent Ratings 

Conjoint Ratings of Levels 
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And, of course, our template is just one basic framework that applies to some cases. 

There are also many other structures one can use in data fusion. 

While we did not discuss it here, some of our key data fusion work involves survey and 

real-world data. In that case, we cannot link respondents, and instead we might link 

parameters at the upper level. For instance, we might hypothesize that the survey 

respondents and real-world respondents have the same upper-level covariance structure, 

perhaps adjusted by a scale factor. We look forward to sharing this work at a later time, and 

in the meantime have focused on applications that might be more commonly found among 

marketing research practitioners. 

 

  

 Kevin Lattery 
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SEGMENTING CHOICE AND NON-CHOICE DATA 

SIMULTANEOUSLY: PART DEUX 

THOMAS C. EAGLE 
EAGLE ANALYTICS OF CALIFORNIA, INC. 

JAY MAGIDSON 
STATISTICAL INNOVATIONS, INC. 

BACKGROUND 

There are two primary motivations for this paper. First, we wish to reconsider advice 

from the previous Sawtooth Software Conference paper by Eagle (2013), given to the many 

practitioners segmenting raw or rescaled HB-derived choice model parameters. Second, 

there are two new advances in latent class (LC) modeling we wish to introduce: the ability 

to apply a scale factor to continuous and count variables; and the ability to weight the 

impact of one or more variables on segment solutions. In this paper, we revisit the advice 

that practitioners should not segment respondents using hierarchical Bayesian (HB) derived 

parameters. Would the inclusion of scale classes in a LC model enable practitioners to obtain 

meaningful segments based on HB derived parameters? 

Given general agreement that clustering on HB utilities often yields results that are 

difficult to interpret and not reproduceable by more theoretically appropriate approaches, 

why do HB practitioners continue to segment using HB choice model parameters, scaled or 

not? The answer is that they do so out of convenience, since they have these parameters at 

hand. It is also easy to combine choice data results (i.e., the HB utilities) with non-choice 

data such as attitudes, behaviors, and other respondent data, to produce a single combined 

choice and non-choice rectangular data file for segmentation. In contrast, constructing a 

proper data file within the LC framework consisting of responses to both choice and non-

choice data is more difficult (see Appendix C). 

In the past, Sawtooth Software recommended rescaling the HB parameters to reduce the 

impact of scale differences across respondents prior to segmentation. However, Eagle (2013) 

demonstrated that segments are heavily influenced by the magnitude and type of rescaling. 

The key conclusion of the 2013 paper was that it is bad practice to segment based on HB 

choice model parameters. 

More recently an Advanced Research Techniques Forum presentation by Lee and Brazell 

(2019) suggested ANY multivariate analysis conducted on derived HB choice model 

parameters is suspect. As a note, Sawtooth Software no longer recommends segmenting 

derived HB choice model parameters, rescaled or not. Despite these and other warnings, HB 

practitioners continue to segment using HB choice model parameters. In the current (2019) 

Sawtooth Software conference itself, several papers and tutorials included segmentation of 

HB choice model parameters. 

Coincidentally, the authors of a paper on volumetric models (Eagle et al., 2018) made a 

request to the Latent GOLD developers to extend Scale-Adjusted Latent Class (SALC) 

models to apply to count variables (e.g., the Poisson, the negative binomial, and zero 

inflated models). As a result, version 6.0 of Latent GOLD extends SALC modeling to more 
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traditional forms of LC cluster modeling based not only on categorical and count variables, 

but also continuous variables. It was then realized that the latter extension would allow 

SALC modeling to be conducted on HB parameters treated as continuous variables. 

In this paper, we begin with an examination of a Best-Worst (i.e., “MaxDiff”) case study 

in which we compare segmentation solutions derived using a LC choice model framework 

to analyze choice responses directly, with that of a LC cluster analysis to segment on 

derived HB utility parameters. We examine both methods first without taking into account 

scale heterogeneity, and then again using SALC models which account for scale 

heterogeneity explicitly. 

We follow this by analyzing a more complex data set to examine the impact of including 

non-choice data with Best-Worst choice data in the segmentation. As described above, we 

compare two methods: an LC model that analyzes choice and non-choice responses 

simultaneously, and LC clustering of HB parameters associated with both the choice and 

non-choice data. Again, we examine the two methods first without taking into account scale 

heterogeneity, and then again using SALC models to account for scale heterogeneity in the 

choice variables. 

As we investigated the more complex data application, we noticed that the resulting 

segments obtained from both methods appeared to be influenced more heavily by the 

choice, as opposed to the non-choice, variables. This led to the development of the second 

advance in Latent GOLD 6.0—a variable weighting capability within the latent class 

framework that enables the researcher to differentially weight sets of variables in the 

construction of segments. Results using this advance to weight the choice variables less than 

the non-choice variables are examined. 

BRIEF INTRODUCTION TO SCALE CONFOUNDS AND THE SALC MODEL 

The goal in LC choice modeling is to identify homogeneous segments, each differing in 

respondent preferences. However, standard LC choice models derive segments that differ 

not necessarily in preferences, but in Utilities = Preferences * Scale. Respondents who are 

unsure of their preferences have “low scale” values and are less consistent in their responses 

(for pure random responders, scale = 0). As a group, these less consistent respondents have 

similar utilities (for this group all utilities are small) and thus tend to be clustered together 

by latent class analysis into their own “low scale” segment. However, unlike the other 

segments, each of which is homogeneous in their preferences, the “low scale” segment often 

contains a heterogeneous group of respondents with different (but somewhat weak) 

preferences. 

By explicitly separating scale and preference parameters, SALC modeling allows all 

respondents to be assigned to their most likely preference class irrespective of how certain 

they are regarding their preferences—the utilities for all respondents within a given 

preference class being proportional, the respondent’s scale factor serving as the constant of 

proportionality. Standard LC choice modeling can’t do this because no separate scale 

parameter is included in these log-linear models. As such, the resulting utility or part-worth 

parameters inextricably confound preference and scale. 
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In contrast to the LC choice model, the SALC model re-expresses utility in a log-

bilinear form,1 as the product of separate preference and scale parameters, and utilizes two 

distinctly different latent variables—the first is specified to be the source of the preference 

heterogeneity, affecting only the preference parameters, and the second, as source of the 

scale heterogeneity, affecting only the scale parameters. The first latent variable is discrete, 

and since it is defined solely by the preference parameters, its categories can rightfully be 

interpreted as preference classes. 

The second latent variable in the SALC model, the scale, can be specified as either 

continuous or discrete. In this paper, when specified as discrete, we refer to its categories as 

scale classes (e.g., “low scale,” “medium scale,” and “high scale” respondents in the case of 

S=3 scale classes). Thus, each respondent belongs to one of K preference classes (K 

segments differing in their preferences) and also belongs to one of S scale classes, each scale 

class having its own scale parameter. That is, each respondent is simultaneously a member 

of one preference segment and one scale class. More detail on SALC models is provided in 

Appendix A (see also Groothuis-Oudshoorn et al., 2018). 

EXAMPLE 1: ANALYSIS OF BEST-WORST DATA FROM AUSTRALIAN 

HEALTH REFORM STUDY 

For our initial set of analyses, we use Best-Worst data from the Australian Health 

Reform Study (Louviere and Flynn, 2010), to compare LC segments obtained with and 

without scale adjustment. The authors thank Terry Flynn for providing the data for this 

research. Flynn hypothesized three preference segments: 

“In health economics you usually find people separate out into 3 policy-relevant classes 

• those who value equity 

• those who value efficiency/value for money 

• those who value investment in future health” . . . Terry Flynn 

Our analyses are confirmatory and attempt to confirm Flynn’s hypothesis that there are 

three segments with these distinctly different preferences. 

The different types of segmentation models can be grouped into four categories as 

shown in Table 1. 

Table 1. Four types of Latent Class Segmentation Models 

Scale adjustment? (A) Analysis of Choice responses (B) LC Clustering of HB Utilities 

Derived from Choice Responses 

NO—LC model (A1) LC Choice model (B1) LC Cluster model 

YES—SALC model (A2) SALC Choice model (B2) SALC Cluster model 

  

 
1 See Appendix A for details on the log-bilinear form. 
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Specifically, our research goals are as follows: 

A. Segmentation based on LC analyses of Best-Worst responses. Comparison of LC 

segments obtained with and without scale adjustment (A1 vs. A2). We compare (A1) 

segments obtained without scale adjustment using the LC choice model to (A2) segments 

obtained with scale adjustment using the log-bilinear SALC choice model. In particular, 

we wish to determine whether the A1 segments show any evidence of scale confounds, 

and if so, whether such confounds are removed (in A2) by the SALC model. 

B. “Tandem” approach to Segmentation—LC clustering of HB utilities derived from 

Best-Worst responses. Comparison of LC segments obtained with and without scale 

adjustment, but now using the LC cluster model (B1) and SALC cluster model (B2) to 

cluster respondents based on their (zero-centered) HB-derived parameters. We then 

evaluate the resulting segmentations to determine 1) how the LC clustering without scale 

adjustment compares to LC segmentation of Best-Worst responses obtained without scale 

adjustment (B1 vs. A1), and 2) how the LC clustering based on the SALC model 

compares with the best practice result obtained by applying the SALC model directly to 

analyze the Best-Worst choice responses (B2 vs. A2). 

The HB utilities used in the B-type analyses were estimated by Tom Eagle using 

Sawtooth Software’s standalone CBC-HB program with the default setting for identification 

(zero-centering).2 

The 15 health principles (items) evaluated by the N= 204 voting age citizens in the Best-

Worst experiment are listed in Table 2. For further details of the data and survey design, see 

Louviere and Flynn (2010). 

Table 2. List of the 15 principles evaluated as part of the Best-Worst experiment. 

1 People & family centred 

2 Equity 

3 Shared responsibility 

4 Promoting wellness & strengthening prevention 

5 Comprehensiveness 

6 Value for money 

7 Providing for future generations 

8 Recognise social & environmental influences shape our health 

9 Taking the long-term view 

10 Quality & safety 

11 Transparency & accountability 

12 Public voice & community engagement 

13 A respectful, ethical system 

14 Responsible spending 

15 A culture of reflective improvement & innovation 

 
2 When SALC clustering is applied to HB utilities (B2 approach), the resulting segments depend on the criteria used to identify the utilities (e.g., 

zero-centering vs. zero-referencing). Lyon (2020) shows that use of zero-referencing yields segmentations which are very different depending 

on which item is chosen as the reference. Our decision to use zero-centering (rather than zero-referencing) to identify the HB utilities was 

intentional, and we caution against blind use of a single item as reference when clustering on HB utilities, especially when applying the SALC 
cluster model. In contrast, segments obtained from SALC choice modeling (A2 approach) do not depend on the criteria (coding) used to 

identify the parameters (e.g., effect coding vs. dummy coding). 
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Segmentation on Observed Choices (A-type Choice Models) with and without 

Scale Adjustment 

Table 3 shows the utility parameter estimates obtained for each of the classes in the 3-

class choice model (the A1 model of Table 1). Classes 1 and 3 provide evidence for two of 

Flynn’s posited segments—those who value “Value for Money” (Class 1 in Table 3) and 

those who value “investment in future health” (Class 3 in Table 3). However, the low 

magnitude of the utility parameters for Class 2 suggests that Class 2 primarily captures “low 

scale” persons, consisting of 34% of respondents. This belief is reinforced by the bottom 

row of Table 3, which shows that the standard deviation for the Class 2 parameters is much 

smaller (0.31) than those for the other classes (1.08 and 0.96). 

Table 3: Results for 3-Class Choice Model (A1 Model with 3 Classes) 

 Utility estimates 

 3-class LC choice model 

Item Class 1 Class 2 Class 3 

A culture of reflective improvement & innovation -1.64 -0.48 -0.49 

A respectful, ethical system -0.23 0.34 0.51 

Comprehensiveness -0.24 0.27 -1.08 

Equity -0.11 0.52 -1.55 

People & family centered 0.49 -0.16 1.60 

Promoting wellness & strengthening prevention 0.28 0.22 1.32 

Providing for future generations 0.02 0.10 0.99 

Public voice & community engagement -1.72 -0.33 -0.54 

Quality & safety 2.14 0.35 0.92 

Recognize social/environ influences shape health -1.14 -0.13 0.55 

Responsible spending 0.92 0.08 -0.32 

Shared responsibility -0.47 -0.49 -0.81 

Taking the long-term view -0.11 -0.21 0.22 

Transparency & accountability 0.02 -0.04 -0.24 

Value for money 1.80 -0.04 -1.08 

    
Class size 0.35 0.34 0.31 

Standard deviation 1.08 0.31 0.96 

In comparison, results from the 4-class A1 model (Table 4) provide support for the 

existence of all three of Flynn’s segments (Class 4 prefers Equity), but the largest of the four 

classes (Class 1 which contains 38% of respondents) again appears to be a “low scale” class, 

now containing 38% of respondents.  
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Table 4: Results for 4-Class Choice Model (Model A1 with 4 Classes) 

 Utility parameters 

  4-class LC choice model 

  Class 1 Class 2 Class 3 Class 4 

A culture of reflective improvement & innovation -0.37 -1.42 -0.42 -2.02 

A respectful, ethical system 0.17 -0.38 0.88 0.87 

Comprehensiveness -0.05 -0.13 -1.34 -0.13 

Equity -0.03 -0.66 -1.97 1.66 

People & family centered 0.16 0.06 2.05 1.04 

Promoting wellness & strengthening prevention 0.37 0.51 1.77 -0.11 

Providing for future generations 0.37 0.04 1.22 -0.24 

Public voice & community engagement -0.35 -1.92 -0.55 -0.91 

Quality & safety 0.07 2.00 1.19 2.70 

Recognize social/environ influences shape health 0.10 -0.99 0.90 -1.50 

Responsible spending 0.18 1.21 -0.88 -0.09 

Shared responsibility -0.57 -0.48 -0.59 -0.88 

Taking the long-term view 0.02 0.12 -0.06 -0.61 

Transparency & accountability -0.10 -0.13 -0.69 0.87 

Value for money 0.02 2.18 -1.51 -0.66 

     

Class size 0.38 0.28 0.19 0.15 

Standard deviation 0.26 1.10 1.21 1.20 

In contrast, the 3-class SALC (A2) model (Table 5) provides strong support for Flynn’s 

three segments, and since the standard deviation for the Equity class (class 2) is similar to 

the other classes, SALC appears to remove the scale confound evident in the 3-class LC 

model (Table 3)—the magnitude of the Equity Preference parameter is relatively high and 

the standard deviation of the class 2 parameters is 0.92, comparable to those of the other 

classes.  
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Table 5: Results for 3-class SALC Choice Model (A2; K=3 Preference Classes, S=3 Scale 

Classes) 

 Preference parameters 

 3-class SALC choice model (S=3) 

Item Class 1 Class 2 Class 3 

A culture of reflective improvement & innovation -1.08 -1.53 -0.30 

A respectful, ethical system -0.30 0.60 0.68 

Comprehensiveness -0.12 0.24 -0.95 

Equity -0.51 1.27 -1.42 

People & family centered -0.13 0.88 1.45 

Promoting wellness & strengthening prevention 0.45 -0.04 1.32 

Providing for future generations 0.04 -0.10 1.02 

Public voice & community engagement -1.39 -0.85 -0.65 

Quality & safety 1.47 1.88 0.82 

Recognize social/environ influences shape health -0.67 -1.06 0.67 

Responsible spending 1.06 -0.08 -0.58 

Shared responsibility -0.52 -0.74 -0.65 

Taking the long-term view 0.17 -0.59 -0.02 

Transparency & accountability -0.14 0.52 -0.42 

Value for money 1.69 -0.41 -1.01 

    

Class size 0.39 0.26 0.35 

Standard deviation 0.87 0.92 0.92 

Table 6 provides an expanded view of the preference parameters in the 3-class SALC 

model, breaking out the separate parameters for each scale class (high, medium, and low) 

within each preference class. For each preference class, the preference parameters displayed 

in Table 5 are computed as weighted averages across the three scale classes of the 

parameters displayed in Table 6.  
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Table 6: Expanded View of Results for 3-Class SALC Choice Model (A2, K=3, S=3) 

 Preference class 1 Preference class 2  Preference class 3 

 by scale class by scale class by scale class 

Item High Med Low High Med Low High Med Low 

A culture of reflective improvement & innovation -2.17 -1.15 -0.29 -3.06 -1.63 -0.42 -0.61 -0.32 -0.08 

A respectful, ethical system -0.60 -0.32 -0.08 1.21 0.64 0.16 1.37 0.73 0.19 

Comprehensiveness -0.24 -0.13 -0.03 0.48 0.25 0.06 -1.91 -1.01 -0.26 

Equity -1.03 -0.55 -0.14 2.56 1.36 0.35 -2.86 -1.52 -0.39 

People & family centered -0.27 -0.14 -0.04 1.77 0.94 0.24 2.92 1.55 0.40 

Promoting wellness & strengthening prevention 0.90 0.48 0.12 -0.08 -0.04 -0.01 2.64 1.40 0.36 

Providing for future generations 0.08 0.04 0.01 -0.21 -0.11 -0.03 2.04 1.09 0.28 

Public voice & community engagement -2.79 -1.48 -0.38 -1.71 -0.91 -0.23 -1.30 -0.69 -0.18 

Quality & safety 2.95 1.57 0.40 3.78 2.01 0.51 1.64 0.87 0.22 

Recognize social/environ influences shape health -1.35 -0.72 -0.18 -2.13 -1.13 -0.29 1.35 0.72 0.18 

Responsible spending 2.12 1.13 0.29 -0.17 -0.09 -0.02 -1.15 -0.61 -0.16 

Shared responsibility -1.05 -0.56 -0.14 -1.49 -0.79 -0.20 -1.30 -0.69 -0.18 

Taking the long-term view 0.34 0.18 0.05 -1.18 -0.63 -0.16 0.05 0.02 0.01 

Transparency & accountability -0.27 -0.14 -0.04 1.05 0.56 0.14 -0.85 -0.45 -0.12 

Value for money 3.39 1.80 0.46 -0.82 -0.43 -0.11 -2.02 -1.08 -0.27 

          

Class size 0.08 0.19 0.12 0.05 0.13 0.08 0.07 0.17 0.11 

Standard deviation 1.69 0.90 0.23 1.79 0.95 0.24 1.78 0.95 0.24 

Since the parameters for the three scale classes within each preference class are 

proportional to each other, all respondents in a given preference class are homogeneous with 

respect to their preferences. For example, Table 6 shows that the preference parameter for 

“Value for Money” is highest for all three scale classes within Preference class 1 (see the 

highlighted values 3.39, 1.80, 0.46), which in each case is the highest among the 15 items 

evaluated in the corresponding column. Thus, despite reflecting different amounts of 

uncertainty in their choices, all respondents within Preference class 1 prefer “Value for 

Money.” 

Within each preference class, the ratio of the preference parameters represent relative 

scale factors. For example, the scale factor for the “medium scale” class in Preference class 

1 (relative to the “high scale” class) = 1.80/3.39 = .53, while the corresponding scale factor 

for the “low scale” class is only 0.47/3.39 = .14 times as large as the “high scale: class. (The 

relative scale factors can also be computed as the ratio of the corresponding Standard 

deviations: 0.90/1.69 = .53 and 0.23/1.69 = .14). 

More detailed interpretation of these results and related statistics are provided in 

Appendix A. Those results include: 

• The 3-class SALC model (model A2 with K=3) fits the data better than either the 3-class 

or 4-class LC choice models (model A1 with K=3 or K=4). 

• The fit of the SALC model is best with 3 scale classes. 
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• The fit of the SALC model with 3 scale classes is better than that of a SALC model that 

treats scale as continuous. 

Segmentation Based on HB Utilities (B-type Cluster Models) with and without 

Scale Adjustment 

Summary statistics for the HB utilities (Table 7) show that the three largest standard 

deviations (2.4, 2.4, and 2.1) are associated with the three segments posited by Flynn. Thus, 

we might expect LC clustering of the individual-level HB utilities would be supportive of 

Flynn’s hypothesis. 

Table 7: Descriptive Statistics for the HB Utilities 

All Items 
Mean Std. Dev. 

A culture of reflective improvement & innovation -1.4 1.7 

A respectful, ethical system 0.3 1.6 

Comprehensiveness -0.5 1.6 

Equity -0.5 2.4 

People & family centered 0.9 2.1 

Promoting wellness & strengthening prevention 0.9 1.9 

Providing for future generations 0.5 1.5 

Public voice & community engagement -1.4 1.8 

Quality & safety 1.9 1.9 

Recognize social/environ influences shape health -0.5 1.9 

Responsible spending 0.4 1.7 

Shared responsibility -0.9 1.4 

Taking the long-term view 0.0 1.5 

Transparency & accountability 0.0 1.5 

Value for money 0.4 2.4 

Tables 8 and 9 present the parameter estimates from the 3- and 4-class LC cluster models 

developed using these HB utilities (B1 models), and Table 10 presents results from the 3-

class SALC cluster model (B2 model with K=3 preference classes, and S=3 scale classes). 

  

Items with Std. Dev. > 2  
Std. 

Dev. 

Equity 2.4 
Value for Money 2.4 
People & Family Centered 2.1 
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Table 8: Results from 3-Class Cluster Analysis of the Derived HB Utilities (B1, 3 Classes) 

Items 
Value for the 

Money Future 
Equity & Value 
for the Money 

A culture of reflective improvement & innovation 0.52 1.09 -1.61 

A respectful, ethical system -0.58 0.63 -0.05 

Comprehensiveness 0.15 -0.89 0.75 

Equity -0.11 -1.11 1.22 

People & family centered -0.49 1.11 -0.62 

Promoting wellness & strengthening prevention -0.03 1.20 -1.16 

Providing for future generations 0.13 0.69 -0.81 

Public voice & community engagement 0.08 0.63 -0.71 

Quality & safety -1.14 -0.59 1.74 

Recognize social/environ influences shape health -0.01 1.93 -1.92 

Responsible spending 0.68 -1.69 1.00 

Shared responsibility 0.02 0.04 -0.06 

Taking the long-term view 0.47 -0.10 -0.37 

Transparency & accountability -0.41 -0.69 1.09 

Value for money 0.74 -2.25 1.51 

    

Class size 0.49 0.23 0.27 

Standard deviation 
0.49 1.14 1.12 

Table 9: Results from 4-Class Cluster Analysis of the Derived HB Utilities (B1, 4 Classes) 

Items 
Low 

Scale 
Value for 

Money Equity Future 

A culture of reflective improvement & innovation 0.85 -0.74 -1.24 1.13 

A respectful, ethical system -0.34 -0.90 0.52 0.72 

Comprehensiveness -0.05 0.55 0.89 -1.38 

Equity 0.09 -0.04 2.17 -2.22 

People & family centered -0.45 -1.31 -0.09 1.85 

Promoting wellness & strengthening prevention -0.08 -0.38 -0.97 1.43 

Providing for future generations 0.32 -0.70 -0.88 1.26 

Public voice & community engagement 0.58 -1.35 0.15 0.62 

Quality & safety -1.65 0.70 1.37 -0.42 

Recognize social/environ influences shape health 0.72 -1.25 -1.46 2.00 

Responsible spending 0.07 1.99 -0.21 -1.86 

Shared responsibility 0.01 0.04 -0.15 0.10 

Taking the long-term view 0.49 0.14 -0.77 0.14 

Transparency & accountability -0.62 0.10 1.12 -0.60 

Value for money 0.08 3.14 -0.45 -2.76 
     

Class size 0.43 0.25 0.17 0.14 

Standard deviation 0.60 1.20 1.01 1.45 
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Table 10: Results from 3-Class SALC Cluster Analysis of Derived HB Utilities 

(Model B2; K=3, S=3) 

 Preference parameters 

  3-class SALC cluster model 

Items 
Value for the 

Money Future Equity 

A culture of reflective improvement & innovation -1.72 -0.42 -2.17 

A respectful, ethical system -0.27 0.73 0.73 

Comprehensiveness -0.14 -1.29 0.22 

Equity -0.60 -1.61 1.05 

People & family centered 0.08 1.91 0.98 

Promoting wellness & strengthening prevention 0.51 1.66 0.21 

Providing for future generations 0.10 1.30 -0.13 

Public voice & community engagement -2.05 -0.68 -1.30 

Quality & safety 1.99 1.06 2.87 

Recognize social/environ influences shape health -1.22 1.04 -1.52 

Responsible spending 1.57 -1.01 -0.08 

Shared responsibility -0.77 -0.78 -0.83 

Taking the long-term view 0.17 0.15 -0.57 

Transparency & accountability 0.05 -0.56 0.72 

Value for money 2.30 -1.49 -0.19 

    

Class size 0.42 0.33 0.25 

Standard deviation 1.25 1.19 1.23 

Results from these B-type analyses are similar to those obtained from the corresponding 

A-type analyses shown earlier. Specifically, 

• Results from the 3- and 4-class LC analyses performed directly on the choice responses 

(A1 analyses) were similar to results from the corresponding LC cluster analyses 

performed on HB utilities (B1 analyses), in that each of these segmentations included a 

relatively large “low scale” class. 

• Results from the 3-class SALC cluster model (A2) were very similar to those obtained 

from the 3-class SALC choice model (B2) estimated directly on the choice responses 

(with S=3 scale classes in both cases). In both cases the resulting segments provide strong 

support for Flynn’s posited segments. This suggests that the SALC model can produce 

meaningful results when used to cluster on HB utilities. 

The one difference in results obtained by the A- and B-type analyses was the following: 

• Unlike the A1 results where all segments had positive utilities for “Quality & safety” 

(which overall is the item chosen as Best more than any other item) and negative utilities 

for “A culture of reflective improvement & innovation” and “Public voice & community 

engagement,” these B1 analyses include segments that had both negative and positive 

utilities for each of these items. 
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Evidence that this surprising result is due to a scale variance confound comes from an 

examination of Latent GOLD’s “Loadings” output (Table 11) from the 3-class SALC cluster 

model (Model B2). These loadings relate each of the 15 items to the separate preference and 

scale latent variables.3 In particular, Table 11 shows that unlike the other highlighted items, 

which load primarily on preference, the “Quality & safety” item loads more heavily on 

scale, indicating that most of the variation in this item is due to scale heterogeneity. This 

suggests that when scale is intermingled with preference (as in model B1), the resulting 

segments are influenced by the relatively large overall variance in the “Quality & safety” 

item, without regard to the fact that its variation is mostly scale heterogeneity. 

In contrast, when segments are derived using an SALC model (B2), only the preference 

heterogeneity is used in determining the (preference) segments, in which case the 

contribution of the “Quality & safety” item to the preference segments is substantially 

reduced. 

Table 11: Loadings Obtained from the 3-Class SALC Cluster Model (Model B2) 

  Loadings 

All Items Preference Scale 

A culture of reflective improvement & innovation 0.42 0.42 
A respectful, ethical system 0.31 0.10 
Comprehensiveness 0.38 0.13 
Equity 0.42 0.11 
People & family centered 0.37 0.21 
Promoting wellness & strengthening prevention 0.30 0.21 
Providing for future generations 0.40 0.15 
Public voice & community engagement 0.32 0.39 

Quality & safety 0.37 0.52 

Recognize social/environ influences shape health 0.58 0.15 
Responsible spending 0.67 0.09 
Shared responsibility 0.02 0.27 
Taking the long-term view 0.21 0.01 
Transparency & accountability 0.31 0.01 
Value for money 0.70 0.09 

Comparing Table 10 with Table 8, we see that the SALC model was not only able to 

eliminate the “low scale” class, but it also removed this scale variance confound associated 

with the Quality and safety item, resulting in more meaningful segments that confirmed 

Flynn’s hypothesis. 

Summary of Best-Worst Responses with and without Scale Adjustment 

Comparing Table 10 with Table 5 we see that the segmentation obtained from the SALC 

Cluster model based on derived HB utilities (B2 model) was quite similar to the 

segmentation obtained from the best practice SALC choice model directly from the Best-

 
3 For further details on these loadings, which are analogous to factor loadings in factor analysis, see Magidson and Vermunt (2003), and Vermunt 

and Magidson (2004). 
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Worst choices (A2 model). Not only do both segmentations support the Flynn hypothesis, 

but the two segmentations are in agreement with respect to the sizes of the 3 segments. 

Table 12: Summary of SALC Modeling Impact 

      

 

Best-Worst Choice 

Responses 
Derived HB Utilities 

  

Remove low scale 

confound? 

Remove low scale 

confound? 

Remove Variance 

confound?  

Without scale adjustment (LC) No No No 

With scale adjustment (SALC) Yes Yes Yes 

Moreover, Tables 13 and 14 below show that the segmentations obtained from the A2 

and B2 models assign respondents to the same segment and the same scale class 88% and 

87% of the time respectively, which is about what would be expected if the segmentations 

were subject to 10–15% misclassification due to chance. 

Table 13: Crosstabulation of segment assignments based on SALC models obtained by 

analyzing HB Utilities (rows) vs. Best-Worst responses (columns).  Overall, 88% of 

respondents were assigned to same segment. 

            

Preference Segment Crosstabulation 

  SALC segments (Preference Classes) based on 
Best-Worst Responses 

 

SALC segments based on HB 
Utilities 

  

1 2 3 Total 

Segments 
(Preference 

Classes)  

1 75 1 2 78 

2 10 64 2 76 

3 5 5 40 50 

Total   90 70 44 204 

Table 14: Crosstabulation of scale class assignments based on SALC models obtained by 

analyzing HB Utilities (rows) vs. Best-Worst responses (columns). Overall, 87% of 

respondents were assigned to the same scale class. 

            

Scale Class Crosstabulation 

Scale classes from SALC 
analysis of HB Utilities 

Scale classes from SALC analysis of Best-
Worst Responses 

High Middle Low Total 

Scale 
classes 

High 33 9 0 42 

Middle 7 84 2 93 

 Low 0 9 60 69 

Total   40 102 62 204 
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Thus, we conclude that the SALC model can produce meaningful segments not only 

when based on Best-Worst choices (the best practice/gold standard approach A2), but also 

when used to cluster on HB utilities derived from the Best-Worst choices (B2). As 

mentioned earlier, while approach A2 is preferred for theoretical reasons, when the basis 

variables contain both choice and non-choice data, the input data file is easier to set up with 

the B2 approach. In the next section we compare the performance of the A2 and B2 

approaches in an application where the basis variables consist of both choice (Best-Worst) 

and non-choice (attitudinal) data. 

EXAMPLE 2: ANALYSIS OF CHOICE AND NON-CHOICE DATA 

Practitioners often prefer to include both choice as well as non-choice variables in their 

segmentation. As mentioned above, best practice for conducting such an analysis is to 

construct a rather complex data file consisting of responses to both the choice and non-

choice questions (see Appendix C) and to use an A2-type model that analyzes both the 

choice and non-choice responses simultaneously. The problem with this approach is that the 

complexity of setting up the necessary data file makes such analysis somewhat difficult to 

conduct. 

On the other hand, the results obtained by segmenting the Best-Worst data from the 

Australian Health Care Reform study suggested that the use of the SALC model B2 to 

cluster on HB utilities yields meaningful segments quite similar to those obtained using the 

best practice A2 analysis where SALC is applied directly to the Best-Worst choice 

responses. In this section we investigate whether meaningful segments might also be 

attainable from the simpler data setup, when the basis variables consist of not only HB 

utilities derived from Best-Worst choice data, but also non-choice data such as attitudinal 

variables. 

The data for our analyses consists of one Best-Worst task and one attitudinal battery 

from the Global Travel Retail Industry Cross-Category Segmentation Study conducted in 

2012 by M1ndSet. This study focused on the shopping behaviors and attitudes of N = 3,433 

international travelers shopping at airport duty-free shops. For more details of this study see 

Appendix B. 

Our analysis proceeds as follows: 

1. Validation of earlier results. We begin by analyzing only the Best-Worst data to attempt to 

validate the results obtained from our earlier LC analyses (A1 and B1 analyses). Namely, 

o Do the A1 and B1 approaches provide evidence for a “low scale” class or was 

our earlier result specific to that earlier data set? 

o Do the A2 and B2 SALC analyses provide more meaningful segments than A1 

and B1, respectively? 

2. Extension of SALC models to include both choice and non-choice data. 

Validation of Earlier Segmentation Results Based on Best-Worst Data Only 

Results from both the A1 and B1 LC analyses of the Best-Worst data from the Global 

Travel study again supported the emergence of a “low scale” class. For the A1 analyses 

(conducted on only the Best-Worst responses), a “low scale” class emerged in 3-class, 4-
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class, and 5-class models, representing 36%, 27%, and 24% of the sample, respectively. For 

the corresponding B1 analyses, using LC to cluster the HB Best-Worst utilities, again “low 

scale” classes emerged, representing 50%, 63%, and 33% of the population respectively. 

However, there was a substantial amount of dissimilarity between the two 5-class (A1 vs. 

B1) solutions; overall, only 47% of respondents were classified into the same class. 

Correspondence was similarly poor for the 3- and 4-class solutions. 

Repeating the 5-class analyses using the SALC models (A2 and B2 analyses with K=5 

preference classes and S=2 scale classes), the parameters for the resulting preference classes 

again had similar standard deviations, consistent with the removal of the scale confound. In 

contrast to the dissimilarity revealed by cross-tabulating the segment assignments from the 

A1 and B1 analyses, the 5 preference classes showed a high degree of similarity, with a 

much higher percentage of respondents (67%) assigned to the same class. These results 

validate our earlier conclusion that classes obtained from clustering on the HB utilities using 

the SALC model provide more similar segments than clustering these utilities with the 

standard LC model. 

Extension to the Choice and Non-Choice Data 

We will now compare segmentations resulting from the A2 and B2 SALC models where 

the basis variables consist of both choice (Best-Worst) and non-choice (attitudinal) data. In 

particular, we focus on the question of whether the B2 SALC approach can yield a 

segmentation comparable to the best practice but more complex data setup associated with 

the A2 SALC approach. For simplicity, we settled on comparison of SALC segmentations 

with K=5 preference classes and S=2 scale classes. 

Since the scale adjustment mechanism is likely different for the choice and non-choice 

variables, separate scale-adjustments can be applied to each set of variables as in Magidson 

et al. (2009).4 For simplicity, we decided to apply the SALC model only to the choice 

variables, but we also experimented with separate variable weightings for the choice and 

non-choice variables. See Appendix D for the Latent GOLD syntax to accomplish this for 

the B2 SALC model. 

Class assignments obtained from the A2 and B2 SALC models show a high degree of 

association. The scale class to which the respondents are assigned by these models agrees 

over 80% of the time. Moreover, assignment to each of the five preference segments is in 

agreement (same modal class), with the overall rate of agreement (68%) being much higher 

than the corresponding solution without the use of scale classes (47% agreement between 

A1 and B1). For more details see Appendix B (Tables B4 and B5). 

More interesting to practitioners, the segment profiles also show high agreement 

between the A2 and B2 SALC approaches on the choice and non-choice data. Figure 1 

shows the mean SALC A2 choice model parameters (horizontal axes) plotted against the 

corresponding mean SALC B2 HB parameters (vertical axes) separately by segment. The 

red line is the 1:1 diagonal reference line. If the segments had the same exact parameters, 

the points in the plots would fall along this line. For the most part there is a strong 

association between the parameters of both segmentation methods. The average R-square 

is .87. There are some anomalies: the circled points in segment plots 2, 3, and 5 are Best-

 
4 See pages 101–102 of that paper for the specification of that “fused” model using an earlier version of Latent GOLD. 
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Worst items where the signs are different between the two methods and the distance of the 

point from the diagonal red line seems large. The circled points account for 6 of the 70 

points across all 5 segments (14 items * 5 segments). 

Figure 1: Cross Method Best-Worst Parameters by Segment 

 

The scatter plots of the non-choice attitudinal statements (Figure 2) show a similar 

pattern of association. Figure 2 plots the top 2 and bottom 2 box proportions for the 11 

attitudinal statements (hence, each plot has 22 points labeled “Top XX” and “Bot XX,” 

where XX is the attitudinal statement number (from Table C2 in Appendix C). The 

horizontal axes represent the segment specific profiles from the SALC choice segmentation, 

and the vertical axes show the SALC clustering of derived HB parameters. The average R-
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square of these plots is .86. Segments 1 and 3 show a strong association across methods. 

Segment 4 appears to have a strong association, except for the bottom 2 box proportions in 

the upper right-hand corner of the plot. Segment 2’s profile points seem to show more 

spread away from the diagonal than segments 1 and 3, indicating there is more of a 

difference in this segment profile. Segment 5 shows a relatively strong association, but the 

fact that the points are all clustered in the range of 0.2 to 0.5 suggest poor differentiation on 

the non-choice variables in this segment. This may be a result of the last segment being a 

“catch-all,” or “outlier,” category as the BIC statistic provides evidence for more than 5 

segments. 

Figure 2: Cross Method Non-Choice Attitudinal Statements by Segment 
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Weighting the Segmentation Variables 

Overall, we have found evidence that meaningful segments can be obtained from the 

application of SALC models to HB-derived choice parameters, even when combined with 

non-choice variables. However, as our investigation progressed with the simultaneous 

analysis of the choice and non-choice variables, we noticed that the segments, from both the 

A2 and B2 approaches, appeared to be influenced more heavily by the choice as opposed to 

the non-choice variables. This led to the development of the second advance in Latent 

GOLD 6.0—a variable weighting capability within the latent class framework that enables 

the researcher to differentially weight sets of variables during segment extraction. We 

examined results obtained by weighting the choice variables less heavily than the non-

choice variables. 

To illustrate the impact of differential variable weighting, we estimated a simple 2-class 

LC cluster model based on the HB utilities data combined with the non-choice data. For 

purposes of comparison, we estimated this model with and without variable weights. The 

unweighted analysis was conducted using the same weights, 1.0, for all choice and non-

choice variables, as indicated in the left side of Table 15. In the right side of Table 15, results 

of the LC cluster analysis are presented where we down-weight the 14 Best-Worst utilities, 

using a weight of 0.5. See Appendix D for the Latent GOLD syntax for these models. 

Table 15: Impact of differential weighting of the choice and attitudinal variables based on a 

2-class SALC cluster (B2) segmentation of the derived HB parameters. 

 

In particular, Table 15 shows the impact on the p-value and R-square statistics of down-

weighting the HB parameters. In the left-most set of columns, the pink/shaded cells under 

the column labeled “HB variables” are the Best-Worst items that had a highly significant p-

value (< 1E-50) and R-square value > 0.10 when the weights for both the HB utilities and 

p-value R2 p-value R2 p-value R2 p-value R2

asc_1 0.79 0.10 nq19_1 5.2E-05 0.01 asc_1 0.048 0.00 nq19_1 2.7E-73 0.35

asc_2 3.5e-388 0.54 nq19_2 0.61 0.00 asc_2 2.4E-09 0.03 nq19_2 3.4E-68 0.23

asc_3 2.7e-364 0.52 nq19_3 7.4E-21 0.04 asc_3 2.6E-07 0.02 nq19_3 2.1E-51 0.13

asc_4 0.00024 0.01 nq19_4 1.3E-10 0.02 asc_4 0.04 0.00 nq19_4 2.0E-09 0.01

asc_5 2.9E-53 0.09 nq19_5 1.8E-26 0.05 asc_5 0.67 0.00 nq19_5 6.9E-61 0.18

asc_6 0.48 0.02 nq19_6 5.8E-09 0.01 asc_6 0.0002 0.01 nq19_6 3.9E-39 0.09

asc_7 6.9E-66 0.13 nq19_7 0.064 0.00 asc_7 1.6E-06 0.02 nq19_7 1.9E-05 0.01

asc_8 1.5E-61 0.15 nq19_8 1.3E-07 0.01 asc_8 0.00086 0.01 nq19_8 2.0E-16 0.03

asc_9 3.6E-39 0.07 nq19_9 3.0E-07 0.01 asc_9 3.8E-05 0.01 nq19_9 2.9E-57 0.14

asc_10 2.5E-225 0.33 nq19_10 1.4E-05 0.01 asc_10 0.072 0.00 nq19_10 4.3E-46 0.10

asc_11 5.4E-04 0.13 nq19_11 2.9E-28 0.05 asc_11 0.18 0.00 nq19_11 6.6E-68 0.19

asc_12 5.1E-37 0.09 asc_12 0.76 0.00

asc_13 4.1E-150 0.26 asc_13 2.8E-08 0.02

asc_14 1.7E-194 0.29 asc_14 0.60 0.00

Avg. R2 0.20 Avg. R2 0.02 Avg. R2 0.01 Avg. R2 0.13

All Variables Weighted 1.0 HB Utilities Down-weighted to 0.5

Choice 

Util ities

Weight = 1.0 Attitudinal 

Variables

Weight = 1.0 Choice 

Util ities

Weight = 0.50 Attitudinal 

Variables

Weight = 1.0
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non-choice attitudinal variables were set to 1.0 (The R-square column indicates the degree 

to which this 2-segment solution predicts the original value of the HB utilities). In the HB 

variables’ p-values column, many of the values are quite significant as indicated by their 

very small magnitude. The left-most set of “Attitudinal Variables” columns indicate the p-

value and R-square for the attitudinal variables. Notice there are still some significant p-

values, but the R-square values are all less than 0.10. 

The right-most set of columns show the results from the 2-segment LC cluster solution 

where we down-weighted the HB utilities with a weight of 0.50. Notice under the “HB 

Variables” p-value column that most of the “ASC” parameters have reduced significance 

(higher p-values) and all of their R-square values are less than 0.10. This is a result of the 

down-weighting. Examination of the right-most set of “Attitude Variables” columns show 

some yellow/shaded cells. These cells are the attitudinal statements that are now highly 

significant (very low p-values) and with R-square values greater than 0.10. All the 

attitudinal statements have become more significant than before. 

Notice that by down-weighting the HB utilities by .50, we have illustrated both 

extremes—from one extreme where the HB variables dominate the segments to the other 

extreme where the attitudinal variables dominate. Down-weighting the HB utilities by a 

value between 0.50 and 1.0 will produce a more balanced mix between the significant HB 

utilities and attitudinal variables. While these results demonstrate the impact of weighting on 

a 2-segment solution, what is more interesting is to examine the impact graphically in our 2-

scale class, 5 preference segment solution. 

It is our observation that, in the Duty Free A2 SALC Best-Worst response model (K=5 

preference segments, S=2 scale classes), the choice variables impact the solution more than 

the non-choice variables. Therefore, rather than changing the A2 SALC Best-Worst response 

model, we focus our attention instead on the B2 SALC HB utilities model. And rather than 

weighting up the HB utilities in the B2 SALC HB utilities model, we down-weight the non-

choice variables to make the B2 SALC HB utilities model more comparable to the A2 

SALC Best-Worst response model. We then compare the results of the down-weighted B2 

SALC HB utilities model to the unweighted A2 SALC Best-Worst response model. 

In the plots below (Figure 3) we plot the B2 SALC HB utilities model’s attitudinal 

variables weighted down by 0.5 against the unweighted A2 SALC Best-Worst response 

model (5 preference segments, 2 scale classes). The horizontal axes are the original 

unweighted A2 SALC Best-Worst response model solution’s attitudinal variable profiles 

(e.g., the Top XX and Bot XX profile proportions). The vertical axes are for the same set of 

variables down-weighted by 0.5 from the B2 SALC HB utilities model. Except for segment 

5, we see the trendline of the scatter points moving in a slight clockwise direction relative to 

the diagonal. This is most clearly seen in the segment 4 profile shown in Figure 3. 

To examine the change in results in the B2 SALC utilities model when we down-weight 

the non-choice attitudinal variables, we next plot the unweighted B2 SALC utilities model 

non-choice attitudinal variable profiles against the down-weighted B2 SALC utilities model 

(weight = 0.5). Figures 4 and 5 depict the change in non-choice attitudinal variable impacts 

as a result of down-weighting. The horizontal axes are the unweighted B2 SALC utilities 

model non-choice attitudinal variable top and bottom 2 box proportions. The vertical axes 

are the down-weighted B2 SALC utilities model non-choice attitudinal variable proportions. 
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Here one can see more clearly the impact of down-weighting by examining the extremes of 

the plot for segment 4 (Figure 4). The lower left-hand corner collection of points 

(proportions of Top XX and Bot XX variables) is above the diagonal while the upper right-

hand corner collection of points is below the diagonal. This shows a reduction in the 

differentiation (variance) among the attitudinal variables as a result of down-weighting the 

non-choice variables. 

Segment 5 (see Figure 5) shows something unexpected. It appears the profile of non-

choice variables has become more random than before weighting. This was also seen in the 

plot of segment 5 in Figure 3. While unexpected, the pattern may be the result of segment 5 

being a segment that is catching all the “outlier” heterogeneity that exists within the solution 

because of our arbitrary selection of a 5-segment solution (i.e., when the optimal number of 

segments, based on the BIC, is greater than 20). 

In summary, differential variable weighting, as a new tool in the practitioner’s analysis 

kit, appears to be useful. However, the fact that the amount of down-weighting must be 

determined by the practitioner means that it is not an off-the-shelf solution, but a “tuning” 

parameter that will take some time to get used to. Here we examined only a couple of 

potential uses for variable weighting. Seeing such a changed pattern in segment 5 as 

compared to the remaining segments leads us to suggest that the impact of weighting 

variables needs to be explored further. 
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Figure 3: Cross Method Non-Choice Attitudinal Statements by Segment 

Down-Weighted to 0.50 
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Figure 4: Segment 4 Comparison of Weighted to Non-Weighted Attitudinal Variables 

 

Figure 5: Segment 5 Comparison of Weighted to Non-Weighted Attitudinal Variables 
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SUMMARY AND CONCLUSIONS 

We reconsidered the usefulness of HB utilities (or lack thereof) as basis variables with 

latent class segmentation. We undertook this task not because we are die-hard HB fans, but 

because of the possibility of obtaining an effective segmentation, conveniently, with data 

already at hand. Despite the bad press and many strong cautions against using HB utilities in 

latent class segmentations due to the frequent occurrence of “surprising results,” many 

practitioners continue to use HB utilities with LC segmentation anyway because they 

already have these at hand. Moreover, it would be very straightforward to combine HB 

utilities with an attitudinal battery of items in a simple rectangular (cases by variables) file 

to perform simultaneous segmentation of choice and non-choice data much more easily than 

using the best practice approach. 

Thus, we explored whether such surprising results could be the result of scale confounds, 

and could possibly be eliminated using scale-adjusted latent class (SALC) models to 

perform the segmentation. For our evaluation we utilized two Best-Worst datasets, the 

second being supplemented with attitudinal data. The first application in this paper used the 

Best-Worst data from the Australian Health Reform Study in a confirmatory application to 

confirm the existence of three posited segments. We compared the standard 3-class LC 

models with 3-class SALC models, where both models were estimated in 2 different ways: 

1. “A-type” analyses—using LC and SALC choice models to segment Best-Worst responses 

directly, and 

2. “B-type” analyses—using LC and SALC cluster models to obtain segments based on 

individual-level HB parameters, derived from the Best-Worst responses and treated as 

continuous variables. 

Both models A1 and B1 resulted in segments that were confounded with scale, and an 

additional variance confound problem was encountered in the LC segmentation (B1). 

However, the preference classes obtained by SALC (models A2 and B2) were no longer 

confounded; both provided strong confirmation for Flynn’s three posited segments. The 

problem evidenced in the B1 analysis was eliminated along with the scale confound by the 

SALC model in the B2 analysis. 

Prior to moving on to our simultaneous utility and attitudinal segmentation with our 

second application, we repeated the A1 and B1 analyses with these data using just the HB 

utilities, and reproduced the results obtained in the A2 and B2 analyses, again successfully 

eliminating the surprising result that occurred during the B1 stage of analysis. We thus 

conclude that the SALC model when applied to HB utilities can yield a more effective 

segmentation. 

We then proceeded with our simultaneous segmentation, and achieved a successful result 

using the SALC model supplemented by the ability to down-weight one group of variables 

(choice variables to which scale-adjustment was also applied) relative to another group of 

variables (attitudinal variables to which scale-adjustment was not applied) as part of the 

modeling, to allow attitudinal basis variables to play a greater role in the segmentation.5 

 
5 As an example of a Latent GOLD 6.0 syntax where the SALC model is used with and without differential weighting, see Appendix D. 
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Down-weighting (or more generally, differential weighting), along with the possible use 

of scale factors with either one or both sets of variables (recall Table 15), was found to be an 

interesting new tool for the practitioner’s toolkit, However, the subjective nature of this 

weighting tool provides a challenge for its future use. 

Overall, our research reinforces the many warnings against the current widespread use of 

clustering on HB utilities, due to the resulting scale confounds that are likely to yield 

misleading interpretations from the segments thus obtained. However, returning to our 

original question, “Would the inclusion of scale classes in a LC model enable practitioners 

to obtain meaningful segments based on HB derived parameters?,” our results here suggest 

that the use of the Scale-Adjusted LC (SALC) model to cluster on zero-centered HB 

utilities,6 with or without the inclusion of attitudinal or other additional basis variables, can 

yield meaningful segments similar to those obtained from the best-practice SALC models 

applied directly to individual responses. 

 

   

 Thomas C. Eagle Jay Magidson 

APPENDIX A. THE SCALE-ADJUSTED LATENT CLASS (SALC) MODEL IN LATENT GOLD 

The SALC model was proposed by Magidson and Vermunt (2007)7 for categorical 

(including choice) response variables and estimated using the syntax module of Latent 

GOLD® version 4.5. In the SALC model, a single discrete latent variable is assumed to be 

the source of the preference parameters, its categories called “preference classes,” and a 

separate latent variable is used to model the scale parameters. 

This SALC model was extended in the LG version 5.0 syntax (Vermunt and Magidson, 

2013) by embedding it in a very general log-linear sub-model that allows scale factors to be 

modeled as a function of both observed and latent variables, and allows observed covariates 

to be included as predictors of these latent variables. Let the parameter 𝛽𝑗.𝑘𝑠 denote the 

utility for attribute j, for respondents in preference class k and scale class s. SALC uses a 

log-bilinear form to specify the random utility model, 𝛽𝑗.𝑘𝑠 being decomposed into the 

product of separate preference and scale components: 

𝛽𝑗.𝑘𝑠 = exp( 𝜆𝑠 − 𝜆0)𝛽𝑗.𝑘1 

where a log-scale factor λs is estimated simultaneously with the preference parameters βj.k1. 

 
6 It is our belief that the only way that clustering of HB utilities can achieve consistency with the gold standard is to perform SALC clustering on 

zero-centered HB utilities, as we did here. We are conducting additional research to test this belief. 
7 Development of the SALC model was motivated by Louviere and Eagle (2006). 
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Use of a log-linear structure to estimate the log-scale parameters guarantees that 

estimates for the scale factors are always positive. For purposes of identification, λs is 

determined relative to a fixed reference point λ0, and can be modeled using either a group-

level (discrete)8 or an individual-level (continuous) latent variable (for further details see 

Vermunt and Magidson, 2013). In contrast, the standard LC choice model does not separate 

scale from preference, and thus cannot be distinguished from a model that assumes no scale 

heterogeneity (i.e., 𝜆𝑠 = 𝜆0 for all s). 

SALC was further extended in LG version 6.0 (forthcoming 2020) for use in LC cluster 

models with continuous indicators such as HB individual-level parameters, as well as in LC 

regression models such as Poisson, negative binomial, and zero-inflated models. 

To show that the SALC model yields a better fit to the data, Table A1 below displays the 

log-likelihood (LL), Bayesian Information Criteria (BIC), and number of parameters (Npar) 

for the standard LC choice models with K = 1 to 4 classes, and for some SALC choice 

models. In order to explain more heterogeneity in data, the standard exploratory LC 

modeling approach is to increase the number of classes. For example, Table A1 shows that 

the increase from 3 to 4 classes improves the log-likelihood by 192 (from LL = -10585 for 

the 3-class model to -10393 for the 4-class model). The cost in terms of model complexity 

for this improvement is the addition of 15 parameters (from Npar =44 in the 3-class model 

to Npar = 59 in the 4-class model). 

Alternatively, the 3-class SALC model adds only 4 additional parameters9 to the 44 

parameters in the 3-class model, but fits the data better10 than the 4-class LC model, which 

adds 15 parameters! Overall, the 3-class SALC model fits best (lowest BIC) among the 

models listed in Table A1. 

Table A1: Model fit Comparison where log-scale factors are modeled as a function of a 

discrete latent variable (the categories of which are called “scale classes”). 

                  

Standard Latent Class (LC) Models (no 
adjustment for scale) 

SALC Models (with 3 scale classes) 

Model LL BIC  Npar    Model LL BIC Npar 

1-class  -11246 22566 14  1-class SALC -11035 22166 18 

2-class  -10815 21784 29  2-class SALC -10573 21321 33 

3-class  -10585 21405 44  3-class SALC -10360 20974 48 

4-class  -10393 21100 59           

Table A2 compares various 3-class SALC models, including a 3-class SALC model that 

uses a continuous latent variable to model the log-scale factors. We see that the best fit 

(lowest BIC) occurs with the discrete form of the SALC model with 3 scale classes (BIC = 

 
8 For identification in the case of a discrete latent variable with S scale classes, by default Latent GOLD uses the first scale class (s=1) as the 

reference class, by setting λ1 = λ0 = 0. 
9 These 4 additional parameters consist of 2 size parameters for the first two scale classes (since respondents are classified into one of the 3 scale 

classes with probability 1, the probability of respondents being in the 3rd scale class is determined as 1 minus the probability of being in scale 

classes 1 or 2), plus the two (relative) scale factors, one associated with the medium scale class (relative to the large scale class), and the other 
associated with the “low scale” class (relative to the large scale class). 

10 Table A1 shows that LL= -10360 for the 3-class SALC model, which is larger than LL= -10393 for the 4-class LC model. 
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20974). Note that this model fits better than the SALC model with continuous scale (BIC = 

20992). In contrast to the continuous scale, which assumes that scale follows a log-normal 

distribution, use of the discrete form of the SALC model requires no assumptions about the 

distribution of scale or the size of the scale classes being estimated from the data 

simultaneously with the other model parameters11. 

Table A2: Model Fit Comparison of Various Discrete and 

Continuous Latent Scale Variables 

        

3-Class SALC LL BIC(LL) Npar 

1 scale class  -10585 21405 44 
2 scale classes -10394 21033 46 
3 scale classes -10360 20974 48 
4+ scale classes -10360 N/A * N/A * 
Continuous scale -10376 20992 45 

Note also that the LL does not change when the number of scale classes is increased 

beyond 3 (LL = -10360 for both the 3-class and 4-class SALC models). This means that the 

3-class SALC model reaches a saturation point with 3 scale classes. We have observed this 

saturation phenomenon in SALC models with other data as well.12 The SALC structure is 

very restrictive and thus does not pick up much heterogeneity, except for proportionality of 

all parameters simultaneously, which occurs only when pure scale heterogeneity is present. 

APPENDIX B: DESCRIPTION AND SOME RESULTS OF THE CHOICE AND NON-CHOICE 

DUTY-FREE DATA 

The data for this portion of the analyses is from the Global Travel Retail Industry Cross-

Category Segmentation Study conducted in 2012 by M1ndSet. This study focused on the 

shopping behaviors and attitudes of international travelers shopping, or potentially 

shopping, at airport duty-free shops. International air travelers were recruited at 28 

worldwide airports. The recruits were directed to complete an online survey about their 

reasons for, preferences for, and attitudes towards shopping at duty-free shops as well as 

shopping at more traditional shopping centers. The sample consisted of 4,519 respondents 

who completed two different Best-Worst tasks in addition to completing survey questions 

regarding attitudes, behaviors, and socio-demographic characteristics. Respondent groups 

included frequent and infrequent flyers, business versus leisure flyers, and covered the 

major regions of the world: Europe, Asia/Pacific, Middle East, North and South America. 

Our focus here is on one of the Best-Worst tasks and one attitudinal battery. The Best-

Worst task included 14 items. It was comprised of a balanced incomplete block design 

 
11 By not making any distributional assumptions, the discrete form of the SALC model differs from the G-MNL model which attempts to achieve 

identification by assuming different distributions for the scale parameter and preference parameters. As a result, unlike the SALC model, G-

MNL yields weak identification (see Hess and Rose, 2012). Because no distribution is assumed, SALC explains all associations between the 

utilities, which includes linear associations (correlations), as well as non-linear associations that may exist in the data. A standard mixed/HB 
logit or LC model can’t separate preference from scale because there is no separate scale term in the model. Note also that HB and similar 

approaches make assumptions that imply the associations between utilities are linear, but this need not be true. 
12 Saturation of this type and conditions for achieving it has been discussed by Lindsay et al. (1991), where semiparametric estimation of the 

Rasch model using latent classes achieves exactly the same model fit (and same number of degrees of freedom) as the conditional Rasch 

model. 
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(BIBD) design of 14 tasks with 3 items in each task. Each respondent was asked to select 

the benefit regarding shopping that was most and least important to them. The full list is in 

Table B1 below. 

Table B1: Best-Worst items 

1 Same product as downtown but at cheaper prices

2 Limited/ special editions only found at airports

3 Exclusive products/brands

4 Local products/specialties

5 Well known international product but with a local touch

6 Finding products suitable as gifts/in a gifting packaging

7 Products for immediate consumption/to use during my trip

8 Guaranteed good quality compared to downtown

9 Opportunity to compare/try out different brands at one location

10 Having more time to shop

11 Better advice from sales staff compared to downtown

12 Pleasant shopping environment (nice/clean/big)

13 Shopping alone/on your own

14 To kill time/entertain me before my flight
 

The attitudinal battery was a series of opposing attitudinal statements regarding the 

respondents’ attitudes towards airport shopping. Figure B1 below shows a subset of the 

opposing statements and how the respondent were asked to respond to the statements. Table 

B2 provides the complete list of opposing airport shopping attitudinal statements. 

Figure B1: Example of the Opposing Attitudinal Shopping Behavior Attitudes 

 

I enjoy visiting airport shops even if I 

don’t need anything specific
m m m m m m m

I visit airport shops only when I need 

something

I enjoy “killing” time at the airport 

browsing around different shops and 

seeing what is available

m m m m m m m

If I have free time at the airport I will 

certainly not browse around shops

In the following questions you will see pairs of opposing statements. Please indicate which best describes your attitude towards airport 

(If one of the statements exactly describes you, pick the grade closest to that statement. If the statement only somewhat describes you, 
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Table B2: Complete List of Opposing Shopping Attitudinal Statements 

1
I enjoy visiting airport shops even if I don’t need 

anything specific
I visit airport shops only when I need something

2
I enjoy “killing” time at the airport browsing around 

different shops and seeing what is available

If I have free time at the airport I will certainly not browse 

around shops

3
Airport shops are among my favourite places to shop 

when I travel

I much prefer to shop in other places than airport shops 

during my trip

4

I go to airport shops mainly for convenience reasons 

(no time to shop elsewhere, easier to find what I need, 

etc)

I go to airport shops because they offer a great 

shopping experience

5
I like airport shops that have novelties, promotions, let 

you try new things, etc.

I’m mostly interested in buying my usual product(s) at 

airport shops

6
I like to browse around airport shops to try and find 

bargains, good prices, quantity discounts, etc.

I go to airport shops for other reasons than price 

(choice, quality, convenience, service, etc.)

7
I use airport shops to avoid having to think about 

shopping during other moments of my trip

When I travel, I like to visit all kind of shops either at the 

airport or downtown

8

I usually compare/ know the prices of the products I 

need and buy at airport shops only if it is cheaper than 

in downtown shops

I don’t look in details at the price differences between 

downtown and airport shops

9
In general I like to go early at the airports and then have 

time to shop, read, relax, etc. before my plane leaves.

I don’t like to waste time at the airports and try to arrive 

last minute.

10
If I have foreign money left from my trip, I’ll try to spend it 

at airport shops

If I don’t really need something, I prefer to keep/ change 

back foreign money

11
I’m interested in the selection of products one can find in 

airport shops

Airport shops do not have the type of products I usually 

buy.  

Some Duty-Free Shopping Results 

These data are very heterogeneous. This is evident in the BIC statistics derived from 

both segmentations. Table B3 shows that the BIC statistic continually improved until we 

reach between 20 and 25 segments using the derived HB parameters; for the choice data, it 

continually improved to 30 segments, where we stopped the analysis. 

Table B3: BIC Statistics for an Increasing Number of Segments 
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These results suggest heterogeneity in the data—many segments would be required to 

optimally segment these data. However, this many segments are not practical for managerial 

purposes. Typically, practitioners and research managers prefer between 4 to 8 segments. 

For the sake of displaying results in small tables we arbitrarily decided to present results for 

the 2-scale class, 5-preference segment solutions. Since there are more preference segments 

than earlier, and thus more ways for respondents to be misclassified, and because our 

selection of classes was arbitrary, we might not expect to see the same level of agreement 

between the solutions as we saw with the Flynn data presented in the first example. 

Table B4 gives the cross tabulation of scale class membership for the two solutions. The 

rows are the 2-scale classes for the latent class clustering of the derived HB parameters. The 

columns are the 2-scale classes for the latent class choice segmentation. The scale classes 

identified by Latent Gold are in the row and column headers. The percentages are column 

percentages—the proportion of latent class choice model segment respondents correctly 

classified. One can see there is strong agreement between the two methods, 84.5% overall. 

This is less than we saw in the earlier data set. The “low scale” class (#2) shows only a 

76.7% agreement. This may be a result of 2 scale classes not being the optimal number of 

scale classes, and of the degree of heterogeneity across the 5-preference segments. 

Table B4: Scale Class Membership Cross Tabulation 

 

Table B5 shows that 68.2% of the respondents were put into corresponding preference 

segments. This is considerably higher than if we had not used scale classes. Again, the rows 

represent the SALC clustering of the HB utilities using 2 scale classes and the columns 

represent the SALC choice model. Both are run with the choice and non-choice data 

included. The segments do not match in their numbering. That is, preference segment 1 of 

the SALC choice segmentation is the equivalent of preference segment 3 of the SALC 

clustering of the HB utilities. The cells highlighted in tan/orange are the matched segments. 

Among the cells of agreement, the overall match is 68.2%. There are several cells shaded in 

lighter gray, highlighting situations where over 100 respondents are classified into segments 

that did not match the LC choice model segments. 

Scale class 1 Scale class 2

Scale class 1
1979

88.7%

280

23.3%

Scale class 2
251

11.3%

923

76.7%

Best-Worst Response Scale Classes
Col Pct

HB Utilities 

Scale Classes

Scale class cross tabulation
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Table B5: Preference Segment Cross Tabulation 

 

APPENDIX C: BEST-WORST (MAXDIFF) DATA FILE FORMAT FOR LATENT GOLD® WITH 

ADDITIONAL NON-CHOICE VARIABLES 

Latent Class segmentation based on choice or non-choice response data can be 

conducted using the Latent GOLD® program (see e.g., 

https://www.statisticalinnovations.com/latent-gold-5-1/ ). This Appendix illustrates and 

discusses the data format required by Latent GOLD in the case where the response data 

consists of both 1) Best and Worst (MaxDiff) choices as well as 2) responses to non-choice 

variables to be used as additional basis variables. Table C1 illustrates the Latent GOLD 

setup13 using the Best-Worst data from the Australian Health Reform Study, described in the 

main body of this paper, when combined with the additional 15 dichotomous responses 

Q2_1–Q2_15, elicited from the following survey question: 

“Please tick those principles that you think should be considered by the government in 

terms of Health Care Reform for each of the 15 principles” [listed earlier in Table 2]. 

 
13 Latent GOLD allows for two different formatting options—the 3-file format, and the 1-file format. For simplicity, we only illustrate the 3-file 

format here. For further details, including the corresponding illustration for the 1-file format, see Vermunt and Magidson (2011). 

https://www.statisticalinnovations.com/latent-gold-5-1/
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Table C1. Illustration of the Response File in Latent GOLD’s 3-file format 

for respondent #4. 

 

Specifically, the first 30 records included in Table C1 illustrate the choice response data 

for respondent #4—the best and worst choices for this respondent. The final (31st) record 

(highlighted in Table C1) contains the responses to the non-choice questions. The complete 

response file contains similar records for each of the other 203 respondents and stacked 

together in this file. In the standard setup for estimating a LC Best-Worst model (without 

responses to the non-choice variables), the single non-choice record would be omitted for 

each respondent. 

  



278 

APPENDIX D: SYNTAX OF SALC MODEL FOR HB UTILITIES FOR BOTH CHOICE AND 

NON-CHOICE DATA WITH AND WITHOUT DIFFERENTIAL VARIABLE WEIGHTING 

Latent GOLD 6.0 Syntax Without Differential Variable Weighting 

variables 

caseid respid; 

dependent (asc_1 – asc_14) continuous, 

(nq19_1 – nq19_11) ordinal; // 14 HB vars are asc_1 – asc_14; 11 attitudinal vars are nq19_1 – 

nq19_11 

latent 

Cluster nominal 5, sclass nominal 2 coding = 1;  // 5 preference classes and 2 scale 

classes 

equations 

Cluster <- 1; sclass <- 1 ; // size parameters for preference classes and scale 

classes 

asc_1 – asc_14 nq19_1 – nq19_11 <- 1 + Cluster; 

asc_1 – asc_14; 

asc_1 – asc_14 <<- (s) sclass; // Scale adjustment is applied only to the HB choice 

variables 

s=-; 

Latent GOLD 6.0 Syntax with HB Variables Down-Weighted by .5 

variables 

caseid respid; 

dependent (asc_1 – asc_14) continuous varweight = .5, 

(nq19_1 – nq19_11) ordinal varweight = 1.0; 

latent 

Cluster nominal 5, sclass nominal 2 coding = 1; 

equations 

Cluster <- 1; sclass <- 1 ; 

asc_1 – asc_14 nq19_1 – nq19_11 <- 1 + Cluster; 

asc_1 – asc_14; 

asc_1 – asc_14 <<- (s) sclass; 

s=-; 
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COMMENTS ON “SEGMENTING CHOICE AND NON-CHOICE 

DATA SIMULTANEOUSLY: PART DEUX” 

DAVID W. LYON 
AURORA MARKET MODELING, LLC 

INNOVATIONS IN EAGLE AND MAGIDSON 

The preceding paper by Tom Eagle and Jay Magidson introduces two important 

technical innovations in latent class modeling, while reinforcing an earlier one (non-

continuous SALC). It illustrates their application with very well-chosen case studies. 

Their analysis of the Flynn health-care data is a particularly convincing validation study. 

Going beyond the usual “here’s what we did, here’s what we got” case study, it brings in 

substantive subject-matter expectations, and demonstrates how scale adjustment confirms 

those expectations, while classic or “straight” LC modeling does not. That turns out to be 

true both for their scale-adjusted choice model-based LC, and for LC applied to the HB 

utilities, using discrete and continuous scale adjustment, respectively. Such validation is 

particularly impressive because scale-adjusted latent class (SALC) is a purely technical 

feature, not in any way tailored to the specific hypothesis or subject area on which it was 

tested. 

Entirely aside from use with HB utilities, continuous-variable SALC will be useful with 

any continuous variables, just as the original categorical-variable SALC works with any 

nominal variables. 

The travel case study illustrates how differential variable weighting can be used to 

control and “tune” segmentation results. As the authors point out, this capability will take 

practitioners some time to learn to use judiciously. But it obviates a host of clunky ways 

practitioners have attempted to reach the same goal—things like using factor scores to 

reduce the influence of a group of variables, or picking some to simply drop, or increasing 

influence by entering some variables twice. This new capability is like handing a nice rubber 

mallet to a sculptor who has had only a sledgehammer. 

In addition to the technical aspects, Eagle and Magidson remind us once again that 

segmenting on both choice and non-choice data is not only possible but often very useful. 

The substantive needs of real-world segmentation often demand using both kinds of data. 

Technical complexities or data file setup issues are minor in the overall scheme of things, 

and not excuses to oversimplify segmentation needs. 

THE GOLD STANDARD 

The authors mention several times that, with choice data, segmenting on the choice 

model or choice data itself (as opposed to segmenting on HB utilities estimated from the 

choice data) is the “gold standard” approach. This echoes Eagle (2013; full citation at end of 

Eagle and Magidson paper), a paper that was emphatic on that point. They also show that, at 

least in their two case studies, SALC on HB utilities (zero-centered) produces segments in 

close agreement (85% or more) with those produced by SALC on the choices themselves. 
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The primary objective of these comments is to: 

• Examine and illustrate why latent class on choice data (not utilities) is the gold standard. 

• Argue that using SALC on utilities does not necessarily overcome the problems of using 

utilities in latent class. 

Consider the segment agreement tables shown just below. Each shows two different 

3-segment solutions, with each pair agreeing barely 40% of the time. With 33% being the 

minimum possible agreement for 3-segment solutions, they all show exceptionally poor 

agreement among different solutions. 

38 60 7 
 

61 28 15 
 

49 63 18 
 

60 33 32 

18 47 5 
 

47 20 6 
 

8 31 7 
 

37 13 12 

15 12 2 
 

11 14 2 
 

12 13 3 
 

7 4 6 

  43% 
 

  41% 
 

  41% 
 

  39% 

What makes such poor results relevant here is that all 8 of those solutions were obtained 

by running Latent Gold (using standard LC cluster, not SALC) on the same HB utilities! 

Specifically, they were run on the HB utilities Tom Eagle estimated from the Flynn data,1 

the ones Eagle and Magidson used in their first case study. 

HOW UTILITIES WORK 

How is this possible? It is not because Latent Gold is defective. The input it was given 

for these 8 solutions were the “same utilities” in every case, but not actually the same 

numbers. The utilities were simply zero-referenced in different ways for each solution. 

Recall that utilities are derived from a multinomial logit equation, 

𝒑(𝒂|𝑨) =
𝐞𝐱 𝐩(𝑼𝒂)

∑ 𝐞𝐱 𝐩(𝑼𝒋)𝒋∈𝑨

 

In this equation, adding any constant, C, to every item’s utility, changes nothing because 

the added constant cancels out: 

𝒑(𝒂|𝑨) =  
𝒆𝒙𝒑(𝑼𝒂 + 𝑪)

∑ 𝒆𝒙𝒑(𝑼𝒋 + 𝑪)𝒋∈𝑨
 =  

𝒆𝒙𝒑(𝑪) 𝒆𝒙𝒑(𝑼𝒂)

𝒆𝒙𝒑(𝑪) ∑ 𝒆𝒙𝒑(𝑼𝒋)𝒋∈𝑨
=  

𝒆𝒙𝒑(𝑼𝒂)

∑ 𝒆𝒙𝒑(𝑼𝒋)𝒋∈𝑨
 

This means utilities are “unidentified” until we decide how to pin them down. Most 

commonly, we zero-center them, so their overall average is zero. It is also common to pick 

one item, often the last, to fix at a zero utility. But there are infinitely many other 

possibilities as well. The 8 disagreeing solutions shown above simply reflect solutions from 

zero-centered utilities and from 7 different choices of which item to fix at a zero utility. 

Note that how we “center” or “reference” the utilities has no impact whatever on how 

well they fit or describe the choice data and no impact whatever on what they predict or 

 
1 I thank Tom Eagle for providing a file of this data, along with the authors’ scale-adjusted HB-utility–based latent class solution. Indirectly, I 

join the authors in thanking Terry Flynn for making this data available. 
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would simulate for any future choice set.2 In every substantive sense, the utilities are truly 

“the same” regardless of how zero-referencing is done. 

In aggregate models, the choice of reference has essentially no impact at all. But in 

individual-level (e.g., HB) data, the referencing operates differently for each individual. 

Latent class results, and utility correlations, and any other analyses that depend on patterns 

of utilities across individuals all turn out differently depending on how the utilities are zero-

referenced. 

We can think of each respondent’s utilities as being fixed on a wooden ruler that shows 

item numbers positioned to reflect that respondent’s utilities. On such a ruler, the spacing of 

utilities and their absolute differences are meaningful,3 but which point we choose to call 

zero is not (picking the zero point is equivalent to choosing the additive constant C in the 

MNL equation shown earlier). Here is the “ruler” for the fourth respondent in the Flynn file, 

positioned once with zero-centering, once with item 4’s utility set to zero, and shifted again 

to set item 1’s utility to zero. 

 

The non-identification of the utilities means we can slide the rulers left and right as far as 

we like, relative to the zero point, without changing their real meaning. 

LIKELIHOODS FOR UTILITIES 

When we segment on HB utilities, latent class modeling is based on the likelihood of a 

given respondent’s utility on a particular item, given the distribution of that item’s utility 

across all respondents in a segment. Most software bases that likelihood on a normal 

approximation to the actual distribution. Using zero-centered utilities, the 4th Flynn 

respondent (ID number 8) has a zero on utility 2, and his or her utility falls in the middle of 

the distribution across all respondents, as illustrated in the two graphs below.4 

 
2 This is true only for additive “centering.” Multiplying utilities by a constant does change their fit and their predictions, as does any non-linear 

transformation. The popular “zero-centered diffs” rescaling involves multiplying by a different constant for each respondent, so it does not 

preserve the predictive properties of the MNL. 
3 They are “meaningful” in the sense that they determine predicted choices, and predict differently when changed. Some argue they are not 

meaningful from the viewpoint of utilities being a combination of preferences, which are regarded as meaningful, and error scale, which is not. 

The key issue in our context is the impact on predictions, which is not to dispute the other viewpoint in contexts focused on interpretation. 
4 This is illustrated here based on the total sample distribution; what actually matters as latent class iterates toward a final solution is the 

distribution within each separate latent class. The principle is the same. 

Zero 

| 
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But what happens if we use a different reference point? The next two graphs show the 

results for six different referencing options. Is the respondent right in the middle of the 

distribution, with a high likelihood, or off at the side (as with utility 6 being set to zero) with 

a much lower likelihood? We can’t even be sure if this respondent is relatively low (utility 6 

set to zero) or high (utility 4 being zero) relative to the other respondents, let alone exactly 

how high the likelihood is! 

 

How can this happen? The problem is that each individual’s utility “ruler” is adjusted by 

a different amount when we choose a new reference point. If we simply added the identical 

constant C to all utilities for all respondents, nothing would change in those graphs except 

the absolute numbers on the x-axes. But with every respondent being independently zero-

centered, or item 4 zero-referenced, say, each one moves in a different way. Again, the fit 

and predictions don’t change, but the relationship of respondents to each other shifts around. 

Consider how the pattern of utilities for item 12 shifts with changes in reference. The 

next chart shows the utility rulers for the first 8 Flynn respondents, with the line connecting 

their utilities for item 12, on a zero-centered basis. 
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If, instead of zero-centering, we set the utility of item 2 to zero for everyone,5 that 

pattern shifts dramatically: 

 

So, any segmentation results based on utilities are very dependent on a fundamentally 

arbitrary decision as to how to uniquely identify the utilities. What can we do? 

LIKELIHOODS FOR CHOICES 

The solution is simply to use the actual choice data for latent class, in the context of a 

latent class choice model. In an LC choice model, the likelihood does not depend on a 

respondent’s position relative to others, but is the probability of the respondent’s actual 

choice in one task, given the utility for that segment. 

 
5 Is this a silly choice of reference made just for arguments’ sake? Not necessarily! Suppose item 2 were “not change anything in our product” 

and the other 14 were various kinds of changes, variously liked or disliked by different respondents. This would then be a wholly natural way 

of referencing, and far more readily interpretable than any other. 
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No matter how the utilities are coded in the program, the likelihood of a given choice 

stays the same. This is true because any referencing or coding scheme produces the same 

predicted choices. The software must still make an arbitrary choice of coding scheme, but its 

choice has no impact on the predictions and thus no impact on the likelihoods. 

So, why is using the choice data directly, in a latent class choice model, the gold 

standard? Because it requires no arbitrary, results-changing, decisions! It is invariant to 

things that don’t matter, unlike LC clustering on HB utilities. 

IS ZERO-CENTERING SPECIAL? 

It is important to understand that zero-centering utilities does not escape the general 

problem. While zero-centering is very widely used, and often feels very natural, it is still just 

one of the infinitely many ways utilities could have been identified. Choosing it is just as 

arbitrary as any other choice. 

Zero-centering does tend to minimize correlations (across respondents) among utilities, 

and minimizes the overall variance of all utilities taken as a group. It is possible, but 

unproven, that this could in turn cause clusters based on them to more closely match 

segments based on choice data. Eagle and Magidson do get good agreement between the 

two in their two case studies (using scale adjustment in each case) and have told me in 

discussions that they believe this is likely a general effect.  But, much more investigation 

will be needed to see whether it is a general finding. Even if it is true in general, why use it? 

Latent Gold and Sawtooth Software products both offer latent class choice solutions. They 

are truly the gold standard and should be used. 

Zero-centered diffs, also often used, offer no escape either; they only compound the 

issue. Because they use multiplicative scaling on the utilities, they destroy the link to 

predicted probabilities, in addition to beginning with an arbitrary choice of referencing. 

A reviewer of these comments posed an interesting hypothetical: If you were given 

utilities, and had no access to the original choice data, wouldn’t you go ahead and cluster on 

the utilities (zero-centered, let’s say)? My answer is no, I would not.6 Instead, I would 

generate a large7 choice design, simulate answers to it from the utilities plus Gumbel error 

and then run latent class choice models on the simulated answers. 

IS THIS A PROBLEM WITH LATENT CLASS? OR WITH HIERARCHICAL BAYES? 

It’s also important to note that none of the problems discussed here are unique to latent 

class clustering. LC clustering is the most popular way of finding segments in market 

research today, for many well-known reasons. As the fundamental topic of the Eagle and 

Magidson paper that inspired these comments, it is the obvious context in which to embed 

this discussion. But the problem of basing segmentations on arbitrarily-referenced utilities 

applies just as well to any clustering approach, including K-means, hierarchical methods, 

ensemble methods, and all the many others. It is not in any way specific to LC clustering. 

The problem is in the utilities, not in the clustering method. 

 
6 Unless it were all due in the next 4 hours; I am a practitioner, after all. 
7 “Large” meaning much larger than typically used with real respondents. We want the effects of the Gumbel error to average out, and there is no 

cost to using more simulated tasks, so we can use 10 or 20 times as many as in a real-world MaxDiff design. 
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Indeed, for choice data, LC is clearly superior to clustering approaches because it does 

offer the LC choice modeling approach as an alternative to LC clustering on utilities. No 

other clustering method known to the author can deal directly with choices in a reasonable 

way; one has no option but to use utilities with the other methods and suffer all the problems 

discussed here. 

Similarly, this is not a hierarchical Bayes (HB) problem. HB is by far the most common 

method in use for obtaining individual-level utility estimates, although not the only one. 

Again, the problem is not in the method of estimation, but in the fact that utilities, by their 

very definition in the MNL, inherently require an arbitrary referencing decision. That 

decision affects their distribution across respondents, which is what ultimately drives any 

clustering method. 

CONCLUSIONS 

The bottom line is that with any type of choice data, latent class modeling should be 

done using latent class choice models, not using latent class clustering on individual-level 

utilities from an initial HB analysis (or any other method of calculating individual utilities, 

for that matter). If utilities are used, results are heavily dependent on an arbitrary 

identification decision. 

Eagle and Magidson show good agreement between segments from the choice data and 

segments from the HB utilities (which were zero-centered ones in their analysis). It is a safe 

bet that other referencing points would have produced much worse agreement. Some may 

read their paper to condone latent class clustering on HB utilities (despite their explicit 

advice against it), which would be unfortunate. SALC on continuous variables has many 

other potential applications; to think that it “rescues” utility-based segmentations in general 

is a mistake. Applied to zero-centered utilities, it might produce results closely resembling 

the gold standard LC choice models, but the evidence for that is limited so far, and it is hard 

to see from first principles why that should be. 

We should acknowledge that many practitioners, including this author, as well as Eagle 

and Magidson, have used latent class segments based on utilities, and obtained meaningful 

and useful segments. We’ve all done it, it seems to work just fine! That does not counter the 

argument against doing so. Segmentation is, in many ways, an easy problem—almost any 

way of dividing up a sample, based on almost any variables of substantive relevance, will 

produce segments that are far more meaningful and useful than treating the world as a single 

mass market. Even consultants eyeballing short questionnaires from focus group 

participants, and putting them in separate piles by pure judgment, have created usefully 

different groups. 

The relative ease of success in segmentation does not make such methods principled, let 

alone optimal in any meaningful sense. When working with choice-based methods, we have 

the machinery (latent class choice models, and SALC choice models) to do far better, and 

we should! We might just discover how much better we could have been doing all along. 
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With scale-adjusted latent class methods no longer restricted to categorical variables, and 

with differential weighting to control the combination of choice and non-choice data (among 

other uses), Eagle and Magidson have made the available machinery better yet.8 

 

  

 David W. Lyon 

 
8 I thank Jay Magidson, Tom Eagle, Bryan Orme, and Keith Chrzan for their reactions to earlier drafts of these comments. All led to 

improvements, though almost all disagreed at least in part with the views expressed here. All remaining errors and misconceptions are the 

author’s alone! 
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UNDERSTANDING CONSUMER PREFERENCES: A COMPARISON 

OF SURVEY- AND PURCHASE-BASED APPROACHES 

JAMES PITCHER 

BRADLEY TAYLOR 

DAN KELLY 
GFK 

ABSTRACT 

Can Point of Sale (POS) data tell us anything about consumer preferences? We 

conducted one of the largest and most comprehensive research studies to calculate attribute 

importance, brand preference, and price elasticities from POS data, and compared the results 

with those obtained from a CBC exercise across 15 technology and durables product 

categories within 7 countries; 68 cells in total. We see that although attribute importance and 

brand preferences are similar, there are large differences in price elasticities between the 

POS and conjoint models due to the differing ways in which they measure consumer 

preferences. Conjoint measures a theoretical preference, one that is not influenced by 

external market factors, whereas the POS data takes into account the in-store realities and 

how these affect the purchase decision. 

BACKGROUND AND DESCRIPTION 

Conjoint analysis is the gold standard methodology for measuring consumer preferences. 

However, survey-based approaches face increasing pressure to maintain engagement with 

respondents living ever-busier lives and to deliver insights to clients faster and at a reduced 

cost. For these reasons, steps are being taken to streamline surveys and harness the power of 

imputation methods in order to reduce survey length. But what if we consider an alternative 

solution where we replace parts of a survey with behavioural data? Instead of measuring 

what people say they will do, we measure what they actually did. 

At GfK, we have access to Point of Sale (POS) data that contains a huge amount of 

information on product features, prices, and product sales. Over 760 product groups are 

audited globally, with 1.5M new products being added each year. The data covers more than 

120 channels of distribution and over 425,000 stores worldwide. It means we have a rich 

amount of store-level data on individual products. For each individual product we have the 

following information: 

• Product specification and features (e.g., For a Laptop: brand, screen size, storage 

capacity, CPU, RAM, battery length, etc.). 

• Units sold and revenue generated in each store per week. 

• The price the product was sold at in each store per week. 

• What price discounts (if any) were applied in each store per week. 

• Share of shelf in each store per week. 

• Distribution: availability of the product in each store per week. 
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Can we use this rich data source to tell us anything about consumer preferences? 

Specifically, can we measure the appeal of different brands and product features, price 

sensitivity, and how important brand, price and features are in the purchase decision? How 

do these results compare to those obtained through a traditional conjoint exercise? Where do 

they complement each other and where do they show us something different or interesting? 

What are the limitations of the POS data? 

We directly compare how POS data and a traditional conjoint exercise predict consumer 

preferences by running a parallel study where we use both approaches to determine the 

attractiveness of product features and price sensitivities across multiple technology and 

durables product categories. 

STUDY DESIGN 

The study was run across 15 technology and durables product categories within 7 

countries, 68 cells in total. Both conjoint and POS analysis was conducted in each cell. 

 

Product Categories  Brazil  France Germany Great Britain Russia Japan China Grand Total 

Smart Speakers  1 1 1       3 

Cooking (Oven) 1       1     2 

Dishwashers   1 1 1       3 

Refrigerators 1 1 1 1 1     5 

Digital Cameras     1   1     2 

Hot Beverage Makers 1 1 1 1 1 1 1 7 

Irons 1   1   1     3 

Tablets 1 1 1 1 1     5 

Mobile Computing (Laptop/Notebooks) 1 1 1 1 1 1 1 7 

TV (PTV/ Flat (LCD/ Plasma/ Rear)) 1 1 1 1 1 1 1 7 

Shavers (Men’s) 1   1   1     3 

Ladies Epilators/Laser IPL 1   1   1     3 

Smartphones 1 1 1 1 1 1 1 7 

Vacuum Cleaners   1 1 1 1     4 

Washing Machines 1 1 1 1 1 1 1 7 

Total 12 10 14 10 13 5 5 68 
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Conjoint 

Within each cell, a representative sample of 500 respondents answered a Choice-Based 

Conjoint (CBC) exercise with 12 tasks. We interviewed around 38,000 respondents in total. 

Two designs were created, consisting of nine attributes: brand, price, purchase options, and 

6 attributes relating to product features. 3 to 4 were on/off attributes. Fieldwork was 

conducted in March 2019. Part-worth utilities for all levels were estimated in Sawtooth’s 

Lighthouse studio. 

Attribute Grid for Dishwashers in France 

 

Conjoint Tasks for Dishwashers in France 

 

POS Models 

For simplicity, we only considered offline sales. Online sales were not included. To 

calculate attribute importance and brand preferences, we used 18 months’ worth of weekly 

store-level data between October 2018 and April 2019. When calculating product price 

elasticities, we used a reduced modelling period of six months, between February 2019 and 

June 2019. This was to reduce any bias caused by product lifecycles and changes to the 

competitive landscape. 

ANALYSIS 

We calculated Attribute Importance, Brand Preference, Feature Preference/Pricing, and 

Price Elasticities from both the conjoint and POS data. In this section, we detail how these 

measures were calculated and compared. 

Brand Bosch Beko Whirlpool Siemens Candy

Purchase options
Available online only (item 

delivered)

Available online and in-store 

(Choice of delivery or store pick-

up)

Available in-store only (Choice of 

delivery or store pick-up)

Available in-store only (Store pick-

up only, no delivery)

Capacity 10 place sets (slimline model) 12 place sets 14 place sets

Noise level Quietest (42dBA or lower) Quieter (43-49dBA) Quiet (50-55dBA)

Multiple temperature settings Yes No

Smart Home enabled Yes No

Whether integrated or not Yes No

Quick wash setting Yes No

Price €200 €300 €400 €500 €600
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Conjoint Attribute Importance 

Conjoint attribute importance scores were calculated using the standard method: using 

the zero-centred diffs utility scores, we calculated the range in utility scores for each 

attribute and calculated importance values that sum to 100 percent. The importance scores of 

all attributes relating to features were summed to give an overall importance score for 

features as whole. 

POS Attribute Importance 

For each category and country, we created a Random Forest Model, using the 

“h2o.randomForest” function in the “H20” package in R, to predict sales units within each 

retailer using brand, features, and price, while controlling for seasonality, retailer 

distribution, and price discounts. We used the top five selling brands and up to 40 product 

features, depending on the availability in the category. We made the distinction between the 

product base price and price discount to ensure that we calculated the importance of 

everyday price, not large promotional price reductions. A temporary price reduction is 

defined as a price reduction higher than 10% that lasts more than six weeks. The base price 

was then split into five equal bins. Seasonality was included as a control term by calculating 

the average total sales of the category per week. Distribution was also included as a control 

variable and was recoded to be on a scale of 0 to 1 and divided into buckets of size 0.05. The 

data was mean-centred at the retailer level to remove any scale affect resulting from the 

difference in volumes sold from store to store. 

The importance of brand, price, and features was determined by calculating the relative 

influence of each variable. More specifically, whether that variable was selected to split on 

during the tree building process, and how much the squared error (over all trees) improved 

(decreased) as a result (H2O.ai, 2019). The importance scores of all attributes relating to 

features were again summed to give an overall importance score for features as whole. 

Conjoint Brand Preference 

The relative appeal of each brand was assessed by calculating the average zero-centred 

diffs utility scores for each brand. 

POS Brand Preference 

We calculated a score for each brand by comparing how the actual sales of a brand 

differed from the expected sales for that brand, given the brand’s average price and 

distribution compared to the category as a whole: 

• Observed Share = Total Brand Unit Share 

• Expected Share = (Brand Distribution/Category Distribution) * (Average Price of 

Brand/Average Price of Category) 

• Brand Score = Observed Share/Expected Share 

The higher the observed sales, compared to what was expected, the higher the strength of 

the brand. 
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Conjoint Feature Preference 

The relative appeal of each feature was assessed by calculating the average zero-centred 

diffs utility scores for each feature. 

POS Feature Pricing 

We were unable to calculate consumer preferences using the POS data due to the high 

level of multicollinearity between product features. Features do not appear in enough unique 

combinations across products for us to isolate the appeal of each individual feature. 

Instead, we calculated the price that manufacturers charge for specific features. We take 

the average price of all products with a given feature and compare it with the category 

average price to calculate the premium or discount for that feature. Therefore, for each 

feature we have a complete overview as to whether the presence (or absence) of a given 

feature carries a premium versus the category average. Note that this is not a measure of 

consumer preferences as it is not related to sales. It is simply how much extra retailers 

charge for a feature. 

Conjoint Price Elasticities 

We first created a scenario consisting of the 20 top selling products as observed in the 

POS data. However, if there was insufficient POS data to model the product price elasticity, 

the product was excluded from the conjoint base scenario. We then calculated the share of 

preference of each product, one at a time, at five prices between the minimum and 

maximum prices observed in the POS data for the given product. The price of the other 

products was held constant. The price elasticity was calculated by taking the natural log of 

five prices and resulting shares and finding the regression slope that best fits the data. 

POS Price Elasticities 

We consider the 20 top-selling products as observed in the POS data. However, there 

was insufficient data to model the product price elasticity for some products. For each 

product, we created a separate multiplicative regression model at the store level to predict 

sales units using the product’s own base price, own price discount, the base price and price 

discounts of competitors, and presence of competitors in store. We made the distinction 

between the base price and price discounts to ensure that we calculated the impact of 

everyday price, not large promotional price reductions. We also controlled for category 

seasonality and trend using a LOESS smoothing algorithm. Sales units and all base prices 

were log transformed. The data was mean-centred at the store level to remove any scale 

affect resulting from the difference in volumes sold from store to store. The coefficient for 

the product’s base price represents the price elasticity of the product. 

Price elasticities were only calculated across seven product categories because it was a 

very labour-intensive process to run the POS models since a separate manually-fitted model 

was required for each product. Price elasticities were calculated for 38 products in total. 

Category elasticities were calculated by taking the average price elasticity for all products 

within the given category. 
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RESULTS 

Although we started with 68 cells, in many of the cells we were unable to use the POS 

data to produce sufficiently robust models. This was due to having either too little sales data 

or too much week-on-week variation in the data. As a result, most results are based on 38 

cells. 

Attribute Importance 

Figure 1 shows that when the importance scores are averaged across the 38 cells that 

were analysed, the attribute importance scores derived from the conjoint and POS data are 

remarkably consistent. Features make up around 60% of the purchase decision in both the 

conjoint (58%) and the POS model (65%). Features rank as the most important attribute in 

all 38 cells in the conjoint, and in 35 cells (92%) in the POS data. 

Figure 1: Attribute importance scores averaged across all cells. 

 

However, when we look within each individual cell, we see differences in importance 

scores. Figure 2 shows the absolute differences in attribute importance (POS - Conjoint) in 

each individual cell. In some cells, such as Hot Beverage Makers in Japan, we observe very 

small differences (Figure 3). But we consistently see the that feature importance is much 

higher for Laptops and Tablets in the POS model compared to the conjoint. Figure 4 shows 

feature importance in UK Tablets is almost double in the POS compared to the conjoint. 

Figure 2: Absolute differences in attribute importance (POS - Conjoint) in each cell. 
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Figure 3: Attribute Importance: Hot Beverage Makers in Japan 

 

Figure 4: Attribute Importance: Tablets in UK 

 

Figure 5 shows a summary of the differences in importance scores between the POS and 

conjoint, and how these compare to the results we would expect from random chance. 26% 

of the absolute differences in importance scores are 5% or less, 28% of differences are 

within 6-10% and 18% of differences are within 11-15%. Therefore, summing these, it 

means 72% of absolute differences between the conjoint and POS importance scores are 

within 15%, and 54% of differences are within 10%. 

Figure 5: Summary of absolute differences in attribute importance (POS – Conjoint).

 

Figure 6 shows that differences in importance scores are smaller for brand but there are 

many large differences in feature importance, mainly due to the differences seen in Laptops 

and Tablets. 



296 

Figure 6: Absolute differences in attribute importance (POS – Conjoint) by attribute. 

 

Brand Preference 

A simple and easy way to compare brand preference across the large number of 

categories is to compare the ranks in appeal of the brands from both the POS and conjoint 

models. Figure 7 shows the different ways we compare the ranks: 

Pure Match simply calculates the proportion of ranks that match. 

Adjusted Match accounts for the fact it only takes one of the rankings to be inconsistent 

between the POS and conjoint for all the other rankings to be out of line. We therefore make 

an adjustment where we ignore the rank that is out of line and renumber the ranks of the 

other brands. 

Confidence Range takes into account the confidence interval of the conjoint utilities. 

We perform a t-test on the conjoint utilities and where we do not see significant differences 

between brand utilities, we assign the brands to have the same rank. 

Figure 7: The different ways we compare ranks. 

 

Figure 8 shows the results of matching the brand rankings. We achieve a pure match of 

45%, over double what you would expect by random chance (20%). The adjusted match is 
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higher at 51% and the confidence range match is higher still at 69%. Figure 9 shows the 

results of a qualitative assessment, where we manually looked at each category and 

subjectively appraised how well the ranks matched. 57% of categories were identical or very 

similar, 30% were “OK,” and 14% showed large differences. 

Figure 8: Comparison of brand rankings between POS and conjoint. 

 

Figure 9: Qualitative comparison of brand rankings between POS and conjoint. 
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Figures 10 and 11 show results for a couple of individual cells. In TVs in the UK, the 

brand rankings are perfectly consistent. However, in Laptops in Germany, the brand 

rankings are inconsistent. In particular, we see a large difference for Apple where the POS 

model has Apple as the top ranked brand, and the conjoint has Apple as the worst brand. The 

appeal of Apple was much higher in the POS model compared to the conjoint across 

Laptops and Tablets in most countries. 

Figure 10: TVs in UK 

 

Figure 11: Laptops in Germany 

 

Feature Preference/Pricing 

Figure 12 shows that, even though they measure different things, we achieve a pure a 

match of 69% between the conjoint feature preferences and the feature price premiums we 

calculate from the POS data. 
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Figure 12: Comparison of feature rankings between POS and conjoint. 

 

Figure 13 shows that 63% of the features are ordinal. By this we mean that the levels 

have a natural order of preference. For example, most consumers would prefer a camera 

with more megapixels than less. Figure 14 shows that we match these ordinal attributes at a 

much higher rate than the nominal attributes, which have no natural order of preference; 

84% versus 43%, respectively. 

Figure 13: Proportion of ordinal and nominal features in the analysis. 
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Figure 14: Comparison of feature rankings split out by ordinal and nominal features.

 

Price Elasticities 

Figure 15 shows the conjoint produces much higher price elasticities in each category. 

Only in TVs in Germany is the category elasticity from the POS data (-1.2) comparable with 

the category elasticity from the conjoint (-1.5). Figure 16 shows the product price elasticities 

of all 38 products we ran models for do not correlate between the POS and conjoint models. 

Figure 15: Comparison of category price elasticities between POS and conjoint. 
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Figure 16: Correlation of product price elasticities between POS and conjoint. 

 

DISCUSSION 

Attribute Importance 

Attribute importance scores are reasonably consistent between the POS model and 

conjoint. It shows we are able to capture customer decision behaviour using POS data. The 

major differences are within Laptops and Tablets where feature importance is much higher 

in the POS models compared to the conjoint. This could be because of the limitations on the 

number of features we could test in the conjoint. In the conjoint exercise, we were limited to 

testing only six attributes relating to product features. However, in the POS model, we tested 

up to a maximum of 40 features (although this was lower for many of the categories). We 

therefore may miss off some features in the conjoint that are important in the purchase 

decision when buying a Laptop or Tablet. Hence, we underestimate the total feature 

importance in the conjoint for Laptops and Tablets. 

Features account for around 60% of the purchase decision in both models, and features 

are ranked most important in all conjoint models and nearly all POS models. This shows that 

innovation in technology categories is crucial. Customers are willing to trade-off price and 

brand for a more technologically advanced product with the features they want. This is great 

news for market research, especially conjoint which can measure feature preferences, as it is 

important for manufacturers to know which features consumers look for in a product. 
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Brand Preference 

Brand rankings are largely consistent between the POS data and conjoint. The major 

differences are again within Laptops and Tablets, where the appeal of the Apple brand is 

much higher in the POS models compared to the conjoint. There are several potential 

reasons for this. It is likely that there is a high in-store push and favourable in-store 

placement for Apple products. Such in-store activities are reflected in the POS data, leading 

to a higher preference for Apple, compared to the conjoint which does not take into account 

these external factors. 

Another potential reason is that Apple only offers premium products which means taking 

the total brand sales across all Apple products in the POS model isn’t effective at stripping 

out the influence of product features as is usually the case with other brands. We are not able 

to isolate the appeal of specifically the Apple brand from the appeal of the features 

contained in within the Apple products. We therefore may overestimate the appeal of the 

Apple brand in the POS model because part of the reason consumers choose Apple is 

because they like the features contained within the Apple product, not purely the Apple 

brand. 

Apple is especially unique in form factor and design which may have much higher 

salience in-store, where a consumer is able to pick up and play with the product, compared 

to a conjoint setting where the respondent is not able to do this. Also, conjoint gives the 

respondent full market knowledge of the specifications and prices of all products and allows 

them to compare them on screen, side by side. However, in reality, many customers may not 

have such good market knowledge and will choose Apple because it is a brand they are 

more familiar with. 

Finally, respondents can easily switch between brands in a conjoint setting. However, in 

reality, some customers will be locked within the Apple ecosystem as they own other 

devices with the same operating system. For example, if the consumer owns an iPhone, it 

may make them more likely to choose an Apple Laptop or Tablet so they can remain within 

the iOS ecosystem. 

So, as we see in the case of Apple, the POS data is more suited to account for external 

factors, like in-store activities. When a consumer walks into a store they have a theoretical 

brand preference in their mind. This is what we measure in the conjoint. However, things 

can happen in-store that influence what brand they purchase. We see that brand importance 

is mostly consistent between the POS data and conjoint, so the importance of brand in the 

purchase decision is not greatly altered. However, the consumer may adjust their original 

theoretical preference for certain brands, as measured in conjoint, and switch to a different 

brand of similar preference due to in-store activities such as product placement, the 

behaviour of sales staff, and in-store (non-price) promotions like leaflets and banners. 

This shows the importance of in-store merchandising and that manufacturers have 

enough room to influence the customer preference at the point of purchase. 
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Feature Preferences/Pricing 

We are currently unable to measure consumer preferences for certain features using POS 

data because of the high multicollinearity between features. This is a big limitation 

currently, one which is not easily solved. 

Interestingly, the rank orders of manufacturing prices and consumer preferences are 

consistent. This is largely due to a high proportion of features having a natural order of 

preference. It makes sense that manufacturers charge more for advanced features, so the 

prices from the POS data preserves the natural order of preference of the ordinal features. 

However, it does mean that manufacturers are doing a good job of pricing their products to 

match customer preference. This suggests they are using their expert knowledge of the 

category and perhaps, in some cases, they have conducted previous market research. 

Conjoint remains the best way to measure consumer preferences for different features. 

Given that features are so important in the purchase decision within technology categories, 

this provides further evidence of the benefits of conjoint analysis to commercial clients. 

Price Elasticities 

We observe major differences in the price elasticities we generate from the POS models 

and the conjoint. Conjoint produces higher price elasticities than the POS models and price 

elasticities do not correlate between POS and conjoint. There are a number of potential 

reasons for this. Firstly, conjoint assumes all products are always available to consumers. 

However, we know from looking at the store-level POS data, in reality, only a subset of 

products are available in each individual store. There are therefore fewer alternatives for 

consumers to switch between when in-store. With fewer alternatives available, a consumer 

may become less sensitive to changes in price. 

As previously mentioned, conjoint misses external factors such as in-store promotions, 

sales staff, and position on the shelf, which all affect the purchase decision a consumer 

makes in real life. These factors may cause a consumer to become less sensitive to price 

when in store. For example, you can imagine a scenario where a salesperson is pushing a 

product on a consumer, causing the consumer to care less about the price of the product. 

The observed price variation in the POS data was very small for some products. Over the 

six-month modelling period, many of the products did not change their base price very 

much, less than +/- 5% in many cases. The lack of price variation makes it difficult to 

estimate price elasticity values. Restriction of price range and collinearity with other 

features could lead to lower estimates. For example, if a retailer only sold a small number of 

products at a given price, and they had similar features, the effect of price could be 

completely masked. There are also other external factors, such as in-store activities, we are 

not able to control for during the modelling process. Furthermore, in the conjoint, we tested 

a very wide range of prices because we wanted to cover the range of prices available across 

the whole market. However, this means the conjoint model is not sensitive to such small 

price changes, since we are simply linearly interpolating between two price points which are 

often far away from the price points being modelled. 

We are not always able to accurately represent the products present in the POS data, in 

terms of the features they possess, with the levels tested in the conjoint. As we were limited 
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by how many features we could test in the conjoint, we often misspecify the features of 

products. Furthermore, some features that may influence price elasticity, such as industrial 

design, physical look and feel, etc., may not have been tested in the conjoint at all. 

Therefore, the market scenarios we base the POS and conjoint models on are not always 

identical and, in some cases, they can be quite different. We may get more comparative 

results between the POS and conjoint if we used an SKU-Price conjoint approach, where 

each product in the POS model is modelled as its own separate level, allowing us to specify 

the exact features of the product to the respondent. 

In the POS model, we explicitly strip out the effect of price promotions from the impact 

of changes in base price. This reduces the elasticity value we measure for the base price. 

Promotions were not tested in the conjoint, so we do not make the distinction between base 

prices and promotional discounts in the same way. 

Finally, conjoint makes respondents fully aware of all prices of all products, and allows 

them to compare them on screen, side by side. However, in reality, many customers may not 

have such good market knowledge of prices. So, there is risk that the conjoint setting 

overinflates a consumer’s price elasticity. 

So, as we see in the case of brand preferences, the POS data is more suited to account for 

external factors, like in-store activities. When a consumer walks into a store they have a 

theoretical sensitivity to price in their head. This is what we measure in the conjoint. 

However, things can happen in-store that influence how sensitive they are to price. 

This again shows the importance of in-store activities and that manufacturers have 

enough room to influence the customer preference at the point of purchase. 

Benefits of POS Models 

An obvious benefit of POS models is that there is no need to survey respondents. The 

ability to potentially save valuable time and money is becoming ever more pertinent as we 

increasingly live in a world where clients want insights delivered faster and at a reduced 

cost. 

POS Models are based on real sales data. Rather than being based on what respondents 

say they will do in an artificial survey setting, they are based on what actually happened in 

the real world. 

POS models take into account external effects which conjoint can’t capture, such as in-

store activities and distribution, both of which play an important role in a consumer’s 

purchase decision. We see that a consumer’s preferences and sensitivity to price can be 

altered depending on what happens when they are in-store. Although we can adjust for 

distribution at an aggregate level in a conjoint, we can do this at a much more granular level 

in the POS data as we know which products were sold in each individual store. This allows 

us to create models that are very close to the market reality, which is particularly useful 

when assessing how a product interacts with its competition. For example, when we 

calculate cross-elasticities, we only take into account the competitor products which were 

sold alongside the product of interest in each individual store. 
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Once trained, models can provide almost real time results on the latest market data. 

When using traditional surveys, the only way to get updated results is to interview a fresh 

sample of respondents which takes time and incurs extra cost. 

Limitations of POS Models 

POS data is not available to most market research agencies. However, there are plenty of 

other sources of sales data that could potentially be used to understand consumer 

preferences. 

Although POS data is vast, some categories do not have enough purchases or have too 

much week-on-week variance to be used. We initially started with 68 cells but much of the 

modelling was based on 38 cells or fewer. We are often limited to only being able to model 

the top selling brands and products. 

POS data only measures what you observed to happen in the market. This is particularly 

relevant when calculating price elasticities. The observed price variation was very small for 

most products. This limits the range of prices you can model, since you can only model with 

confidence the prices within the observed range. We also cannot model new brands, new 

products, or new product features like you are able to with conjoint. 

The POS data is also backward-looking and is based on a specific set of market 

conditions. When making predictions about the future, we are assuming the same specific 

set of market conditions is present. However, this unlikely to be the case. 

Due to high multicollinearity, it is currently not possible to measure feature preference 

using the POS data. This is big limitation and one that is not easily solved. 

Due to the vast nature of POS data, significantly more computation power is needed to 

analyse the data compared to what is required when working with most survey data sets. 

CONCLUSION 

Conjoint and POS models differ in how they measure consumer preferences. Conjoint 

measures a theoretical preference, one that is not influenced by external market factors. 

However, the POS data takes into account the in-store realities and how these affect the 

purchase decision. POS models may therefore be beneficial when tactically modelling 

specific market scenarios as they are closer to market realities. However, POS models 

cannot be used for new product development, testing new features or new prices, or 

measuring feature preference. The best approach in such circumstances is still conjoint. 

    

 James Pitcher Bradley Taylor Dan Kelly 
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1. ABSTRACT 

In this modern era of large numbers of players in every segment and tough competition 

in the markets, advertising plays an important role in the success of a brand. Out-of-home 

(OOH) advertising is considered one of the most important modes of advertising for various 

reasons. The changing lifestyle of consumers demands that these outdoor ads can capture 

their attention in just a single glance. This research uses Discrete Choice Modeling along 

with Text Analytics to create outdoor ads with maximum impact and likeability among the 

consumers. While Discrete Choice Modeling was used to pick the various visual elements of 

the advertisement, Text Analytics was used to create messages to be displayed in the 

advertisement, based on the sentiment of people for various words. 

2. BACKGROUND 

Out-of-home (OOH) advertising reaches the consumers while they are outside their 

homes. This type of advertising is focused on marketing to consumers when they are “on the 

go” in public places, in transit, or waiting in some commercial locations. 

OOH advertising is an important mode of advertising for most organizations. It 

continues to outperform for various reasons; it is a mass reach medium, time spent outside 

the home is increasing, it remains unaffected by the erosion of audience due to proliferation 

of media channels, audience measurement is increasingly getting more sophisticated, it is 

physically present in the real world so it can’t be blocked like online ads, and many more. 

As consumers are “on the go,” their attention span is very, very limited, sometimes only 

a few seconds. This demands an advertisement so carefully crafted that it can catch the 

attention of a maximum number of consumers in those few seconds, liked by the maximum 

number of consumers, in addition to creating the strongest impact on them with respect to 

the message the ad intends to deliver to consumers. 

Typically, the pre-launch advertisement assessment is done using market research 

surveys. Respondents are shown advertisement concepts and are asked direct questions on 

various aspects such as overall liking for the advertisements, initial reaction, appeal of 

message statement, ratings of advertisement concept on uniqueness, relevance to them, 
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effectiveness in terms of communicating the idea, likelihood to seek more information, etc. 

There are several limitations of this methodology as mentioned below: 

• One can test only a limited number of advertising concepts, as respondents can evaluate 

only 2-3 advertisements with a fresh mind. Evaluating more than 2-3 advertisements 

brings respondent fatigue, leading to incorrect evaluation. 

• Answering similar questions for advertisements with minimal differences doesn’t bring 

out the real results from the consumer surveys, as respondents tend to give similar 

answers for all advertisement concepts. 

• These are “stated responses” where respondents evaluate advertisement concepts one by 

one. Typically, the surveys don’t provide them a platform to evaluate all the 

advertisement concepts simultaneously. 

Discrete Choice Modeling combined with Text Analytics can not only improve the way 

advertisement assessment is done, but also addresses all the issues mentioned above. This 

paper explains how Discrete Choice Modeling can be used to increase the impact and 

likeability of these advertisements, and how Text Analytics can help create a better message, 

using an actual case study. 

3. STUDY DESIGN 

3.1 Overview 

This paper took inspiration from actual research done for a client from the tourism 

industry, operating in India. The client here is a travel services company who offers 

customized holiday packages for various locations across India. They are one of the major 

players in the travel services industry in India and enjoy the highest market share. Though 

they operate pan India, they are particularly strong in Southern India, especially in the state 

of KERALA, a state in the south of India. 

Kerala has a long history of art and cultural heritage. Often called “God’s Own Country,” 

Kerala basks in the lap of nature. With a network of 44 rivers, the Arabian Sea in the west, 

and a channel of turquoise backwaters running throughout the state, Kerala is one of the 

most beautiful tourist destinations in India and is often thronged by tourists from all over the 

world. 

The client wanted to tap consumers through some attractive outdoor advertisements, 

specifically promoting Kerala as a tourist destination. 

3.2 Initial Inputs 

Kerala offers multiple entertainment options which include historical monuments, the 

scenic waterfalls, the great wildlife, beaches, its various art forms, the boat races, the 

cuisines, and many more. The client had a basic idea in mind about the advertisement and 

what all they wanted to have in it. These included images of any four entertainment options, 

a logo, and a message they intended to deliver to consumers. The advertisement concept the 

client had in mind is shown in Figure 1. 
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3.3 Limitations 

Typically, the ad concepts are tested through surveys where respondents evaluate 

concepts on various aspects such as overall likeability, comprehension, message delivery, 

uniqueness, etc. However, there are limitations with this approach as one can evaluate only a 

limited number of concepts, as long surveys can cause respondent fatigue. Also, the ad 

concepts are created based on gut feeling of a few people and not on the basis of any 

scientific approach. 

Figure 1: Advertisement Concept as per Client 

 

In this particular situation, we were facing many challenges: 

• Kerala offers as many as 10 different types of entertainment options of which we wanted 

to pick only four options. 

• For each of the 10 entertainment options, we had 6-8 images. We wanted to pick one 

image for each of the four selected options. 

• We wanted to evaluate multiple concepts and did not want to limit ourselves to evaluating 

only a few concepts. 

• We also wanted to evaluate whether the positioning of images made any difference to the 

overall likeability of the advertisement and in the impact it creates. 

• We wanted to create an impactful message innovatively rather than selecting any pre-

decided message. 

• We also wanted to address other points in the advertisement such as testing what is the 

most preferred duration of stay for tourists, and how we can address those issues to the 

relevant target audience through our advertisement. 

IMAGE 1 IMAGE 2 

IMAGE 3 IMAGE 4 
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3.4 Application of Discrete Choice Modeling 

We wanted to address the limitations through an analytical approach. While figuring out 

which analytical technique could be best applied in this situation, we realized that our 

advertisement was actually a combination of multiple elements, i.e., the images that we 

needed to show in the advertisement, the audience we planned to target, the message that we 

intended to convey to consumers, the information that we wanted to display in the 

advertisement, and the brand display. These elements come together to make an effective 

advertisement. Based on this, we decided to apply Discrete Choice Modeling (Conjoint 

Analysis) to address the various questions. 

We broke the client concept into its various elements and added a few more to create a 

blueprint for the final advertising concept. This has been shown in Figure 2. 

Figure 2: Blueprint of Final Advertisement Concept with its Various Elements 

 

We identified the attributes that could be a part of the conjoint experiment. This has been 

shown in Table 1. 

Table 1: Attributes used for Conjoint 
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The levels of all attributes except “Tour Options” and “Positioning of Images” were in 

the form of images instead of textual values. At a given point, we were talking about 

managing about 70-80 images in the conjoint exercise. This brought in a lot of complexity. 

Also, there were 13 attributes that we were required to manage, which was quite a big 

number. To address these two challenges, we did the following: 

• Due to the high number of “entertainment options” to be tested, respondents were asked 

to select their top 4 options before they answered the conjoint exercise. 

• Only the respondent’s selected 4 entertainment options were included in each conjoint 

exercise (in addition to the other fixed attributes). 

• Further, “Positioning of Images” was programmed as a hidden variable. 

This allowed us to have 7 attributes in the conjoint experiment, i.e., four selected 

“Entertainment Options,” “Target Audience,” “Tour Options,” and “Positioning of Images.” 

As “Positioning of Images” was a hidden attribute, respondents were effectively seeing 6 

attributes in their conjoint exercise. 

We decided to use the CBC technique. The other parameters of the conjoint exercise 

were: 

• Partial-Profile Design 

• 300 versions 

• Complete Enumeration Method 

The web-based survey was conducted among a population of 2,000 which included 500 

from four different metro cities of India. The survey also probed respondents on their travel 

history, vacation preferences, and vacation frequency, etc. 

As mentioned earlier, we also wanted to evaluate if the position of images in the 

advertisement made any difference in the overall likeability and impact of advertisement. To 

address this, “Positioning of Images” was programmed as a hidden variable. P1, P2, P3, and 

P4 refers to the 4 image locations in the ad as shown in Figure 3. 

Figure 3: Image Locations for “Positioning of Images” Attribute 
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In order to estimate the utility of any level of any of the ten attributes under 

“Entertainment Options,” at any of the four image locations in advertising concept, the 

levels of attribute “Positioning of Images” were defined as shown in Figure 4. 

Figure 4: Levels for “Positioning of Images” Attribute 

 

For level 1 of “Positioning of Images,” the four entertainment options pre-selected by the 

respondents were assigned P1 to P4, based on the order they were selected in. For exp., the 

option selected 1st was assigned P1, option selected 2nd was assigned P2, option selected 3rd 

was assigned P3, and option selected 4th was assigned P4. For the next level, P1/P2/P3/P4 

were rotated in the clockwise movement. 

Interaction effects between attributes under “Entertainment Options” and “Positioning of 

Images” were used to estimate the part-worth utility scores of any level of any attribute 

under “Entertainment Options” and any of the four image locations P1, P2, P3, and P4. After 

this, we had the part-worth utility scores of all levels of all attributes under “Entertainment 

Options” at all of the four image locations. 

The logit report indicated that all standard errors were in the range of 0.02. This has been 

shown below. 
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Logit Efficiency Test Using Simulated Data 

------------------------------------------------------------- 

Std Err Attribute Level 

1 0.02573 1 1 Kalaripayattu 

2 0.02571 1 2 Kathakali 

3 0.02574 1 3 Koodiyattam 

4 0.02577 1 4 Koothu 

5 0.02568 1 5 Kutiyattam 

6 0.02583 1 6 Mohiniyattam 

7 0.02578 1 7 Pulikalli 

8 0.02569 1 8 Theyyam 

9 0.02135 2 1 Agastya Mala 

10 0.02138 2 2 Anginda 

11 0.02139 2 3 Banasura 

12 0.02139 2 4 Brahmagiri 

13 0.02133 2 5 Chembra 

14 0.02137 2 6 Paithalmala 

15 0.02138 3 1 Garshana 

16 0.02141 3 2 Njavarkijhi 

17 0.02135 3 3 Pizhichil 

18 0.02133 3 4 Shirodhara 

19 0.02139 3 5 Udvartana 

20 0.02139 3 6 Abhyanga 

21 0.02369 4 1 Aranmula 

22 0.02370 4 2 Champakulam 

23 0.02362 4 3 Indira Gandhi 

24 0.02364 4 4 Kallada 

25 0.02364 4 5 Kumarakom 

26 0.02360 4 6 Nehru 

27 0.02364 4 7 Payippad 

28 0.02577 5 1 Appam 

29 0.02582 5 2 Ela Sadya 

30 0.02571 5 3 Fish Molee 

31 0.02579 5 4 Idiyappam 

32 0.02567 5 5 Parippu Curry 

33 0.02576 5 6 Pumpkin Erissery 

34 0.02571 5 7 Puttu 

35 0.02589 5 8 Sadya 

36 0.02373 6 1 Bekal 

37 0.02361 6 2 Chowar 

38 0.02365 6 3 Kovalam 

39 0.02360 6 4 Marari 

40 0.02361 6 5 Shankhumugham 

41 0.02366 6 6 Varkala 

42 0.02365 6 7 Vizhinjam 

43 0.02132 7 1 Alleppey 
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44 0.02148 7 2 Kasargod 

45 0.02129 7 3 Kollam 

46 0.02146 7 4 Kumarakom 

47 0.02137 7 5 Kuttanad 

48 0.02129 7 6 Vaikom 

49 0.02365 8 1 Anjuthengu Fort 

50 0.02357 8 2 Bekal Fort 

51 0.02372 8 3 Dutch Palace 

52 0.02372 8 4 Jewish Synagogue 

53 0.02363 8 5 Padmanabhapuram Palace 

54 0.02364 8 6 Palakkad Fort 

55 0.02363 8 7 Thalassery Fort 

56 0.02579 9 1 Athirapally 

57 0.02567 9 2 Chethalayam 

58 0.02564 9 3 Keezharkuthu 

59 0.02574 9 4 Meenmutty 

60 0.02571 9 5 Palaruvi 

61 0.02588 9 6 Power House 

62 0.02587 9 7 Thommankuthu 

63 0.02577 9 8 Vazhachal 

64 0.02584 10 1 Aralam 

65 0.02584 10 2 Choolannur 

66 0.02592 10 3 Eravikulam 

67 0.02570 10 4 Idukki 

68 0.02562 10 5 Neyyar 

69 0.02574 10 6 Peppara 

70 0.02580 10 7 Periyar 

71 0.02560 10 8 Begur 

72 0.02356 11 1 Honeymoon 

73 0.02372 11 2 Romantic 

74 0.02371 11 3 Solo 

75 0.02367 11 4 Biking 

76 0.02355 11 5 Family 

77 0.02361 11 6 Retirement 

78 0.02377 11 7 Group 

79 0.02137 12 1 4N/5D for INR. 9,999 

80 0.02138 12 2 5N/6D for INR. 11,999 

81 0.02133 12 3 6N/7D for INR. 13,999 

82 0.02138 12 4 7N/8D for INR. 15,999 

83 0.02135 12 5 8N/9D for INR. 18,999 

84 0.02131 12 6 9N/10D for INR. 21,999 

85 0.01591 13 1 1,2,3,4 

86 0.01590 13 2 4,1,2,3 

87 0.01593 13 3 3,4,1,2 

88 0.01594 13 4 2,3,4,1 

89 0.01969 NONE 
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3.5 Application of Text Analytics 

In a typical scenario, messages that we intend to show on the advertisement are 

developed by a team/individual and then they are put to the test by respondents, who 

evaluate those messages on various aspects such as overall impact, clarity, believability, 

comprehension, etc. We wanted to develop the messages somewhat innovatively rather than 

simply asking an individual/team to develop it based on their understanding. 

We decided to use text analytics to create messages, wherein we planned to pick words 

on the basis of consumer sentiment for those words. We showed them a message and asked 

them to pick words from the message for which they had a positive sentiment. Similarly, 

they picked the words for which they had a negative sentiment. This was done using a “Text 

Highlighter” exercise, where the respondents were able to select the words they liked in 

green and words they disliked in red. This is shown in Figure 5. 

Based on the sentiment mentioned for various words by respondents, the responses were 

aggregated. The cumulative responses for all participants allowed us to create frequency 

reports for each and every word in the tested message, based on which we estimated the 

positive sentiment as well as the negative sentiment for any word, thereby calculating the 

net sentiment of all words. At the end of this exercise, we had the net sentiment of all words 

and relative intensity of sentiment of all words. Using this information, we picked words 

with the strongest positive sentiment to include in the message. The new message was then 

put to test to respondents for evaluation on overall impact, clarity, believability, 

comprehension, etc. 

Figure 5: Text Highlighter Exercise 
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4. RESULTS AND DISCUSSION 

This research shows that analytics finds an application in creating advertisements that 

can have relatively higher likeability and impact among consumers. The elements that came 

together to make the advertisement were selected based on Discrete Choice Modeling in 

such a way that the “Utility” of advertisement was maximized to the consumers. The 

message to be displayed on the advertisement was crafted based on the sentiment of people 

for various words, before being evaluated by people on various aspects. 

4.1 Discrete Choice Modeling Results 

As mentioned above, the advertisement in this case was made up of various elements. 

The idea of doing conjoint analysis in this case was not to compare a few advertising 

concepts and to calculate some sort of preference share for those concepts. The idea of doing 

conjoint analysis here was that we wanted to pick those elements in the advertisement which 

together would maximize the “Utility” (or desirability) of the advertisement to consumers. 

Conjoint analysis helped us in picking 4 entertainment options out of 10. We further 

picked an image each for these four entertainment options from 6-8 images available for 

each of them, on the basis of conjoint analysis. 

The images for target audiences tested in Conjoint were of different themes. For 

example, we had an image showing an elderly couple, an image showing a young couple, an 

image with a group of young friends, an image with a family on vacation, etc. We wanted to 

test whether showing the corresponding image to the corresponding type of person makes 

more sense or if we should have a generic image, i.e., will the image of romantic couple 

resonate more with a romantic couple and similarly for others?, or will a generic image such 

as one for a family be equally impactful? Conjoint analysis helped us in evaluating this and 

we were able to pick an image that aptly addressed the target audiences with high impact. 

Conjoint analysis also helped us put the most preferred tour duration option on our 

advertisement, i.e., should the ad display a tour of 5 nights at XX$ or a tour of 8 nights at 

YY$ or a tour of 10 nights at ZZ$. 

One of the most important aspects that we were able to evaluate through conjoint 

analysis was whether the position of four entertainment options in the advertisement made 

any difference to the overall impact and likeability of the advertisement; for example, 

whether the image for any selected entertainment option created more utility to consumers if 

it was at P1 or if it was at P2/P3/P4? This allowed us to identify image locations for the four 

entertainment options that were selected on the basis of conjoint analysis. 

4.2 Text Analytics Results 

The text analytics allowed us to create very refined and concise messages which were 

based on the true positive sentiment of people. The words that formed the message were 

liked by people, and hence we believed that the multi-word messages would also be liked. 

As a part of a separate exercise, these messages were evaluated on multiple aspects by 

consumers before we decided the final message that was to be shown on the advertisement. 

The original message that was shown to respondents for selecting their sentiment for various 

words and what we arrived at finally are shown below in Figures 6 and 7, respectively. 
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Figure 6: Original Message Evaluated in the Survey 

 

Figure 7: Message Created Based on Text Analytics 

 

5. CONCLUSION 

The research allowed us to create an advertisement which not only addressed all the 

limitations we had at hand, but also had the potential to have maximum likeability and 

impact among consumers. What we had originally (Figure 1) and what we arrived at finally 

(Figure 8) were strikingly different, and the final product looked much better and more 

impressive. 

Figure 8: Final Advertisement Created Based on Analysis 

 

  

You don’t need to plan separate vacations to enjoy lofty mountain ranges or a beach 

destination or a wildlife safari. Come visit Kerala and explore the wonders that await you 

here. From golden beaches and high mountains to emerald backwaters and powerful art 

forms, you get many choices to create and take home memories. Experience Kerala! 

Golden beaches, emerald backwaters, lofty mountains, exotic wildlife...many 

wonders await you here. Come, explore and create memories like never before. 

Experience Kerala! 
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The final advertisement had the following features: 

• The highest combined utility of advertisement to consumers. 

• Compared all combinations of attributes to arrive at the best advertisement. 

• Impactful message based on viewer sentiment. 

• Addressed most relevant target audience. 

• Provided required information to consumers in a comprehensive manner. 

6. RECOMMENDATIONS 

The key question that is often asked is whether this or similar analysis can be applied in 

all cases, i.e., if similar analysis can help improve any other advertisement. Our answer to 

this is “Yes.” It can be applied to any such case where we can clearly identify and separate 

the elements that make up the advertisement. If we are able to do that, this analysis can very 

well be adapted to improve that advertisement. 

 

   

 Rajat Goel Rachin Gupta 
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INTRODUCTION 

Since the 1950s, with the research that led to publication of The American Voter 

(Campbell, Converse, Miller, and Stokes, 1960), political scientists have conducted 

systematic, survey-based research to understand voting behavior. While there are different 

theoretical frameworks for understanding voter behavior (sociological approaches, 

psychological approaches, and economic approaches), there is general agreement that 

candidates are defined by multiple attributes, including party alignment and positions on key 

issues; demographics like gender and ethnicity; personal and political experiences; and 

perceived characteristics like competence, integrity, morality, and compassion. 

Voters’ preferences are typically construed as a function of party identification, general 

ideological orientation, beliefs or feelings about specific policy issues, and their overall 

perceptions of individual candidates. For example, Bartels (2018) posits two attitudinal 

dimensions, limited government and cultural conservatism, to explain the main differences 

between and within the two major political parties in the US. These orientations 

undoubtedly shape voters’ party and policy preferences. 

In tandem with our exploration of policy preferences, and building on the work of 

Graham and Svolik (2019) and Svolik (2018), we investigate the degree to which voters 

might trade off commitment to democratic principles (e.g., electoral fairness, checks and 

balances, freedom of the press) in favor of voting for one’s preferred party and ideologically 

consistent policies. 

To see how these trade-offs might operate, consider a primary situation where a strong 

Republican voter with high scores on both the limited government and cultural conservatism 

dimensions is asked to choose between a candidate who supports moderate policies on 

immigration and the environment, conservative tax and health care policies, and endorses 

key democratic principles (e.g., “Elected officials must obey the courts even when they 

think the decisions are wrong”) and a candidate with very conservative positions on all 

policies but less support for democratic principles (e.g., “Elected officials should not be 

bound by court decisions they regard as political”). Will this voter choose the more 

ideologically consistent candidate with “undemocratic” principles or select the less 

ideologically consistent candidate who upholds the democratic principles? 

In our study, we use Adaptive Choice-Based Conjoint analysis to understand the impact 

of a candidate’s party, specific policy positions, and orientations toward democratic 
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principles on individual choices between candidates. As part of our analysis, we derive 

individual-level preferences for general democratic principles and for specific policy 

positions, in order to understand potential tradeoffs between them. 

CONJOINT ANALYSIS IN POLITICAL SCIENCE 

Conjoint analysis has only recently become popular in political science. Hainmueller, 

Hopkins and Yamamoto (2014) are generally credited with introducing conjoint analysis to 

political science. The primary appeal of conjoint analysis to these researchers lies in the 

ability to make causal inferences through random assignment. Political scientists have relied 

on such survey experiments to understand the effects of variables of interest on outcomes 

such as voter choices. 

In the classical survey experiment, respondents are randomly assigned to different 

versions of the survey, with the objective of comparing the effect of different “treatments” 

presented in the different survey versions. In theory, random assignment to treatments makes 

it possible to rule out the effect of unobserved or omitted variables, including selection bias 

and other endogenous factors.1 However, in many experiments it is difficult or impossible to 

isolate the individual contributions of the different components of a multidimensional 

treatment.2 Conjoint analysis offers a way to decompose the overall effect into the individual 

contributions of the separate components of a treatment. 

Hainmueller et al. report on two separate conjoint experiments. In the first experiment, 

they varied eight objective characteristics of would-be (hypothetical) presidential 

candidates. Six of these attributes had six levels each, while the remaining two had two 

levels each. For example, the candidate’s profession had the following levels: business 

owner, lawyer, doctor, high school teacher, farmer, car dealer.3 Military service, in 

comparison, had two levels: “served” and “did not serve.” Survey respondents were 

presented with six different pairs of candidates. In addition to choosing between the 

candidates, respondents rated each candidate on a 7-point scale that indicated the strength of 

their support for each candidate. 

In the second experiment, a different sample evaluated profiles of prospective 

immigrants to the United States. Key attributes included country of origin, reason for 

applying for entry, prior trips to the U.S., language skills, profession, and education level. 

Again, respondents saw two profiles at a time, made a choice between the profiles, and then 

rated each profile on a 7-point scale to indicate how strongly they felt each immigrant 

should or should not be granted entry. Whereas the candidate experiment was a completely 

orthogonal design, for the immigrant experiment prohibitions were included such that 

certain professions required minimum levels of education and certain reasons for applying 

(e.g., “fleeing persecution”) were restricted to countries of origin where those reasons were 

at least plausible. 

 
1 In practice, selection- and treatment-related attrition can transform a randomized experiment into a quasi-experiment, where other techniques 

must be employed to account for such effects. 
2 To illustrate this, Hainmueller et al. cite an experiment conducted by Brader, Valentino and Suhay (2008) in which the researchers randomly 

varied two aspects of an otherwise identical news article. One aspect was the ethnicity of an immigrant described in the article. Ethnicity was 

operationalized along three dimensions: country of origin, face, and name, to create two distinct ethnic identities (one Russian and one 

Mexican). Given the design, it is impossible to determine the relative contribution of the three dimensions that defined ethnicity. 
3 While these levels encompass a wide range of professions, only one, “business owner” (without additional political experience), appears to be 

represented among actual presidential candidates. 
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Hainmueller, Hangartner, and Yamamoto (2015) conducted a subsequent study in which 

they compared conjoint survey experiments and vignette experiments to real-world 

behavioral benchmarks using a variation of the immigrant experiment described above. 

They found that the paired conjoint design where two immigrant profiles are compared in 

each task performed well in recovering the effects of the attributes as observed in the 

behavioral benchmark. 

More recently, Bright Line Watch, a group of political scientists at the University of 

Chicago, Dartmouth College, and the University of Rochester, conducted a conjoint study to 

explore the trade-offs that voters make between upholding democratic values versus partisan 

and policy preferences (Carey et al., 2019). They included candidate attributes (gender, 

ethnicity, and party affiliation), policy positions or beliefs on taxation and discrimination, 

and candidates’ support for selected democratic principles (bipartisan cooperation, voter 

access, independent investigations into misconduct by elected officials, and independence of 

the judiciary). They found that while partisanship had a large marginal effect on candidate 

choice, respondents from both political parties penalized candidates who supported the 

position that elected officials should not have to obey court decisions that were politicized. 

Republican respondents penalized candidates with progressive tax policies, while Democrat 

respondents rewarded those candidates. 

In all of these studies, the effect of interest is the “average marginal component effect” 

(AMCE) which is the difference in the probability of choosing a profile (in the discrete 

choice case) with one value of a selected attribute versus profiles with different values of 

that attribute, averaged across all values of the other attributes in the model. This would be 

analogous to a main effect estimated using analysis of variance for a multivariate factorial 

experiment, or the  coefficient estimated via regression with dummy variable coding for 

the attributes. The AMCE is estimated at the population level. The estimation of AMCE is 

derived from the framework of potential outcomes and is non-parametric. 

While showing promise for the use of conjoint analysis in political science, these studies 

have some potential limitations that might be addressed through different conjoint designs or 

estimation approaches. For example, with paired conjoint designs (two alternatives per task) 

the overall design is likely to be sparse. In the Hainmueller et al. (2014) candidate 

experiment, there are 186,624 possible candidate profiles but each respondent saw only 12 

different profiles. 

Second, aggregate estimation limits the extent to which preferences of different groups 

of respondents can be investigated. In the Bright Line Watch study, for example, separate 

aggregate models were estimated for each of the four subgroups of interest. Similarly, with 

aggregate estimation we cannot see the multivariate distribution of preferences in the way 

that disaggregate estimation (e.g., hierarchical Bayes or finite mixture models) enables. 

Rather than avoid making assumptions about the underlying process that generated the 

data, we might want to test different hypotheses about that process. Hainmueller et al. 

specifically reject the additive compensatory model that is widely used in conjoint analysis 

for marketing applications. However, rather than ignore the underlying decision process, we 

may want to test or otherwise account for the presence of screening heuristics, for example. 

In the presence of screening rules or other heuristics, the pairwise designs of these 

studies could fail to capture the marginal effects of some attributes. For example, to the 
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extent that partisanship is a dominant or “must have” attribute for at least some respondents, 

information about the true independent preferences for candidate characteristics or policy 

positions may not be revealed in the choices made. 

USING ACBC TO MEASURE VOTER PREFERENCES 

Some relatively simple modifications to the CBC designs and estimation methods that 

have been used by political scientists can resolve or mitigate some of the limitations 

described above. Expanding the number of choices to three or four candidates with balanced 

overlap designs will reduce the effects of a “must-have” attribute level. (This method insures 

that respondents will occasionally have to choose between options that each have the same 

“must have” feature.) Disaggregate estimation using HB (with or without covariates) or 

latent class, for example, would provide insights into the distribution of policy and candidate 

preferences across the target population. 

Based on earlier findings that partisanship is a strong determinant of candidate 

preferences, we chose to use Adaptive Choice-Based Conjoint analysis to understand 

preferences for policy positions. We hypothesized that voters may apply strong screening 

rules in their choice of candidates. Republican voters, for example, might reject all 

Democratic candidates and all progressive tax policies. Similarly, Democrats might reject all 

Republican candidates and all proposals to restrict voting access. 

In a standard CBC experiment, respondents are presented with choices that are largely 

determined by balanced and independent combinations of attributes to create unique profiles 

that are not influenced by prior information obtained from respondents. In contrast to this, 

Adaptive Choice-Based Conjoint gathers information from respondents which is used to 

shape the choices that are presented to respondents. 

The first step in this process is usually a “build your own” (BYO) exercise. Respondents 

pick their preferred level of each attribute in order to configure their ideal product or 

service—or perhaps political candidate. The next step presents respondents with profiles that 

are constructed by an algorithm that seeks near-orthogonality in the combinations of 

attributes, with the levels selected in the BYO exercise oversampled, while other attribute 

levels are sampled equally. In this step (the screening section), respondents indicate, for each 

profile, whether it is a possibility or not. The researcher can insert must-have and 

unacceptable questions. Attribute levels that are always present in concepts that respondents 

state are a possibility will appear in must-have questions. Levels that are never included in 

acceptable profiles will appear in the unacceptable questions. Any attribute level identified 

as unacceptable will be excluded from subsequent profiles. 

Profiles that are deemed acceptable in the screening section are carried into the 

tournament section, which resembles a typical single choice CBC experiment. Researchers 

can add a final set of calibration questions where respondents indicate their likelihood of 

choosing selected profiles if they were to be available in the market. 

ACBC was appealing because we hypothesized that party affiliation may be a screening 

attribute for candidate selection. Furthermore, the BYO exercise would provide a direct 

measure of the appeal of the different policy positions we set out to test. Because we are 

specifically interested in the degree to which voters might trade off their preferred policy 
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positions and democratic values when choosing a candidate, the ability to compare their 

BYO picks with their choices in the tournament exercise appealed to us. 

METHODOLOGY 

We conducted an online survey with a general population sample of 1,005 US adults 

(age 18 and up). The sample was drawn to reflect the population distribution of US adults 

with respect to sex, age, and education. Following the example of the Bright Line Watch 

study, we did not restrict the sample based on voter eligibility or registration. We fielded the 

survey from July 1 to July 3, 2019 (approximately one week after the first televised debates 

among contenders for the Democratic party presidential nomination). 

In addition to the ACBC exercise we included several questions about party affiliation, 

support for President Donald J. Trump, ideological orientation, and participation in various 

activities that indicate political engagement. 

For the ACBC attributes we selected a set of six issues that are prominent in the current 

political discourse: healthcare, immigration, taxation, the environment, the social safety net, 

and voter access. We also selected four democratic values (out of the larger set that Bright 

Line Watch measures on a regular basis). The complete set of attributes and levels is shown 

in Table 1. 

Table 1 

Attribute Attribute Levels 

Healthcare 

• Medicare for all 

• Restore Affordable Care Act and add public option 

• Repeal Affordable Care Act 

• Repeal Affordable Care Act and privatize Medicare 

Immigration 

• Amnesty with a path to citizenship for undocumented 
individuals who can show five years of economic contribution 

• Make Deferred Action for Childhood Arrivals (DACA) permanent 
and increase the number of immigration judges to process 
asylum requests 

• Repeal the law that allows immigrants who reach US by any 
means to request asylum 

• Repeal the “birthright citizenship” clause of the Fourteenth 
Amendment to the US Constitution 

Tax Policy 

• 2% tax on the wealth of the 75,000 richest families in America 

• Raise marginal tax rate on income above $400,000; restore 
inheritance taxes to Clinton era levels 

• Close loopholes used by wealthy taxpayers and give the IRS 
more resources to enforce the rules 

• Replace income tax with a national sales tax 

Environment 

• Green New Deal 

• Rejoin Paris Accord, restore Obama-era regulations, implement 
Carbon Tax 

• Implement “cap and trade” for carbon emissions 
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• Prohibit California and other states from enacting regulations 
that are stricter than US 

Social Safety Net 

• Guaranteed minimum income 

• Expand earned income tax credits to cover more people 

• Expand work requirement as a condition for receiving benefits 

• Scale back Medicaid and Welfare programs 

Voter Access 

• For national elections, require states to permit voting by mail 
and early voting 

• Permit states to offer online voter registration and automatic 
registration when applying for a driver’s license 

• Require voters to present a photo ID when voting in national 
elections 

Bipartisan cooperation 
• Promise to seek bipartisan compromise 

• Promise to stick tightly to party’s principles 

Independence of the 
press 

• The government should not interfere with journalists or news 
organizations 

• The mainstream media are irresponsible and should be 
constrained 

Gerrymandering 

• Drawing legislative districts to give one party an advantage 
should be prohibited 

• The winning party should have the right to set the boundaries of 
legislative districts 

Judicial deference 

• Elected officials must obey the courts even when they think the 
decisions are wrong 

• Elected officials should not be bound by court decisions they 
regard as politicized 

Candidate’s Party 
• Republican 

• Democrat 

One fact of partisan politics is that the parties espouse different policy positions. We sought 

positions for each issue that represent an extreme left or progressive stance, a moderate left 

or progressive stance, a moderate right or conservative stance, and an extreme right or 

conservative stance. We also looked for positions that had been expressed in party platforms, 

by individual candidates, or by left- and right-leaning think tanks. The policy statements for 

the four democratic values (bipartisan cooperation, independence of the press, 

gerrymandering, and judicial deference) were adapted from the Bright Line Watch survey. 

In the candidate conjoint experiment conducted by Bright Line Watch there were no 

conditional relationships between policy statements and party affiliation. Thus, both 

Republican and Democrat candidates could endorse, for example, either a more progressive 

tax policy or a less progressive tax policy. In the real world it is extremely unlikely that a 

Republican party candidate would support a very progressive policy, and equally unlikely 

that a Democrat candidate would support a very conservative policy. We took advantage of 

the alternative-specific design capabilities of ACBC to restrict the most extreme policy 

positions to the appropriate party. Figure 1 shows the mapping of policy positions to 

candidate’s party affiliation. 
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Figure 1 

 

We placed no restrictions on the democratic values statements; candidates of either party 

could endorse both the more democratic and less democratic positions. 

With an alternative-specific design in ACBC, the BYO exercise first asks respondents to 

pick a level for the primary attribute (in this case, candidate’s party). The BYO exercise then 

displays only attributes and levels that are linked to that level of the primary attribute. 

Figure 2 shows how this would have looked in our study. Once the first question is 

answered, the entire BYO question appears with the conditional attributes (in this case, the 

attribute labels indicate that they apply to Democrat candidates). This presented a dilemma. 

We hoped to include all policy positions in the BYO exercise so that, for example, a 

respondent who might prefer a Republican candidate could still express a preference for 

“Medicare for all” or the “Green New Deal.” We decided to move the policy preference 

questions out of the ACBC and skip the BYO section. We gave up the ability to use some 

prior information in the design of the screening concepts in order to get full coverage of the 

policy positions across all respondents. Figure 3 illustrates the way we asked these questions 

outside of the ACBC.4 

 
4 We recognize that there are other ways we could have approached this problem. For example, we might have asked for ratings on each of the 

policy positions and then used the constructed list capabilities in Lighthouse Studio to create BYO lists that reflected the policy positions that 

were acceptable to each respondent. 

More Progressive More Conservative→ 
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Figure 2 

 

Figure 3 

 

Unlike the Bright Line Watch study, we did not include any candidate characteristics in 

the conjoint experiment. Many salient candidate characteristics such as perceived 

competence, integrity, and compassion are difficult to operationalize. Hainmueller et al. 

used attributes that might be considered correlates of competence and morality, such as 
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profession, religion, and level of education, but the levels they selected (especially 

considering the context of a presidential election) may not be the same cues that voters use 

to assess competence, integrity, or compassion. Finally, to the extent that we wish to predict 

possible election outcomes, we may not be able to represent the actual clusters of traits 

presented by any real set of candidates. 

Nonetheless, we are in the run-up to the next U.S. presidential election and we wished to 

incorporate some information about the actual candidates who have announced their 

intention to pursue a party nomination. In addition to the ACBC exercise, we included an 

anchored MaxDiff with actual contenders for the 2020 U.S. Presidential election as the 

items. The anchoring question used a five-point voting likelihood scale. The objective of the 

MaxDiff was to obtain information on candidate preferences that we might use to model 

different voting scenarios, such as a Democratic party primary contest. We included the top 

ten Democratic contenders based on polling at the time the study was fielded, as well as 

President Trump and the one announced Republican challenger. 

ACBC RESULTS 

In addition to the estimation of utilities, ACBC provides a wealth of both aggregate and 

individual-level information about the choices that respondents make. These include the 

proportion of respondents who identify specific attribute levels as “must have” or 

“unacceptable,” as well as tallies of the number of times each attribute level appeared in the 

winning profile from the tournament section of the exercise. 

We found that about 14% of respondents identified one party as either a must have or 

unacceptable, with 7% saying that Republican was a must have/Democrat was unacceptable 

and a similar proportion saying that Democrat was a must have/Republican was 

unacceptable. Given that 28% of the sample self-identified as “strong Democrat” and 19% 

as “strong Republican,” these results indicate that respondents may be less adamantly 

partisan than we might expect. 

We compared the policy and value choices that respondents made in our pseudo BYO 

questions to the frequency with which those same policies and values were included in the 

tournament section winning concepts. These results are presented in Figure 4. 
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Figure 4 

 

For the policy positions on key issues (healthcare, etc.) it appears that respondents are 

somewhat more likely to prefer more extreme positions when asked to select the one policy 

or value statement that is most appealing compared to their choices in the tournament 

section of ACBC. In part this is explained by the fact that in the tournament, some policy 

positions were only available if, say, the respondent chose a Republican candidate. For 

example, 41.5% of respondents (including 32% of Republican/Republican-leaning) prefer 

“Medicare for all” to the other healthcare policies, but there were no Republican candidate 

profiles that supported this policy. Similarly, 32.6% of Democrat/Democrat-leaning 

respondents favor requiring that voters show a photo ID for national elections, but no 

Democratic candidate profiles supported that policy. 

Recall that one of our objectives was to determine the extent to which voters might trade 

off democratic values to make a partisan choice. Our results show strong endorsement of the 

four democratic values in the pseudo BYO responses. For example, 78.6% say that elected 

officials must obey the courts even when they think the decisions are wrong. In the 

tournament section, however, only 58.6% of winning concepts included this value statement. 

Unlike the policy positions, the democratic values statements were not conditioned on the 

candidate’s party, so a Republican profile would be just as likely to endorse obeying the 

courts as would a Democrat profile. 

A sensitivity analysis based on the individual-level utility estimates shows that party 

affiliation has the biggest impact on candidate choice. For the policy attributes, most policy 

effects are small but of an order of magnitude that might be enough to make a difference in 

an election. The impact of policy statements depends on a candidate’s party affiliation. For 

Democratic candidates, endorsing Medicare for all leads to a 3% increase in predicted 
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preference share compared to restoring the Affordable Care Act and adding a public option. 

For Republicans, endorsing repeal of the ACA leads to a 3% increase in predicted preference 

share compared to restoring the ACA and adding a public option. Immigration policy is 

interesting. This is the only policy attribute where a Republican candidate could endorse the 

extreme left position (“Amnesty with a path to citizenship,” which was the core of previous 

bipartisan legislation that failed to pass in Congress). Both Republican and Democrat 

candidates are slightly rewarded for endorsing amnesty with a path to citizenship, and 

candidates of both parties are penalized to varying degrees for more restrictive immigration 

policies. In addition, candidates of both parties are penalized for endorsing undemocratic 

value positions. Figures 5 and 6 display the results of the sensitivity analysis. 

Figure 5 
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Figure 6 

 

One of the potential advantages of a disaggregate model of voter preferences, whether 

we obtain it by ACBC, CBC with hierarchical Bayes estimation, or some other disaggregate 

method, is the ability to explore the relationship between the estimated utilities and other 

respondent characteristics. In particular, we are interested in the distribution of policy and 

party preferences for three distinct groups of voters: Democrats (strong Democrats, not very 

strong Democrats, and Democrat-leaning independents), Republicans (strong Republicans, 

not very strong Republicans, and Republican-leaning independents), and all other “neutral” 

voters (either do not prefer any party or prefer a third party). Scatterplots provide a simple 

look at the relationship between preferences and party affiliation. Figure 7 presents one such 

scatterplot showing the relationship between utility for a Democratic party candidate and the 

utility for the undemocratic value statement that the news media should be constrained. The 

plot indicates that Republican-leaning and neutral respondents are more likely to have a 

positive utility for constraining the news media. Those Republican-leaning respondents who 

have positive utility for a Democratic candidate are about equally likely to have negative 
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utility for constraining the media as to have positive utility for this undemocratic value 

statement. 

Figure 7: Scatterplot of Utilities (Zero-Centered Differences) for Democrat vs. Constraining 

New Media 

 

Such plots might be useful to candidates or campaigns who want to know which policies 

and positions would appeal both to “base” voters as well as those who are neutral or lean 

towards a different party. 

CANDIDATE MAXDIFF RESULTS 

The twelve named candidates were presented in sets of four; the MaxDiff question was: 

“Considering only these four declared presidential candidates, which one are you most 

favorable towards, and which one are you least favorable towards?” 

The anchoring question was: 

“How likely are you to vote for each of these candidates if they are their party’s 

nominated presidential candidate?” 

We used a five-point likelihood scale ranging from “Definitely would not vote for” to 

“Definitely would vote for.” We dichotomized the scale, with “Probably” and “Definitely 
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will vote for” responses treated as exceeding the threshold. Figure 8 shows the zero-

anchored MaxDiff results. On average, only three candidates exceed the anchoring 

threshold: President Trump, former Vice President Joe Biden, and Senator Bernie Sanders. 

This probably reflects the public’s uncertainty about the many candidates seeking the 

Democratic party nomination. 

Figure 8 

 

We also looked at the number of times each candidate was the “winner” of the MaxDiff 

exercise, and the number of times each candidate exceeded the zero-anchor threshold. 

Figure 9 displays these results. In total, Democratic party candidates win the MaxDiff 66.5% 

of the time, while President Trump wins 31.1% of the time. President Trump also exceeds 

the zero-anchor threshold 31% of the time, indicating that his support is consolidated. 

Among Democrats, Senator Sanders has the highest win rate (20%) and exceeds the 

threshold most often (39.5%) but former Vice President Biden is a close second. Overall, 

these results suggest that voter preferences had not coalesced around a single “best” 

candidate at the time the study was fielded. 
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Figure 9 

 

INTEGRATING THE ACBC AND MAXDIFF RESULTS 

We wished to use the ACBC model to simulate electoral outcomes based on actual 

candidates. While we can create hypothetical candidates that match, at least to some extent, 

each candidate’s policy positions, we would lack information about the excluded candidate 

characteristics. On the other hand, the MaxDiff contains information about the overall value 

or appeal of each candidate’s constellation of attributes but does not directly capture the 

appeal of specific policies. 

We devised two different “naïve” approaches to integrating the MaxDiff utilities into a 

market simulator with the ACBC utilities. In the absence of a common anchoring attribute, a 

major obstacle to integrating MaxDiff utilities with ACBC utilities is scale factor difference. 

Utilities have no absolute value, and each respondent can have a unique scaling of the 

utilities. With a common set of parameters, such as the ACBC utilities, the individual utility 

estimates can be transformed to zero-centered differences to eliminate the scale differences 

between individuals. However, there is no guarantee that such a transformation will put the 

MaxDiff and ACBC utilities on a common scale. 
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If we define our objective in integrating the two sets of utilities as creating a situation 

where, for two named candidates from the same party with identical policies, the probability 

of choosing one candidate over the other is a function of the differential appeal of the 

candidates, we could look at the ratio of the MaxDiff utilities for the two candidates without 

any rescaling. However, if we have two candidates with different policies, scale differences 

between the two sets of utilities will distort the predicted choice probabilities. 

For our first naïve approach, we used the raw utilities from the ACBC and MaxDiff 

models. We rescaled the MaxDiff utilities so that the total range of the MaxDiff utilities was 

equal to the largest utility range for any single attribute in the ACBC model, which in all 

cases was the candidate’s party affiliation. We then added the rescaled MaxDiff utility for 

each candidate to the sum of ACBC policy-based utilities (prior to exponentiation or any 

other transformation). 

For the second naïve approach, we added the zero-centered differences transformation of 

utilities to the zero-anchored scores from the MaxDiff and calculated the share of votes 

using a simple first choice rule. 

SCENARIO SIMULATIONS 

We ran market simulations using both integration approaches. We first simulated a 

Democratic primary contest with the five top-polling Democratic candidates (Biden, 

Sanders, Warren, Harris, Buttegieg). We matched the policy positions as closely as possible 

to those endorsed by the candidates. For example, both Sanders and Warren proposed 

Medicare for all, while the more moderate candidates endorsed restoring the Affordable 

Care Act and adding a public option. 

Figure 10 compares the results of simulations with the two different integration 

approaches. Biden does much better with naïve approach one than under naïve approach 

two. Naïve One is influenced both by ordinal preference and the difference between 

candidates while Naïve Two is influenced primarily by the ordinal preference. Biden and 

Sanders were winners or exceeded the threshold roughly the same number of times in the 

zero-anchored MaxDiff results. 
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Figure 10 

 

We also simulated head-to-head contests between President Trump and former Vice 

President Biden and between President Trump and Senator Warren. Figure 11 shows the 

simulation results for the first naïve integration approach, and Figure 12 compares the 

simulations for the second naïve integration approach. With a first-choice rule for the 

simulations, the results between the two methods are very similar. 

Figure 11 
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Figure 12 

 

CONCLUSIONS AND IMPLICATIONS 

We sought to answer two questions with this study: 

• Is ACBC an appropriate and perhaps better approach than other conjoint methods for 

understanding voter preferences and predicting their electoral choices? 

• To what extent will voters trade off democratic values in order to maintain partisan 

loyalty. 

On the first question, we conclude that disaggregate estimation of conjoint utilities (in 

our case, hierarchical Bayes) provides more insight into the distribution of voter preferences 

than the aggregate estimation methods employed by previous applications of conjoint 

analysis in political science. In our view, HB estimation is a bridge between sociological and 

psychological approaches to understanding voter behavior. Sociological theories seek to 

explain voting in terms of socio-demographic factors and group identity, while 

psychological theories focus on intrapsychic factors. HB turns out to be a powerful tool for 

linking individual preferences to external variables. Yang and Allenby (2003), for example, 

developed a model of interdependent consumer preferences and found that preferences for 

Japanese automobiles are related to geographically and demographically defined networks. 

As implemented by Sawtooth Software, ACBC captures data that provides a detailed 

look at the choices made by respondents. Of particular interest to our study was information 

about the frequency with which a candidate’s party affiliation was a “must have” (or 

“unacceptable”) factor and the correspondence between “build your own” policy choices 

and the frequency with which those choices were included in each respondent’s winning 

concept in the tournament section of the ACBC. 

That being said, the unique advantages of ACBC over standard Choice-Based Conjoint 

(with HB estimation) for understanding political preferences are small, at best. 
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With respect to predicting voting behavior, our ACBC model incorporates only some of 

the variables that could influence candidate choice. We included a few policy positions and 

party affiliation. Actual choices will depend on candidate characteristics as well. We 

measured overall preferences for specific real candidates with a MaxDiff exercise without 

any attempt to assess which candidate characteristics drive those preferences. We attempted 

to integrate these candidate preferences with the policy and partisan preferences from the 

ACBC. However, in the absence of any bridging attributes between the ACBC and MaxDiff 

exercises, any decisions we’ve made about the magnitude of the scale differences is 

arbitrary. At best, we can say that the MaxDiff utilities can serve as a tie breaker for any pair 

of candidates that have the same policy positions. 

We think that for the next iteration of this research program, including candidates in the 

ACBC is desirable. Given the large field of Democrat contenders for the 2020 election, we 

might use some variety of MaxDiff (or some other screening criterion) to narrow the list of 

candidates for the ACBC or CBC exercise.5 We could also capture perceptions of these 

candidates on the factors we identified in the introductory section of this paper to determine 

which characteristics drive preferences for individual candidates. 

On the second question, our findings are similar to those reported by Bright Line Watch. 

Our respondents do appear willing to trade off their preferences for democratic values in 

order to choose a candidate that reflects their policy and party preferences. We see this most 

clearly in comparing the preferences for democratic values expressed before they entered the 

ACBC and the proportion of times those preferred values were included in their tournament 

winning candidate profiles. 

We believe that disaggregate Choice-Based Conjoint (CBC) analysis offers great 

potential for extending our understanding of voter preferences and the way they make 

electoral choices. Moreover, CBC seems well suited for refining policy positions on key 

issues. In particular, understanding the appeal of different policies among independents and 

those who prefer third parties could yield insights into the best ways to attract those voters. 

 

    

 David Bakken Gretchen Helmke Mitch Sanders 

  

 
5 Using MaxDiff to prune the list of candidates was suggested by Megan Peitz. 
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THE CHALLENGE OF IDENTIFYING CAUSALITY IN 

OBSERVATIONAL DATA 

RAY POYNTER 
THE FUTURE PLACE/NOTTINGHAM TRENT UNIVERSITY 

SUMMARY 

There has been an explosion in the amount of observational data available to decision 

makers and research. This growth, from social media, to transactional data, to passive 

tracking, presents exciting new opportunities to evaluate human behavior as it happens, 

rather than in the context of artificial experiments. At the same time, fields such as 

neuroscience and Behavioral Economics have been generating an increasing amount of 

concern about the veracity of data collected via questions (for example via surveys and 

focus groups). These two forces are driving the growth in the use of observational data to 

produce analytic models, predictive models, with the eventual aim of producing prescriptive 

models. However, there are challenges in the use of observational data, such as stepping 

from correlation to causality, survivor bias, homophily, and combinatorial effects. 

This paper highlights the problems that can occur with observational data and offers 

potential solutions. 

INTRODUCTION 

We live in interesting times.  There is an exponential explosion in the amount of data 

available. In an increasingly connected world, people are leaving a digital trail behind them. 

This observational data allows researchers to examine real life to understand human 

behavior. The shift from surveys and focus groups to observational data is a shift from what 

Christian Madsbjerg (2017) describes as the zoo to the savannah. 

At the same time as the explosion in data is going on, there are growing concerns about 

the ability of people to explain their own motivations, beliefs, and intentions. Work by 

neuroscientists such as Antonio Damasio (1994) and Behavioral Economists such as Daniel 

Kahneman (2012) have illustrated that people struggle to report accurately on their own 

motivations and intentions. In addition, researchers have known for years that people’s 

ability to recall events accurately is flawed. 

These two forces, the growth of observational data and the concerns about asking 

questions to people, are the driving force behind the growing interest in using observational 

information to replace questions. The analysis of observational data is becoming the key 

method to understanding what people do, why they do it, and what they might do in the 

future. 

The growth in the availability of observational data, for example social media, mobile 

phone data, web tracking, and loyalty card records, provide a wide range of exciting 

opportunities to explore human behavior. The use of this data is being employed to produce: 
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1. Descriptive analytics—which focuses on associations. 

2. Predictive analytics—which makes the step to causality. 

3. Prescriptive analytics—which seeks to attribute causes and to suggest optimal strategies 

to achieve specified aims. 

While recognizing that these data sources present many opportunities to examine 

behavior and motivations, there are several key challenges that need to be acknowledged 

and, where possible, ameliorated. Among all the challenges presented by observational data, 

perhaps the key one is assessing causality. For data to be really useful, researchers need to 

move beyond descriptive analytics (which tends to focus on associations) to predictive and 

prescriptive analytics, which require assertions about causality. 

This paper outlines some of the challenges in using observational data and suggests 

remedies and ameliorative measures. 

OBSERVATIONAL DATA 

There are many different sources of observational data and these sources produce a 

variety of types of information. The table below illustrates the breadth of different sources 

and implications. 

Description Examples Implications 

Big data Bank records & Social Media The need to address IBM’s 

Four V’s of Big Data, Volume, 

Velocity, Variety, and Veracity 

(IBM Infographic) 

Census or samples All phone records versus the 

records for Pay as You Go 

customers 

Different rules for producing 

and using inferences 

Objective or subjective Till receipts versus 

ethnographic observations 

Quantitative versus qualitative 

assessments 

Structured or unstructured Bank transactions versus 

uploads to Instagram 

Paucity of tools for analyzing 

unstructured information 

Behavioral or motivational Loyalty card data versus 

emotions assessed by 

automated facial coding 

Different measurement 

paradigms being used for 

behavior and motivations—

often with different certainties 

Naturally occurring or from 

experiments 

Browsing data versus browsing 

data when A/B testing is 

employed 

Need to assess whether other 

factors could be impacting the 

experiment 

Observational only or 

observations with questions 

Tracking people’s movements 

via their phone versus tracking 

their movements and then 

asking them to describe the 

journeys 

With observations the 

researcher has to make 

assumptions about the 

motivations, questions can 

provide additional information 

 

https://www.ibmbigdatahub.com/infographic/four-vs-big-data
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THE OPPORTUNITIES CREATED BY OBSERVATIONAL DATA 

The interest in observational data is driven by two key forces. The first trend is the 

growing abundance in observational data, including big data, social media, and passive 

tracking. The second trend is a growing awareness of the limitations of questions as a 

method of understanding the world. Key examples of the limitations of direct questions 

include people’s flawed memories and people’s inability to access their own motivations. 

For example, researchers into eyewitness evidence in court cases have highlighted issues 

such as “believing is seeing” and “memory is malleable” that can render personal recall 

unreliable (Albright, 2017). 

THE NEED FOR CAUSALITY 

Historically, statistics has tended to avoid making assertions about causation, preferring 

to focus on association and correlation. Indeed, one of the founders of statistics and the 

creator of the most widely used correlation coefficient, Karl Pearson, dismissed the pursuit 

of causation as “another fetish amidst the inscrutable arcana of even modern science” 

(Pearson, 1911). The trope “Correlation does not imply Causality” is one of the few 

statistical phrases that is in common usage, a phrase which seems to dismiss the need to 

properly investigate the underlying causes of the correlation. 

The arrival of big data and algorithmic solutions led to some people questioning the need 

for scientific theories and assessments of causality. For example, Chris Anderson (Editor-in-

Chief of Wired Magazine) said “There is now a better way. Petabytes allow us to say: 

‘Correlation is enough’” (Anderson, 2008). This pronouncement created a storm of protest, 

perhaps best summed up by Nate Silver who described this view as “. . . badly mistaken.” 

He went on to state “The numbers have no way of speaking for themselves. We speak for 

them. We imbue them with meaning” (Silver, 2012). 

As mentioned above, a key driver for the use of observational data is to create predictive 

and even prescriptive models. Explanation, prediction, and prescription require causation 

(Watts et al., 2018) and so the balance of interest has shifted from mere association to 

causation. Indeed, some describe it as more than a shift, observing that the opportunities, 

needs, and new approaches have “spawned a revolution in the way causality is treated” 

(Pearl et al., 2016). 

POTENTIAL PROBLEMS WITH OBSERVATIONAL DATA 

There are a wide range of challenges presented by observational data and this paper will 

discuss a few of them, in order to highlight the sorts of issues that need to be addressed. 

However, this paper should in no way be taken as a recommendation against using 

observational data. One description of observational data is “No Questions” research. The 

2019 ESOMAR Global Market Research Report suggested that nearly 50% of all market 

research (in global dollars spent) was conducted via No Questions research (Poynter, 2019). 

Furthermore, No Questions research is growing rapidly, unlike traditional Questions 

Research (e.g., questionnaires and focus groups) (ESOMAR 2019). Observational data 

should be embraced and utilized, but the challenges should be recognized and dealt with. 
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The potential problems covered in this paper are: 

• Spurious correlation 

• When observations offer the wrong message 

• Combinatorial effects 

• Ignoring the true driver 

• Complex and/or chaotic relationships 

• Observer and/or measurement effects 

• Survivorship bias 

• Not explaining the why 

• Why are economists so bad at predicting recessions? 

• Confusing influence and homophily 

• Observational data and the rear-view mirror 

SPURIOUS CORRELATION 

Correlations can be highly seductive, especially if the correlations appear significant and 

plausible. One key problem with correlations are what are referred to as spurious 

correlations, correlations that are the result of pure chance. As data becomes large “the 

overwhelming majority of correlations are spurious” (Calude & Longo, 2017). There is a 

website devoted to highlighting spurious correlations (https://www.tylervigen.com/spurious-

correlations), highlighting correlations such as the correlation of 0.9979 between annual US 

spending on science, space, and technology and the annual number of suicides by hanging, 

strangulation, and suffocation between 1999 and 2009. 

When there is a genuine correlation, researchers should seek to find out what is causing 

the correlation. When there is a genuine and persistent correlation between X and Y the 

connection could be: X causes Y, Y causes X, both X and Y are caused by some other factor 

Z, or X and Y are connected via a feedback loop where they both influence each other. 

When the correlation is spurious, researchers need to identify it as spurious and counsel 

against its use in decision making. Amongst the things that help identify a correlation as 

spurious are: 

1. Is there a line of communication between the two events? In the example earlier between 

US spending on space and suicides, there is no apparent line of plausible influence from 

one to the other. 

2. Was the correlation found because a link was being investigated, or because a large data 

set was trawled looking for associations? If an association is found through trawling a 

large data set, the chance of it being spurious is much higher. 

3. Later in this paper, I will discuss causal inference. Some of the techniques in causal 

inference (such as causal graphs) can be employed to help detect spurious correlations. 

WHEN OBSERVATIONS OFFER THE WRONG MESSAGE 

A good example of an observational study, initially, offering the wrong message is 

provided by studies in 2012 that suggested running was bad for people’s hearts. The key 

study was research by Duck-Chul Lee with 50,000 patients (presented at the American 

https://www.tylervigen.com/spurious-correlations
https://www.tylervigen.com/spurious-correlations
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College of Sports Medicine 59th Annual Meeting, 2012), along with heart findings from 

James O’Keefe that looked at issues such as fibrosis, calcified arteries, and arrhythmias 

(O’Riordan, 2012). The news that running appeared to damage hearts was picked up by the 

media, who published numerous stories about how running was bad for you, and that 

anything other than a small amount of exercise was either useless or damaging. 

Subsequent analysis showed that the conclusions, relating to the impact of running on 

people’s hearts, were based on flawed analysis. The key issue with Lee’s study was 

identified by Thomas Weber (2013). The sample of 50,000 people contained some long-

distance runners, including marathon runners. Lee wanted to compare these people with the 

non-runners and the occasional runners. To remove sources of bias, factors such as race, age, 

and gender were controlled for. But the research also controlled for factors such as body 

mass index, blood pressure, and cholesterol levels. The reason for controlling for these 

variables is that these are risk factors for cardiac-related issues. However, regular running 

and running longer distances tends to change these numbers, it tends to reduce weight, 

lowers blood pressure, and brings cholesterol levels down. By controlling for these factors 

Lee had changed the results in the wrong direction. 

When the data were re-processed by Lee and published in a peer-reviewed journal, 

without controlling for these correlated characteristics, the message changed (Lee, 2014). In 

the new analysis running longer distances was no longer a negative. The main thrust of the 

new paper was that running at least 5-10 minutes a day offered “dramatic reduction” in 

deaths from heart disease. 

These sorts of problems can be ameliorated by applying techniques such as causal 

inference to help determine which factors should be controlled for and which should not, to 

help the researcher match people in one group with appropriate people in other groups. 

These techniques help map out the relationships in the data and suggest the best way of 

increasing the chances of finding causal links. 

COMBINATORIAL EFFECTS 

The impact and challenge of combinatorial effects is perhaps best shown with a 

disguised and simplified example from an advertising campaign from the UK. Start by 

assuming that in a region of the UK the following scenario is conducted. 

Region A 

• In time period 1, the sales were indexed to 100. 

• In time period 2, a TV advertising campaign is run and the sales go to 110. 

• In time period 3, a Twitter campaign is added to the TV campaign. The indexed sales go 

to 130. 

The implication would appear to be that TV increases sales by 10 percentage points, and Twitter 

increases the sales by 20 percentage points. 

However, in other regions, different patterns were observed. 
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Region B 

• In period 1, the sales were indexed to 100. 

• In period 2, a Twitter campaign is run and the sales go to 110. 

• In period 3, a TV advertising campaign is added to the Twitter campaign. The indexed 

sales go to 130. 

Now the implication appears to be that combining Twitter and TV create a lift of 20 

percentage points, compared with running just one of the campaigns. But this insight is only 

available if the observational data is capable of being broken into these two cases. 

The model can be extended with a third region, a region where no advertising was run. 

Region C 

• Period 1, sales were indexed to 100. 

• Period 2, sales were 105. 

• Period 3, sales were 110. 

The picture that now emerges is that some of the changes seen in Region A and Region 

of B would have happened anyway. Region C is the counterfactual—what would happen if 

there were no advertising. 

The best way of determining combinatorial effects is to design campaigns so that they 

can be measured properly. The IPA in their report The Expert Guide to Measuring Not 

Counting described this process as baking the measurement into the campaign (IPA, 2015). 

In the absence of other data, when a treatment A is added to a treatment B, it should be 

assumed that the final effect C is given by f(A) + f(B) + f(A&B) + U. Where f(A&B) is the 

combinatorial effect, and U is an umbrella term covering unknown factors and measurement 

error. 

COVERAGE ERROR 

If we look at the beach at low tide, we will not understand what it looks like at high tide. 

If we measure traffic flows during the weekend, we will not understand the flows during the 

working week. If we just analyse the shopping behavior of people with a loyalty card, we 

will not understand the total picture, including those who do not have a loyalty card. All of 

these are examples of challenges created by coverage error. 

A good example of how coverage errors can change the results in an observational study 

was provided by a transport study in Germany (Gruschwitz & Schönduwe, 2017). The paper 

reports on a long-standing study in Germany that explored journeys. The study used a 

sample of people collecting travel diaries to measure their journeys. The concern with the 

diary approach was that people tend to forget some trips, and they may simplify their 

journeys (for example describing a 55-minute journey as lasting one hour). The researchers 

provided a sample of citizens with an app to load on their mobile phone. The app recorded 

journeys and the participants could add extra details later. 

When the researchers analysed the data, they found some good news and some bad 

news. The app seemed to work and journeys did not show “heaping” (being rounded to 

10KM, or 20 minutes). However, the data recorded 16% fewer journeys (with 11% less 
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distance being travelled and 18% fewer minutes). This was a surprise, the researchers had 

expected more journeys, not fewer. When the researchers reviewed the research, they noted 

that there were holes in the data. The travel app was programmed to turn itself off when a 

phone’s battery charge fell to 20%, an event that turned out not to be a rare event. The 

problem with the observational data was a coverage error, the data did not cover periods 

where phones were less charged, an event that happens to most people some of the time, and 

some people a lot of the time. Once the researchers were aware of the problem, they were 

able to start finding remedies. 

Whenever a researcher uses observational data, one of the key questions they should ask 

is “What is missing?” For example, what people might be missed and what situations might 

be missed? 

IGNORING THE TRUE DRIVER 

One of the uses that observational data is often put to is the determination of what events 

are “driving” some key outcome, in particular what events are driving purchase. The 

traditional market research route of asking people what caused them to buy X, or what 

might cause them to buy Y in the future, are fraught with problems, so the observational data 

seems a natural improvement. However, simplistic approaches to measuring drivers are also 

often flawed. Two key types of error are a) assuming that the last action before the event 

caused the event, and b) that the experiences that are measured include the actual driver of 

the event. 

The two diagrams below illustrate this challenge. The diagram is an anonymized 

example from a leading CPG company and relates to a report from an insight professional. 

This first chart shows the trends in ice cream sales and the trends in social media advertising 

spend. 

 

As the advertising spend increases the sales appear to increase. As the spend on social 

media campaigns fall, the sales fall. The result was that the person managing social media 

advertising called for more money, to keep spending at the higher level. 
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The insight professional took out his Sharpie and added the sketches shown on the 

diagram below. 

 

What the second diagram shows is that the seasons determine the total sales of ice 

cream. Social media advertising might be shifting the market share, but not people’s deep, 

seasonally linked behavior. 

The starting point in avoiding the wrong driver trap is to keep in mind the fallacy 

highlighted by the Latin motto ‘Post hoc, ergo propter hoc’—because B follows A, it is 

caused by A. The second key is to identify the counterfactual, what would have happened 

without the action being taken. In the example above, what would have happened without 

the social media advertising. Modern attributional modelling seeks to create a counterfactual 

(for example by matching people who experienced the stimuli with “lookie-likes” who did 

not experience the stimuli). 

COMPLEX AND/OR CHAOTIC RELATIONSHIPS 

There can be an assumption that if we only had enough data, we could predict every 

outcome. For example, with enough sales data we should be able to forecast future sales. 

However, in many cases this is a mirage. In his book The Signal and the Noise, Nate Silver 

draws a distinction between three types of problems, typified by baseball, weather 

forecasting, and predicting earthquakes (Silver, 2012). 

Silver has shown that baseball is a remarkably predictable game. The quality of a team is 

to a large extent a function of how good its individual players are. Metrics such as a 

pitcher’s game score provide good insight into the quality of the team. For example, the 

pitcher’s game score is given by the formula 𝑔𝑎𝑚𝑒𝑆𝑐𝑜𝑟𝑒=47.4+𝑠𝑡𝑟𝑖𝑘𝑒𝑜𝑢𝑡𝑠+(𝑜𝑢𝑡𝑠∗1.5)–

(𝑤𝑎𝑙𝑘𝑠∗2)–(ℎ𝑖𝑡𝑠∗2)–(𝑟𝑢𝑛𝑠∗3)–(ℎ𝑜𝑚𝑒𝑟𝑢𝑛𝑠∗4) (FiveThirtyEight, 2019). This process is the 

essence of much of Silver’s early fame, before he acquired much more fame for his election 

predictions. 

Silver contrasts baseball with weather forecasting. Weather forecasting is complex and 

some of the elements are chaotic. However, over the years weather forecasting has gotten 
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better and better, as models have become better, more data has become available, and 

computers are more powerful. Silver highlights two useful benchmarks for forecasting the 

weather. Benchmark 1 is to assume that the weather on the target day will be the same as 

today. This is a good method for tomorrow, and much less good for, say, 30 days from now. 

Benchmark 2 is to assume that the weather on the target day will be the average of the last 

ten year’s weather for that date. Modern weather forecasting is now capable of beating these 

benchmarks for a period of up to eight days in advance. One of the key steps in weather 

forecasting is to simplify the data, a process known as discretizing (Christensen, 2015). The 

earth’s atmosphere is divided into cuboids, for example 10KM by 10KM areas with a height 

that might vary from a few hundred meters to a few kilometers. 

By contrast, the forecasting of earthquakes, in terms of locations, timing and size, has 

barely improved over the last fifty years. The US Geological Society say 

“Neither the USGS nor any other scientists have ever predicted a major earthquake. We 

do not know how, and we do not expect to know how any time in the foreseeable future. 

USGS scientists can only calculate the probability that a significant earthquake will occur 

in a specific area within a certain number of years. An earthquake prediction must define 

3 elements: 1) the date and time, 2) the location, and 3) the magnitude.” 

Whenever we are working with a complex system, we need to start with an awareness 

that the link between the observed data and the observed outcomes may not be solvable. 

There may be necessary data that is not available, and the relationship may be too complex 

or chaotic for modelling to work. In cases like this it might make sense to change the 

objective of the modelling to something more modest. For example, the shapes of waves are 

chaotic and cannot be predicted, but the tides can be modelled and predicted. 

As in the case of weather forecasting, one key step with complex systems is to reduce 

the complexity of the input variables, for example transforming them from continuous to 

discrete, grouping them, and simplifying them. 

OBSERVER AND MEASUREMENT EFFECTS 

When people are aware that they are being watched their behavior can change. This 

effect is often termed the Hawthorne Effect. The Hawthorne Studies were conducted in 

North America from 1924 to 1932 are were initially intended to measure improvements in 

factory management and processes. However, analysis of the data suggested that the 

changes in things like output were heavily influenced by the fact that people knew they were 

being measured/observed. It should be noted that the original Hawthorne Studies have been 

somewhat discredited in terms of their methodology and rigor (Hassard, 2012). However, 

the use of the term Hawthorne Effect to describe modifications in behavior as a result of 

being aware of being observed is independent of the purpose and conduct of the original 

studies. 

The nature of observer effects is difficult to predict with one meta-analysis of 19 studies 

concluding 

“Consequences of research participation for behaviors being investigated do exist, 

although little can be securely known about the conditions under which they operate, 

their mechanisms of effects, or their magnitudes.” (McCambridge et al., 2014) 

https://www.usgs.gov/faqs/can-you-predict-earthquakes?qt-news_science_products=0#qt-news_science_products
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Measurement effects refer to changes that we create through the process of measuring 

something. For example, if we want to know the temperature of a glass of wine, we might 

put a thermometer into the liquid, however this will change the temperature of the wine 

(admittedly by a very small amount). If we put turnstiles into gates to count the number of 

people passing through, we change the speed at which people pass, and this can cause some 

people to change their route. If an app is downloaded onto a mobile phone to measure 

behavior it may change the performance and/or the battery life, which in turn may change 

the behavior being measured. 

Researchers using observational data need to assess the extent to which there are 

observer and/or measurement effects. For example, are the outcomes of observed subjects 

the same as those for unobserved cases (after controlling for relevant sample differences)? 

SURVIVORSHIP BIAS 

Survivorship bias tends to occur when a researcher looks at a set of outcomes (for 

example, success or failure) and assumes that a) things that the successes share in common 

promote success, and b) things that are not shared by the success group are not promoting 

success. The sad failure of this logic was shown in a horrifying way by the Presidential 

Commission on the Space Shuttle Challenger Accident (Dalal, 2016). The problem that was 

found by the investigation was that O-ring seals used in the joints with the solid rocket 

booster had failed, due to cold weather (the temperature had fallen to 31°F). 

As part of the investigation NASA showed a chart which highlighted all of the previous 

O-ring problems. This chart showed that they occurred at a wide range of temperatures, 

which had resulted in temperature being ruled out as a risk factor. NASA had estimated the 

risk of a shuttle failure at 1-in-100,000. 

However, when the investigation looked at a chart that also showed the flights where no 

failures occurred the picture changed. When the temperature was above 65°F, there were 17 

flights with no problems, and 3 flights with problems. In the four flights when the 

temperature was below 65°F there were problems in every case. Re-analysis of the data 

suggested that launching the shuttle at 31°F meant an approximate risk of shuttle failure of 

13% (compared with the 1-in-100,000 figure based on survivorship bias). 

A less serious, but equally illustrative case is the book In Search of Excellence by Tom 

Peters & Robert H. Waterman Jr. (1982). In preparation for the book the authors selected a 

group of successful companies and looked at what they had in common. The book reported 

these factors and concluded that these were the drivers of success. However, over the next 

few years many of these companies were not successful, casting doubt on Tom Peter’s 

recommendation. Some of the factors these companies had in common were also shared 

with unsuccessful companies, but the research had not identified this. 

To evaluate drivers from observational data it is necessary to take a good, representative 

sample of starts, not a selection of end points. The end points that are used should include 

both successes and failures (and all points between these two). 
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NOT EXPLAINING THE WHY 

One of the most commonly heard criticisms of observational data, especially big data, is 

that it can’t explain the why? In many cases this criticism is unfair. Travel data show that in 

cities like Amsterdam, when the weather is bad more people travel by public transport and 

fewer people walk and cycle. The models that have been created can forecast the shift from 

foot and cycles to public transport and the why is fairly obvious. Where a field is well 

understood, the patterns measured by data may be perfectly explicable in terms of the why. 

However, in other cases the data do not explain the why. A good example of the limits of 

observational data and the why is given by Ben Wellington in his discovery of the location 

of the two highest grossing fire hydrants in New York, in terms of parking fines (2014). 

Using open data Wellington plotted all of the fines for all the fire hydrants in Manhattan (in 

New York it is illegal to park next to a fire hydrant). In many cases he was able to interpret 

the patterns, for example the upper East Side generated more fines because there were more 

hydrants. However, there were two almost adjacent hydrants in the lower East Side that 

were real outliers, generating about $55,000 a year in fines. Wellington visited the site of 

these two hydrants, took photos, and discovered that the issue was one of ambiguity. There 

was an informal but widely used bike lane between the road and the pavement, leading 

motorists to think it was OK to park, especially since parking spaces had been painted on the 

surface of the road. Wellington added a qualitative input to his data (observational qual data) 

and now understood the why as well as the what. The happy ending to this story is that after 

Wellington notified the City, they changed the road marking to make the situation clearer 

(and thereby reduced the number of cars parking illegally and the number of fines paid). 

When working with observational data a researcher needs to assess if they are able to 

define the why without further research. If further research is needed, it might be another 

form of observational data (as in Wellington’s observational qual), or it could be based on 

questions (e.g., surveys or focus groups). 

WHY ARE ECONOMISTS SO BAD AT PREDICTING RECESSIONS? 

In his book The Signal and the Noise, Nate Silver makes the observation that in 2008 

most economists were still predicting that the US would not go into recession at a point 

when the retrospective data showed the US had already entered a recession. When trying to 

predict recessions, there are essentially two problems that economists face, the first is 

endogeneity and the second is a degrees of freedom problem. 

Endogeneity refers to situations where the explanatory variables are influenced by other 

terms, in particular if there is a feedback loop between the dependent variable. Over the 

years, economists have discovered links between some element of the economy and a 

specific outcome. For example, William Phillips published a paper in 1958 showing an 

inverse relationship between rates of unemployment and increases in wage rates. However, 

as this information became assimilated into knowledge and actions of Governments, central 

banks, and financial markets it ceased to be true. A similar link between a pattern, a 

prediction, and the loss of the prediction’s accuracy can be seen in the US at the moment in 

terms of the inverted yield curve. In the past when short term rates were higher than long 

term rates a recession ensued. Over the last couple of years this has not been the case, 
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because predicted actions of the banks and Government have been factored into the behavior 

of the market. 

In fields where the actors in a domain are aware of the models built from the data, there 

is a risk that their behavior will change because the model has been created. This is akin to 

the quote attributed to Albert Einstein: “No problem can be solved from the same level of 

consciousness that created it.” To help identify this problem researchers should consider 

whether the people being modelled are likely to themselves use the results of the modelling. 

The second problem, also highlighted by Nate Silver, is the degrees of freedom problem. 

Many of the organizations seeking to model the economy use hundreds of thousands of 

variables. However, there have been relatively few recessions. In terms of creating models 

that can predict a recession, the combination of just a few equations (i.e., each recession) 

and very, very large numbers of variables is a problem, a degrees of freedom problem. When 

the number of variables exceeds the number of equations by a modest amount, techniques 

such as hierarchical Bayes or Random Forests can help. However, when the number of 

variables massively exceeds the number of equations, the variables need to be simplified, as 

in the weather modelling example cited earlier. 

CONFUSING INFLUENCE AND HOMOPHILY 

Since the publication of books such as Malcolm Gladwell’s The Tipping Point and Ed 

Keller & Jon Berry’s The Influentials, there has been a whole industry promoting influencer 

marketing. However, in many cases the patterns observed in observational data do not 

represent patterns that will repeat themselves. One key alternative explanation to the 

patterns ascribed to influence is homophily. Homophily refers to the propensity of similar 

people to do similar things, captured by the phrase “birds of a feather flock together.” 

In 2007, a study was published looking at obesity and contagion and suggested that some 

people became obese because their friends were obese (Christakis & Fowler, 2007). The 

study concluded “Network phenomena appear to be relevant to the biologic and behavioral 

trait of obesity, and obesity appears to spread through social ties.” This study was picked up 

by the general media and led to headlines such as “Are Your Friends Making You Fat?” 

(Thompson, 2009). The implication that was drawn was that people became overweight 

because they were influenced by their friends, i.e., that there was a causal link between 

having a friend who was obese and becoming obese yourself. 

However, researchers such as Sinan Aral (2010) offer an alternative hypothesis, namely 

homophily. For example, do people become overweight because their friends are 

overweight, or do overweight people tend to go to the same place, do the same things, and 

become friends? In his research Aral demonstrates techniques for apportioning the 

contributions of influence and homophily. In many cases a particular phenomenon is the 

result of both effects. 

Researchers should avoid automatically assuming that patterns they see in data are 

causal. Researchers should seek to quantify both influence and homophily when assessing 

patterns. 
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OBSERVATIONAL DATA AND THE REAR-VIEW MIRROR 

One of the well-known challenges associated with observational data is the issue of it 

referring to past events. The question that confronts the user is the extent to which the future 

will behave like the past. In the short term, events tend to repeat themselves, tomorrow is 

often like yesterday, the next month is often similar to the same month last year. This 

challenge is associated with several of the issues raised earlier in this paper, for example 

correlation (which predicts the past), survivor bias (which assumes that the characteristics of 

the survivors are sufficient to cause the outcome), and influence (where the researcher needs 

to determine whether patterns are caused by influence or by some other factor). 

Researchers working with observational data should seek to establish the extent to which 

conditions are expected to remain stable. At the very least the researchers should highlight 

assumptions. For example, models looking at car sales should highlight that regulations 

relating to a switch to electricity could invalidate the predictive power of models. 

REMEDIES AND AMELIORATION 

The purpose of this paper is to highlight the challenges that observational data can 

present so that they can be addressed. Observational data presents many opportunities and 

these should be embraced, but they should be embraced judiciously. In each of the sections 

above along with the challenges a number of possible remedies or ameliorative measures are 

suggested. This section summarizes and expands these measures. 

Controlled experiments are still seen as the gold standard. Where possible, experiments 

should be conducted, for example, by designing marketing campaigns in ways that allow the 

separate elements of the campaign to be evaluated. 

Survey-enhanced models is a description of how traditional market research (both 

quantitative and qualitative) can be used to make models built on observational data more 

useful. Ben Wellington’s visit to the site of the two fire hydrants mentioned earlier is an 

example of using qualitative research to enhance a model. When researchers use structural 

equation models to correctly attribute the effectiveness of marketing campaigns they 

typically include survey responses as one of the inputs, to show how changes in beliefs and 

awareness act as mediators. 

Identifying the counterfactual is a key step in assessing causality. A control cell in an 

experiment is a counterfactual, matching people who have and haven’t seen a social media 

campaign creates a counterfactual, and to a lesser extent previous years and expert 

predictions are counterfactuals. 

Researchers should seek to minimize the number of independent (or predictor) variables 

and to maximize the number of independent observations. In classic, scientific, research the 

practice tends to be to only allow one variable to vary. In the real world of market research, 

it is often impossible to reduce the number of variables being modified to just one, but 

nevertheless, the researcher should seek to reduce the number of variables and to make them 

as uncorrelated as possible. 

Alternative explanations should be sought for any pattern observed in a data set. Given a 

set of observations that suggest X causes Y, the researcher should be lead to postulate 
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questions such as “How would we test whether Y is causing X?,” “How would we test that 

X and Y are caused by some third factor?,” “How can we check whether the relationship 

persists, i.e., that is not caused by chance?” 

One exciting and relatively recent method of assessing causality in observational data is 

termed causal inference and that is the topic of the next section. 

CAUSAL INFERENCE 

Traditionally, statisticians have been very happy to report on associations and to 

accompany their measurements with statements about their accuracy and probability (for 

example 95% confidence that the number is 50% plus or minus 3%). However, these same 

statisticians, following in the tradition of Karl Pearson, have been reluctant (or completely 

unwilling) to make even probabilistic assessments about causality, unless that data were 

generated from controlled experiments. This reluctance has been challenged by the 

emergence of the field of causal inference. Causal inference has been developed by 

innovators from different disciplines, for example Daniel Rubin, Judea Pearl, and James 

Heckman. These innovators have challenged the traditional views of statisticians and treat 

causality as suitable for a probabilistic assessment. 

In fields as diverse as economics, epidemiology, and the social sciences causal inference 

is being used and explored. 

“For example, in the technical program of the 2003 Joint Statistical Meeting in San 

Francisco, there were only 13 papers presented with the word “cause” or “causal” in their 

titles; the number of such papers exceeded 100 by the Boston meeting in 2014.” (Pearl et 

al., 2016) 

There are at least two clear benefits from adopting the methods of causal inference. The 

first is that they provide a better way of describing the problem, and a better way of 

applying some of the traditional processes (for example, when to control for other variables 

and when not to). Judea Pearl is a great advocate of causal diagrams and a new algebra that 

helps frame the way the problem should be addressed. Daniel Rubin is an advocate of a 

“framework of potential outcomes,” which also obliges the researcher to consider the 

problem in a structured and systematic way (Rubin, 2011). 

The second benefit, of course, is that in some cases the techniques are able to make a 

probabilistic estimate of the causal links. 

One challenge with causal inference at the moment is that there is not a settled view 

about which of the proposed techniques is best for which type of problem. There is a degree 

of tension between Pearl, Rubin, and Heckman (and much more between some of their 

acolytes). However, this is a field that is growing and one that holds great promise. With the 

growth in observational data and the desire to utilize observational data, causal inference 

could well be an idea whose time has arrived. 

CONCLUSION 

As the world becomes more digital, the amount of observational data is growing 

exponentially. This growth in data and the concerns about the ability of questions to 
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generate valid and complete answers have led to an explosion in the use of observational 

data to answer questions and advise decision makers. 

Observational data is a great resource for researchers, but there are challenges in using it 

that need to be recognized and dealt with. This paper lists a range of potential problems and, 

for each of them, steps that can be taken to tackle them. 

The key point that needs to be made, is the point that is made by the advocates of causal 

inference, statistics needs to move on from being comfortable with association but shunning 

causality. Statisticians need to estimate, probabilistically, both the values of association and 

of causality. 

 

 

 Ray Poynter 
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