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Abstract

The phenomena of ambiguity and ambiguity aversion, introduced in Daniel Ellsberg’s seminal 1961 

article, are ubiquitous in the real world and violate both the key rationality axioms and classic models 

of choice under uncertainty. In particular, they violate the hypothesis that individuals’ uncertain beliefs 

can be represented by subjective probabilities (sometimes called personal probabilities or priors). This 

chapter begins with a review of early notions of subjective probability and Leonard Savage’s joint 

axiomatic formalization of expected utility and subjective probability. It goes on to describe Ellsberg’s 

classic urn paradoxes and the extensive experimental literature they have inspired. It continues with 

analytical descriptions of the numerous (primarily axiomatic) models of ambiguity aversion which 

have been developed by economic theorists, and concludes with a discussion of some current theo-

retical topics and newer examples of ambiguity aversion.
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13.1  INTRODUCTION

Almost by its very nature, the phenomenon of uncertainty is ill-defined. Economists (and 
many others) agree that the uncertainty inherent in the flip of a fair coin, the uncertainty 
inherent in a one-shot horse race, and even the uncertainty inherent in the lack of knowl-
edge of a deterministic fact (such as the 1,000,000th digit of π) are different notions, 
which may have different economic implications. Of the different forms of uncertainty, 
the phenomenon of ambiguity, and agents’ attitudes toward it, is the most ill-defined.

The use of the term “ambiguity” to describe a particular type of uncertainty is due 
to Daniel Ellsberg in his classic 1961 article and 1962 PhD thesis,1 who informally 
described it as:

“the nature of one’s information concerning the relative likelihood of events… a qual-

ity depending on the amount, type, reliability and ‘unanimity’ of information, and giving 

rise to one’s degree of ‘confidence’ in an estimation of relative likelihoods.” (1961, p.657)

As his primary examples, Ellsberg offered two thought-experiment decision prob-
lems, which remain the primary motivating factors of research on ambiguity and ambi-
guity aversion to the present day.2 The most frequently cited of these, known as the 
Three-Color Ellsberg Paradox,3 consists of an urn containing 90 balls. Exactly 30 of these 
balls are known to be red, and each of the other 60 is either black or yellow, but the 
exact numbers of black versus yellow balls are unknown, and could be anywhere from 
0:60 to 60:0. A ball will be drawn from the urn, and the decision maker is presented 
with two pairs of bets based on the color of the drawn ball.

THREE-COLOR ELLSBERG  

PARADOX

TWO-URN ELLSBERG  

PARADOX

(single urn) URN I URN II

30 balls︷︸︸︷
red

60 balls︷ ︸︸ ︷
black yellow

100 balls︷ ︸︸ ︷
red black

50 balls︷︸︸︷
red

50 balls︷ ︸︸ ︷
black

a1 $100 $0 $0 b1 $100 $0

a2 $0 $100 $0 b2 $100 $0

a3 $100 $0 $100 b3 $0 $100

a4 $0 $100 $100 b4 $0 $100

1 Ellsberg (1961,1962). Ellsberg’s thesis has since been published as Ellsberg (2001).
2  In (1961, p.653) and (1961, p.651, n.9) Ellsberg refers to Frank Knight’s (1921) “identical comparison” and to John 

Chipman’s (1958, 1960) “almost identical experiment” of the Two-Color Paradox, and in (1961, p.659, n.8) describes 
Nicholas Georgescu-Roegen’s (1954, 1958) notion of “credibility” as “a concept identical” to his own notion of 
ambiguity.

3  Ellsberg (1961, pp.653–656; 2001, pp. 155–158). Ellsberg (2001, pp. 137–142) discusses an essentially equivalent version 
with the payoffs $100:$0 replaced by −$100:$0.
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Ellsberg posited, and experimenters have confirmed,4 that decision makers would 
typically prefer bet a1 over bet a2, and bet a4 over bet a3, which can be termed Ellsberg 
preferences in this choice problem. Such preferences are termed “paradoxical” since they 
directly contradict the subjective probability hypothesis—if an individual did assign 
subjective probabilities to the events {red,black,yellow}, then the strict preference 
ranking a1 � a2 would reveal the strict subjective probability ranking prob(red) > 
prob(black), but the strict ranking a3 ≺ a4 would reveal the strict ranking prob(red) < 
prob(black).

The widely accepted reason for these rankings is that while the bet a1 guarantees a 
known probability 1/3 of winning the $100 prize, the probability of winning offered 
by a2 is unknown, and could be anywhere from 0 to 2/3. Although the range [0, 2/3] 
has 1/3 as its midpoint, and there is no reason to expect any asymmetry, individuals 
seem to prefer the known to the unknown probability. Similarly, bet a4 offers a guaran-
teed 2/3 chance of winning, whereas the probability offered by a3 could be anywhere 
from 1/3 to 1. Again, individuals prefer the known-probability bet. Ellsberg described 
bets a2 and a3 as involving ambiguity, and a preference for known-probability over 
ambiguous bets is now known as ambiguity aversion.5

Ellsberg presented a second problem known as the Two-Urn Paradox, which posits a 
pair of urns, the first contains 100 black and red balls in unknown proportions, and the 
second contains exactly 50 black and 50 red balls.6 The decision maker is asked to rank 
the four bets shown in the Two-Urn Paradox table, where bet b1 consists of drawing a 
ball from the first urn, and winning $100 if it is black, etc. Agents are typically indifferent 
between b1 and b3, and indifferent between b2 and b4, but prefer the latter two bets over 
the former two, on the grounds that the latter two offer known probabilities of winning 
whereas the former two do not. Again, such preferences are incompatible with the exis-
tence of subjective probabilities—the ranking b1 ≺ b2 would imply prob(red in Urn I) 
< 1/2, but the ranking b3 ≺ b4 would imply prob(black in Urn I) < 1/2.

In this chapter we consider how economists have responded to these and similar 
examples of such “ambiguity averse” preferences. Section 13.2 gives an overview of 
early discussions of what has now come to be known as subjective uncertainty and the 
phenomenon of ambiguity. Section 13.3 reviews the classical approach to uncertainty, 
subjective probability and preferences over uncertain prospects. Section 13.4 presents 
the experimental and empirical evidence on attitudes toward ambiguity motivated by 
Ellsberg’s and similar examples. Section 13.5 gives analytical presentations of the most 

4  See Section 13.4 of this chapter.
5  Individuals who would be indifferent between a1 and a2, and between a3 and a4, would be termed ambiguity neutral, 

and individuals who would prefer a2 over a1 and a3 over a4 would be termed ambiguity loving.
6  Ellsberg (1961,pp.650–651,653; 2001, pp.131–137). It is unfortunate that Fellner’s (1961) independent discovery, 

extensive discussion, and early experimental examination of the Two-Urn phenomenon has gone largely unrecognized.
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important models of ambiguity and ambiguity aversion. Sections 13.6 and 13.7 present 
some recent developments in the field, and Section 13.8 concludes.

13.2  EARLY NOTIONS OF SUBJECTIVE UNCERTAINTY AND AMBIGUITY
13.2.1  Knight’s Distinction

It is often asserted that the distinction between situations of probabilistic and nonproba-
bilistic beliefs was first made by Frank Knight (1921), in his use of the terms “risk” 
versus “uncertainty.” However, as LeRoy and Singell (1987) have convincingly demon-
strated, Knight’s distinction between “risk” and “uncertainty” did not refer to the exis-
tence/absence of personal probabilistic beliefs, but rather, to the existence/absence of 
objective probabilities in the standard sense. In other words, Knight used “risk” to refer to 
situations where probabilities could either be theoretically deduced (“a priori probabili-
ties”) or determined from empirical frequencies (“statistical probabilities”), and “uncer-
tainty” to refer to situations that did not provide any such basis for objective probability 
measurement. However, Knight postulated that even under “uncertainty,” agents would 
still form subjective probabilities: “it is true, and the fact can hardly be over-emphasized, 
that a judgment of probability is actually made in such cases” (p.226) (Knight termed 
such probabilities “estimates”). Indeed, it is hard to find any more explicit adoption of 
the hypothesis of probabilistic sophistication under conditions of subjective uncertainty 
than Knight’s assertion that

“we must observe at the outset that when an individual instance [i.e., a one-time event] only is at 

issue, there is no difference for conduct between a measurable risk and an unmeasurable uncer-

tainty. The individual, as already observed, throws his estimate of the value of an opinion into the 

probability form of ‘a successes in b trials’ (a/b being a proper fraction) and ‘feels’ toward it as 

toward any other probability situation.”7

Although Knight provided a verbal formulation of the concept of “subjective uncer-
tainty,” the notion that agents in such situations might reject the standard probability 
calculus is due to his contemporary, John Maynard Keynes.

13.2.2  Keynes’ “Probabilities”

The fundamental concept in Keynes’ (1921) theory is a “probability,” which he defined 
as the “logical relation” between one proposition and another in situations where the 

7  Knight (1921, p.234). Since he assumed that individuals always represented their beliefs by well-defined probabilities, 
what was the significance of the risk/uncertainty distinction for Knight? The answer is that under risk, probabilities are 
subject to independent measurement and hence are amenable to insurance, whereas under uncertainty they are not. 
Accordingly, only returns for bearing uncertainty should be attributed to a firm’s profits, since returns for bearing risk 
should be treated as costs (namely, the imputed cost of the firm’s decision to “self-insure” rather than purchase market 
insurance). See LeRoy and Singell (1987) for more complete discussion of this and other points.
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first proposition neither logically assures nor logically excludes the second.8 For a given 
set of premises, therefore, the probability of a proposition is defined as the “rational 
degree of belief ” that should be attached to it. Keynes did not consider “degree of 
belief ” to be a personal or subjective notion, any more than its extreme cases of logical 
necessity or logical impossibility (say, of geometric propositions) are personal or 
subjective:

“The Theory of Probability is logical, therefore, because it is concerned with the degree of belief 

which it is rational to entertain in given conditions, and not merely with the actual beliefs of par-

ticular individuals, which may or may not be rational.” (p.4).

Keynes did allow some of his probabilities to take on numerical values, although

“the cases in which exact numerical measurement is possible are a very limited class, generally 

dependent on evidence which warrants a judgement of equiprobability by an application of the 

Principle of Indifference”9 (p.160).

Other probabilities, though not numerically measurable, can still be ranked:

“In these instances we can, perhaps, arrange the probabilities in an order of magnitude … 

although there is no basis for an estimate how much stronger or weaker the [one probability] is 

than the [other]” (p.29).

However, some probabilities will not even be ordinally comparable:

“Is our expectation of rain, when we start out for a walk, always more likely than not, or less likely 

than not, or as likely as not? I am prepared to argue that on some of these occasions none of these 

alternatives hold…” (p.30).

Thus, a given pair of Keynesian probabilities can be related in one of three ways:

“I maintain … that there are some pairs of probabilities between the members of which no 

comparison of magnitude is possible; that we can say, nevertheless, of some pairs of relations of 

probability that the one is greater and the other less, although it is not possible to measure the 

difference between them; and that in a very special type of case … a meaning can be given to 

numerical comparisons of magnitude. I think that the results of observation, of which examples 

have been given earlier in this chapter, are consistent with this account.” (p.34).

In light of this, Keynes formally modeled his probabilities as a partial order (that is, 
transitive but not complete) with the following properties: all probabilities run from 
impossibility to certainty, certain subsets of probabilities form “ordered series” of mutu-
ally comparable elements, a probability may be a member of more than one ordered 
series, and all numerically measurable probabilities belong to a common ordered series. 
Since it allows for structures of belief which cannot be represented by numerical 

8  Since propositions can take the form such as “the event A has occurred” and “the event B will occur,” this notion can 
also represent the relationship between a pair of events.

9  This was Keynes’ term for the Principle of Insufficient Reason (Section 13.2.5).
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probabilities,10 Keynes’ theory is the earliest example of a formal statement of non-
probabilistic beliefs.11

13.2.3  Shackle’s “Potential Surprise”

The other early model of nonprobabilistic beliefs and preferences is that of George 
Shackle (1949a,b). The fundamental concept in Shackle’s theory of belief is the “poten-
tial surprise” we would expect to experience upon learning that a particular event has 
occurred, or that a particular hypothesis is true. To distinguish this concept from stan-
dard probability, Shackle (1949a, p.113) gives the example of four equally qualified can-
didates for some appointment. A probabilistic representation of this situation may well 
assign each candidate a probability of 1/4, and hence view Candidate A’s appointment as 
“unlikely.” But given this symmetric uncertainty, we would hardly exhibit any “surprise” 
upon learning that Candidate A has received the position—nor, of course, would we 
be surprised to learn that it had gone to someone other than Candidate A. Moreover, 
these two surprise levels would remain at zero even if the number of equally qualified 
candidates rose from four to eight. On the other hand, if the pool were enlarged by the 
addition of clearly unqualified candidates, these new contenders would each be assigned 
a positive potential surprise.

The notion of potential surprise is geared toward the world outside of the gambling 
house, where our ignorance is not just in the relative likelihoods of a known set of 
alternatives, but in the very set of alternatives that might occur: “we need a measure of 
acceptance by which the individual can give to new rival hypotheses, which did not 
at first occur to him, some degree, and even the highest degree, of acceptance with-
out reducing the degrees of acceptance accorded to any of those already in his mind” 
(1949b, p. 70)

Of course, by its very nature, such a measure of uncertainty will be nonadditive—as 
we have seen, the potential surprises of each member of an exhaustive set of events could 
all be zero, although according to Shackle, they could not all be positive. Shackle (1949a, 
App. E) gives their formal properties, including rules for their combination (e.g., the 
potential surprise of the union or the intersection of two events, of one event condi-
tional upon another, etc.).

Just as his theory of beliefs departs from the traditional additive probability calcu-
lus, Shackle’s theory of preferences over uncertain prospects departs from the additive 
expected value/expected utility approach. Consider an individual confronted with a 
set of alternative actions: “In order to assess the merits of any given course of action, a 
man must find some way of reducing the great array of hypotheses about the relevant 
consequences of this course … to some compact and vivid statement” (1949a, p. 14). 

10  Among other reasons, all likelihood relations represented by true numerical probabilities must be complete.
11  See, however, Ramsey’s (1926,§2) positive and normative criticisms of Keynes’ theory.
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To make this reduction, the individual will begin by determining the ability of each 
possible gain in an action to “stimulate him agreeably,” where this level of stimulation is 
an increasing function of the value of the gain and a decreasing function of its potential 
surprise. However, “the power of mutually exclusive hypotheses of success [alternative 
possible gains in a given action] to afford enjoyment by imagination is not additive” 
(1949a, p. 16). In fact, the entire positive stimulation of an action is defined to be that 
of its most stimulating possible gain:

“amongst all the hypotheses of success [potential gains] which the individual could entertain in 

regard to any venture, one alone is accountable in full for the enjoyment which he derives from 

the thought of this venture, and by itself determined the intensity of this enjoyment” (1949a, p.16)

Similarly, the entire negative stimulation of an action is defined to be that of its most 
stimulating possible loss. Actions are then evaluated and ranked on the basis of “indif-
ference maps” defined over such (stimulation of gain, stimulation of loss) pairs. Both the 
stimulation function and these indifference maps are amenable to theoretical analysis 
and empirical fitting, and Shackle applies his model to issues of gambling, investment, 
taxation and bargaining.

Although several writers12 have criticized the unrealistic nature of some of his 
assumptions, Shackle’s work represents an admirable attempt to develop and apply a new 
mathematical theory of belief and decision under uncertainty, at a time when the 
expected utility model had not yet taken over the profession.

13.2.4  Ramsey’s “Degrees of Belief”

The earliest actual characterization of probabilistically sophisticated beliefs, in the 
sense of a set of assumptions on choice behavior which imply the existence of a clas-
sical probability measure over events, is that of Frank Ramsey (1926). Although he 
was probably not the first to observe that probabilistic beliefs could be measured by 
betting odds, he was the first to accomplish this without having to assume actual risk 
neutrality.

Since he was interested in the measurement of subjective probabilities—termed 
“degrees of belief ”—rather than attitudes toward risk, Ramsey imposed the Bernoullian 
principle of expected utility maximization upon his agents, and indeed, worked 
directly in terms of the utilities, or as he called them, the “values,” of various outcomes. 
Accordingly, he assumed that “behaviour is governed by what is called the mathemati-
cal expectation [of utility or value]; that is to say, if P is a proposition about which [the 
agent] is doubtful, any goods or bads for whose realization P is in his view a necessary 
and sufficient condition enter into his calculations multiplied by the same fraction, 

12 E.g., Turvey (1949), Graaf and Baumol (1949), Carter (1950), Arrow (1951) and Ellsberg (1961).
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which is called the ‘degree of his belief in P.’ We thus define degree of belief in a way 
which presupposes the use of the mathematical expectation.” (1926, §3).

Ramsey defined a proposition P to be ethically neutral if, holding all other aspects 
of the world constant, the individual is indifferent between its truth or falsity. 
The individual is said to have a “degree of belief 1/2” in such a proposition if the 
prospects

are indifferent for all values α and β. Ramsey’s main assumptions are:
1. There exists at least one ethically neutral proposition with degree of belief 1/2
2. If P and Q are both ethically neutral propositions with degree of belief 1/2, and the 

individual is indifferent between the prospects

 then he or she will be indifferent between the prospects

 for all values α, β, γ and δ.
These assumptions, along with some technical ones, allowed Ramsey to identify the 

set of values with the real numbers, with the above preferences implying α + β = γ + δ. 
Having defined a way of measuring value/utility, he then invoked the principle of 
expectation to derive the individual’s beliefs, that is, their subjective probabilities of 
propositions or events: If the individual was indifferent between receiving α with cer-
tainty or the prospect {β if R is true; γ if R is false}, Ramsey defined their degree of 
belief in R as (α−γ) / (β−γ), and assumed that this ratio would be the same for any 
other triple of values {α′,β′, γ′} that satisfy the same preference relation. Ramsey went 
on to derive notions such as the “conditional degree of belief in P given Q′′ and to 
show that this concept of “degrees of belief ” indeed satisfies the basic laws of probability 
theory.

Ramsey’s approach is limited (i) in that it imposes the property of expected util-
ity maximization rather than jointly axiomatizes it, and (ii) in its dependence upon an 
essentially objective 50:50 randomization device (Assumption 1. above). (Both of these 
limitations are overcome by the approach of Savage (1954) described in Section 13.3.3.) 
However, since Ramsey was the first to characterize probabilistically sophisticated 
beliefs in terms of choice behavior, his insightful article deserves a prominent place in 
the literature.

13.2.5  Principle of Insufficient Reason

The earliest hypothesis concerning belief under subjective uncertainty is the so-called 
Principle of Insufficient Reason, which states that in situations where there is no logical or 

{α if P is true; β if P is false} and {β if P is true; α if P is false}

{α if P is true; β if P is false} and {γ if P is true; δ if P is false}

{α if Q is true; β if Q is false} and {γ if Q is true; δ if Q is false}
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empirical reason to favor any one of a set of mutually exclusive events or hypotheses 
over any other, we should assign them all equal probability.13 This principle is generally 
attributed to James (also known as “Jacob”) Bernoulli (1738). It was invoked by Bayes 
(1763) in his development of the binomial theorem (Stigler, 1986, pp.122–129) and by 
Laplace (1814) in his developments the Law of Succession and what is now called the 
Laplace distribution (Stigler, 1986, pp.109–113).14

Keynes (1921,Ch. IV), who also cites von Kries (1886), raised several objections to 
the Principle. The first relates to its implication that, in conditions of complete igno-
rance, we should assign equal probably to the validity of a hypothesis “this book is red” 
or to its complement. The problem of course is that the complement may consist of 
more than one mutually exclusive hypothesis (“this book is black,” “this book is blue,” 
etc.), and it is clearly impossible to assign a probability of 1/2 to each of these mutually 
exclusive hypotheses. A related objection also concerns multiple choice of partitions. If 
we have no information whatsoever as to the area or population of the regions of the 
world, then we would say that (i) a man is as likely to be an inhabitant of Great Britain 
as of France, and (ii) a man is as likely to be an inhabitant of England as of France. This, 
of course, would imply that Scotland and Wales are barren.

Another objection pertains to the application of the Principle to physical variables. 
Say we do know that the volume of a one-pound weight lies between 1 and 3 cubic 
inches, but have no further information on that value. This means that there is a 50:50 
chance that its volume is greater than two cubic inches. On the other hand, our original 
information implies that the density of the object is between 1/3 and 1 pound/cubic 
inch, implying that there is a 50:50 chance that its density is greater than 2/3 pounds/
cubic inch, which is inconsistent with the first conclusion.15

The most sophisticated of Keynes’ objections pertained to a situation identical to 
Urn I in Ellsberg’s Two-Urn example. In an urn with 100 black or red balls, does the 
Principle instruct us to treat all ratios of black to red balls (i.e., 0:100, 1:99, 2:98, …) as 
equally likely, or does it instruct us to treat the color of each individual ball as equally 
likely to be black or red? Although the implications for betting on a single draw would 
be identical, the two conclusions have quite different implications for bets involving 
multiple draws.16

Formal axiomatic developments of the Principle of Insufficient Reason have been 
provided by researchers such as Chernoff (1954), Milnor (1954) and Sinn (1980).

13  Since this implies a uniform probability distribution over the events or hypotheses, it accordingly qualifies as a proba-
bilistically sophisticated model of beliefs.

14  See also Keynes (1921, p.372) on Venn’s (1866) use of the Principle of Insufficient Reason in the Rule of Succession. 
On the other hand, see Shafer (1978) for arguments that at least some of James Bernoulli’s notions of “probability” 
were nonadditive.

15  A more economically-based example is that bond prices and interest rates cannot both have uniform probability 
densities.

16 See Savage (1954, pp. 63–67) for additional critical discussion of the Principle of Insufficient Reason.
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13.3  THE CLASSICAL MODEL OF SUBJECTIVE PROBABILITY
13.3.1  Objective versus Subjective Uncertainty

Uncertain prospects can take different forms. A simple example of an objectively uncertain 
prospect—often called a lottery or a roulette lottery—is the gamble P = (x1,p1;…; xn,pn) 
yielding outcome xi with a well-specified objective probability pi. The outcomes in an objec-
tive lottery needn’t be monetary; an objective lottery can be defined over any space of 
outcomes, such as standard consumption bundles, intertemporal time streams of mon-
etary payments, vacations in different locales, etc. Nor need they be finite in number; the 
vector of probabilities (p1,…,pn) could be replaced by an arbitrary objective probability 
measure over outcome spaces in R1 or Rn. The most general form of an objective lot-
tery is that of an arbitrary probability measure π(·) over an arbitrary outcome space X .

As mentioned, the uncertainty inherent in a fair coin or fair roulette wheel is distinct 
from the uncertainty inherent in a horse race or the weather. A subjectively uncertain 
prospect—often called an act or a horse lottery—is the bet f (·) = (x1 if E1;…;xn if En) (or 
simply (x1,E1;…;xn,En)) yielding xj should the event Ej occur, for some mutually exclu-
sive and exhaustive partition {E1,…,En} of all possible unfolding of the world, such as 
the partition {horse 1 wins,…,horse n wins}. Partitions {E1,…,En} may in turn be 
thought of as alternative partitions (of varying coarseness) of an underlying space 
S = {. . ., s, . . .} of states of nature, which represents the subjective uncertainty at its finest 
and most basic level. Again, a subjective act needn’t be finite-outcome; most generally, 
it consists of an arbitrary mapping f (·) from an arbitrary state space S to an arbitrary 
outcome space X . It is fair to say that, outside of gambling halls, most real-world uncer-
tainty is subjective rather than objective.17

Uncertainty, be it objective or subjective, might well be resolved in two or more 
stages. A two-stage (or compound) objective lottery takes the form (…;Pi,pi; …), yielding the 
objective lottery Pi = (…;xik,pik; …) with probability pi, where for each i the probabili-
ties (…,pik, …) sum to unity. A two-stage subjective act takes the form (…;  fj(·) if Ej; …),  
yielding subact fj(·) = (…;xjk if Ejk;…), where for each j the collection of subevents 
{…,Ejk,…} is a partition of the event Ej. A two-stage mixed or objective-subjective  
prospect—termed a horse-roulette act, or sometimes an Anscombe-Aumann act—consists 
of a subjective act whose prizes are objective lotteries, and takes the form (…; Pj if 
Ej; …) = (…; (…; xij, pij; …) if Ej; …). Such prospects play an important role in the theory 
of ambiguity and ambiguity aversion. We analyze these in detail in Section 13.5.

Each two-stage objective lottery (…;Pi,pi; …) = (…;(…;xik,pik; …),pi; …) has a cor-
responding single-stage reduced form lottery (…;xik,pik · pi; …), obtained by compounding 

17  Although the first occurrence of this framework in its full generality seems to be Savage (1950) (in his review of Wald 
(1950)), it comes as a natural outgrowth of the statistical literature on hypothesis testing (Neyman and Pearson (1933), 
Wald (1939, 1950)), where the “states” were alternative hypotheses, “acts” were decisions to accept/reject the various 
hypotheses, and “consequences” were the (expected) values of the loss function.
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the probabilities pik and pi for each i,k.18 A decision maker may or may not be indifferent 
between a two-stage objective lottery and its corresponding reduced form—the 
hypothesis that they are in fact indifferent is known as the Reduction of Compound 
Lotteries Axiom.

Given a pair of objective lotteries P = (x1,p1; …;xn,pn) and P∗

= (x∗

1, p∗

1; . . . ; x∗

n∗ , p∗

n∗) 
and some mixture probability α ∈ [0,1], the α:(1−α) probability mixture of P and P∗ is the single-
stage objective lottery α·P + (1−α)·P∗ = (x1,α ·p1; …;xn,α ·pn; x

∗

1,(1−α)·p∗

1;…;x∗

n∗,(1−α)·p∗

n∗).  
The probability mixture α·P + (1−α)·P∗ of two lotteries is seen to be the single-stage 
reduced form of the two-stage compound lottery (P,α;P∗,(1−α)). A corresponding defini-
tion holds for probability mixtures α·π(·) + (1−α)·π∗(·) of general objective lotteries.

Similarly, given two subjective acts (x1,E1; …;xn,En) and (x∗

1, E1; . . .; x∗

n , En) over a 
common partition19 {E1, …,En} of S and a subset {E1, …,Em} of these events, the  
{E1, …,Em}: {Em+1, …,En} event mixture of (x1,E1; …;xn,En) and (x∗

1, E1; . . .; x∗

n , En) is 
the (single-stage) act (x1, E1; . . .; xm, Em; x∗

m+1, Em+1; . . .; x∗

n , En) yielding outcome xj 
if one of the events E1, …,Em should occur and xj

∗ if one of Em+1, …,En occurs. Given 
a pair of general subjective acts f (·) and f  ∗(·) and event E ⊆ S, the E:∼E event mixture 
of f (·) and f  ∗(·) is the act (  f (·),E;f  ∗(·),∼E) which yields outcome f (s) for each state s in 
E and the outcome f  ∗(s) for each state s in ∼E.

Although both objective lotteries and subjective acts can be defined more generally, 
from this point we restrict our attention to finite-outcome lotteries and acts.

13.3.2  Objective Expected Utility

The earliest and most basic model of preferences over uncertain prospects is the objective 
expected utility model, proposed by Bernoulli (1738) and formalized by von Neumann 
and Morgenstern (1944), Marschak (1950), Samuelson (1952) and others. In this model, 
preferences over objective lotteries can be represented by an ordinal preference function of 
the form V(x1, p1; …; xn, pn) = ∑

n
i = 1U(xi) · pi or V(π(·)) = ∫XU(x) · dπ(x), for some cardi-

nal von Neumann-Morgenstern utility function U(·) over outcomes. Researchers such as 
Arrow (1963), Pratt (1964) and others have demonstrated how properties of the utility 
function U(·) correspond to features of attitudes toward objective uncertainty,20 and the 
objective expected utility model has formed the cornerstone of the economic analysis 
of choice under uncertainty.

In addition to the usual properties corresponding to the existence of a preference 
ranking � with a numerical representation V(·), the key feature of objective expected 
utility preferences, known as the Independence Axiom, is the property

18   Thus, the single-stage reduced form of the two-stage lottery (($10,1/3;$20,2/3),1/2;($0,1/2;$10,1/6;$30,1/3),1/2)   
is the single-stage lottery ($0,1/4;$10,1/4;$20,1/3;$30,1/6) .

19  This partition could consist of any common refinement of the two acts’ original partitions.
20  See Chapter 3 of this Handbook.
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Independence Axiom: For all lotteries P, P∗, P̂ and all α ∈ (0,1], P∗ � P if and 
only if α·P∗

+ (1 − α)·P̂ �α·P + (1−α)·P̂.21

The intuition behind this property of preferences is most clearly revealed by think-
ing of the probability mixtures α·P∗

+ (1−α)·P̂ and α·P + (1−α)·P̂ in terms of their 
corresponding two-stage lotteries (P∗, α; P̂, (1 − α)) and (P, α; P̂, (1 − α)), where the 
first stage consists of the flip of a coin with objective probabilities α:(1−α) of land-
ing heads:tails. Choosing between the two prospects essentially consists of choosing 
whether to receive P∗ or P if it lands heads; if it lands tails two prospects will yield the 
same thing (namely P̂) anyway, so the decision maker should rank these two prospects 
in the same way he or she ranks P∗ and P.

Paradoxes such as those of Allais (1953) have revealed systematic violations of the 
Independence Axiom, and have led to the development of non-expected utility models of 
preferences over objective lotteries. Such preferences are typically represented by func-
tions V(x1,p1;…;xn,pn), and several specific forms of such functions have been 
proposed.22

13.3.3  Savage’s Characterization of Subjective Expected Utility and 
Subjective Probability

As noted above, virtually all real-world uncertainty is subjective rather than objective, 
which led to the development of the corresponding subjective expected utility (SEU) model  
of Savage (1954). In this model, preferences over subjective acts are represented by an 
ordinal preference function of the form   W (x1, E1; . . .; xn, En) =

∑n
j=1U (xj)·μ(Ej) or 

W(  f(·)) = ∫SU(  f(s)) · dμ(s), for utility function U(·) and unique, additive subjective prob-
ability measure23μ(·) over states. Just as the utility function U(·) represents an expected 
utility maximizer’s attitudes toward risk, the subjective probability measure μ(·) repre-
sents their beliefs of the likelihoods of the various states of nature and hence of the events 
based on them. Different decision makers can, and typically do, have different subjective 
probability measures (this, after all, is what makes for bets on horse races).

Savage obtained his characterization of subjective expected utility and subjective 
probability by means of the following axioms on a decision maker’s preferences over 
subjective acts:24

P1 Ordering: The preference relation � is complete, reflexive and transitive.

21  Although implicitly invoked by von Neumann and Morgenstern in their formalization of the expected utility 
hypothesis (Malinvaud (1952)), the first formal statements of this property seem to be those of Marschak (1950) and 
Samuelson (1952).

22  See the Machina (1987) as well as Chapters 12 and 14 of this Handbook.
23  Savage (1954) used the term personal probabilities.
24  Axiom numbers are Savage’s. Except for the Sure-Thing Principle, axiom names are our own. Savage (1954) provides 

an additional axiom, P7, used to extend his characterization to the case of infinite-outcome acts.
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P2 Sure-Thing Principle: For all events E and all acts f ∗

(·), f (·), f ′

(·) and 
f ′′

(·), ( f ∗

(·), E; f ′

(·), ∼ E)�( f (·), E; f ′

(·), ∼ E) if and only if ( f ∗

(·), E; f ′′

(·), 

∼ E)�( f (·), E; f ′′

(·), ∼ E).

P3 Eventwise Monotonicity: For all outcomes x∗,x, all nonnull25 events E and 
all acts f (·), (x∗,E; f (·),∼E)�(x,E; f (·),∼E) if and only if x∗�x.
P4 Weak Comparative Probability: For all events E∗, E and all out-
comes x∗

�x, x̂∗

�x̂, (x∗, E∗

; x, ∼E∗

) � (x∗, E; x, ∼ E) if and only if 
(x̂∗, E∗

; x̂, ∼ E∗

) � (x̂∗, E; x̂, ∼ E).
P5 Non-Degeneracy: There exist outcomes x∗ and x such that x∗ � x.
P6 Small Event Continuity: For all acts f ∗(·) � f (·) and outcomes x, there 
exists a partition {E1,…,En} of S such that both f ∗(·)�(x,Ej;   f(·),∼Ej) for all j and 
(x,Ej;   f ∗(·),∼Ej)  �  f (·) for all j.
Chapter 1 of this volume covers the axiomatic characterization of both objective 

and subjective expected utility. The axioms most relevant to the study of ambigu-
ity and ambiguity aversion will turn out to be P2 (Sure-Thing Principle), P4 (Weak 
Comparative Probability) and a stronger version of P4 described in Section 13.3.5.

The intuition behind the Sure-Thing Principle is virtually identical to that of the 
Independence Axiom, with the coin replaced by an event E which may or may not 
occur. If two acts ( f ∗

(·), E; f ′

(·), ∼ E) and ( f (·), E; f ′

(·), ∼ E) yield the same outcome 
f ′

(s) for each state s in the event ∼E, it should not matter what those statewise common 
outcomes are. Thus, replacing the common outcome f ′

(s) with some different com-
mon outcome f ′′

(s) for each state s in ∼E will not affect the preference ranking over 
the prospects. In the language of modern consumer theory, the Sure-Thing Principle 
states that preferences over subjective acts are separable across mutually exclusive events.

However, event-separability is only one of two distinguishing features of the subjec-
tive expected utility model, and by itself does not ensure the existence of well-defined 
subjective probabilities.26 To P2 we must also add P4 (Weak Comparative Probability), 
which states that for any pair of events, the event on which the individual would prefer 
to stake the better of two prizes will not depend upon the prizes themselves. In other 
words, the decision maker has a well-defined comparative likelihood ranking over events. 
Together, the Sure-Thing Principle and Weak Comparative Probability Axiom form the 
heart of the subjective expected utility model.

13.3.4  Anscombe and Aumann’s Joint Objective-Subjective Approach

The contribution of Anscombe and Aumann’s (1963) joint objective-subjective 
approach is twofold. First, it provides a framework for representing uncertain prospects 

25  An event E is said to be null if, for all acts f (·) and g(·) such that f (s) = g(s) for all s ∈ ∼E, it is the case that f (·) 
∼g(·)—that is, payoffs received on the event E do not matter.

26  A decision maker with a “state-dependent” expected utility preference function ∫s U(  f (s)∣s)·dμ(s) will be event-separable and 
hence satisfies the Sure-Thing Principle, but will not necessarily reveal well-defined likelihood rankings over events.



Mark J. Machina and Marciano Siniscalchi742

which involve both objective and subjective uncertainty. Such prospects play a key role 
in the field of ambiguity and ambiguity aversion—the key feature of Ellsberg urns is 
precisely that they involve both types of uncertainty. The second contribution is that 
by introducing objective prospects into the subjective framework, their approach allows 
for an axiomatic derivation of subjective probability which is considerably simpler than 
that of Savage (1954).

In addition to horse-roulette acts (…;Pj if Ej;…) = (…;(…;xij,pij;…) if Ej;…), 
Anscombe and Aumann consider three-stage compound prospects. These are objec-
tive lotteries (…;fk,pk; …) whose “prizes” consist of horse-roulette acts fk(·) = (…;Pjk if  
Ej; …) = (…;(…;xijk,pijk; …) if Ejk; …). Such prospects can be termed roulette-horse-
roulette acts. (A two-stage, horse-roulette act is thus a special case of a three-stage, 
roulette-horse-roulette act in which the first stage roulette lottery is degenerate.) It is 
important to note that, whereas horse-roulette acts fk(·) = (…;Pjk if Ej; …) can involve 
different payoffs …,xijk, …, they are all defined over the same partition {…,Ej, …}. In 
other words, a roulette-horse-roulette act is a roulette wheel whose respective prizes 
are different bets on the same horse race (where the prizes can themselves be roulette 
lotteries). We note that, in the recent literature, the term “Anscombe-Aumann act” is 
usually reserved for two-stage, horse-roulette acts: see Section 13.5.

Because they are interested in deriving subjective probability, Anscombe and 
Aumann preassume that the individual has expected utility preferences over primitive 
objective lotteries P = (…;xi,pi; …), i.e., that there exists a von Neumann-Morgenstern 
utility function U(·) over final payoffs such that the expected utility of any primi-
tive lottery is given by U(P) = ⋯+ pi·U(xi) + ⋯ . Furthermore, they assume that the 
individual also has expected-utility preferences over roulette-horse-roulette acts: there 
exists a von Neumann-Morgenstern utility function W(·) over horse-roulette acts 
such that the expected utility of the roulette-horse-roulette act (…;   fk,pk; …) is given  
by ⋯  + pk·W(  fk) +  ⋯. Note that the horse-roulette acts fk are treated simply as prizes. 
Of course, these expected-utility preferences over primitive lotteries and roulette-
horse-roulette acts satisfy the von Neumann-Morgenstern Independence axiom on the 
respective domains.

Their first assumption, which they term “Monotonicity in the Prizes,” is that if a 
pure roulette lottery P̂j is weakly preferred to Pj, then the horse-roulette act (…;Pj−1 
if Ej−1; P̂j if Ej;Pj+1 if Ej+1; …) is weakly preferred to (…;Pj−1 if Ej−1;Pj if Ej;Pj+1 if 
Ej+1; …), or in the author’s words, “if two horse lotteries are identical except for the 
prizes associated with one [horse], then your preference between the lotteries is gov-
erned by your preference between the prizes associated with that [horse].”

Their second assumption, “Reversal of Order in Compound Lotteries,” is that, for a 
given horse race {…,Ej, …}, given probability vector (…,pk, …) and given collection 
of primitive objective lotteries {Pij}i,j to serve as prizes, the individual is indifferent 
between the roulette-horse-roulette acts
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(note that the first prospect is a nondegenerate roulette-horse-roulette act, but the sec-
ond is actually a horse-roulette act). In Anscombe and Aumann’s words, “if the prize 
you receive is to be determined by both a horse race and the spin of a roulette wheel, 
then it is immaterial whether the wheel is spun before or after the race” (1963, p. 201).

These authors demonstrate how their mixed objective-subjective framework and set 
of assumptions imply the existence of well-defined subjective probabilities (…,qj, …) 
over the states (in their setting, the horses), in the sense that the individual’s expected 
utility W( f ) of any horse-roulette act f = (…;Pj if Ej; …) is given by… + qj·U(Pj) + …27

13.3.5  Probabilistic Sophistication

Although the Savage axioms imply both properties, it is possible for a decision maker 
to exhibit well-defined probabilistic beliefs without necessarily having expected utility 
risk preferences. A preference function W(·) over subjective acts is said to be probabi-
listically sophisticated (or satisfy the Hypothesis of Probabilistic Sophistication) if it takes the 
form W(x1, E1; …; xn, En) = V(x1, μ(E1); …; xn, μ(En)) for some probability measure μ(·) 
over events and preference function V(·) over objective lotteries. Such a decision maker 
is accordingly indifferent between any subjective act (x1 on E1; …;xn on En) and its 
associated objective lottery (x1,μ(E1); …;xn,μ(En)). Since the preference function V(·) 
needn’t take the expected utility form, such individuals are not necessarily subject to 
Allais-type violations of the Independence Axiom. However, since they retain the prop-
erty of probabilistic beliefs, they are precisely the target of the Ellsberg-type effects—that 
is, the paradoxes of Section 13.1 and the additional effects reported in Section 13.4.

Machina and Schmeidler (1992,Thm.2)28 have shown how the property of proba-
bilistic sophistication can be characterized by dropping Savage’s Sure-Thing Principle 
P2 and strengthening his Weak Comparative Probability Axiom P4 to the following:

P4∗ Strong Comparative Probability: For all pairs of disjoint events E∗, E, all outcomes 
x∗�x and x̂∗

� x̂, and all acts f ∗(·) and f (·), if (x∗, E∗; x, E; f ∗(·),∼(E∗∪E)) �(x, E∗(·); x∗, E; 
f ∗(·), ∼(E∗∪E)) then (x̂∗, E∗

; x̂, E; f (·), ∼ (E∗

∪ E)) � (x̂, E∗

; x̂∗, E; f (·), ∼ (E∗

∪ E)).
Since the Sure-Thing Principle P2 and the Strong Comparative Probability Axiom 

P4∗ are independent properties of preferences, a decision maker could satisfy either one 
without the other—the probabilistically sophisticated form W(x1,E1;…;xn, 
En) = V(x1,μ(E1);…;xn, μ(En)) will satisfy P4∗ but generally not P2, whereas the 

(. . .; (. . .; Pij if Ej; . . .), pi; . . .) and (. . .; (. . .; Pij , pi; . . .) if Ej; . . .)

27  Other joint axiomatizations of expected utility and subjective probability by means of an extraneous randomization 
device include those of Davidson and Suppes (1956), Pratt et al. (1964), DeGroot (1970, Ch.6), Fishburn (1970, Ch.6).

28  See also Machina and Schmeidler (1995). Derivations of probabilistic sophistication under weaker assumptions have 
also been provided by Grant (1995) and Chew and Sagi (2006).



Mark J. Machina and Marciano Siniscalchi744

state-dependent expected utility form W(…;xj, sj; …) = ∑jU(xj∣sj)·μ(sj) will satisfy P2 but 
generally not P4∗.29

While most Ellsberg urn examples illustrate violations of both P2 and P4∗, not all 
do, and it is departures from probabilistic sophistication (i.e., violations of P4∗) which 
constitute the phenomena of ambiguity aversion or ambiguity preference.

13.4  ELLSBERG URNS

The examples of Section 13.1 are two of many proposed by Ellsberg and others of what 
have come to be known as Ellsberg Urns. Ellsberg’s (1961) article contained another 
example, suggested to him by Kenneth Arrow, similar in spirit to the Two-Urn example 
but involving a single urn.30 Again, the conjectured response is that decision makers 
would prefer the unambiguous bet c1 over the ambiguous c2 (which would imply 
prob(red) > prob(green)), and prefer the unambiguous c4 over the ambiguous c3 (which 
would imply prob(red) < prob(green)).

FOUR-COLOR ELLSBERG PARADOX

(single urn)

50 balls︷ ︸︸ ︷
green

50 balls︷ ︸︸ ︷
yellow

c1 $100 $100 $0 $0
c2 $100 $0 $100 $0
c3 $0 $100 $0 $100
c4 $0 $0 $100 $100

13.4.1  Initial Reactions and Discussion

Because they struck at the heart of what many considered to be basic principles of 
rationality—the Sure-Thing Principle and probabilistic beliefs—Ellsberg’s examples 
spawned a lot of discussion among the decision theory establishment. Ellsberg summa-
rized some of their initial reactions as follows:31

“Responses do vary. There are those who do not violate the axioms, or say they won’t, even in 

these situations (e.g., G. Debreu, R. Schlaifer, P. Samuelson); such subjects tend to apply the axioms 

rather than their intuition, and when in doubt, to apply some form of the Principle of Insufficient 

Reason. Some violate the axioms cheerfully, even with gusto (J. Marschak, N. Dalkey); others sadly 

but persistently…. Still others (H. Raiffa) tend, intuitively, to violate the axioms but feel guilty about 

it and go back into further analysis.”

29  This is essentially the point of footnote 26.
30 Ellsberg (1961, p.654, n.4). See also (1961, p.651, n.1).

100 balls︷ ︸︸ ︷
black red

31 Ellsberg (1961, pp. 655–656).
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Ellsberg’s report of a wide range of views on these issues played out in the subse-
quent literature. Whether or not he had any intuitive tendency for violation, Raiffa 
(1961) offered what has come to be the standard argument to an individual who would 
make the typical choices in the Three-Color Urn: If you really prefer a1 over a2 and a4 
over a3, then you presumably prefer a 50:50 coin flip of a1:a4 versus a 50:50 coin flip 
of a2:a3. But both coin flips reduce to a purely objective 50:50 coin flip of $100:$0. In 
Raiffa’s view, “Something must give!” (1961, p.694)

Others have expressed a variety of views. Although Fellner (1961) largely supported 
a decision maker’s right to possess Ellsberg-like preferences, he also asked whether a 
decision maker “is or is not likely gradually to lose this trait as he gets used to the uncer-
tainty with which he is faced.”32 Brewer (1963) argued that the rationality/irrationality of 
Ellsberg-type “slanting down of subjective probabilities” depends on whether or not a 
decision maker is allowed a free choice to bet on either an event or its complement—if 
not, he argues, Raiffa’s comparison with a 50:50 coin flip won’t apply (discussion of 
these issues continued in Fellner (1963) and Brewer and Fellner (1965)). Roberts (1963) 
reported, but did not accept, the argument that losing in either bet b2 or bet b4 on the 
50:50 urn is somehow different from losing in either bet b1 or bet b3 on the unknown 
urn.33 Smith (1969) and Sarin and Winkler (1992), however, suggest that a decision 
maker indeed does have distinct (and measurable) utility of money functions for prizes 
won from the two different urns. Finally, historians of economic thought are directed 
to the interesting 1961–1963 correspondence between Ellsberg and Leonard Savage 
(Savage (1963)).

13.4.2  Experiments on Ellsberg Urns and Ambiguity Aversion

Although Ellsberg himself only offered his examples as thought experiments, he recog-
nized the need for formal experimentation from the very start.34 The earliest reported 
experiments of this form seem to be those of Chipman (1958,1960).35 Fellner (1961) 
offered various versions of the Two-Urn problem to a group of  Yale undergraduates, 
and found an overall tendency to prefer the 50:50 rather than the unknown odds. 
Subsequent experiments by Becker and Brownson (1964), MacCrimmon (1968), Slovic 
and Tversky (1974), Curley and Yates (1989) and others also confirmed Ellsberg’s con-
jecture of widespread ambiguity aversion. Although most of these experiments use 
students as subjects, researchers such as MacCrimmon (1965), Hogarth and Kunreuther 
(1989), Einhorn and Hogarth (1986), Viscusi and Chesson (1999), Ho et al. (2002) and 

32  Fellner (1961, pp.678–679), original emphasis.
33  “If I pick [bet b1], I would be completely out of luck if there were no red balls in the urn.” (p. 333). See also the discus-

sion of Roberts (1963) and Ellsberg (1963) on Roberts’ notion of “vagueness” in decision making and its implications 
for Ellsberg-type choice situations.

34  “To test the predictive effectiveness of the axioms … controlled experimentation is in order.” (1961, p.655, n.6).
35  See footnote 2.
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Maffioletti and Santori (2005) have examined the ambiguity preferences of business 
owners, trade union leaders, actuaries, managers and executives, with the same overall 
findings.

In their own series of experiments, MacCrimmon and Larsson (1979) recognized 
that the interesting parameter in Ellsberg’s examples was not the winning prize level, 
but rather, the amount of objective versus subjective uncertainty, which in the Three-
Outcome Urn is given by the (known) proportion of red balls in the urn. MacCrimmon 
and Larsson’s sequence of experiments accordingly set out to examine how subjects’ 
choices depended on this proportion. In the standard specification of the Three-Color 
Urn, the proportion of red balls is 1/3 (30 out of 90). Of course, if the proportion of red 
balls were actually zero, all subjects would prefer option a2 in the first pair and a4 in the 
second pair, which is consistent with the Sure-Thing Principle, and if this proportion 
were unity, all would now prefer a1 in the first pair and a3 in the second (also consistent 
with the Sure-Thing Principle). As the proportion increased from zero toward unity, the 
percentage of a1 choices and a3 choices should both rise, and under the hypothesis of 
ambiguity aversion, there would be some intermediate interval of probabilities within 
which a subject’s choice would have flipped from a2 to a1, but not yet flipped from a4 
to a3¸ yielding the classic Ellsberg-type violation of the Sure-Thing Principle for this 
urn. Using 100-ball urns, MacCrimmon and Larsson were able to present subjects with 
urns whose red-ball proportions took the values 0.20, 0.25, 0.30, 0.33, 0.34, 0.40, and 
0.50. They indeed found such an intermediate interval of probabilities, and perhaps not 
surprisingly, the percentage of such violations was the greatest at p = .33.

Although each of Ellsberg’s own examples pits a purely objective urn against an 
ambiguous urn with a fixed probability range,36 researchers have also explored attitudes 
toward changes in the size of this range (holding the center constant). Becker and 
Brownson (1964), Larson (1980) and Viscusi and Magat (1992) did find an aversion to 
increases in the size of the range; Curley and Yates (1985) and Yates and Zukowski 
(1976) did not. In a reversal of Ellsberg’s original specification of a fixed prize and 
ambiguous probability, Eliaz and Ortolevaz (2011) also found ambiguity aversion in the 
case of a fixed objective probability but an ambiguous prize level.37 Du and Budescu 
(2005) found that subjects were willing to pay more to reduce the range (“vagueness”) 
of outcome uncertainty than probability uncertainty.38

While the phenomena of Reduction of Compound Lotteries and ambiguity neu-
trality are distinct properties, many researchers consider them to be closely related, and 
some of the rationality arguments against ambiguity aversion (such as Raiffa’s (1961)) 
explicitly or implicitly invoke the reduction principle. In an experimental examination 

36  In the Three-Color Paradox the unknown probability of a black ball ranges from 0 to 2/3; in the Two-Urn Paradox 
it ranges from 0 to 1; in the Four-Color Paradox it ranges from 0 to 1/2.

37  See these authors’ further results in the case of joint outcome/probability ambiguity.
38  Outcome and probability ranges were each classified into “low,” “medium,” or “high” levels of vagueness.
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of this, Halevy (2007) appended two urns to the original two-color urns: one urn where 
the proportion of black balls satisfied a uniform objective distribution, and one urn 
which was either all black, or all red, with objective 50:50 probabilities. The two urns, 
together with Ellsberg’s Urn I, are all purely objective, and each reduces to a 50:50 
objective lottery over the best:worst monetary prize.39 However, in Halevy’s second urn 
all uncertainty is resolved in the first stage, whereas in Ellsberg’s urn I all uncertainty is 
resolved in the second stage (Halevy’s first urn involves both first stage and second stage 
uncertainty). Using this framework, Halevy found that subjects who satisfied the 
Reduction of Compound Lotteries Axiom under objective uncertainty were typically 
ambiguity neutral. Ozdenoren and Peck (2008) also took a dynamic approach, framing 
a two-stage Ellsberg urn problem as a “game against nature” and exploring various 
implications for ambiguity aversion and dynamic consistency.

Another systematic feature of attitudes toward ambiguity—reported in Ellsberg 
(1962, 2001) but not in Ellsberg (1961)—emerges from what he termed his n-Color 
Example.40 Each of two urns contains 100 balls, from among 10 different colors. Urn I 
contains exactly 10 balls of each color, whereas Urn II contains the colors (and perhaps 
not all of them) in unknown quantities. Ellsberg naturally conjectured that most would 
prefer bet d1 over d3, preferring d1’s fixed 10% chance of getting $0 to d3’s unknown 
chance, which might be much higher. But he also felt that “a significant number” would 
disprefer bet d2 to d4, dispreferring d2’s fixed (but mere) 10% chance of winning $100 to 
d4’s unknown chance, which might also be much higher. As with the Two-Urn Paradox, 
the ranking d1 � d3 violates the hypothesis of probabilistic beliefs in the direction of 
ambiguity aversion.41 But by a similar argument, the ranking d2 ≺ d4 violates probabi-
listic beliefs in the direction of ambiguity preference. In the language of Viscusi and 
Chesson (1999), the ambiguity in d4’s small chance of winning the $100 payoff allows 
for “hopes” that it might be much higher, whereas the ambiguity in d3’s small chance of 
getting $0 makes for “fears” that it might be much higher. A similar phenomenon occurs 
in bets involving losses: Kahn and Sarin (1988) found that subjects tended to be averse 
(“fearful”) toward ambiguity in small chances of having to suffer a given loss, but prefer 
(be “hopeful” toward) ambiguity in small chances of not having to suffer it.42 Similar 
results were also obtained by Becker and Brownson (1964), Yates and Zukowski (1976), 
Curley and Yates (1985,1989), Einhorn and Hogarth (1986), and Hogarth and Einhorn 
(1990). Cohen et al. (1985, 1987), however, found no correlation between subjects’ 
overall levels of ambiguity aversion toward gains versus ambiguity aversion toward losses.

39  Halevy used the prizes $2:$0 and $20:$0 for both his own and those of Ellsberg’s urns used in his experiments.
40  Ellsberg (1962, pp. 268–281; 2001, pp. 199–209). In his discussion, Ellsberg chooses n = 10, but feels that the effect 

would be more pronounced for n = 100.
41  d1 � d3 would imply prob(red in Urn II) > 1/10, which under the natural conjecture that prob(red in Urn II) = … 

= prob(mauve in Urn II), would imply prob(red in Urn II) + … + prob(mauve in Urn II) > 1. Similarly for d2 ≺ d4.
42  Viscusi and Chesson (1999) found that for a potential loss, the threshold probability “at which ambiguity shifts from 

being a negatively valued fear to a positively valued hope” was about 1/2.
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n-COLOR ELLSBERG PARADOX

URN I

10 balls︷︸︸︷
red

10 balls︷ ︸︸ ︷
yellow

10 balls︷ ︸︸ ︷
black

10 balls︷ ︸︸ ︷
green

10 balls︷︸︸︷
blue

10 balls︷ ︸︸ ︷
purple

10 balls︷ ︸︸ ︷
white

10 balls︷︸︸︷
grey

10 balls︷ ︸︸ ︷
orange

10 balls︷ ︸︸ ︷
mauve

d1 $0 $100 $100 $100 $100 $100 $100 $100 $100 $100

d2 $100 $0 $0 $0 $0 $0 $0 $0 $0 $0

URN II

100 balls︷ ︸︸ ︷
red yellow black green blue purple white grey orange mauve

d3 $0 $100 $100 $100 $100 $100 $100 $100 $100 $100

d4 $100 $0 $0 $0 $0 $0 $0 $0 $0 $0

13.4.2.1  Forms of Preference Elicitation
One methodological issue, present throughout experimental work on choice and deci-
sion making, concerns exactly how preferences over Ellsberg-type prospects “should” be 
elicited. Ellsberg’s original presentations, and the great preponderance of subsequent 
experiments, simply presented subjects with pairs of alternatives, and asked for a direct 
choice within each pair. But standard consumer theory posits that the same ranking 
would be revealed if a subject’s preferences were instead assessed via an independent 
monetary valuation of each prospect,43 with the valuations then compared. Fox and 
Tversky (1995), Chow and Sarin (2001) and Du and Budescu (2005) found that ambi-
guity aversion was reduced substantially (though not completely) when subjects were 
asked for separate monetary evaluations of ambiguous and unambiguous prospects (via 
their willingness to pay or willingness to accept) rather than asked for direct 
comparisons.

In another alternative to simple pairwise choice, MacCrimmon and Larsson (1979) 
presented subjects with sets of 11 prospects each, and asked them for a complete ranking 
of all prospects within each set (indifference was allowed). By including bets on stock 
index prices along with classic Ellsberg urns in their menus, these researchers were able 
to explore another question related to ambiguity, namely how subjects treated ambigu-
ity in unknown urns with ambiguity outside of the laboratory.44 MacCrimmon and 
Larsson found no net effect in either direction.

43  Such as the procedure of Becker et al. (1964).
44  Selten has suggested that many subjects may feel they can make “a very good estimate” of stock market events, and 

suggests investment in developing counties as better for such experiments (MacCrimmon (1968, p.28)).
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13.4.2.2  Experimental Studies of Insurance and Medical Decisions Under 
Ambiguity

Other experimenters have also elicited subjects’ ambiguity preferences in choices 
more relevant and realistic than simply drawing balls from urns. An obvious domain 
is that of insurance. Experiments on insurance decisions under ambiguity typically 
place subjects in the role of either consumers or suppliers of contracts such as flood or 
earthquake insurance, product warranties, etc. Although subjects are typically students, 
experiments and surveys by Einhorn and Hogarth (1986), Hogarth and Kunreuther 
(1992), Kunreuther (1989) and others have also found ambiguity aversion in hypotheti-
cal decisions by both professional actuaries and experienced insurance underwriters. 
Kunreuther et al. (1995) found ambiguity aversion in a field survey of primary-
insurance underwriters in commercial property and casualty insurance companies. In 
experiments which included professional actuaries, and where subjects were asked to 
price insurance both as consumers and firms, Hogarth and Kunreuther (1989) found 
results which paralleled those of Kahn and Sarin (1988), Viscusi and Chesson (1999) 
and others as reported above, namely that both consumers and firms revealed ambi-
guity aversion toward low likelihood losses, which decreased as the likelihood of the 
loss increased. In an experiment involving real losses, Koch and Shunk (2013) found 
that ambiguity aversion was higher under unlimited liability than limited liability. 
Market and policy implication of ambiguity aversion are examined in Hogarth (1989), 
Camerer and Kunreuther (1989a,b), Hogarth and Kunreuther (1985) and Kunreuther 
and Hogarth (1992). Baillon et al. (2012) explore how different ambiguity attitudes play 
out in group belief aggregation.

Medical decisions by both patients and doctors, which also inherently involve 
ambiguity, have also been proposed to experimental subjects. Such experiments include 
decisions regarding vaccination of children (Ritov and Baron (1990)), heart disease 
(Curley et al. (1989)), residential location based on health risks (Viscusi et al. (1991), 
Viscusi and Magat (1992)) and others (e.g., Curley et al. (1984)). Gerrity et al. (1990) 
developed a multivariate measure of physicians’ reactions to uncertainty, and used the 
results of an extensive survey to develop two “reliable and readily interpretable sub-
scales” which they term “stress from uncertainty” and “reluctance to disclose uncer-
tainty to others.”

13.4.2.3  Additional Experiments on Ambiguity and Ambiguity Aversion
In other experiments involving real-world scenarios, Hogarth (1989) and Willham and 
Christensen-Szalanski (1993) gave subjects actual medical liability cases and manipu-
lated ambiguity about the probability of winning in a legal scenario where hypothetical 
plaintiffs and defendants had to decide whether to go to court or settle out of court. In 
direct comparisons across contexts, Kahn and Sarin (1988) found that consumers’ ambi-
guity attitudes differed across choices involving radio warranties, pharmaceutical 
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decisions and restaurant food quality. Maffioletti and Santori (2005) examined subjects’ 
attitudes toward bets on real-world election results, and Baillon and Bleichrodt (2011) 
used bets on the temperature and on stock index prices. And while initially solely the 
realm of economists and psychologists, experimental work on decisions under ambigu-
ity has now extended to the realm of neurology.45

Ambiguity aversion has been and continues to be one of the most intensively exper-
imentally explored phenomena in decision theory. Further discussion of this literature 
is provided in the surveys listed in Section 13.8.

13.5  MODELS AND DEFINITIONS OF AMBIGUITY AVERSION

Unlike the economic concepts of “risk” and “risk aversion,”46 there is not unanimous 
agreement on what “ambiguity aversion,” or even “ambiguity” itself, exactly is. However 
several models and definitions have been proposed.

Most (though not all) of these models take as their starting point the following for-
malization of the objective/subjective uncertainty framework of Sections 13.3.1 and 
13.3.4. Preferences are defined over the domain of horse-roulette acts—henceforth 
called acts—namely maps f = (…;Pj if Ej;…) = (…;(…;xij,pij; …),Ej; …) from a (finite or 
infinite) state space S to roulette lotteries Pj over a set of prizes X . The Independence 
property over this richer domain is identical to the Independence Axiom of objective 
expected utility, except for the more general notion of probability mixing it entails. 
Probability mixtures of horse-roulette acts are defined statewise: given acts f = (…;Pj if 
Ej; …) and g = (…;Qj if Ej; …) over a common47 partition {E1, …,En} of the state space 
S, and probability α∈[0,1], the mixture α · f + (1-α) · g is defined as the act

The axioms that characterize subjective expected utility in this framework are 
accordingly48

Weak Order: � is complete and transitive.
Non-Degeneracy: There exist acts f and g for which f � g.
Continuity: For all acts f,  g,  h, if f � g and g � h, there exist α,β ∈(0,1) such that α · f 
+ (1-α) · h � g and g � β · f + (1-β) · h.
Independence: For all acts f, g, h and all α ∈ (0,1], f � g if and only if α · f + (1–α) · h 
� α · g + (1–α) · h.

45  See Hsu et al. (2005), Chew et al. (2008), Huettel et al. (2006), as well as the survey of  Weber and Johnson (2008).
46 E.g., Rothschild and Stiglitz (1970), Pratt (1964).
47  As before, {E1,…,En} could be any common refinement of the two acts’ original partitions.

α · f + (1 − α) · g = (. . .; α · Pj + (1 − α) ·Q j; . . . )

48  These versions of the expected utility axioms, due to Fishburn (1970), are referred to in the literature as the Anscombe-
Aumann axioms. See also Schmeidler (1989).
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Monotonicity: For all acts f, g, if the roulette lottery f(s) is weakly preferred to the 
roulette lottery g(s) for every state s, then f  � g.
The expected utility representation of preferences over horse-roulette acts f = (…;Pj 

if Ej; …) = (…;(…;xij,pij; …),Ej; …) implied by these axioms takes the form

where U(·) is a von Neumann-Morgenstern utility function and μ is a finitely additive 
probability measure (“prior”), which is uniquely identified as in Savage’s axiomatiza-
tion. As seen in the above equation, the term U(  f (s)) in the integral 

∫
S

U ( f (s))dμ(s) 
is the expected utility of the roulette lottery f (s). This is also the case for many of the 
models that we consider in this section, and that are axiomatized in the horse-roulette 
framework.

The above Independence axiom49 turns out to imply the Sure-Thing Principle,50 
which implies that any Ellsberg-type violation of the Sure-Thing Principle is also a 
violation of Independence. It follows that any model of ambiguity aversion in the horse-
roulette act framework must relax Independence.

Versions of the above axioms can also be stated in a setting closer to that of Savage, 
where acts are purely subjective horse lotteries. This requires that the set of prizes be 
suitably rich (for instance, an interval of the real line), with a suitable notion of “sub-
jective mixture” on prizes. Nakamura (1990), Gul (1992) and Wakker (1989) take this 
approach, and Ghirardato et al. (2003) introduce a general notion of subjective mixture 
of prizes which allows a direct translation of the above axioms, and many of their relax-
ations are discussed in this section.

13.5.1  Maxmin Expected Utility / Expected Utility with Multiple-Priors

Gilboa and Schmeidler (1989, p.142) suggest the following explanation of the modal 
behavior in the Ellsberg Paradox:

“One conceivable explanation of this phenomenon which we adopt here is as follows: […] the 

subject has too little information to form a prior. Hence (s)he considers a set of priors as possible. 

Being uncertainty averse, (s)he takes into account the minimal expected utility (over all priors in 

the set) while evaluating a bet.” (original emphasis)

W ( f ) =

∫

S
U ( f (s))dμ(s) =

∑n

j=1
U (Pj) · μ(Ej) =

∑n

j=1

[∑
i
U (xij)pij

]
· μ(Ej)

49  We distinguish between the two identically named conditions by the capitalization “Independence Axiom” for the 
Marschak/Samuelson axiom of Section 13.3.2 and “Independence axiom” for the current Independence property.

50  Defining event mixtures as in Section 13.3.1, suppose ( f ∗, E; f ′, ∼ E) � ( f , E; f ′, ∼ E). By Independence, 

1/2 ·( f ∗, E; f ′, ∼E) + 1/2 · ( f ∗, E; f ′′,∼ E)�1/2 · ( f , E; f ′, ∼E) + 1/2 · ( f ∗, E; f ′′, ∼E), which can be  

equivalently written as ·1/2 · ( f ∗, E; f ′′, ∼E) + 1/2 · ( f ∗, E; f ′′, ∼ E) � 1/2 · ( f , E; f ′′, ∼ E) + 1/2 

·( f ∗, E; f ′, ∼ E). Invoking Independence once again yields ( f ∗, E; f ′′, ∼ E) � ( f , E; f ′′, ∼ E).



Mark J. Machina and Marciano Siniscalchi752

The resulting model is called Maxmin Expected Utility (MEU) or sometimes the 
Multiple-Priors (MP) model.51 Formally, consider a closed,52 convex set C of probability 
measures—priors—on the state space S, and a von Neumann-Morgenstern utility func-
tion U (·). An act f (·) is evaluated according to

To see how this model allows for the typical preferences in Ellsberg’s examples, con-
sider the Three-Color Paradox of Section 13.1 (the analysis of the Two-Urn Paradox is 
similar). Let the state space be S = {sr , sb, sy}, where sr denotes the draw of a red ball, 
etc., let the set of prizes be X = {$0,$100}, and set U($100) = 1 and U($0) = 0. To reflect 
the assumption that 30 out of the 90 balls in the urn are red, but that the number of 
black and yellow balls is not known, consider the set of priors53

Under this set of priors, the four acts in the Three-Color Paradox are evaluated as

which implies the Ellsberg rankings a1�a2 and a3 ≺ a4.54 To derive these values, observe 
that every prior μ ∈ C assigns probability 1/3 to the state sr, so that W(a1) = 1/3. Similarly, 
every prior μ ∈ C assigns probability 2/3 to the event {sb,sy}, so that W(a4) = 2/3. Act a2 
yields $100 on state sb and $0 otherwise; in other words, it is a bet on black. The prior in 
C that assigns zero probability to sb is the one that minimizes expected utility, and will 
accordingly be the one selected by the MEU criterion, so that W(a2) = 0. In other words, 
the individual evaluates a bet on black as if none of the 60 unknown balls in the urn were 
black. Act a3 yields $100 on the event {sr, sy} and zero otherwise; in other words, it is a 
bet against black. This time, the prior in C that assigns unit probability to sb (thus zero 
probability to sy) is the one that minimizes expected utility and hence is the one selected, 
so that W(a3) = 1/3. That is, the individual evaluates a bet against black as if all of the 60 
unknown balls were black. This is a (stark) example of the “worst-case scenario” thinking 
embodied in equation (13.1). While the set C used here is extreme, it is not the only one 
that generates the standard Ellsberg preferences: any set of priors where the probability 

51  The expression “multiple-priors” is potentially ambiguous, because there are several well-known models which also 
employ sets of priors (for instance, the Variational and Smooth Ambiguity Preferences models).

52  If the state space is finite, the set C is closed in the usual Euclidean topology. If it is infinite, it is closed in the weak∗ 
topology.

(13.1)W ( f (·)) = min
μ∈C

∫
U ( f (·))dμ.

53  �(·) denotes the family of probability measures over a set. When no confusion can arise, to simplify notation, we write 
μ({sr}), μ({sr,sb}), v({sr}),… as μ(sr), μ(sr,sb), v(sr),… for measures (and later capacities) over singletons or finite sets.

(13.2)C = {μ ∈ �(S) : μ(sr)} = 1/3.

W (a1) = 1/3 W (a2) = 0 W (a3) = 1/3 W (a4) = 2/3

54  Note this also implies that a3 is considered no better than a1, in spite of the fact that it yield a higher payoff on sy.
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of sr is constant at 1/3 and the probability of sb ranges from less than 1/3 to greater than 
1/3 will yield the above rankings. 

As a historical note, Ellsberg himself proposed a decision criterion that is effectively 
a special case of MEU. He proposes that, by careful deliberation, an individual faced 
with an ambiguous situation may nevertheless “arrive at a composite ‘estimated’ distri-
bution μ0 that represents all his available information on relative likelihoods”; however, 
due to ambiguity, “[o]ut of the set �(S) of possible distributions there remains a set D 
of distributions that still seem ‘reasonable,’ reflecting judgments that he ‘might almost as 
well’ have made, or that his information… does not permit him confidently to rule 
out.”55 He then suggested (p.664) that individuals may evaluate acts according to the 
criterion

where ρ ∈ (0,1) represents the individual’s “degree of confidence” in the estimate μ0 
and C = ρ·μ0 + (1 − ρ)·D is seen to be the set of priors. Kopylov (2006) analyzes this 
model when the set D equals the set �(S) of all possible probability distributions—a 
specification which also appears in the literature on robust Bayesian analysis.

Gilboa and Schmeidler (1989) axiomatize the MEU decision criterion via axioms 
on horse-roulette acts. They retain the Weak Order, Monotonicity, Continuity and 
Non-Degeneracy axioms stated above, but weaken Independence, replacing it with

Certainty Independence: For all acts f, g, all constant acts x, and all α ∈ (0,1]:  f �  g 
if and only if α·f + (1-α)·x � α· g + (1-α)·x.
Uncertainty Aversion: For all acts f, g and all α ∈ (0,1]: f  �  g implies α · f + (1-α)· 
g � g.
That Independence must be relaxed follows from the fact that, as noted above, 

Independence implies Savage’s Postulate P2, and hence must be violated by Ellsberg-
type preferences. The key question is to what extent Independence should be weakened. 
To gain some intuition, it is useful to add to the four acts a1,…,a4 of the Three-Color 
Paradox a fifth act a5 representing a bet on yellow: specifically, a5 yields $100 if a yellow 
ball is drawn and $0 otherwise. An individual with MEU preferences characterized by 
the set C in equation (13.2) will be indifferent between betting on black or on yellow, 
that is, a2∼a5. However the mixture 1/2·a2 + 1/2·a5 is strictly preferred to a2, which 
would not be possible with EU preferences. How should this be interpreted, and what 
is its relationship to ambiguity?

Act a2 will yield $100 if the ambiguous color black is drawn and $0 if the ambiguous 
color yellow is drawn. Act a5 instead yields $100 if yellow and $0 if black. Thus, whether 

55  Ellsberg (1961, p.661); notation in this paragraph adapted to the present chapter.

W
(

f (·)
)

= ρ ·

∫
U
(

f (·)
)

dμ0 + (1 − ρ) · min
μ∈D

∫
U
(

f (·)
)

dμ
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or not the better prize $100 is obtained—if it is obtained at all—hinges crucially on 
which of the two ambiguous colors is drawn. (Both acts yield $0 under the unambigu-
ous color red.) By way of contrast, a 50:50 mixture of the two acts provides hedging: it 
removes the dependence of the prize on which of the two ambiguous colors is drawn. 
Specifically, the mixture 1/2·a2 + 1/2·a5 yields the same objective roulette lottery 
($100,1/2;$0,1/2) for both of the ambiguous colors yellow and black. The Uncertainty 
Aversion Axiom thus reflects a preference for hedging.56 Mathematically, Uncertainty 
Aversion corresponds to quasiconcavity of the functional representation of preferences—
an analytically convenient property.

On the other hand, mixing an act with a constant act (a constant prize or a con-
stant objective lottery) does not provide such hedging, and there is less of an argument 
that such mixtures should necessarily be preferred (or dispreferred) by an ambiguity 
averter. The Certainty Independence Axiom accordingly requires that mixtures with 
constant acts do not affect preferences. While MEU preferences do satisfy Certainty 
Independence, there are reasons to relax or drop this axiom: see Sections 13.5.6–13.5.9.

Gilboa and Schmeidler (1989) show that the above axioms are necessary and suf-
ficient for the existence of the MEU representation (13.1), with affine utility function 
U(·) and convex set of priors C which is “identified up to convex closure”—that is, any 
other set of priors which represents preferences will have C as its convex closure (the 
closure of its convex hull).

A generalization of the MEU model is the so-called α-maxmin, or α-MEU model

For α = 1, this representation reduces to MEU, and for α = 0 it reduces to what 
is termed maxmax expected utility max 

∫
C
U (f (s))dμ and it allows for a whole range 

of intermediate attitudes toward ambiguity. Unfortunately, a general, behavioral char-
acterization of this class of preferences is not available.57 Furthermore, the intuitive 
interpretation of α as an ambiguity-aversion parameter is not warranted in general: 
Siniscalchi (2006) demonstrates that an α-MEU decision maker with α = 2/3 and 
set of priors specified in (13.2) will have preferences in the Three-Color problem 
that are indistinguishable from one with α = 1 (i.e., MEU ) and set of priors 
{μ∈�(S) : μ(sr)) = 1/3, μ(sb)≥2/9}. The elements α and C of the representation are 
not separately identified.

56  The condition “f  � g implies f  � α · f + (1−α) · g,” known as the Uncertainty Loving condition, captures the opposite 
intuition, and corresponds to the maxmax preference function defined below.

(13.3)W
(

f (·)
)

≡ α · min
μ∈C

∫
U

(
f (·)

)
dμ + (1 − α) · max

μ∈C

∫
U

(
f (·)

)
dμ.

57  Ghirardato et al. (2004) provide an axiomatization, but it turns out (Eichberger et al. (2011)) that their axioms can 
only hold for the cases α = 1 and α = 0. (Klibanoff et al. (2011)) provide a non-degenerate axiomatization of α-MEU 
when the state space describes the realizations of an exchangeable sequence of experiments.
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Lehrer (2012) axiomatizes a special class of MEU preferences in which the set C is 
generated by a partially specified probability. Axiomatizations of MEU which do not 
rely on horse-roulette acts, but require a rich outcome space, have been provided by 
Casadesus-Masanell et al. (2000a,b) and Ghirardato et al. (2003).

13.5.2  Choquet Expected Utility/Rank-Dependent Expected Utility

Another important model of ambiguity aversion, proposed by Schmeidler (1989), is the 
Rank-Dependent or Choquet model. Rather than capturing the individual’s perception of 
ambiguity by means of a family of priors as in the MEU model, it does so by means of a 
single non-additive probability measure (“capacity”) v(·). For example, in the Three-Color 
problem, the individual may have the beliefs

for some ε∈[0,1/3). The fact that ν(sb,sy) > ν(sb) + ν(sy) indicates that there is ambiguity 
about the relative likelihood of a black vs. yellow draw: there is a residual probability 
mass equal to ν(sb,sy) − ν(sb) + ν(sy) that the individual, so to speak, does not know 
how to allocate between sb and sy. On the other hand, ν(sbsy) + ν(sr) = 1 = ν(S),  
which indicates that there is no ambiguity about the probability of drawing a red vs. a 
non-red ball. A nonadditive probability measure can encode both the individual’s assess-
ment of relative likelihoods and the confidence attached to such assessment in a single 
function. Formally, a capacity is defined as a nonnegative real function ν(·) defined over 
an algebra or σ-algebra of subsets of the state space S that satisfies the normalization 
ν(φ) = 0 and ν(S) = 1, and the monotonicity property that E ⊆ F implies v(E) ≤ 
v(F) (a standard probability measure is a capacity since additivity implies monotonic-
ity). Capacities need not be additive, but they still retain the property that the weight 
assigned to a set is not smaller than the weight assigned to any subset.

Note that given this departure from additivity, specifying the capacity of the indi-
vidual states in a finite state space does not fully characterize the capacity. For example, 
equations (13.4) do not pin down a unique capacity, because they leave ν(sr,sb) and 
ν(sr,sy) unspecified.

A key issue is how to compute the integral/expected value of a function with 
respect to a capacity. Consider a finitely-ranged function g : S→R that takes values  
α1, …, αn. The problem is that what might seem like the natural definition, namely

can lead to failures of monotonicity, even in simple cases.58

(13.4)ν(sr) = 1/3, ν(sb, sy) = 2/3, ν(sb) = ν(sy) = ε

∫
g(s)dν(s) =

∑
i
αi · ν

(
{s : g(s) = αi}

)

58  For any capacity with ν(sr) = ν(sb) = ν(sy)= 1/2 and v(sr,sb,sy) = 1, the act {7 if sr;8 if sb;9 if sy} will be assigned the 
value (1/2)·7 + (1/2)·8 + (1/2)·9 = 12, which exceeds the value of 10 assigned to the dominating act {10 if sr;10 if 
sb;10 if sy}. A similar candidate, namely the formula �sg(s)·ν(s), is subject to the same difficulties.
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To resolve this problem, Schmeidler (1986,1989) proposes the use of the Choquet 
Integral. Given a function g : S→R which takes values α1 
 … 
 αn, the Choquet 
integral of g with respect to a capacity ν is defined as

The telescoping property of the respective weights

in this formula ensures that they sum to one, avoiding the difficulties noted in footnote 
58. If the capacity ν is additive, and hence a probability measure, equation (13.5) reduces 
to the standard integral of g with respect to ν. For a general, bounded measurable func-
tion g, the Choquet integral is defined as

where the integrals on the right side are in the sense of Riemann.
The Choquet Expected Utility (or CEU ) representation of preferences over acts f is 

thus

where U(·) is a von Neumann-Morgenstern utility, ν(·) is a capacity, and the integral is 
in the sense of Choquet. This representation is sometimes also called Rank-Dependent 
Expected Utility, with reference to the analogous model of preferences under objective 
uncertainty.59

To see that the CEU model can accommodate Ellsberg in the Three-Color example, 
consider the capacity ν defined by

and set U($100) = 1 and U($0) = 0. Applying equation (13.5) yields V(a1) = 1/3, V(a2) 
=1/6, V(a3) = 1/2 and V(a4) = 2/3, giving the Ellsberg rankings a1 � a2 and a3 ≺ a4.

(13.5)

∫
g(s)dv ≡ α1 ·v({s :g(s)=α1})+�

n
i=2αi ·

[
ν({s : g(s)≥αi})−ν({s : g(s)≥αi−1})

]
.

ν({s : g(s) = α1}), . . . ,
[
ν
(
{s : g(s) ≥ αi}

)
− ν

(
{s : g(s) ≥ αi−1}

)]
, . . . ,[

1 − ν
(
{s : g(s) ≥ αn−1}

)]

∫
g dν =

∫ 0

−∞

[
ν
(
{s : g(s) ≥ α}

)
− 1

]
dα +

∫
∞

0
ν
(
{s : g(s) ≥ α}

)
dα

(13.6)W ( f (·)) ≡

∫
U ( f (·))dv

59  E.g. Quiggin (1982), Yaari (1987), Segal (1987b). See also Section 13.5.3 below.

ν(sr) = 1/3 ν(sb, sy) = 2/3 ν(sb) = ν(sy) = 1/6 ν(sr , sb) = ν(sr , sy) = 1/2
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CEU preferences capture ambiguity aversion (or preference) by allowing the indi-
vidual to exhibit a preference (or aversion) for hedging. Observe that a 50:50 probability 
mixture of the ambiguous acts b1 and b3 in the Two-Color problem yields the completely 
objective (and to an ambiguity averter, strictly preferred) lottery ($100;1/2;$0,1/2). This 
occurs, of course, because b1 yields its best prize $100 for a red draw, whereas b3 yields 
its best prize for a black draw—the two acts are, in a sense, “negatively correlated,” so 
that mixing them in this way reduces the variability of outcomes (or more generally, 
utility) across states. Given a pair of multiple-state acts f = [x1 if s1;…;xn if sn] and g = 
[y1 if s1;…;yn if sn], this effect will occur, in part, for any a pair of states si,sj for which  
xi > xj and yi < yj. When two acts are comonotonic, that is, when xi ≥ xj ⇔ yi ≥ yj for 
all i,  j, probability mixing cannot lead to any hedging.

The Choquet model captures ambiguity aversion/preference by weakening the 
Sure-Thing Principle just enough to allow such a preference/aversion for hedging—
that is, preferences are allowed to violate the key mixture property of the axiom so long 
as, but only so long as, there is actually some potential for hedging. Whenever there is 
no such potential, that is, whenever the acts being mixed are comonotonic, the mixture 
property must continue to hold:

Comonotonic Independence: For every triple of pairwise comonotonic acts 
f,  g,  h, and every α  ∈ (0,1]: f  �  g if and only if α · f + (1–α) · h � α · g + (1-α)· h.

Schmeidler (1986) shows that a function defined on simple (or bounded) measurable 
functions is monotonic, as well as both monotonic and additive with respect to como-
notonic functions, if and only if it is a Choquet integral. Building on this, Schmeidler 
(1989) shows that CEU preferences are characterized by Weak Order, Continuity, 
Monotonicity, Non-Degeneracy, and the Comonotonic Independence Axiom. The 
uniqueness properties of CEU are the same as those for SEU: the capacity ν is unique, 
and utility is unique up to a positive affine transformation.

As noted, CEU preferences needn’t be uncertainty-averse. Schmeidler (1989) dem-
onstrates that a CEU preference function will satisfy the Uncertainty Aversion Axiom 
of Section 13.5.1 if and only if its capacity ν is convex: that is, if for every pair of events 
E,F, ν(E∪F) + ν(E∩F) ≥ν(E) + ν(F). Uncertainty-averse CEU preferences are thus 
also a (strict) special case of MEU preferences, where the set C of priors coincides with 
the core of the capacity ν:

Gilboa (1987) and Sarin and Wakker (1992) provide axiomatizations of CEU in the 
original Savage framework. Nakamura (1990) provides another, in a setting where the 
state space can be finite, provided the set of prizes is suitably rich. Another axiomatiza-
tion of CEU in a fully subjective setting with rich outcomes can be found in Ghirardato 
et al. (2003). The most complete exposition of the rank-dependent model is that of 

C = core(ν) = {μ∈�(S) : ∀E, μ(E) ≥ ν(E)}.
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Wakker (2010). Lehrer (2009) proposes an integral for capacities that coincides with the 
Choquet integral if the capacity is convex, but is different in general.

13.5.3  Segal's Recursive Model

The Recursive Model of Segal (1987a) is the earliest of a group of models which can be 
described as “two-stage.” Ambiguity is modeled by assuming that the probability dis-
tribution μ over the state space S is not known, but random with probability measure 
M over �(S). In the first stage, one particular probability measure μ∈�(S) is realized. 
In the second stage, the state s is drawn according to the distribution μ. The first stage 
may be only an idealization, a fictitious construct that is helpful to describe a particular 
way to evaluate acts; the second stage is real. Here we assume that all measures have 
finite-support.

Under this model, an individual treats a basic act (…;xj if Ej;…) as the two-stage 
prospect (…;(…;xj,Ej; …),μk; …), where μk, the probability distribution (prior) over 
states, is the realization of the first-stage uncertainty, and Ej, the realized event under 
distribution μk, is the realization of second stage uncertainty.60 Each such act has a cor-
responding two-stage objective lottery of the form (…;(…;xj,μ-1(xj); …),M(μk); …). 
The key question is how to evaluate such two-stage acts and lotteries.

An individual who applies the Reduction of Compound Lotteries (ROCL) axiom 
of Section 13.3.1 to collapse this two-stage objective lottery to a single-stage one can-
not exhibit Ellsberg-type preferences: such an individual will be probabilistically sophis-
ticated, with statewise subjective probabilities ∑kμk(si)·M(μk). Segal, however, argues 
that it is appropriate to drop ROCL in such a setting:

“…if a sufficiently long time passes between the two stages of the lottery, then there is no reason 

to make this reduction assumption… It is my belief that decision makers consider the Ellsberg urn 

as a real two-stage lottery, in which the first, imaginary stage and the second, real stage are clearly 

distinguishable. Therefore, they do not feel themselves obliged to obey the reduction of compound 

lotteries axiom…” (1987a, p.178)

Segal begins by assuming the individual has a preference function V(·) defined over 
single-stage lotteries. Given an act f (·) = (…;xj,Ej; …), each measure μ over S induces 
a simple lottery of the form (…;xj,μ(Ej); …) and the individual uses V(·) to determine 
the certainty equivalent CE(f,μ) of this lottery, that is, the value for which

The individual’s uncertainty over the measure μ(·), as represented by the measure 
M(·) over the space �(S), generates the real-valued lottery (…;CE(f,μk),M(μk); …).61 

60  Since it involves the orthogonal state spaces S and �(S), the mixture (…;(…;xj,Ej; …),μk; …) is to be distinguished 
from a two-stage subjective act (…; fj (·) if Ej; …) as defined in Section 13.3.1, which involves subpartitions of (…;{…,Ejk, 
…};…) of a common state space S.

V (CE(f , μ), 1) = V (. . .; xj , μ(Ej); . . .).

61  For simplicity, we assume that the measure M over �(S) has finite support.
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The individual evaluates this lottery again using the function V(·), which yields the 
preference function

Together, this implies the chain of indifferences

or equivalently

where the first object is the subjective act f (·) from states to payoffs which is being 
evaluated, the second is the representation of this act as a map from the set of measures 
μk ∈ �(S) to subjective acts which takes the value f (·) for all μk, the third is the map 
from this set of measures to the act’s certainty equivalent under each measure, and the 
fourth is the objective lottery over these certainty equivalents values implied by the 
probability measure M(·) over the measures.

If the preference function V(·) over objective lotteries is expected utility, then the 
final evaluation reduces to subjective expected utility. However, Segal suggests using 
anticipated utility, or rank-dependent expected utility form (Quiggin (1982), Yaari (1987), 
Segal (1987b)). For a lottery P = (…; αi, pi; …), with α1 > ⋯ > αn, this preference 
function takes the form

As such, it is analogous to the Choquet expected utility form (13.5) over subjec-
tive acts, with the nonadditive capacity v replaced by a nonlinear (and typically convex) 
distortion function δ:[0,1] → [0,1] for which δ(0) = 0 and δ(1) = 1. When δ(·) is linear, 
this form reduces to objective expected utility.

Labeling the induced lotteries Pk = (…;xj,μk(Ej);…) so that V(P1) ≥⋯≥V(Pn), 
and observing that the certainty equivalent of a lottery P is given by U -1(V(P)), the 
Recursive preference function over subjective acts takes the form

(13.7)W ( f (·)) ≡ V (. . . ; CE( f , μk), M (μk); . . .)

f (·) ∼ (. . .; f (·), μk; . . .) ∼ (. . .; CE( f (·), μk), μk; . . .) ∼

(. . .; CE( f (·), μk), M (μk); . . .)

(. . .; xj , Ej; . . .) ∼ (. . .; (. . .; xj , Ej; . . .), μk; . . .)

∼ (. . .; CE((. . .; xj , Ej; . . .), μk), μk; . . .)

∼ (. . .; CE((. . .; xj , Ej; . . .), μk), M (μk); . . .)

V (P) = U (α1) · δ(p1) +

∑n

i=2
U (αi) ·

[
δ(p1 + · · · + pi) − δ(p1 + · · · + pi−1)

]
.

W ( f (·)) = V (P1) · δ(M (μ1)) +

∑n

i=2
V (Pi) ·

[
δ
(
M ({μ1, . . ., μi})

)
− δ

(
M ({μ1, . . ., μi−1})

)]
.
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To illustrate how this model can accommodate Ellsberg preferences in the Three-
Color Urn, keep the normalization U($100) = 1 and U($0) = 0, and suppose that the 
decision-maker assigns probability 1/2 to each of the distributions

Then bet a1 on red induces the same lottery P = {$100;1/3;$0,2/3} under 
either measure, so we can identify it with the degenerate two-stage lottery {P,1} 
to obtain W(α1) = V(P) = δ(1/3). A similar argument establishes W(a4) = V(P) 
= δ(2/3).

Consider now the bet a2 on black. Under distribution μ1 it yields the lottery  
P1 = {$100,2/3,$0,1/3}, while under μ2 it yields P2 = {$100,0;$0,1}. We have 
V(P1) = δ(2/3) and V(P2) = 0, so from equation (13.7), W(a2) = V(P1) · δ(M(μ1)) = 
δ(2/3) · δ(1/2). A similar argument establishes W(a3) = 1 · δ(1/2) + δ(1/3)[1−δ(1/3)]. 
For distortion function δ(p) = (ep−1)/(e−1) these values become62W (a1) = 0.2302 > 
0.2082 = W(a2) and W(a3) = 0.5208 < 0.5516 = W(a4), which yield the Ellsberg 
rankings.

While Segal (1987a) utilizes the same preference function to evaluate single-stage 
lotteries as well as lotteries over certainty equivalents, Segal (1990) considers the pos-
sibility of using different preference functions in the two stages.

13.5.4  Klibanoff, Marinacci and Mukerji’s Smooth Ambiguity Preferences 
Model

The Smooth Ambiguity Preferences Model Klibanoff et al. (2005) (KMM) follows a similar 
two-stage approach. The main differences with Segal’s Recursive Model are that the 
primitives are preferences over horse lotteries, i.e., subjective acts, rather than objective 
roulette lotteries, and that different preference functions are used in the different stages. 
In particular, these are each expected utility functions, with different utility functions. 
This is related to Example 2 in Segal (1990).

In applications, the smooth representation typically takes the following form: for any 
act (horse lottery) f : S→X , the smooth ambiguity index is

where U(·) is the von Neumann-Morgenstern utility function, M is the individual’s sec-
ond-order prior, that is, a probability measure over the set �(S) of measures μ on the state 

(13.8)μ1(sr , sb, sy) = (1/3, 2/3, 0) μ2(sr , sb, sy) = (1/3, 0, 2/3).

62  Segal (1987a, p.185), see also his Theorem 4.2 for a general result along the lines of this example.

(13.9)W (f (·)) =

∫

�(s)
φ

(∫
U (f (·)dμ

)
dM (μ)
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space S, and ϕ(·) is the individual’s second-order utility function. As in Segal’s Recursive 
model, the interpretation is that the individual is uncertain about which probability 
measure μ describes the likelihood of realizations of the state; this second-order uncer-
tainty is modeled using the second-order prior M. Each measure μ determines a dif-
ferent expected utility ∫U(  f (·))dμ or the act f. If the individual simply averaged these 
expected utilities using M, and hence evaluated f according to

this would yield expected utility preferences, where the subjective probability measure is 
the “average measure” that assigns to each event E the probability ∫μ(E)dM(μ). Instead, 
the individual “distorts” the expected utilities ∫U(f(·))dμ using the second-order utility 
function ϕ(·). As we shall see momentarily, concavity of ϕ(·) corresponds to a notion 
of ambiguity aversion. (Similarly, convexity of ϕ(·)corresponds to ambiguity preference, 
and linearity of ϕ(·) corresponds to expected utility and hence ambiguity neutrality.)

To see how this representation can accommodate the modal preferences in the Three-
Color Paradox, suppose that, as in the preceding subsection, the individual assigns equal 
second-order probabilities to the distributions in equation (13.8). Continue to assume 
that U($100) = 1 and U($0) = 0, and let ϕ(r) =

√

r̄. Then W(a1) = ϕ(1/3) = 0.5773 > 
0.4082 = 1/3 · ϕ(1/3) + 1/2 · ϕ(0) = W(a2) and similarly W(a3)=1/2 · ϕ(1/3) + 1/2 · ϕ(1) = 
0.7887 < 0.8165 = ϕ(2/3) = W(a4), as required.

We now show how KMM obtain the representation in equation (13.9); in so doing, 
we also illustrate the formal connection with Segal’s approach.

KMM adopt a decision framework in which, loosely speaking, the realizations of 
objective roulette wheels are modeled as part of the state space; preferences over acts 
that depend only on the roulette-wheel component of the state space are assumed con-
sistent with EU with a uniform prior probability measure. Formally, the state space S is 
the Cartesian product of a set 
 of interest and the interval [0, 1] (the roulette wheel). 
The set of prizes is an interval of real numbers. The individual is endowed with not 
one, but two preference relations. The first, denoted �, is a preference over (standard) 
acts f : S→X . Its restriction to the set of acts that only depend on the roulette-wheel 
component [0, 1] of the state space S is assumed to admit an expected utility repre-
sentation, with a continuous, strictly increasing utility U and a prior λ which is the 
Lebesgue measure on [0,1]. It is clear that, for every roulette lottery P = (…;xi,pi;…) 
with prizes in the set X , there exists an act fP that depends only on the roulette-wheel 
component of the state space and which generates the same probability distribution 
as P, in the sense that λ({r : f  P(ω,r) = xi for all ω}) = pi for all i. For this reason, call 
such acts lottery acts.

∫

�(S)

∫

S
U
(
f (·)

)
dμ dM (μ)
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The second preference relation, denoted �(2), is defined over second-order acts, i.e., 
maps f (2)

: �(S)→X . We return to the interpretation of this relation below. The rela-
tion �(2) is assumed to have an expected utility representation, with continuous, strictly 
increasing utility v (not necessarily equal to U) and probability measure M∈�(�(S)).

The key axiom, Consistency, connects the preferences � on standard acts and �(2) 
on second-order acts. It also indicates how the Smooth Ambiguity Preferences model is 
related to Segal’s Recursive approach. The Consistency axiom formalizes Segal’s analysis of 
the Three-Color Urn in the previous subsection (and is also consistent with Segal’s own 
intended use of the model). We assumed that each act a1,a2,a3,a4 was associated with a col-
lection of single-stage lotteries, corresponding to the probability distributions over states that 
the individual contemplates; then, we evaluated the act by evaluating the two-stage lottery 
obtained by attaching probabilities to each such single-stage lottery. KMM’s Consistency 
axiom makes this process explicit: they associate with each standard act f the second-order 
act f  (2) such that, for every μ ∈ �(S), f (2)

(μ) is a certainty equivalent of the lottery act 
that yields each outcome x in the range of f with probability measure μ(f  -1(x)). Given the 
assumption that preferences over lottery acts are consistent with expected utility, with a 
continuous and strictly increasing (hence, invertible) utility function U(·), this means that

for every μ ∈ �(S). The key assumption is then

Consistency: For all acts f,g, f � g iff f  (2) �(2) g(2).
That is: the ranking of f and g is precisely the ranking of the corresponding second-

order acts f  (2) and g(2).
Consistency and the assumption that preferences over second-order acts admit an 

expected utility representation then immediately imply that standard, first-order acts f 
can be ranked according to

where ϕ(·) = v(U -1(·)) is the second-order utility and M the second-order probability mea-
sure, or second-order prior. This is the representation in equation (13.9). (In KMM, each 
measure μ in the support of the second-order prior is an independent product of 
Lebesgue measure λ on [0,1] and a suitable probability measure on the coordinate of 
actual interest, namely 
. In applications, the Lebesgue component is simply omit-
ted.) Notice that, while this model is commonly referred to as the Smooth Ambiguity 
Preferences model, the function ϕ is not necessarily smooth (though it can be, and typi-
cally is, in applications).

f (2)
(μ) = U−1

(∫
U
(
f (·)

)
dμ

)

W
(
f (·)

)
=

∫

�(S)

v
(
f (2)

(μ)

)
dM (μ) =

∫

�(S)

φ

(∫
U
(
f (·)

)
dμ

)
dM (μ)
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The interpretation of second-order acts requires some elaboration. KMM acknowl-
edge that a direct interpretation of them as bets on different elements in �(S) is not 
straightforward:

“there is a question whether preferences with respect to these acts are observable. The mapping 

from observable events to events in �(S) may not always be evident. When it is not evident we 

may need something richer than behavioral data, perhaps cognitive data or thought experi-

ments” (p. 1854).

If second-order acts are not directly observable, then the second-order utility v and 
second-order probability measure M should be thought of solely as a way to provide a 
numerical representation of preferences over first-order, standard acts. The question is 
then whether these objects can be identified on the basis of preferences over standard 
acts alone. In general, the answer is negative: for a trivial example, observe that if the 
second-order utility φ(·) is linear (equivalently, if v = U), one can equivalently replace 
a given second-order probability measure M with one that is concentrated on the 
“average probability measure” ∫μdM(μ) without changing first-order preferences at all. 
As KMM indicate, it is an open question to what extent and under what conditions 
φ(·) and M can be identified from first-order preferences alone. For an environment in 
which uncertainty concerns infinitely many repetitions of an experiment, a positive 
answer is provided by Klibanoff et al. (2011) under a “symmetry” restriction on prefer-
ences. A related result can be found in Al-Najjar and De Castro (2013).

On the other hand, there are settings in which second-order acts are observable. An 
obvious example are experiments involving physical devices: one can resolve bets on the 
composition of an urn by simply opening the urn and examining its contents. Bets on 
long-run averages can also be thought of as observable second-order acts, though argu-
ably only as idealizations or approximations. However, in these cases, first- and second-
order acts only differ because they depend on different “coordinates” of the state space; 
the model in equation (13.9) essentially allows the individual to be differently risk-averse, 
depending on the source of uncertainty. In other words, rather than ambiguity attitudes, 
the smooth model reflects issue preference, which we consider in the following section.

An alternative axiomatization of the Smooth Ambiguity Preferences model is pro-
vided by Seo (2009). That paper takes a different approach. The individual is assumed to 
have preferences over roulette-horse-roulette acts (see Section 13.3.4). The key assump-
tion is that individuals do not reduce compound lotteries, though they satisfy a suitable 
“dominance” property. Seo obtains an extension of the representation in equation (13.9) 
to lotteries over horse-roulette acts; the function φ(·) captures both attitudes towards 
ambiguity and violations of reduction. Thus, one implication of his model is that an 
agent who reduces compound objective lotteries must be ambiguity-neutral. There is 
some evidence that attitudes toward reduction and ambiguity are correlated (Halevy 
(2007)); however, one may wish for a model that does not impose perfect correlation 
between these distinct behavioral traits.
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The main attraction of the Smooth Ambiguity Preferences model is its tractability. 
The numerical example above suggests that calculations may involve simple adapta-
tions of familiar expected utility analysis. As further evidence, KMM show that con-
cavity of the second-order utility function φ(·) corresponds to a notion of “ambiguity 
aversion” which implies Schmeidler’s Uncertainty Aversion Axiom (although their 
notion is defined in terms of second-order beliefs, and hence subject to the preceding 
qualifications).

13.5.5  Ergin and Gul’s Issue-Preference Model

Ergin and Gul (2009) propose a variant of Segal’s two-stage approach, and provide an 
elegant axiomatization in a Savage-style environment. Their model highlights a different 
interpretation of the Ellsberg Paradoxes.

To illustrate, it is useful to rephrase the Three-Color Paradox slightly. Imagine that 
the balls in the urn are numbered from 1 to 90. Balls numbered 1–30 are known to be 
red. Balls numbered 31–90 may be either black or yellow: the color of each of these 
balls is not known. Thus, the experiment involves two sources of uncertainty, or issues: the 
number of the ball drawn, and the colors of balls 31–90. Importantly, these issues are 
independent: if you learn the number of the ball drawn, that does not tell you anything 
about the colors of balls 31–90, or conversely.

This richer description can be modeled using a two-coordinate state space, for 
example

Denote an arbitrary state in S by s = (n,c), where n is the number of the drawn ball 
and c is a color assignment, i.e., the vector (c31, …, c90). The bets in the Three-Color 
Paradox can then be modeled as follows (with some abuse of notation, we use the same 
letters as in Section 13.1): the bets on “red” and “black or yellow” correspond respec-
tively to

 

.

The bets on “black” and “red or yellow,” on the other hand, correspond to

S = {1, . . ., 90} × {c = (c31, . . ., c90) : ∀i, ci ∈ {b, y}}.

a1 ((n, c)) =

⎧
⎨

⎩
$100 n = 1, . . ., 30

$0 n ≥ 31
and a4 ((n, c)) =

⎧
⎨

⎩
$0 n = 1, . . ., 30

$100 n ≥ 31

a2 ((n, c)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

$0 n = 1, . . ., 30

$100 n ≥ 31 and cn = b

$0 n ≥ 31 and cn = y

and a3 ((n, c)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

$100 n = 1, . . ., 30

$0 n ≥ 31 and cn = b

$100 n ≥ 31 and cn = y .
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An obvious difference between a1 and a4 on one hand, and a2 and a3 on the 
other, is that the former only depend upon the number of the ball drawn, whereas 
the latter depend upon both the number of the ball drawn and the color assignment 
to balls 31…90 (in particular, the color of the ball drawn). Now suppose that the 
individual has probabilistic beliefs, and in particular believes that every ball is equally 
likely to be drawn, and also that, independently, every color assignment is equally 
likely to have occurred. This implies that, for both acts a1 and a2, the probability of 
receiving $100 is 1/3; similarly, the probability of winning is 2/3 for both acts a3 
and a4. The Ellsberg preferences a1 � a2 and a3 ≺ a4 can then interpreted as follows: 
despite the fact that the winning probabilities in each comparison are the same, the 
individual prefers bets that only depend upon the first issue (here, the number of the 
ball drawn) to bets that depend upon both issues (the number as well as the color 
assignment).

Recall that an individual is probabilistically sophisticated if he or she evaluates an act 
f = (…;xj,Ej;…) by first reducing it to a lottery Pf = (…;xj,μ(Ej);…) where μ is their 
subjective probability over the state space S, and then applying a suitable preference 
function over lotteries. Even in the above modified formulation of the Three-Color 
Urn bets, Ellsberg preferences are not probabilistically sophisticated—acts that induce 
the same probability distribution over prizes are strictly ranked. However, Ergin and Gul 
note that they are second-order probabilistically sophisticated, in the sense that each act is 
evaluated by first reducing it to a compound lottery, in which the first stage corresponds 
to the assignment of colors to balls 31,…,90 and the second stage corresponds to the 
draw of a numbered ball from the urn, and then applying a suitable compound-lottery 
preference function. This reduction of acts to compound lottery is essentially what was 
done in order to apply Segal’s two-stage model to the Three-Color Paradox. Ergin 
and Gul point out that this form of reduction is a higher-order version of probabilistic 
sophistication and, more importantly, provide a complete axiomatization of the result-
ing preferences.

Their axiomatization builds upon that of Machina and Schmeidler (1992) for 
probabilistically sophisticated preferences in a Savage framework (Section 3). To provide 
some detail, assume that the state space is a Cartesian product, S = Sa × Sb, where 
the two coordinates correspond to issue a and issue b. In the Three-Color Urn, issue 
a is the number of the ball drawn, and issue b is the color assignment. The Machina-
Schmeidler Strong Comparative Probability axiom is applied only to acts that depend 
solely on issue a. Ergin and Gul’s key novel axiom, a∣b Strong Comparative Probability, 
serves three purposes. First, it implies that Strong Comparative Probability also holds for 
acts that depend solely on issue b. Second, it implies that the two issues are statistically 
independent, as in the example. Third, it implies, loosely speaking, that the individual is 
concerned with second-order risk related to issue b, and not second-order risk related 
to issue a (Ergin and Gul (2009, p.906) provide an illustration).
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To formally describe the Ergin-Gul representation, note that exploiting the product 
structure of the state space allows an act f to be represented as

where {A1,…,An} is a partition of Sa, {B1, . . ., Bm} is a partition of Sb, and xij is the 
prize delivered by f at all states s ∈ Ai ×Bj. Given a product measure μ = μa × μb on 
S, associate with f the two-stage compound lottery

Under Ergin and Gul’s axioms, there exists a unique product measure μ = μa × 
μb on S such that every act f is evaluated according to W ( f(·)) = V∗(Pf

∗), where Pf
∗ 

is the compound lottery associated with f and V∗ is a suitably continuous preference 
function on two-stage lotteries that satisfies stochastic dominance; again, see the original 
paper for details. If a version of Savage’s Sure-Thing Principle is imposed, this function 
reduces to two-stage expected utility with different utility functions, as in the Smooth 
Ambiguity Preferences model of Section 13.5.3. If instead a Comonotonic Sure-Thing 
Principle axiom is imposed, the first-stage lottery is evaluated using a Choquet integral. 
Ergin and Gul also draw a formal connection between uncertainty aversion and issue 
preference.

Nau (2006) proposes a related model, which allows for state-dependent preferences 
but restricts attention to additive representations in both stages. Different perspectives 
on source preference are suggested by Chew and Sagi (2008) and Abdellaoui et al. 
(2011). Finally, Skiadas (2013) assumes that prizes are monetary and preferences over 
acts are scale-invariant: (…; xj,Ej;…) � (…; yj,Fj;…) if and only if, for every real number 
α > 0, (…;α · xj,Ej;…) � (…;α · yj,Fj;…). This yields a two-stage expected utility repre-
sentation a la Ergin and Gul, with different constant relative risk averse utility functions 
for the two stages.

13.5.6  Vector Expected Utility

Siniscalchi (2009a) proposes a different approach to modeling ambiguity-sensitive pref-
erences. There are three key ingredients in this approach. First, the individual evaluates 
acts by a process reminiscent of “anchoring and adjustment” (Tversky and Kahneman 
(1974)). Second, the anchor is a standard expected utility evaluation, where expectations 

f =

⎛

⎜⎜⎜⎜⎜⎜⎝

x11 · · · x1m A1
...

. . .
...

...

xn1 · · · xnm An

B1 · · · Bm

⎞

⎟⎟⎟⎟⎟⎟⎠

P∗

f =

(
. . .;

(
. . .; xij , μa(Ai)

)
, μb(Bj); . . .

)
.



Ambiguity and Ambiguity Aversion 767

are taken with respect to a baseline subjective probability measure. Third, the adjustment 
depends upon a measure of statistical similarity of the act under consideration with 
“examples” or “models” of ambiguous acts.

The proposed representation is called vector expected utility (VEU) because a key role 
is played by a vector of expectations. Specifically, the VEU representation evaluates acts 
according to

where μ is the baseline prior, ζ1,…,ζn are adjustment factors, i.e., real-valued functions on 
the state space S that satisfy ∫ ζi dμ = 0, cov(·,·) denotes covariance (computed with 
respect to μ), and A(·) is the adjustment function, which satisfies A(0,…,0) = 0 and A(ϕ) 
= A(−ϕ) for every vector ϕ. Notice that, due to the normalization of the adjustment 
factors ζ1,…,ζn,

To see how the VEU model accommodates Ellsberg preferences, consider a simple 
specification with a single adjustment factor ζ1, defined by

a uniform baseline prior, and the adjustment function

The adjustment factor ζ1 can be interpreted as a bet whereby the individual wins or 
loses one util, depending on which of the two ambiguous colors is drawn, but nothing 
happens if the unambiguous color red is drawn.63 Intuitively, this suggests that ζ1 is a 
“purely ambiguous” bet, and indeed a model of the kind of bets that are ambiguous in 
this problem.64

A related interpretation of the adjustment factor ζ1 formalizes the following intu-
ition, proposed by Epstein and Zhang (2001) for the modal preferences in the Ellsberg 
Paradox:

“The intuition for this reversal is the complementarity between sb and sy—there is imprecision 

regarding the likelihood of sb, whereas {sb, sg} has precise probability 2/3” (p. 271; boldface added 

for emphasis, and notation adapted to this chapter).

(13.10)

W ( f (·)) =

∫
U ( f (·)) · dμ + A

(
cov

(
U

(
f (·)

)
, ζ1

)
, . . . , cov

(
U ( f (·)), ζn

))

cov
(
U

(
f (·)

)
, ζi

)
=

∫
U

(
f (·)

)
· ζi · dμ.

ζ1(sr) = 0 ζ1(sb) = 1 ζ1(sy) = −1

A(ϕ) = −|ϕ|.

63  For the sake of this interpretation, assume that initial utility is constant and normalized to zero.
64  This intuitive interpretation corresponds closely to the way adjustment factors are formally identified from preferences: 

see Section 4.1 in Siniscalchi (2009a).
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The fact that ζ1(sb) = 1 whereas ζ1(sr) = 0 reflects the perception that sb is ambiguous 
but sr is not; setting ζ1(sy) = −1 indicates that ambiguity about sb and sy “cancels out.” 
In this sense, sb and sy are complementary in the VEU representation; this formalizes the 
Epstein-Zhang interpretation. (The relationship with the previous interpretation is that, 
in order for ζ1 to be a purely ambiguous bet in this example, it must reflect the comple-
mentarity between sb and sy .)

We now verify that the VEU representation proposed here induces the Ellsberg 
rankings.

In the calculation of W(a4), the covariance term is zero precisely because ambigu-
ity about sb and sy cancels out: cov(U(a4), ζ1) = 1/3 · ∑sζ1(s)a4(s) = 1/3 · (0·0 + 1·1 + 
1· (−1)) = 0.

The key axiom in the characterization of VEU preferences is Complementary 
Independence. A preliminary definition: two acts f, f  c are complementary if the mixture 
1/2·f + 1/2·f  c is a constant act. Intuitively, complementary acts are the “negative” of each 
other, up to a constant. An important feature is that they share the same prize variability, 
or volatility: if the (utility of the) prizes delivered by f at different states varies a lot, the 
same is true of prizes delivered by f  c, except that prizes vary in opposite directions. The 
main axiom for VEU preferences is then

Complementary Independence: For all acts f, g, f  c, g c such that f, f  c and respectively 
g, g c are complementary: if f  � f  c and g � g c, then 1/2·f + 1/2·g � 1/2·f  c + 1/2·g c.

When comparing complementary acts, variability cannot play a role because, as just 
noted, any two complementary acts have the same volatility. The axiom requires that, 
absent volatility considerations, a form of Independence must hold. This implies that any 
departures from expected utility must be determined by attitudes toward variability. For 
further interpretation, the reader is referred to the Siniscalchi (2009a).

VEU preferences can accommodate a wide range of ambiguity attitudes. If the 
Uncertainty Aversion Axiom is imposed, the function A must be negative and concave. 
It turns out that a negative, but not necessarily concave function A also captures a 
notion of ambiguity aversion; we discuss this further in Section 13.6.

Chambers et al. (2013) consider preferences that admit a representation similar to 
that of equation (13.10), but with an arbitrary aggregator to combine the baseline 

W (a1) = 1/3 − |0| = 1/3

W (a2) = 1/3 − |1/3| = 0

W (a3) = 2/3 − | − 1/3| = 1/3

W (a4) = 2/3 − |0| = 2/3
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expectation and adjustment terms. They adopt the Complementary Independence 
axiom, and also require a form of uncertainty aversion. See also Grant and Polak 
(2013).

13.5.7  Variational and Multiplier Preferences

The Uncertainty Aversion Axiom of Section 13.5.1 is common to a broad class of pref-
erence models. In addition to MEU preferences, suitable parameterizations of smooth 
ambiguity, Ergin-Gul, and VEU preferences also satisfy it. As we will discuss in Section 
13.6, its interpretation is not entirely straightforward, or uncontroversial; on the other 
hand, the fact that it is a familiar and analytically convenient quasiconcavity assump-
tion has made it an obvious reference point in the theoretical and applied literature on 
ambiguity-sensitive preferences. This subsection and the next two discuss other prefer-
ence models that satisfy Uncertainty Aversion, and can be thought of as direct general-
izations of the MEU specification.

To introduce these models, recall that the characterization of MEU preferences 
also involves Certainty Independence. Unlike the Uncertainty Aversion Axiom, 
Certainty Independence is seen to be quite restrictive. We noted in Section 13.5.1 
that, when an act such as a2 (bet on black) in the Three-Color-Urn is mixed with 
a constant act, no hedging occurs: like the act a2, the mixture yields a strictly better 
prize in case a black ball is drawn than if a yellow or red ball is drawn. By way of 
contrast, mixing a2 with a bet on yellow results in an act which delivers a good prize if 
either of the ambiguous colors is drawn. However, mixing a2 with a constant act does 
have two potentially important effects. First, it reduces the utility variability across the 
two ambiguous states sb and sy: for instance, a2 yields utility U($100) and U($0) in case 
a black or, respectively, nonblack ball is drawn, whereas a 50:50 mixture of a2 with 
the constant act $0 yields 1/2·U($100) + 1/2·U($0) and U($0) respectively. Second, 
mixing with a constant act also shifts utilities up or down: to see this, compare the 
utilities delivered by a 50:50 mixture of a2 with $0 to those delivered by a 50:50 mix-
ture of a2 with $100, namely U($100) for a black ball and 1/2·U($100) + 1/2·U($0) 
for a nonblack ball.

Both of these changes may potentially affect preferences. After all, in choice under 
risk, changes in the scale (i.e., outcome variability) and location (upward/downward shifts) 
of monetary prizes can affect preferences. For instance, if preferences exhibit decreasing 
absolute risk aversion, an individual becomes more willing to take bets as their initial 
(nonrandom) wealth increases, i.e., shifts upward. Similarly, unless preferences display 
constant relative risk aversion, an individual with constant initial wealth may accept a 
given bet, but turn it down if both their wealth and the stakes in the bet are doubled (or 
vice versa). Arguably, it would be desirable to allow for similar behavior in the context 
of ambiguity: changing the scale and/or location of utilities may influence preferences. 
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However, Certainty Independence is a location- and scale-invariance assumption, so 
such phenomena are ruled out.

13.5.7.1  Variational Preferences
Motivated in part by these considerations, Maccheroni et al. (2006a) propose a weaken-
ing of Certainty Independence:
Weak Certainty Independence: For all acts f,  g, constant acts x, y and all α ∈ (0, 1]: if 
α·f + (1−α)·x � α·g + (1−α)·x, then α·f + (1−α)·y � α·g + (1−α)·y.

This axiom assumes invariance to changes in the location, but not the scale, of utili-
ties. In the Three-Color Urn problem, it allows for the following pattern of preferences:

A possible interpretation might be that, by scaling down the utilities of the acts 
involved in the comparison, the individual becomes less sensitive to the fact that black 
is an ambiguous color but red is not. (We do not claim that such preferences would be 
reasonable or natural, merely that they are allowed by Weak Certainty Independence.) 
At the same time, Maccheroni et al.’s axiom still requires that, since the 50:50 mixture 
of a1 with $0 is considered worse than the 50:50 mixture of a2 with $0, the same must 
be true if $0 is replaced with $100.

Maccheroni et al. show that the Weak Order, Non-Degeneracy, Monotonicity, 
Continuity, Uncertainty Aversion and Weak Certainty Independence Axioms are neces-
sary and sufficient for the existence of a representation of the form

where c : �(S)→[0, ∞] is a lower semicontinuous, convex cost function that satisfies  
infμc(μ) = 0. They call equation (13.11) the variational representation of preferences.

The cost function c(·) is the key ingredient of the representation. Once a utility 
function has been fixed, a “canonical” or “minimal” cost function is uniquely identified 
(refer to Maccheroni et al. for details). If the utility function U is replaced with a positive 
affine transformation α·U + β, the cost function c must be replaced with α·c. 

Observe that the minimization in equation (13.11) is over all priors over the state 
space S. However, one can obtain MEU preferences as a special case as follows: fix a 
compact, convex set C of priors, and define

(such a function is often called an “indicator function” in convex analysis). With this 
specification of the cost function, it is clear that a prior μ /∈ C will never be a solution 

a1 > a2 and 1/2·a1 + 1/2·0 < 1/2·a2 + 1/2·0.

(13.11)W
(
f (·)

)
≡ min

μ∈�(S)

∫
U
(
f (·)

)
dμ + c(μ)

c(μ) =

⎧
⎨

⎩
0 μ ∈ C

∞ μ /∈ C
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of the minimization problem in equation (13.11) whereas priors in C are costless, so the 
minimization problem reduces to that in equation (13.1).

Maccheroni et al. propose the following “malevolent Nature” interpretation. When 
the individual contemplates choosing an act f, Nature tries to minimize its expected 
utility. To do so, she can choose any prior μ ∈ �(S); however, to choose μ, Nature must 
pay a cost c(μ). In the case of MEU preferences, priors in C are costless, and all other 
priors are infinitely costly; however, the variational representation allows for intermedi-
ate cases as well—that is, for priors that have a nonzero but finite cost. Nature’s problem 
is thus to minimize the sum of the individual’s expected utility and the cost of priors.

Skiadas (2013) also axiomatizes a version of Variational Preferences with constant 
relative risk averse utility.

13.5.7.2  Multiplier Preferences
Another special parameterization of Variational Preferences deserves special mention. 
Hansen and Sargent (2001) and Hansen et al. (1999) consider the following specification:

where attention is restricted to countably additive probability measures when the state 
space is infinite, θ ≥ 0 is a parameter, and R(μ∥μ∗) denotes the relative entropy of the 
prior μ with respect to a reference prior μ∗. The latter is defined as

if μ is absolutely continuous with respect to μ∗, and R(μ∗∥μ∗) = ∞ otherwise. This 
defines the so-called Multiplier Preferences preference function. Equation (13.12) is a 
special case of equation (13.11), yielding tractability since the explicit solution to the 
problem in equation (13.12) is known, and indeed one can show that

(the reason for the two consecutive minus signs will be clear momentarily). An exact 
characterization of Multiplier Preferences within the class of Variational Preferences is 
provided by Strzalecki (2011).

The above equation indicates that, if one restricts attention to horse lotteries, i.e. acts 
that map states to prizes (rather than to roulette lotteries over prizes), Multiplier Preferences 
are ordinally equivalent to SEU preferences with utility function −exp(−θ−1·U(·)). To 
see this, note that W(f(·)) is the composition of the function ∫−exp(−θ−1·U(·)) dμ 

(13.12)W
(

f (·)
)

≡ min
μ∈�(S)

∫
U
(

f (·)
)

dμ + θ · R(μ||μ
∗

)

R
(
μ||μ

∗
)

=

∫ (
log

dμ

dμ
∗

)
dμ

W
(

f (·)
)

= −θ · log

{
−

∫
− exp

(
−

U
(

f (·)
)

θ

)
dμ

∗

}
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which takes on strictly negative values, with the function x → −θ log(−x), which is 
strictly increasing when restricted to the negative reals. On the other hand, if one restricts 
attention to roulette lotteries, the individual’s risk preferences are represented by U(·). In 
other words, one can interpret the multiplier-preferences model as postulating that the 
individual is more risk-averse toward subjective risk than toward objective risk. The idea that 
risk attitudes may be source-dependent was discussed in Section 13.5.5.

13.5.8  Confidence-Function Preferences

Chateauneuf and Faro (2009) propose a model that is “dual” to Variational Preferences: 
whereas the latter relax the scale-invariance requirement of Certainty Independence 
but preserve location-invariance, Chateauneuf and Faro’s Confidence-Function Preferences 
retain scale invariance but drop translation invariance. More precisely, these authors 
assume that the set X  of prizes contains a worst element x∗, and impose

Worst Independence: For all acts f,   g and all α ∈ (0, 1]: f ∼g implies α · f + (1−α)·x∗ 
∼α·g + (1−α)·x∗.

Together with Weak Order, Continuity, Monotonicity, Ambiguity Aversion and 
other axioms, Worst Independence characterizes the following representation:

where the utility function U(·) satisfies U(x∗) = 0, α is a parameter in (0, 1], and ϕ(·) 
is an upper semicontinuous, quasiconcave function on �(S) that satisfies ϕ(μ) = 1 for 
some prior μ.

The proposed interpretation is that ϕ(·) measures the “degree of confidence” that 
the individual assigns to the different measures. Nature is malevolent, and wants to mini-
mize the individual’s expected utility. However, she must choose only priors to which 
the individual assigns a high enough level of confidence. Furthermore, Nature must pay 
a multiplicative cost ϕ(μ)−1 to choose the prior μ.

Confidence-function preferences are positively homogeneous: if all utility values are 
multiplied by some constant β > 0, the function in equation (13.13) is also multiplied by 
β. If utility is also positively homogeneous, i.e., if it displays constant relative risk aver-
sion, then the overall representation of preferences is also positively homogeneous. This 
is convenient in certain applications, especially in financial economics. Furthermore, it 
makes it possible to invoke standard results on the existence of a representative agent.

13.5.9  Uncertainty-Averse Preferences

Cerreia-Vioglio et al. (2011a) characterize the class of preferences that satisfy Continuity, 
Monotonicity and Uncertainty Aversion, in addition to Independence on lotteries and 

(13.13)W
(
f (·)

)
= min

μ:ϕ(μ)≥α

1

ϕ(μ)

∫
U
(
f (·)

)
dμ
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certain other technical assumptions. In other words, they drop both location and scale 
invariance. Their powerful result unifies all the models that generalize MEU, as well as 
many other specifications, such as the Smooth Ambiguity Preferences model. The gen-
eral Uncertainty-Averse Preferences representation is

where the function G : R × �(S)→(–∞, +∞] is quasiconvex, increasing in the first 
variable, and satisfies infμ∈�(S)G(t, μ) = t for all t.

Due to their generality, Uncertainty-Averse Preferences representations are only 
unique in a weak sense. For a fixed utility function, there is a minimal function G(·,·). 
If a positive affine transformation of U is taken, G must be suitably rescaled.

MEU preferences are, of course, also Uncertainty-Averse Preferences, with

Variational Preferences correspond to the special case

whereas Confidence-Function Preferences obtain if

Finally, recall that Smooth Ambiguity Preferences also satisfy Uncertainty Aversion, 
provided the second-order utility function ϕ(·) is concave. Under additional technical 
assumptions, Cerreia-Vioglio et al. (2011a) show that the Smooth Ambiguity Preference 
representation can be written as in equation (13.14), with

where M ′ is the second-order probability measure in the Smooth Ambiguity Preferences 
representation, �(μ) is the set of second-order measures N ′

∈ �(�(S)) that reduce to 
μ, in the sense that

(13.14)W ( f (·)) ≡ min
μ∈�(S)

G
(∫

U ( f (·))dμ, μ
)

G(t, μ) =

⎧⎨
⎩

t μ ∈ C

∞ μ /∈ C
.

G(t, μ) = t + c(μ)

G(t, μ) =

⎧⎨
⎩

t
ϕ(μ)

ϕ(μ) ≥ α

∞ ϕ(μ) < α
.

G(t, μ) = t + min
M ′

∈�(μ)

It
(
M ′

|M
)

∫

�(S)

π(E)dM ′

(π) = μ(E)
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for every event E ⊆ S, and It(M
′

|M) is a so-called statistical distance function, i.e., a 
nonnegative, lower semicontinuous, quasiconvex function that satisfies It(M∣M) = 0 (a 
specific formula is provided by Cerreia-Vioglio et al., 2011a). In other words, Nature 
attempts to minimize the expected utility of the act under consideration by choosing 
a probability distribution μ, at a cost given by the result of the minimization problem 
above. The latter has an interesting “prior uncertainty” interpretation: out of all second-
order probability measures M ′ whose reduction equals μ, Nature chooses the one clos-
est to M. As for Multiplier Preferences, the intuition is that, while M is the individual’s 
“preferred” second-order belief, measures M ′ close to it are also plausible.

13.5.10  Gul and Pesendorfer’s Expected Uncertain Utility

Gul and Pesendorfer (2013) introduce a new model that can accommodate Ellsberg 
preferences, as well as source preference. Their model applies to a setting a la Savage, 
with an infinite state space S and outcomes in some real interval [l, m]. The key intuition 
is that the individual is able to assign probabilities to a (suitably rich) collection of events, 
but displays complete ignorance with respect to all other events.

Formally, the proposed representation, Expected Uncertain Utility (EUU) starts with 
a σ-algebra �, which comprises the events whose likelihood the individual can confi-
dently assess. A countably additive and nonatomic measure μ represents beliefs on �. 
The EUU model ranks �-measurable acts according to expected utility; these acts are 
“unambiguous.” The question is how to rank an arbitrary Savage act f : S→[l, m] that is 
not �-measurable. To do so, according to EUU, the individual brackets any act f between 
a lower �-measurable approximation f1 and an upper �-measurable approximation f2, 
in the sense that

and furthermore such pair (f1, f2) is the “tightest” approximation of f: if there is another 
pair (g1, g2) with the same property, then μ({s : g1(s) ≤  f1(s) ≤  f2(s) ≤  g2(s)}) = 1. The last 
ingredient of the EUU representation is a continuous, increasing interval utility function, 
that is, a map U(·,·) from the set I = {(x, y):x ≤ y} to R. The interpretation is that U(x, y) 
is the utility of receiving a prize somewhere in the interval [x, y], when the individual 
is completely ignorant as to which prize in this interval he or she will actually receive. 
The representing function is then

To see how this representation works, consider a bet on an event A, i.e., an act 
f  =  (x,A; y,∼A) with x > y (which implies that x is strictly preferred to y). If the event 

μ({s : f1(s) ≤ f (s) ≤ f2(s)}) = 1

(13.15)W ( f (·)) ≡

∫
U (f1(·), f2(·))dμ.
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A is not in �, the measure μ does not assign a probability to it; however, we can consider 
the quantity sup {μ(E) : E ∈ �, E⊆A}. There will be an event E1 ∈ � that attains this 
supremum. Similarly, there is an event E2 ∈ � that attains sup {μ(E) : E ∈ �, E ⊆∼ A}.  
A bracketing of the binary act f is then given by f1 = (x, E1; y, ∼E1) and f2(x, ∼E2; y, 
E2). Then

This has an intuitive interpretation. On the unambiguous event E1 ⊆ A, the indi-
vidual receives x for sure. Similarly, he or she receives y on E2 ⊆ ∼A. How about states 
that belong to neither E1 nor E2? Some of these states are in A, and some are in ∼A, 
but the individual is unable to rank the relative likelihood of A\E1 and (∼A)\E2. Thus, 
according to EUU, he or she assigns to all such states the interval utility value U(y, x)—
by definition, the utility assigned to receiving some prize between y and x.

The authors provide an elegant, Savage-style axiomatization of EUU. The events 
in � are identified as those events for which Savage’s Sure-Thing Principle P2 holds, 
provided it holds for their complement as well. An axiom in the spirit of Savage’s P6 
ensures the existence of a rich collection of such events. Furthermore, a rich collec-
tion of events similar to ∼(E1∪E2) in the above example is also assumed. The reader is 
referred to the original paper for further details.

13.5.11  Bewley’s Incomplete-Preference Model

A common feature of all the preceding models is that, despite the presence of ambigu-
ity, the individual was assumed to be able to rank all acts, or all suitably measurable acts. 
Bewley (2002, 2011) proposes a different approach: he assumes that, due to ambiguity, 
some acts may simply not be comparable. For example, Bewley’s take on the Three-
Color Paradox is that, quite simply, the individual is unable to compare a bet on red to 
a bet on black, or a bet on red or yellow to a bet on black or yellow.

He proposes a representation of incomplete preferences that features a set C of 
probability distributions, as in MEU. According to his model, for any two acts f,  g,  f is 
preferred to g if and only if

This is sometimes called the unanimity rule: all priors in C must “agree” that f is bet-
ter than g. This representation plays a role in recent developments on the definition of 
ambiguous beliefs, as in Section 13.6.

To complement this incomplete decision criterion, Bewley suggests an inertia assump-
tion, which is essentially a form of status-quo bias: if an act f describes the individual’s 

W ( f (·)) = U (x, x)·μ(E1) + U (y, y)·μ(E2) + U (y, x)·μ(∼ (E1 ∪ E2)).

∫
U

(
f (·)

)
dμ ≥

∫
U

(
g(·)

)
dμ ∀μ ∈ C.
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initial endowment, or default option, and there is no act g that is strictly better than f 
according to the above criterion, the individual retains f.

The connection between inertia and the status-quo bias is formalized in Ortoleva 
(2010). This paper takes as primitive a collection of preferences over acts, of which one 
is an “unconditional” preference, and the others are preferences “conditional” upon 
an exogenously given status-quo act. Under suitable axioms, the joint representation 
of these preferences identifies an underlying incomplete, Bewley-style preference, and 
involves inertia.

13.5.12  Models with “Objective Ambiguity”

Ambiguity and ambiguity attitudes have also been modeled by extending von Neumann 
and Morgenstern’s analysis of expected utility under objective uncertainty rather than 
Savage’s axiomatization of expected utility under subjective uncertainty.

One approach in this strand of the literature identifies ambiguous bets and acts with 
sets of lotteries. For instance, a bet on the ambiguous color black in the Three-Color 
Paradox can be identified with the set {($100, α; $0,1−α):α ∈ [0, 2/3]}. An unambiguous 
act such as a bet on red is instead identified with the singleton set {($100,1/3;$0,2/3)}. 
These sets of lotteries are not part of a parametric representation: in this model, they are 
the objects of choice. A state space is not specified. The individual is characterized by 
a preference ordering � over sets of objective lotteries. Preferences over singleton sets 
obey the von Neumann-Morgenstern axioms; the interest is chiefly in the way nons-
ingleton sets are evaluated.

Olszewski (2007) characterizes the α-MEU criterion, with α strictly between 0 and 
1. Ahn (2008) proposes the criterion

where μ is a measure over all lotteries that is “conditioned” on each menu A, U is 
a von Neumann-Morgenstern utility, and ϕ is an increasing function. Dumav and 
Stinchcombe (2013) provide a general analysis of linear representations of preferences 
over sets of lotteries, and investigate the connection with models that do employ a state 
space, such as the ones described in Sections 13.5.1–13.5.11.

A related literature considers preferences over tuples consisting of a set of prob-
ability distributions on a state space, an act, and possibly a reference probability. Sets of 
probability distributions can be interpreted as representing imprecise information, perhaps 
obtained by econometric techniques. The issue of interest is how to model the indi-
vidual’s attitudes toward such imprecise information.

Gajdos et al. (2008) consider preferences over pairs (P, f  ) of probability sets and acts 
(note that it is assumed that comparisons with different sets of probability distributions 

V (A) =

∫
φ (U (P)) dμ

μ(A)
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are also observed). A first, general representation evaluates such a pair by a maxmin cri-
terion applied to a suitably selected subset of P. Under additional assumption, an elegant 
representation is obtained for finite state spaces, in which (P, f  ) is evaluated according 
to a weighted average of the minimum expected utility over P and the expected utility 
with respect to the Steiner point of P (a construct which generalizes the notion of center 
of gravity). Wang (2003) instead considers preferences over tuples (P, p, f  ), where P is 
a set of probability distributions, p is a reference prior (a distinguished element of P) 
and f is an act. He axiomatizes a MEU criterion in this set, as well as an analog of the 
Multiplier Preferences representation of Hansen and Sargent (2001).

Viscusi (1989) proposes a different approach within the von Neumann-Morgenstern 
framework, termed Prospective Reference Theory. He suggests that “stated” probabilities 
in a lottery are not necessarily taken at face value by the individual. Rather, they are 
interpreted as signals about the “true” probabilities. Individuals then behave accord-
ing to a weighted average of the stated probability and a prior, or baseline, probability; 
importantly, they may attribute different weights to the stated probabilities of different 
events. In particular, they may assign greater weight to the stated probability of a red 
draw from the Three-Color Ellsberg urn than to the stated probability of a black draw; 
correspondingly, they may assign a greater weight to the stated probability of a yellow 
or black draw than to the stated probability of a red or black draw. This allows the 
Prospective Reference Theory model to match the modal preferences in the Three-
Color Paradox.

13.6  RECENT DEFINITIONS AND EXAMPLES
13.6.1  Recent Definitions of Ambiguity and Ambiguous Events

The parametric representations of preferences discussed in Section 13.5 suggest condi-
tions under which an event E may be deemed “ambiguous.” For instance:

-
vidual may be unable to assign a unique probability to certain events; thus, an event 
E may be called “ambiguous” if minμ∈Cμ(E) < maxμ∈C μ(E).

E is 
ambiguous if minμ∈suppM μ(E) < maxμ∈suppM μ (E), where M is the second-order 
prior and “supp” denotes the support of a measure.

individual expresses his or her lack of confidence in likelihood assessments by 
violating additivity. Thus, E may be called “ambiguous” if the capacity v satisfies 
v(E) + v(∼E) < 1.

-
tures from expected utility, so E may be called “ambiguous” if A(cov(1E, 
ζ1),…,cov(1E,ζn)) ≠ 0.
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However, these definitions are all closely tied to specific functional forms. Several 
authors have proposed definitions of ambiguous and unambiguous events that are stated 
solely in terms of a decision-maker’s preferences. We now review two that are, in a sense, 
polar opposites.

13.6.1.1  The Epstein-Zhang (2001) Definition
Epstein and Zhang (2001) propose a definition of ambiguous and unambiguous events 
that generalizes the preference pattern in the Three-Color Paradox. Recall that, loosely 
speaking, the modal preferences in that paradox exhibit a kind of preference reversal: the 
individual prefers to bet on red rather than on black, but once yellow is added to the 
event on which the favorable prize $100 is delivered, the decision maker prefers to bet 
on black or yellow rather than on red or yellow. As noted in Section 13.5.2, this indi-
cates that there is a “complementarity” between yellow and black, but not between red 
and black. The basic idea behind the approach is to take the fact that yellow is “comple-
mentary” to another color (in this case, black) as the defining feature of an ambiguous 
event. More generally, an event T is an unambiguous event if it is not “complementary” 
to some other, disjoint event, in the sense that a preference reversal similar to that in the 
Three-Color Paradox never obtains.

The Epstein-Zhang definition adds two “robustness checks” to the above intuition. 
To motivate the first, consider a five-color version of the Three-Color Paradox, and 
allow for a set of prizes that contains $0 and $100, but other elements as well. The acts 
under consideration are

30 balls︷︸︸︷
red

60 balls︷ ︸︸ ︷
black yellow

60 balls︷ ︸︸ ︷
white green

a1 $100 $0 $0 w′ w″

a2 $0 $100 $0 w′ w″

a3 $100 $0 $100 w′ w″

a4 $0 $100 $100 w′ w″

We have added two colors, white and green, and assigned arbitrary prizes to all 
four acts at the corresponding states; importantly though, the prize in case a white 
ball is drawn is the same (namely w′ for all four acts, and similarly (w′′) if a green 
ball is drawn. Regardless of information available regarding the number of white 
or green balls, the intuition in the Three-Color Paradox should still apply: yellow 
should still be “complementary” to black, regardless of the number of white or green 
balls. Conversely, if we observed the preference pattern a1 � a2 and a3 ≺ a4 for 
some choice of prizes w′, w′′, we should still conclude that yellow is an ambiguous 
color.

For the second robustness check, consider the following variation on the previous 
one:
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30 balls︷︸︸︷
red

60 balls︷ ︸︸ ︷
black yellow

60 balls︷ ︸︸ ︷
white green

a1 $100 $0 z′ w′ w″

a2 $0 $100 z′ w′ w″

a3 $100 $0 z′ w′ w″

a4 $0 $100 z′ w′ w″

The prizes $0 and $100 have been replaced with arbitrary prizes z and z′ respec-
tively. One may argue that if z is close to $0 and z′ is close to $100, the rankings a1 
� a2 and a3 ≺ a4 should still be plausible. Conversely, if we observed such rankings, 
we might say that the individual likes acts that deliver similarly good prizes in case of a 
black or yellow draw: this, too is a form of complementarity between yellow and black, 
so we can take it as indication that yellow is an ambiguous color. Indeed, Epstein and 
Zhang suggest that this conclusion would be warranted so long as a preference reversal 
occurs for some choice of z and z′, even if it does not obtain with z = $0 and z′

= $100. 
Accordingly, an event T is defined to be unambiguous if (a) for all disjoint subevents A, B 
of ∼T, all prizes x, y, z, z′ with x � y and all acts h,

implies

and furthermore (b) the same is true if T is replaced everywhere with ∼T. An event is 
ambiguous if it is not unambiguous.

Epstein and Zhang observe that, in general, the collection of unambiguous events is 
not an algebra. In particular, the intersection of two unambiguous events may be ambig-
uous. Zhang (2002) proposes the following examples: an urn contains white, red, green 
and blue balls. It is known that there are 50 red and blue balls, and 50 green and blue 
balls; the total number of balls is 100. Intuitively, the events “red or blue” and “green or 
blue” are unambiguous, but their intersection, “blue,” is ambiguous.65 However, under 
suitable assumptions (see below), the collection of unambiguous events contains the 
state space S and is closed under complements and countable disjoint unions; in other 
words, it is a λ-system.

Epstein and Zhang consider preferences over Savage acts, and assume that prefer-
ences satisfy Savage’s postulate P3 (Monotonicity). They then consider the family of 
unambiguous acts, that is, acts measurable with respect to unambiguous events, and show 
that, under suitable axioms, there exists a unique, convex-ranged and countably additive 

(x, A; y, B; z, T ; h, (∼T )\(A ∪ B)) � (y, A; x, B; z, T ; h, (∼T )\(A ∪ B))

(x, A; y, B; z′, T ; h, (∼T )\(A ∪ B)) � (y, A; x, B; z′, T ; h, (∼T )\(A ∪ B))

65  To clarify, this is not a consequence of the above definition, because we have not specified preferences. However, if we 
did so (for instance, by considering MEU preferences with C = {p∈�(S) : p(sr , sb) = p(sg , sb)}  in the obvious 
notation), the definition would indeed lead to the intuitive conclusions in the text.
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probability measure μ such that preferences over unambiguous acts are probabilistically 
sophisticated with respect to μ.

The interpretation is as follows: Recall that the Ellsberg Paradoxes contradict not just 
expected utility theory, but the more general assumption of probabilistic sophistication. 
Conversely, a probabilistically sophisticated individual does not exhibit Ellsberg prefer-
ences. Since the definition of unambiguous events was motivated by analogy with the 
Three-Color Paradox, it is almost a tautology that preferences over acts measurable with 
respect to unambiguous events cannot exhibit Ellsberg-type behavior. But the Epstein-
Zhang result says much more: preferences over such acts uniquely pin down a probabil-
ity measure over unambiguous events, and indeed they are probabilistically sophisticated.

If the decision-maker is probabilistically sophisticated in the sense of Machina and 
Schmeidler (1992), then the above definition deems all events to be unambiguous, 
and the Epstein-Zhang axioms hold; thus, their result is consistent with Machina and 
Schmeidler’s. The Epstein-Zhang result is mainly of interest when the overall prefer-
ences are not probabilistically sophisticated; in such cases, it identifies a subset of events 
and preferences for which probabilistic sophistication holds.

Underlying the terminology employed by Epstein and Zhang is the implicit assump-
tion that ambiguity means a violation of probabilistic sophistication. As we shall see, the 
approach we discuss next makes a different implicit assumption.

13.6.1.2  The Ghirardato-Maccheroni-Marinacci/Nehring Definition
An alternative approach has been suggested by Ghirardato et al. (2004) and Nehring 
(2001). We follow the exposition in the former paper.

Ghirardato et al. consider preferences over horse-roulette acts. Their starting point is 
the observation that Ellsberg preferences violate the Independence axiom, as noted in 
Section 13.5. They then propose to examine unambiguous preference rankings—that is, 
rankings that are preserved by all mixtures, or equivalently, for which there is no prefer-
ence reversal. Formally, they define the unambiguous preference relation �∗ by

An equivalent definition is that �∗ is the maximal subrelation of � that satisfies 
Independence.

If the primitive preference relation � satisfies a minimal set of axioms (Monotonicity, 
Continuity and Risk Independence—that is, the Independence axiom restricted to con-
stant acts only), it will follow that �∗ is a Bewley preference (Section 13.5.11).66 Therefore, 
there is a set C of probability measures, or relevant priors, such that, for all acts f,  g,  f  �∗ g 

(13.16)f �
∗ g iff ∀λ ∈ (0, 1], ∀h : λ · f + (1 − λ) · h � λ · g + (1 − λ) · h.

66  Ghirardato et al. show that this is the case under the stronger assumption of Certainty Independence. Siniscalchi 
(2009a, Lemma 2) proves it under the weaker assumption of Weak Certainty Independence. Cerreia-Vioglio et al. 
(2011) establish the general result cited in the text.
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if and only if ∫U(f(·))dμ ≥ ∫U(g(·))dμ for all μ∈C, where U is the utility function that 
represents the primitive preference relation when restricted to constants.

Ghirardato et al. call an act f crisp if it is unambiguously indifferent to a constant 
roulette lottery: that is, there is a prize (roulette lottery) x such that f ∼∗ x.67 The intu-
ition is straightforward: preferences over roulette lotteries are consistent with expected 
utility, and hence not subject to ambiguity; thus, an act that is treated just like a lottery, 
even when mixing with other acts, is also not affected by ambiguity. It can be shown 
that an act is crisp if and only if its expected utility ∫U(f(·))dμ is the same for all relevant 
priors μ∈C. Thus, effectively, preferences over crisp acts are consistent with expected 
utility.

Finally, an event E is deemed unambiguous if every bet on E, that is, any binary act 
of the form (x, E; y, ∼E) with x � y, is crisp. From the characterization of crisp acts, it 
is immediate that this is equivalent to the property that μ(E) is constant for all relevant 
priors μ ∈ C: that is, the probability measures in the set C “collapse” at E. Conversely, E is 
ambiguous if and only if minμ∈Cμ(E) < maxμ∈Cμ(E). Recall that this is the “intuitive” 
notion of ambiguity for events in the MEU representation. However, in the approach 
advocated by Ghirardato et al./Nehring, this notion applies to a broad class of prefer-
ences that includes virtually all the models of Section 13.5, and it is fully characterized 
by a behavioral condition (the assertion that bets on E are crisp).

There are several formal differences with the Epstein-Zhang approach. Epstein and 
Zhang adopt the Savage framework, start from a definition of unambiguous events, and 
derive a definition and characterization of unambiguous acts. Ghirardato et al. adopt 
the horse-roulette act framework, start from a definition of crisp (i.e., unambiguous) 
acts, and derive a characterization of unambiguous events. Conceptually, however, 
the key difference is that Epstein and Zhang regard any probabilistically sophisticated 
preference relation (or restriction thereof) as unambiguous; Ghirardato et al./Nehring, 
on the other hand, only deem expected utility preferences to be unambiguous. Both 
approaches classify Ellsberg preferences as ambiguity-sensitive, and expected utility 
preferences as unambiguous, but the Epstein-Zhang notion of ambiguity is seen to be 
more demanding.

For instance, consider a MEU preference on acts defined over a three-point 
state space, with C = {p : p(s) ≥ 1/9 for all s}. These preferences can be equivalently 
described as rank-dependent, with distortion function δ(x) = x2 and a uniform prior. 
According to Ghirardato et al./Nehring, the only unambiguous events are the empty 
set and the entire space; Epstein and Zhang consider all events unambiguous. Ultimately, 
it may be difficult to decide which interpretation is correct.

One advantage of the Ghirardato et al./Nehring approach is that computing the 
set C of priors in the Bewley representation of unambiguous preferences, and hence 

67  Ghirardato et al. actually use a different definition that relies on Certainty Independence. We use here the more general 
definition in Cerreia-Vioglio et al. (2011).
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determining which events are unambiguous, is relatively straightforward for many 
parametric models of preferences. For preferences that satisfy Certainty Independence 
(e.g., CEU and MEU), Ghirardato et al. show that C is the Clarke (1983) differential of 
the function that represents preferences, evaluated at 0. For instance, an expected utility 
preference with prior μ has a single relevant prior, namely μ—a basic check that indi-
cates the soundness of the definition; a MEU preference with priors C has precisely C as 
the set of relevant priors. Ghirardato and Siniscalchi (2012) provide a general character-
ization that does not require Certainty Independence, and thus covers virtually all the 
models in Section 13.5 (see Ghirardato and Siniscalchi (2010) for explicit calculations 
of the relevant priors for Variational, Multiplier, Uncertainty-Averse, Smooth Ambiguity 
and VEU Preferences).

Ghirardato and Siniscalchi (2012) also propose a local notion of unambiguous pref-
erence, provide a differential characterization, and relate it to the global definition of 
unambiguous preference described above. They also relate local unambiguous prefer-
ences to optimizing behavior.

13.6.2  Recent Definitions of Ambiguity Aversion

The Uncertainty Aversion Axiom of Schmeidler (1989) represents the first attempt to 
formalize the notion that individuals dislike ambiguity. As discussed in Section 13.5, the 
intuition is that, by mixing two acts, the individual may be able to hedge against varia-
tion in utilities, much like, by forming a portfolio consisting of two or more assets, one 
can hedge against variation in monetary payoffs.

However, other attempts to characterize a dislike for ambiguity have been proposed 
in the literature.

13.6.2.1  Epstein’s Comparative Definition
Epstein (1999) critiques the Uncertainty Aversion Axiom, focusing on the case of CEU 
preferences. Recall from Section 13.5.2 that a CEU preference satisfies Uncertainty 
Aversion if and only if the representing capacity v is convex: that is, if and only if, for 
every pair of events E,F, ν(E∪F) + ν(E∩F) ≥ ν(E) + ν(F). Epstein (p. 582) observes 
that this condition is “neither necessary nor sufficient” for CEU preferences to repro-
duce the modal choices in the Three-Color Paradox. For example, if ν({sr}) = 8/24, 
ν({sb}) = ν({sy}) = 7/24, ν({sb,sy}) = 13/24 and ν({sr,sy}) = ν({sr,sb}) = 1/2, then the modal 
rankings a1 � a2 and a4 � a3 are obtained, but the capacity thus defined is not convex: 
for instance, 13/24 = ν({sb,sy}) = ν({sb}∪{sy}) + ν({sb}∩{sy}) < ν({sb}) + ν({sy}) = 14/24. 
Accordingly, convexity of the capacity is not necessary. Suppose instead that 
ν({sr}) = 1/12, ν({sb}) = ν({sy}) = 1/6, ν({sb,sy}) = 1/3 and ν({sr,sy}) = ν({sr,sb}) = 1/2; 
this capacity is convex, but the corresponding CEU preference generates the uncer-
tainty-loving rankings a2 � a1 and a3 � a4! This shows that convexity of the capacity is 
not sufficient—it does not even prevent uncertainty-loving patterns of behavior.
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The fact that the Uncertainty Aversion Axiom is neither necessary nor sufficient for 
the CEU model to exhibit Ellsberg Preferences naturally casts doubts on the implica-
tions for this axiom in other decision models. With this motivation, Epstein sets out 
to provide an alternative definition of ambiguity aversion. The approach introduced in 
his 1999 paper is refined and, in a sense, brought to completion in Epstein and Zhang 
(2001) as discussed in Section 13.6.1. We thus follow the exposition in the latter paper.

The decision setting is that of Savage, so in particular, acts map states to prizes rather 
than lotteries over prizes. The starting point of Epstein’s analysis is Yaari’s (1969) notion 
of comparative risk aversion, namely that a preference relation �2 is more risk-averse than 
another preference relation �1 if, for all acts h and prizes x

That is, whenever �2 prefers an (intuitively, risky) act h to a (riskless) prize x, so does 
�1; this leaves open the possibility that some act h′, which �2 may rank inferior to a 
prize x′, may instead be ranked above x′ by �1. With monetary prizes and expected util-
ity preferences, this definition is equivalent to the usual characterizations in terms of the 
relative concavity of the von Neumann-Morgenstern utility functions. (The advantage 
of this definition is that it applies to non-EU models just as well, and hence provides a 
sort of “neutral testing ground” for comparing risk attitudes.)

To define a notion of risk aversion per se, as opposed to comparative risk aversion, 
one needs to fix a benchmark—that is, to decide which preferences to declare “risk-neu-
tral.” With monetary prizes, we can take this benchmark or reference to be expected-value 
preferences. In the general case, we say that a preference � is risk-averse if it is more risk-
averse than some expected-value preference �rn. Again, with expected utility preferences, 
this coincides with the usual characterization in terms of concavity of the utility func-
tion; however, the same definition can be usefully applied to non-EU preferences as well.

Epstein’s suggestion is to define ambiguity aversion in an analogous fashion. Recall 
that Epstein and Zhang (2001) identify a class (a λ-system) of unambiguous events: acts 
measurable with respect to this class are thus unambiguous acts. First, say that �2 is more 
ambiguity-averse than �1 if, for every arbitrary act f and unambiguous act h, 

As a consequence of equation (13.18), �2 and �1 rank unambiguous acts the same 
way. However, �1 may prefer some arbitrary act f to an unambiguous act h, when �2 
instead prefers the unambiguous act; on the other hand, the opposite never happens. In 
this sense, �2 is more ambiguity-averse than �1.

To define ambiguity aversion per se, a benchmark must be selected. Consistently with 
the approach discussed in Section 13.6.1, Epstein and Zhang adopt probabilistically sophis-
ticated preferences as the benchmark. Thus, they propose that a preference relation is ambi-
guity-averse if it is more ambiguity-averse than some probabilistically sophisticated preference relation.

(13.17)h �
2 x ⇒ h �

1 x and h �
2 x ⇒ h �

1 x.

(13.18)f �
2 h ⇒ f �

1 h and f �
2 h ⇒ f �

1 h.
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Epstein and Zhang (2001, Corollary 7.4) characterize CEU preferences that are 
ambiguity-averse in this sense. For MEU preferences, Epstein (1999, Thm. 3.3) shows 
that, if all priors in the set C coincide on unambiguous events, then ambiguity aversion 
holds (the next subsection indicates why a qualification is required). Epstein (1999, 
Sect. 3.4) shows that the Ellsberg choices in the Three-Color Paradox imply ambiguity 
aversion, and that, conversely, ambiguity aversion rules out the behavioral pattern that is 
intuitively associated with an attraction to ambiguity.

13.6.2.2  Ghirardato and Marinacci’s Comparative Definition
An alternative approach is proposed by Ghirardato and Marinacci (2002), and then fur-
ther developed by Ghirardato et al. (2004) and Cerreia-Vioglio et al. (2011b). Ghirardato 
and Marinacci consider both the Savage setting, with acts mapping to prizes, and the 
horse-roulette act framework, with acts mapping to objective probability distributions 
over prizes. They restrict attention to preferences that admit a CEU representation on 
binary acts, but are otherwise arbitrary (for instance, all MEU preferences satisfy this 
restriction). In the Savage environment, they further restrict comparisons to prefer-
ences that satisfy a cardinal symmetry requirement, which implies that a common von 
Neumann-Morgenstern utility can be used in the CEU representation on binary acts.

The starting point is again Yaari’s (1969) approach, but these authors focus on com-
parisons between acts and constant prizes. Formally, Ghirardato and Marinacci deem a 
preference �2 more ambiguity-averse than �1 if, for all acts f and prizes x,

The interpretation is analogous to that provided in the previous subsection for Epstein’s 
definition: whenever �2 prefers an (intuitively, potentially ambiguous) act f to a (clearly 
unambiguous) constant x, so does �1; the opposite, however, need not hold.

To define ambiguity aversion per se, Ghirardato and Marinacci take as benchmark 
expected utility preferences. Thus, according to these authors, a preference is ambiguity-averse 
if it is more ambiguity averse than some EU preference.

Cerreia-Vioglio et al. (2011b) provide a characterization for a general class of prefer-
ences that satisfy Monotonicity, Continuity and Risk independence in a horse-roulette 
act framework (or in environments with subjective mixtures, as discussed at the begin-
ning of Section 13.5). This is also the class of preferences for which a Bewley char-
acterization of unambiguous preferences can be provided (Section 13.5.11). Any such 
preference relation is ambiguity-averse in the sense of Ghirardato and Marinacci if and 
only if there exists a probability measure μ such that 

(13.19)f �
2 x ⇒ f �

1 x and f �
2 x ⇒ f �

1 x.

∫
U

(
f (·)

)
dμ ≥ V

(
f (·)

)
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where V(·) as usual denotes the utility index assigned to acts. In other words, there 
must exist an expected utility representation, with utility function U, which domi-
nates V(·) pointwise. Some immediate consequences of this characterization (and of 
earlier ones provided by Ghirardato and Marinacci (2002) and Ghirardato, et al.) are 
as follows:

-
ity v has a non-empty core: that is, if there exists a probability measure p such that 
p(E) ≥ ν(E) for every event E.

-
ment function A is nonpositive.

ϕ are 
ambiguity averse.
As will be seen in Section 13.6.3 (in particular footnote 69), there are interesting 

and experimentally verified preference patterns that are inconsistent with Schmeidler’s 
Uncertainty Aversion Axiom, but are consistent with Ghirardato and Marinacci’s notion 
of ambiguity aversion. On the other hand, Cerreia-Vioglio et al. (2011b, Example 2) 
show that Schmeidler’s Uncertainty Aversion Axiom is in general not stronger than 
Ghirardato and Marinacci’s notion of ambiguity aversion.

A comparison with the Epstein/Epstein-Zhang approach is in order. The main 
conceptual difference is that—as was the case for the Epstein vs. Ghirardato et al./
Nehring notions of ambiguity—the choice of the ambiguity-neutral benchmark is 
different. Epstein adopts probabilistic sophistication; Ghirardato and Marinacci 
choose expected utility. Epstein (1999) observes that using EU as benchmark 
implies that, for instance, the modal preferences in Savage’s restatement of the Allais 
paradox (Savage (1954, p.103)) are classified as ambiguity averse. There is, of course, 
nothing that evokes ambiguity or ambiguity attitudes in the Allais bets, even when 
translated in a Savage framework: the composition of the urn is known to the indi-
vidual, who presumably trusts the experimenter, etc. But the force of this argument 
derives in part from the particular example it considers. One can easily imagine 
choice situations in which ruling out ambiguity aversion on the basis of available 
information is not straightforward. Suppose for instance that an individual is asked 
to bet on which of three cities in an unfamiliar foreign country has the highest 
average temperature in the month of May. Suppose that this individual’s preferences 
admit the MEU representation of Section 13.5.1, with C = {p : p(s)≥1/9 for all s}. 
We noted above that these preferences can equivalently be described as rank- 
dependent (CEU), with distortion function δ(x) = x2 and a uniform prior. Since 
these preferences are probabilistically sophisticated, Epstein classifies them as ambi-
guity-neutral; Ghirardato and Marinacci instead classify them as ambiguity averse. 
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This alternative example does not provide clear indications as to whether or not 
ambiguity plays a role.68

The Epstein definition is accordingly more “conservative”: if a pattern of behavior is 
deemed “ambiguity-averse,” it surely has features that are inconsistent with probabilistic 
beliefs. Thus, for instance, if one was interested in demonstrating the presence and rel-
evance of ambiguity in a given economic environment, applying the Epstein definition 
would provide more convincing evidence. On the other hand, the Ghirardato-Marinacci 
definition captures a broader range of behavioral patterns that may be influenced by 
ambiguity, and is easily characterized in a variety of parametric preference models.

13.6.2.3  Smooth Ambiguity Aversion
As anticipated in Section 13.5.4, Klibanoff et al. (2005) propose a notion of ambiguity 
aversion that is specific to the Smooth Ambiguity Preferences model.

These authors identify an individual with a collection {�K, �K
(2)} of first- and sec-

ond-order preferences, indexed by the support K of the second-order probability mea-
sure M representing each pair. They assume that all first-order preferences in any such 
collection exhibit the same risk attitudes, and hence pin down the same utility U(·); 
similarly, they assume that risk preferences are the same for all second-order preferences, 
which pins down the utility function v(·) in the EU representation of second-order acts, 
and consequently also the second-order utility ϕ(·). The objective is to provide a condi-
tion on all elements of the collection {�K , �(2)

K } that characterizes second-order risk 
aversion, i.e., concavity of the function ϕ(·).

Their construction is as follows: Recall that any act f and any first-order probability 
measure μ induce a lottery over prizes, (…;xi, μ(  f  -1(xi));…). This lottery has expected 
utility ∫U(  f(·))dμ. Since the second-order measure M is defined over first-order prob-
abilities μ, it induces a lottery over expected utilities, which in the case of a finite support 
K = {…, μj,…} can be expressed as

The smooth ambiguity evaluation of the act f corresponds to computing the 
“expected utility” of the lottery P∗

f  with respect to the second-order utility ϕ(·). Hence, 
to characterize concavity of the latter, we need to compare f with a prize xf (M) whose 
utility is precisely the expected value of P∗

f  —equivalently, the average expected utility of 
f. Such a prize exists because U has a convex range. Klibanoff et al. then show that the 

68  Epstein and Zhang’s characterization of ambiguous and unambiguous events, and hence their definition of ambiguity 
aversion, requires a rich state space. However, Epstein’s original definition does not restrict the state space, and classifies 
any probabilistically sophisticated preference as ambiguity neutral. Thus, our discussion of the temperature example is 
indeed consistent with Epstein (1999).

P∗

f ≡

(
. . .;

∫
U ( f (·))dμj , M (μj); . . .

)
.
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second-order utility ϕ(·) is concave if and only if the individual is smooth ambiguity averse, 
in the sense that for every support K with associated second-order measure M, and for 
every act f, the individual prefers the prize xf (M) to f — formally, xf (M) � K f. A similar 
construction can be used to characterize comparative smooth ambiguity aversion.

It should be noted that, due to the way xf (M) is defined, smooth ambiguity aversion 
depends crucially on the representation of second-order preferences. Thus, the qualifica-
tions on second-order preferences, and on the interpretation of the smooth representa-
tion noted in Section 5.4, similarly apply here. Furthermore, again because its definition 
involves elements of the functional representation, smooth ambiguity aversion cannot 
be directly compared with the Epstein and Ghirardato-Marinacci definitions (though 
of course one can ask whether specific parameterizations satisfy one of these definitions, 
as we did in the previous section).

13.6.3  Recent Examples of Ambiguity Aversion

The models of ambiguity aversion reviewed in Section 13.5 were designed to capture 
aspects of ambiguity aversion revealed in Ellsberg’s original examples, each of which 
only involved two possible outcome values (Ellsberg used $0 and $100). However, 
additional aspects of ambiguity aversion, which can only reveal themselves in choices 
involving three or more outcome values, have since come to light, and pose challenges 
to some of these models.

A simple example of this is illustrated in the following table, based on an urn con-
taining 50 red or black balls, and 51 green or yellow balls.69 In the first pair of bets, it is 
likely that ambiguity aversion would outweigh bet a1’s slight 50:51 disadvantage, causing 
it to be preferred over a2. In the second pair, the difference in the bets’ amounts ambigu-
ity is not as stark, and this same 50:51 disadvantage may cause an individual to rank a4 
over a3. Such preferences clearly violate the Sure-Thing Principle as well as Machina 
and Schmeidler’s (1992) Strong Comparative Probability Axiom, and are accordingly 
not compatible with probabilistically sophisticated beliefs. But in addition, they are seen 
to violate the Comonotonicity Axiom of the Choquet Expected Utility model.

50 balls︷ ︸︸ ︷
red black

51 balls︷ ︸︸ ︷
green yellow

a1 $45 $45 $40 $40
a2 $45 $40 $45 $40
a3 $1,000 $45 $40 $0
a4 $1,000 $40 $45 $0

69  This is based on an example of Machina (2009). Baillon et al. (2011) demonstrate that similar examples can also vio-
late standard specifications of the Multiple-Priors, Smooth Ambiguity Preferences (with concave φ) and Variational 
Preferences models, though not the Vector Expected Utility model. (See also Siniscalchi (2008b) as well as the experi-
mental results of L’Haridon and Placido (2010).) Lehrer (2007) demonstrates that they do not violate the models of 
Lehrer (2009,2012) and Dillenberger and Segal (2012) demonstrate that they do not violate the model of Segal (1987a).
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Three particular aspects of ambiguity and ambiguity aversion can arise once three 
or more outcomes are allowed, each of which poses problems for at least some of the 
models reviewed in Section 13.5. The first is that some of the models’ preferences over 
purely subjective (i.e., not mixed) prospects can inherit the same Allais-type difficulties70 
faced by expected utility preferences over purely objective prospects. The reason for this 
is that some purely subjective prospects can be said to be “more objective” than others, 
and some of the models’ preferences over such “almost-objective” prospects converge to 
expected utility preferences.

To construct such prospects, partition a continuum state space S = [0, 1) into m 
equal intervals {[0,1/m),…,[i/m,(i+1)/m),…,[(m−1)/m,1)}, and for each α ∈ [0, 1] 
define [0, α ×

m
S as the union of the left α portions of these intervals, so that 

[0, α) ×

m
S =∼

m−1
i=0 [i/m, (i + α)/m). As shown by Poincaré (1912) and others,71 such 

events will satisfy lim
m→∞

π([0, α) ×

m
S) = α for any measure π(·) over [0, 1) with a suf-

ficiently regular density. More generally, for any set ℘ ⊆ [0, 1) consisting of a finite union 

of intervals, and any positive integer m, define event ℘ ×

m
S by

that is, as the union of the natural images of ℘ into each of S’s equal-length intervals. 
Events with this type of periodic structure are termed almost-objective events, and satisfy 
lim

m→∞

π(℘ ×

m
S) = λ(℘) where λ(·) is the uniform Lebesgue measure over [0, 1). Bets 

of the form (x1 on ℘1 ×

m
S; . . .; xn on ℘n ×

m
S) are termed almost-objective bets, and are 

seen to be purely subjective.
As shown in Machina (2013), under natural smoothness conditions, Multiple-

Priors,72 Smooth Ambiguity Preferences and Variational Preferences preferences over 
almost-objective bets will converge to expected utility, that is

70  Such as the classic Allais Paradox, Common Consequence Effect and Common Ratio Effect (e.g., Allais (1953), 
MacCrimmon and Larsson (1968)).

71 See Machina (2004, p.9).

℘ ×

m
S =

m−1⋃
i=0

{ (i + ω)/m |ω ∈ ℘ }

72  For the Multiple-Priors result, the set C is also assumed to be a convex polytope (the convex hull of a finite number 
of probability distributions).

lim
m→∞

WMP ( x1 on ℘1 ×

m
S; . . . ; xn on ℘n ×

m
S ) =

∑n

i=1
U (xi) · λ(℘i)

lim
m→∞

WSM ( x1 on ℘1 ×

m
S; . . . ; xn on ℘n ×

m
S ) = φ (

∑n

i=1
U (xi) · λ(℘i) )

lim
m→∞

WVP ( x1 on ℘1 ×

m
S; . . . ; xn on ℘n ×

m
S )=

∑n

i=1
U (xi) · λ(℘i)+ min

π(·)∈P
c (π(·)) .
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Thus, if an individual is asymptotically indifferent between the almost-objective bets

and their respective purely objective counterparts

the standard Allais-type preferences â1 � â2 and â3 � â4 over these objective bets induce 
the corresponding preferences a1 � a2 and a3 � a4 over these purely subjective acts, 
violating Multiple-Priors Preferences, Smooth Ambiguity Preferences and Variational 
Preferences over purely subjective uncertainty.

A second aspect concerns the Choquet Expected Utility model’s ability to capture 
attitudes toward different sources, with different amounts, of ambiguity. Take an urn 
with a single ball, which is either black or white, as well as a coin which has been slightly 
(but only slightly) bent, and consider the following bets, where the coin is flipped and 
the ball is drawn simultaneously. Bet I spreads the uncertainty of receiving +$8,000 
versus −$8,000 across the only slightly ambiguous coin whereas Bet II spreads this 
uncertainty across the more ambiguous urn, so that ambiguity averter would presum-
ably prefer Bet I.

BEt I BEt II

black white black white

heads +$8,000 $0 heads $0 $0
vs.

tails −$8,000 $0 tails −$8,000 +$8,000

To see that the Choquet model is incapable of exhibiting such a preference, observe 
that the model evaluates the bets according to the respective formulas73

On the assumption that the capacity C(·) evaluates the informationally symmetric 
events HB and TW equally, these values are equal, so the Choquet model must rank the 

a1 = ($1M, 1)

a2 = ($5M on [0, .10] ×

m
S; $1M on [.10, .99] ×

m
S; $0 on [.99, 1) ×

m
S)

a3 = ($5M on [0, .10] ×

m
S; $0 on [.11, 1) ×

m
S)

a4 = ($1M on [0, .11] ×

m
S; $0 on [.11, 1) ×

m
S)

â1 = ($1M, 1) â2 = ($5M, .10; $1M, .89; $; 0, .01)

â3 = ($5M, .10; $0, .90) â4 = ($1M, .11; $0, .89)

73  Where HB denotes a heads and a black ball, etc., and we set U(0) = 0.

Bet I : U ($8, 000)·C(HB) + U (−$8, 000)·[1 − C((HB) ∪ C(HW ) ∪ C(TW )]

Bet II : U ($8, 000)·C(TW ) + U (−$8, 000)·[1 − C((HB) ∪ C(HW ) ∪ C(TW )]
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two bets as indifferent, and cannot allow a strict preference over these different sources 
and amounts of ambiguity.74

A final aspect which arises once three or more outcomes are allowed concerns how 
ambiguity attitudes are allowed to vary with wealth. Defining $c as the individual’s cer-
tainty equivalent of an objective 50:50 lottery over $0:$100, the bets on Urns I and II 
below are each seen to differ from the purely objective bet b0 by the introduction of 
ambiguity across some pair of its events. Urn I is obtained from bet b0 by introducing 
ambiguity across its middle and lower outcome, whereas Urn II is obtained from b0 by 
introducing ambiguity across its middle and upper outcome.

For the same reason that individuals might be less risk averse over higher than lower 
outcomes, they may exhibit less ambiguity aversion over higher than lower outcomes, which 
would lead to a preference for Urn II. However, the Multiple-Priors, Rank-Dependent, 
Smooth and Variational Preferences models evaluate the acts via the respective formulas

74  Although not related to the present example, attitudes toward different sources of uncertainty have been experimen-
tally examined by Abdellaoui et al. (2011).

WRD(URN I) = 2/3 · C(WW ) + 1/2 · [C(WW ∪ BW ∪ WB) − C(WW )]

+ 1/3 · [1 − C(WW ∪ BW ∪ WB)] = WRD (URN II)

WMP(URN I) = min
(pBB ,pBW ,pWB ,pWW )∈P0

[1/3 · pBB + 1/2 · pBW

+ 1/2 · pWB + 2/3 · pWW ]

= WMP(URN II)

WSM (URN I) =

∫
φ
(
1/3 · pBB + 1/2 · pBW + 1/2 · pWB + 2/3 · pWW

)

· dμ(pBB, pBW , pWB, pWW ) = WSM (URN II)

WVP(URN I) = min
(pBB ,pBW ,pWB ,pWW )∈P

[1/3 · pBB + 1/2 · pBW + 1/2 · pWB + 2/3 · pWW + c(pBB, pBW , pWB, pWW )]

= WVP(URN II)
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Accordingly, none of the four models can allow attitudes toward ambiguity to 
depend upon the wealth level at which it occurs.

The reason for this incompatibility comes out when the two bets are expressed in 
the Anscombe-Aumann format of Section 13.3.4, that is, as mappings from each urn’s 
four possible states {BB,BW,WB,WW}75 to their implied objective lotteries. Setting 
U($100) = 1 and U($0) = 0 so that U($c) = 1/2, the statewise expected utilities of the 
two urns are seen to be identical. Since the four models evaluate Anscombe-Aumann 
acts via their statewise expected utilities, they cannot discriminate between the two 
urns’ bets.

BB BW WB WW

URN I ($0, 2/3; $100, 1/3) ($0, 1/3; $c, 1/3;  
$100, 1/3)

($0, 1/3; $c, 1/3;  
$100, 1/3)

($c, 2/3; $100, 1/3)

URN II ($0, 1/3; $c, 2/3) ($0, 1/3; $c, 1/3;  
$100, 1/3)

($0, 1/3; $c, 1/3;  
$100, 1/3)

($0, 1/3; $100, 2/3)

expected 
utility

1/3 1/2 1/2 2/3

A similar example76 establishes that the four models cannot express a preference or 
aversion to ambiguity in losses versus gains:

Another recent variation on Ellsberg’s standard form was examined by Yang and Yao 
(2011), who allowed subjects to draw twice with replacement from the same urn, with 
a different color winning each time, again finding a substantial number of violations of 
the major theories of ambiguity aversion.

75  Where BW denotes that the first ball in the urn is black and the second is white, etc.
76  With outcomes already expressed in utils.
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13.7  UPDATING AND DYNAMIC CHOICE

Savage’s axiomatization of expected utility is atemporal—time is not an explicit consid-
eration or an input to the theory. Alternatively, one can view Savage’s theory as dealing 
with one-period decision problems: the individual chooses an act, then the state is real-
ized, which determines the prize accruing to the decision maker. However, Postulate P2, 
the Sure-Thing Principle, provides a way to extend the theory to dynamic decision prob-
lems, in which the individual may acquire partial information about the state of nature 
over time, and take actions at several decision points, until all uncertainty is resolved and 
a final prize is obtained. A formal analysis of the extension of Savage’s atemporal theory 
to dynamic choice is beyond the scope of this chapter; instead, we emphasize two key 
ingredients of this extension.

The first is updating. The notion of updating a prior probability measure μ so as to 
reflect information the individual has acquired is familiar. If one assumes that the indi-
vidual is an expected utility maximizer, and that his or her risk attitudes and tastes do 
not change, the probabilistic conditioning operator determines a conditional preference. 
Savage (1954, p.22) suggested the converse approach: one can start with a definition of 
conditional preference, and show that it characterizes probabilistic updating. Specifically, 
Savage stipulates that act f is weakly preferred to act g given event E, written f  � E g, if 
and only if, for some act h, 

It is easy to see that, if the ex-ante preference � is an EU preference, with subjective 
prior μ, then the updated preference �E is also consistent with EU. Then, if the event 
E is nonnull,77 one has μ(E) > 0, and the probability measure associated with the 
updated preference �E is the usual update μ(·∣E) of μ. We emphasize that Postulate P2 
is essential to ensure that this definition is well-posed: if P2 is violated, then different 
choices of acts h may lead to contradictory rankings of f and g conditional on E.

The second key ingredient in the extension of Savage’s theory to dynamic choice 
is dynamic consistency. One possible formulation of this property is as follows: if act f 
is weakly preferred to act g conditional on E, and also conditional on ∼E, then f is 
unconditionally preferred to g; also, if one of the conditional preferences is strict, so is 
the unconditional preference. Formally:

(The second part of the definition requires that the event E be nonnull.) Dynamic con-
sistency is essential to ensure that, if a multiperiod choice problem is solved by backward 

(13.20)( f , E; h, ∼ E) � ( g, E; h, ∼ E).

77  See footnote 25.

(13.21)f �E g, f �
∼E g ⇒ f � g and f �E g, f �

∼E g ⇒ f � g



Ambiguity and Ambiguity Aversion 793

induction or recursion, one obtains a solution that is also optimal ex ante. It turns out that 
Savage’s Postulate P2 also ensures that conditional preferences as defined above satisfy 
dynamic consistency. (Indeed, the connection between P2 and dynamic consistency is 
tight: see Epstein and Le Breton (1993), Ghirardato (2002) and Siniscalchi (2011, Sect. 
4.2).)

Since ambiguity-sensitive preferences violate Postulate P2, it should come as no 
surprise that updating and consistent dynamic choice pose challenges. As we shall see, 
there is no unique way to define conditional preferences or—in any given parametric 
model—conditional “beliefs.” Furthermore, no matter how we define conditional pref-
erences, we can construct examples in which dynamic consistency is violated. Different 
approaches have been proposed to deal with these issues. We now briefly discuss some 
of the relevant contributions.

Lack of space prevents us from discussing two other broadly related issues which 
have seen recent work. The first is learning under ambiguity: see Epstein and Schneider 
(2007). The second is the notion of exchangeability, or symmetry: Epstein and Seo 
(2010, 2012) extend the classic results of de Finetti (1937) and Hewitt and Savage 
(1955) to ambiguity-sensitive preferences. See also Al Najjar and De Castro (2013).

13.7.1  Updating Ambiguous Beliefs

Early contributions focus on updating rules for capacities in the Choquet Expected 
Utility model. Two rules have received particular attention: the Dempster-Shafer Rule and 
the Full Bayesian Rule. Both essentially originate in the work of Dempster (1967), who 
considers the following scenario: An individual has a probabilistic belief μ on a set 
; 
furthermore, there is a correspondence (a multivalued map) � : 
 → S, where S is the 
state space of interest, which for simplicity we assume to be finite. Intuitively, the map 
� describes the individual’s partial information about the relationship between elements 
of 
, whose likelihood the individual can assess with confidence, and the events in S. 
The individual’s beliefs on S are represented by the capacity ν defined by

Intuitively, this embodies a conservative stance: the individual assigns to each A only 
the probability of those elements of 
 that he or she knows for sure to correspond to 
elements in A. The capacity thus defined is convex, and indeed satisfies a stronger prop-
erty that characterizes so-called “belief functions” (e.g., Shafer (1976) and Jaffray (1992)). 
The reason why � is allowed to take on an empty value will be clear momentarily.

Dempster describes the following updating rule. Suppose the individual learns that 
event E ⊆ S has occurred. The initial information, as encoded by �, was that element ω 
of 
 applied to states s in �(ω): but since he or she now knows that the state s must also 

v(A) =

μ ({ω : ∅ �= �(ω) ⊆ A})

μ ({ω : �(ω) �= ∅})
.
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lie in E, he or she associates ω with �(ω) ∩ E. We can then define �E(ω) = �(ω) ∩ E 
and construct the capacity νDS(·∣E) derived from �E as above (we explain the super-
script below). Dempster shows that

While this expression may seem a bit mysterious, the above construction clarifies 
its origin. The subsequent literature has mostly taken the above formula (or alternative, 
equivalent formulae) as the definition of a particular updating rule; since it also plays a 
prominent role in the work of Shafer (1976), it is commonly referred to as the Dempster-
Shafer updating rule (hence the subscript in νDS(·∣E)).

An alternative updating rule for capacities is related to sets of priors. It is known 
that, if a capacity v is a “belief function,” then it satisfies the following duality relation: 
letting Cv be the set of probability distributions μ such that μ(A) ≥ ν(A) for all events 
A, it is the case that, for every event A, ν(A) = inf {μ(A) : μ ∈ Cv} (this is not true for 
arbitrary convex capacities). Thus, a possible updating rule is as follows: first, assum-
ing v(E) > 0, update all probability distributions in Cv according to the usual proba-
bilistic conditioning formula; then, consider the lower envelope of the resulting set. 
That is, we define the so-called Full Bayesian updating rule for the belief function ν by 
νFB(A|E) = inf {μ(A|E) : μ ∈ Cv}. Jaffray (1992) shows that vFB(·∣E) is indeed a belief 
function, and furthermore that 

An alternative approach leading to the above definition of Full Bayesian updating can 
be found in Fagin and Halpern (1991).

Gilboa and Schmeidler (1993) are the first to provide an axiomatic treatment of 
updating rules in a decision setting; in particular, they adopt the horse-roulette act 
environment discussed in Section 13.5, and assume that there exist a best and a worst 
prize. They consider uncertainty-averse Choquet Expected Utility preferences (which 
are thus also Maxmin Expected Utility preferences) and consider the class of h-Bayesian 
update rules, where h is an arbitrary act. Given an unconditional preference �, the 
h-Bayesian update given E, denoted �E,h, is defined by

Under Savage’s Postulate P2, all h-Bayesian update rules coincide with Savage’s 
update rule; however, for more general preferences, different choices of h induce differ-
ent conditional preferences. In particular, Gilboa and Schmeidler show that, if one takes 

vDS(A|E) =

v ([A ∩ E] ∪ [∼E]) − v(∼E)

1 − v(∼E)
.

vFB(A|E) =

v(A)

v(A) + 1 − v (A ∪ ∼E)
.

f �E,h g ⇔ (f , E; h, ∼E)�(g, E; h, ∼E).
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h to be the constant act that yields the best possible prize, the resulting conditional prefer-
ence is CEU, with capacity given by the Dempster-Shafer update of the prior capacity 
(the utility function is unchanged relative to the prior preference). They interpret this as 
a form of “pessimistic updating”: when receiving the information that E has occurred, 
the individual ranks acts as if, in the counterfactual event, he or she would have received 
the best possible prize.

Eichberger et al. (2007) and Horie (2007) characterize Full Bayesian updating for 
arbitrary capacities. Their main axiom is adopted from Pires (2002), a paper we discuss 
below; thus, we defer the discussion of their contribution.

Two main updating rules have been proposed for maxmin expected utility (MEU) 
preferences. The first stipulates that, given a set C of priors on the state space S, all priors 
μ∈C with μ(·∣E) > 0 be updated upon learning that E has occurred; this is called the Full 
or Generalized Bayesian updating rule for the set C. It is related to Full Bayesian updating 
for belief functions, in the sense that (i) a CEU preference for which the capacity is a belief 
function, and hence convex, is also a MEU preference, and (ii) by the result stated above, 
the CEU preference characterized by the full Bayesian update of the capacity is the same 
as the MEU preference characterized by the full Bayesian update of the set C. However, 
it is important to emphasize that full Bayesian updating of sets of priors is well-defined 
for arbitrary sets C, not just those that consist of probability distributions that dominate 
a given belief function.

Full Bayesian updating of priors has been axiomatized by Pires (2002) in the horse-
roulette act setup; related results can be found in Walley (1991, pp. 632–638) and Jaffray 
(1994). The key axiom establishes a connection between the conditional certainty 
equivalent x of an act f and unconditional ranking of x vis-à-vis a suitable composite act: 
formally, for every (nonnull) event E, act f and prize x, it requires that f  ∼E x if and only 
if ( f,E;x,∼E )∼x. One implication of this axiom is that conditional preferences can be 
elicited from prior preferences: this is done by determining, for each act f, the prize x 
that solves the preference equation ( f,E; x,∼E ) ∼ x.78

Eichberger et al. (2007) use the same axiom to characterize Full Bayesian Updating 
for capacities; however, Horie (2007) points out that, while Pires’s axiom is sufficient to 
deliver full Bayesian updating, it is too strong. Horie shows that the appropriate neces-
sary and sufficient condition is a version of Pires’s axiom that is restricted to binary acts f.

An alternative updating rule was proposed and characterized by Gilboa and 
Schmeidler (1993). Recall that they characterize Dempster-Shafer updating for uncer-
tainty averse CEU preferences, which are thus also MEU preferences. Hence, their 
result necessarily also pins down a procedure to update sets of priors. The procedure 

78  Siniscalchi (2011) shows that Pires’s axiom is equivalent to a weakening of the standard dynamic consistency property 
discussed above.
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works as follows: out of the set C of priors characterizing the ex-ante preference, select 
the measures assigning the maximum probability to the event E that has occurred, and 
only update those. Gilboa and Schmeidler call this the maximum-likelihood update rule. 
Note that their characterization result only covers preferences that are both MEU and 
CEU; a characterization of maximum-likelihood updating for general MEU preferences 
is not known.

Finally, Siniscalchi (2009a) defines and axiomatizes an updating rule for VEU prefer-
ences, which entails (i) updating the baseline prior in the usual way, and (ii) replacing 
the covariances in equation (13.10) with suitably rescaled conditional covariances.

13.7.2  Dynamic Choice under Ambiguity

Regardless of the preference model and updating rule one adopts, the potential for 
dynamic inconsistency of preferences arises as soon as one relaxes Savage’s Postulate 
P2. This is easy to see from the following decision tree, which can be thought of as a 
dynamic version of the Three-Color Paradox. There are two decision points, identified 
by filled circles; in the first, ex-ante, stage, the individual chooses whether to stop (S) and 
get a 50% chance to receive $100, or continue (C) with the bet. Then, the individual 
learns whether the ball drawn is yellow or not; if it is yellow, the individual receives $x. 
If instead the ball is not yellow, the individual can choose to bet on red or black. The 
composition of the urn, and the individual’s information about it, is as in the (static) 
Three-Color Paradox.

The objects of choice in this problem are not, strictly speaking, acts: rather, they are 
actions (such as R and B, C and S) at different nodes. The individual can also formu-
late plans, such as “choose C, then choose R if the second decision node is reached” 
(denoted CR). The atemporal models discussed in Section 13.5 do not directly induce 
preferences over actions or plans. However, one can adopt a standard reduction assump-
tion, and evaluate a plan or action according to the act that it induces. For instance, the 
plan CR induces the act ($100,sr;$0,sb;$x,sy); this can be evaluated by any one of the 

$100

$0

$100

$0

R

B

$x

sb

sr

sr

sb

C

S

sr,sb

sy

($100,½;$0,½)

A Dynamic Three-Color Urn Paradox
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functional representations of Section 13.5. Similarly, the action R at the second decision 
node induces a “partial” act ($100,sr;$0,sb); any one of the updating rules discussed in the 
previous subsection can be used to evaluate such acts, as prizes assigned on the event sy 
are irrelevant when conditioning on {sr, sb}.

To see that dynamic consistency may fail, suppose ex-ante preferences are MEU, with 
priors as in equation (13.2). Consider the case x = $100, and observe that then the plans 
CR and CB correspond to the Three-Color urn’s bets a3 and a4 respectively. As noted 
in Section 13.5.1, letting U($100) = 1 and U($0) = 0, bet a4, and therefore CB yield 
utility 2/3, whereas a3 and hence CR yield utility 1/3; on the other hand, choosing 
S yields utility 1/2. Therefore, the ex-ante optimal plan for this decision maker is CB. 
Now suppose that this individual uses the Full Bayesian updating rule. The updated set 
of probability distributions is

Therefore, upon reaching the second decision node, the individual will strictly 
prefer R, which yields $100 with probability at least 1/3, to B, which may yield $100 
with probability 0. This means that, although CR is the ex-ante optimal plan, the individual 
will not actually want to carry it out. Furthermore, if we analyze the problem according to 
backward induction, we conclude that the individual will choose R at the second node. 
Hence, from the perspective of the first node, choosing C is “just as good” as commit-
ting to plan CB, which—as noted above—has an ex-ante utility of only 1/3. Therefore, 
the individual will prefer to choose S at the initial node, according to backward induc-
tion. Thus, backward induction yields a different solution than ex-ante optimization. Both 
these issues can be traced back to a violation of dynamic consistency: the acts a4 and 
a3 (equivalently, the plans CR and CB) are indifferent conditional on {sy} because they 
both yield $x = $100, the individual strictly prefers a3 to a4 conditional on {sr, sb}, but 
strictly prefers a4 to a3 unconditionally.

Similar examples can be constructed for different preference representations and 
updating rules; the issues highlighted are not unique to MEU or full Bayesian updating.

There are three ways to address this failure of dynamic consistency.79 The first was 
introduced by Epstein and Schneider (2003) in the context of MEU preferences, and 
extended to Variational Preferences by Maccheroni et al. (2006b), to Smooth Ambiguity 
Preferences by Klibanoff et al. (2009), and to Vector Expected Utility preferences by 
Siniscalchi (2010). This approach has also been broadly adopted in applications, espe-
cially in financial economics. The basic observation is that the noted tight connection 

C
{sr ,sb} =

{
μ : μ({sr}) ≥ 1/3, μ({sy}) = 0

}
.

79  A fourth way is to drop the reduction assumption. In the example, one could argue that the individual may prefer 
plan CR to plan CB in the tree of the figure, even though he or she prefers act a4 to act a3 in the static Three-Color 
Paradox. This is explored in Li (2011).
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between Savage’s Postulate P2 and dynamic consistency does not prevent the coexis-
tence of some departures from P2 and some form of dynamic consistency. More precisely, 
if for a given state space one wishes to ensure dynamic consistency in every possible deci-
sion tree, then Postulate P2 must hold for all events, and therefore there is no scope for 
Ellsberg behavior. However, one can fix one particular decision tree, and require dynamic 
consistency only for that particular tree. This implies that P2 will hold only for some 
events, but there will still be scope for Ellsberg-type behavior.

For a simple example, suppose that a fair coin is tossed; if it comes up heads, the indi-
vidual is confronted with the Three-Color Ellsberg urn and must choose to bet on red 
vs. black; if it comes up tails, the individual faces the same urn but must choose whether 
to bet on red or yellow vs. black or yellow. Letting the space be S = {H,T}×{r,b,y} to 
simplify notation, a plausible set of priors for this problem is

For this set of priors, the modal Ellsberg preferences obtain, both ex ante and after 
each realization of the coin toss. Dynamic consistency also holds in this tree. Note 
that this set of priors is obtained by taking the product of the uniform probability 
on {H, T} with the priors in the set C of equation (13.2). Epstein and Schneider 
show that dynamic consistency of MEU preferences in a particular tree characterizes 
a generalization of this property of the representing set of priors, called rectangularity. 
Furthermore, they show that dynamic MEU preferences with a rectangular set of pri-
ors admit a recursive representation; this accounts for the popularity of this approach 
in applications.

Rectangularity does rule out, for example, the set of priors in equation (13.2) from 
Section 13.5.1, which we used to analyze the dynamic version of the Three-Color Paradox 
in the above figure. Intuitively, conditioning on the event {sr,sb} “breaks” the complementar-
ity between the states sb and sy (cf. Sections 13.5.6 and 13.6.1) and this leads to a violation 
of dynamic consistency. Loosely speaking, rectangularity rules out precisely these comple-
mentarities across different conditioning events. Of course, in some contexts, such comple-
mentarities may be the main object of interest—as is the case in the stylized problem of 
the figure. In such cases, alternatives to the Epstein-Schneider approach can be pursued.

One such alternative was advocated by Hanany and Klibanoff (2007, 2009), who 
adapt arguments first proposed by Machina (1989) in the context of risky choice. The 
basic intuition is that the preceding arguments implicitly made the assumption that, 
when the individual is evaluating choices at a node in a decision tree, bygones are bygones: 
the only relevant considerations are the residual uncertainty, and the prizes delivered 
at terminal nodes that can still be reached. Machina, as well as Hanany and Klibanoff, 
argues that this need not be the case. For example, in the choice problem of the figure, 
when the individual faces a choice between R and B, he or she may take into account 

C =

{
μ : μ({Hr}) = μ({Tr}) = 1/6, μ({Hb}) = μ({Tb}), μ({Hy}) = μ({Ty})

}
.
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that this choice occurs “in the context” of a given decision tree. In particular, he or she 
may take into account the prize $x that would have been delivered if a yellow ball had been 
drawn. Formally, this allows the individual to express a conditional preference for R over 
B if x = $0, and for B over R if x = $100. Hence, in particular, with x = $100 there no 
longer is any dynamic inconsistency: ex ante, the individual prefers CB to CR, and upon 
reaching the second decision node, prefers B to R.

Formally, Hanany and Klibanoff (2007) focus on MEU preferences, and impose 
a (weak) form of dynamic consistency. They consider a class of two-period decision 
problems and a class of updating rules, i.e., mappings that associate a second-period con-
ditional preference to every prior preference, decision problem and ex-ante optimal act. 
Within this class, they characterize the ones that are dynamically consistent in the sense 
that the ex-ante optimal act remains conditionally optimal. Their 2009 paper extends the 
results to arbitrary Uncertainty-Averse Preferences.

One consequence of this approach is that the resulting conditional preferences may 
display either uncertainty aversion or uncertainty neutrality, depending on the prizes 
assigned at counterfactual terminal nodes; an example is provided in Siniscalchi (2009b). 
This seems at odds with the usual interpretation of ambiguity, which concerns informa-
tion rather than prizes.

The final approach we discuss can be traced back to Strotz (1956), and was advo-
cated in the context of ambiguity by Siniscalchi (2011). The basic idea is to assume that 
individuals are sophisticated: that is, even though they may be dynamically inconsistent, 
they correctly anticipate their future behavior, and respond accordingly. Strotz argues 
that a sophisticated individual should engage in a strategy of consistent planning: at each 
decision point, they should choose the plan that is best according to their current prefer-
ences, among all those plans that, in view of their future preferences, they will actually be 
able to carry out. Consistent planning is thus a “refinement” of backward induction, in 
the sense that, whenever two or more plans are optimal from the perspective of future 
preferences, the one that is optimal for the current preferences is selected.

In the tree of the figure with x = $100, consistent planning implies that, at the initial 
node, the individual will anticipate their preference for R over B upon learning that a 
yellow ball was not drawn; hence, they will realize that choosing C is tantamount to 
committing to the plan CR, and will therefore choose S instead. In other words, con-
sistent planning coincides with backward induction in this example.

Siniscalchi provides an axiomatization of consistent planning. The key insight is that, 
to formulate the sophistication principle (and other assumptions implicit in consistent 
planning), preferences need to be defined over decision trees, rather than acts, or even 
plans. This is analogous to the use of preferences over menus in the literature on 

preference for flexibility, or temptation and self-control. One advantage of this 
approach is that it yields insight into the issue of the value of information under ambiguity. 
The reader is referred to the original paper for detail.
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13.8  CONCLUSION

In recent decades the theoretical and experimental literature on the economics of 
ambiguity and ambiguity aversion spawned by Ellsberg (1961,1962) has exploded to the 
point where it is much too extensive to be covered in a single chapter of this form. For 
additional discussion, the reader is referred to the surveys of Sugden (1986), Camerer 
and Weber (1992), Kelsey and Quiggin (1992), Kischka and Puppe (1992), Camerer 
(1995), Mukerji (2000), Starmer (2000), Siniscalchi (2008a), Gilboa et al. (2008), 
Al-Najjar and Weinstein (2009), Hey et al. (2010), Etner et al. (2012) and Gilboa and 
Marinacci (2012), the journal symposium issues of Bonanno et al. (2009) and Ellsberg 
et al. (2011), and the extensive annotated bibliography of Wakker (2013).
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